M lt' Kansas State University
u] 234 Nichols Hall

Agent Manhattan, KS 66506-2302
@ Phone: (785) 532-6350
COOperatlve Fax: (785) 532-7353
- http://macr.cis.ksu.edu/
Robotics

Laboratory

Technical Report

Designing Adaptive Sensor Networks Using an

Organization-based Approach

by

Walamitien H. Oyenan, Scott A. DeLoach and Gurdip Singh

MACR-TR-2010-04
June 1, 2010

Table of Contents

Lo INTEFOTUCTION ettt e b e b e sbe e she e s et e st e st e et e et e et e e be et saeeentesaneens 3
YA (Y0 (T DT 1= 5
FN I G Y- 1 OO OSSPSR 6
2.2. Roles, Capabilities and POLICIESccueiieeiiee ettt e et earee e s e are e e e aba e e e enreas 7
B I €= 0 1Yol Y1 Yot (U =SSR 8
3.1, OVEIAll ArCRITECTUIE ...eiieiiceiecie ettt sttt st sttt et e et e e be e bt e beesbeesbeesaeesbaesanesasesas 8
3.2, AENT AFCHITECTUIE ...ttt e et e e e et e e e e e tee e e esateeeeebaeeeeeabeeesesteeaennsenas 9
4. SystemM IMPIEMENTATIONcciiiiii ettt e et e e et ee e e et e e e eeatbe e e s s abaeeeensbeeeeenstaeesennreeeeansenas 11
4.1, RUNEIME OFZANIzZatiON ...cccccviiieiciiee ettt ettt e e et e e e et e e e seata e e e sbteeeesabaeeesstaeeessteeeeanseneesnnes 11
O N oY o] [Ter- 4o] o [P URRUR 12
D EXPEIIMENTAL RESUIES....oeiiiiiiiee ettt ettt ettt e ettt e e ettt e e eetaeeeeeataeeeesseeeeeasseeeeassaeeesssaeaeasseeanan 14
B. REIATEA WOIK ...ttt e b e bt e b e s bt e s bt e s bt e sae e sateeate st e eabe et eesaee e 18
7 CONCIUSION .ttt sttt sttt ettt et e et e et e e b e e bt e bt e beesbeesaeesaeesatesabeeas sheesaeesaeenaee 18
o Yol qa o RN Y] F=To f= T o YT o | SRR 19
0. REFEIEINCES .ttt ettt e st e e et e e e bt e e e tbeesabeesabaeeasaeesabeeaateeanbasessseesaseeansaeabaeasn seseeesnreens 19

Page 2

An Organizational Design for Adaptive Sensor Networks
Walamitien H. Oyenan, Scott A. DeLoach and Gurdip Singh
Department of Computing & Information Sciences, Kansas State University

{oyenan, sdeloach, gurdip}@ksu.edu

Abstract

As wireless sensor network applications grow in complexity, ad-hoc techniques for developing this kind of
systems are not adequate anymore. Therefore it is crucial that these systems be adaptive and
autonomous in order to remain functional even in the face of unreliable communications, dead nodes,
and other unexpected failures. We propose to manage a sensor network based on a rigorous multiagent
organizational design, which helps separate application logic from low-level sensor implementation
details. The organizational design allows designers to specify high-level goals that the systems will try to
achieve based on sensor capabilities. We present our design models and agent architecture used to
develop a surveillance application in which sensors are used to collaboratively monitor and track all
vehicles entering an area. We analyze adaptation mechanisms for this application by providing
quantitative results obtained through a simulated system.

1. Introduction

Wireless sensor networks (WSN) have been used in different types of applications to obtain
information about the environment. Large-scale deployments of these networks have been
used in many diverse fields such as wildlife habitat monitoring [16], traffic monitoring [1] and
lighting control [18]. WSN have constrained power and computational resources and often
operate unattended in highly dynamic and harsh environments. These conditions along with
the inherently distributed nature of these systems make designing WSN applications a very
complex and challenging task. Consequently, ad-hoc techniques for developing this kind of
systems are not adequate anymore. For instance, when developing a complex WSN application,
it would be too complicated to explicitly encode interactions among all the nodes and write
error-handling logic for every failure. Therefore, it is crucial that WSN be adaptive and
autonomous in order to remain functional even in the face of unreliable communications, dead

nodes, and other unexpected failures.

We propose to manage sensor nodes based on a multiagent organizational design, which helps
separate application logic from low-level sensor implementation. In fact, organizations facilitate

cooperation between heterogeneous sensors and provide guidelines to handle recurrent events

Page 3

like sensor registration, sensor failure, and capability degradation. Moreover, due to their
distributed structure, sensor networks are inherently suitable for multiagent systems
approaches [21]. Hence, sensors can be viewed as independent autonomous agents that can

collaboratively work and achieve a common goal.

To design organization-based multiagent systems, many framework have been proposed [8].
However, we are basing our work on the Organization Model for Adaptive Computational
Systems (OMACS) because of its capability orientation which makes it particularly suitable with
heterogonous sensors capabilities. The objective of an organizational design in OMACS is to
allow designers to specify high-level goals that the system will try to achieve based on the team
capabilities. OMACS defines the organizational concepts that are required in order to provide
the agents with the required knowledge to self-organize. In addition to those general
organizational concepts, OMACS allows designers to define application events that can cause
the system to reorganize. For instance, an application specific event in a surveillance
application can be the appearance of a vehicle. In response to this event, the organization

would try to find an appropriate goal to pursue.

Moreover, OMACS is supported by a rigorous process defined from the Organization-based
Multiagent Engineering. This process has been used successfully to build complex autonomic
systems [17]. In this report, we follow a similar design process by defining key design models
capturing the important organizational concepts. These models will be implemented into

runtime models that will be used as the basis for the adaptive reasoning.

To show how our rigorous organization design can be applied to develop sensor network
applications, we focus on using a common sensor networks application, a surveillance
application, in which sensors are used to collaboratively monitor and track vehicles entering an
area. In our application, sensors are deployed over a large area. As sensors have a limited
sensing range, no one sensor can cover the entire area. Hence, agents, which are controlling
sensors, need to collaborate in order to provide data covering the entire area of interest. In
particular, in order to conserve energy, we would like to provide maximum coverage with the
minimum number of agents. In the absence of targets, agents not monitoring must be in a sleep

state in order to conserve energy. Once a target is detected, all sensors within a certain

Page 4

distance from the target must be activated in order to provide the maximum number of
measurements that will be used in order to properly locate and identify the target. For this
particular application, we will show how the organizational approach allows the system to
autonomously adapt to overcome sensor failures and loss of performance due to capability

degradation.

Our organizational design is based on two main design models (goal model and role model) and
a set of policies, which are presented in Section 2. Then, in Section 3 we introduce our generic
agent architecture that is used to develop agents for two different platforms. At runtime, those
agents will be assigned to roles to achieve goals. We examine how the decision process takes
place at runtime in Section 4 and evaluate how the organization behaves when facing

unexpected failures in Section 5.

2. System Design

In general, multiagent organizations are designed using a set of related design models which
capture various organizational concepts such as goals, roles, interactions and norms [7]. In this
work, we use the organizational concepts defined in the OMACS model. OMACS defines an
organization as a set of goals that need to be accomplished, a set of roles that must be played
to achieve those goals, a set of capabilities required to play those roles, a set of agents that are
assigned to roles in order to achieve organization goals and a set of policies that constrain the
possible behaviors of agents in the organization. At runtime, the assignments of agents to play

roles to achieve goals represent the key functionality that allows systems to be adaptive.

Our organizational design follows the multiagent systems development process proposed in
[17], which is built based on method fragments from the O-MaSE framework [9]. Although the
methodology introduced in [17] presents several design models, for the sake of brevity, the
sensor network design presented here only focuses on two main models, which are adequate

to capture all the organizational concepts aforementioned.

First, we define our organization goals and organize them in a goal model [4]. This goal model
consists of AND/OR decompositions of goals along with a trigger relationship that allows goals

to be instantiated with particular application-specific parameters. For instance, in our

Page 5

wiznals
0 Surveilance

and»\

wiznals #30als
=aodls 3 Track 4 G ke R L
> Maonitar enerake Reports
T detection_area : Area
initial_area : Area

#ands
7 and: startTrackidetection area}
sI:arI:Mu:uniI:u:url{iniI:ial_area/}l/_/_/,,/Az \
«Goals #Goal: ‘KGDal» «Goals
2.1 Determine Coverage 2.2 Monitar Area 3.1 Divide Area 3.2 Track Area
d

etection_area @ Area

azoal=
1 Define Area

initial_area : Area monitaring_area ; Area kracking_area : Area

.,

monitar{monitoring_area)

track{trackmg _area) j

Figure 1. Surveillance Goal Model

surveillance application, monitoring or tracking goals would need to be instantiated for a
particular area that will be given as a goal parameter. At runtime, the set of goals changes

dynamically as new goals are created or existing ones are achieved.

Then, we identify the organization roles, which represent a high-level description of the
behavior required to achieve particular goals. They are organized into a role model, which
captures the roles along with their possible interactions (defined as protocols) and their

required capabilities.

Finally, agents are designed to assume roles in an organization. They are designed separately
and can participate in the organization as long as they have the required capabilities. In the
next section, we introduce our agent architecture, which exploits the design models to build

organizational knowledge.

Design models are created using agentTool Il (aT?), a multiagent development environment
built on the Eclipse platform [3]. aT® supports the development and validation of design models
that can be automatically translated into platform specific runtime models. More details about

the design models and the methodology for which they apply can be found in [9] and [17].

2.1. Goals

We derive the goal model presented in Figure 1 from the requirements of our surveillance

system. The goals are conjunctive, meaning that all leaf goals are required to be achieved in

Page 6

order for the main goal to be achieved. The arrows between goals indicate trigger events and
their parameters. The top-level goal is the Surveillance goal. This goal is decomposed into four
subgoals: Define Area, Monitor, Track, and Generate Reports. The Monitor and Track goals are
further decomposed into Determine Coverage, Monitor Area, Divide Area and Track Area. The
organization will actively pursue the leaf goals by assigning them to agents. Triggers between
goals are based on events generated by roles during their execution and thereby impose a

temporal order in which goals can be activated.

Essentially, once an area is defined via the achievement of the Define Area goal, an event is
generated, which triggers the instantiation of the goal Monitor(initial_area). As the area
parameter might be too large for any single agent, the goal Determine Coverage is in charge of
dividing it into smaller subareas that can potentially be covered by a single agent. Each of these
subareas (monitoring_area) is used as a parameter to a Monitor Area goal. Each Monitor Area
goal can in its turn initiate a Track goal for a given detection area. Once again, the detection
area defined for the track goal might be too vast for a single agent. Hence, the Divide Area goal
breaks up the detection area, which results in the creation of a Track Area goal for each
subarea (tracking_area) identified. Finally, all application data gathered are aggregated in a

user-friendly report by the Generate Reports goal.

2.2. Roles, Capabilities and Policies

Next, we define the roles that can achieve the leaf goals identified in the goal model. For each
role, we specify a behavior that will be followed by agents enacting this role. Examples of role
behaviors (represented as state machines) will be introduced in Section 4. We identified five
roles necessary to achieve the goals: User Interface, Coverage Processor, Monitor, Divider and
Tracker. In addition, we defined the capabilities that can be required by the roles:
Magnetometer (to detect targets), Power (to measure remaining power), GUI (to interact with
the user) and Computation (to execute coverage and division algorithms). Table 1 summarizes
the main organizational entities of our surveillance organization design by indicating for each

role the goals it can achieve and the capabilities it requires.

Page 7

Finally, to complete the design, we specify some reorganization policies that will guide the
system when assigning the goals to agents [11]. These policies typically specify the kind of
assignments the system should preferably make or avoid. For instance, we specified a policy
requiring that monitoring agents should together provide a 100% coverage of the area of
interest. Policies are expressed as conditional statements related to one or more assignments.

The policies used in our systems are discussed in Section 5.

3. System Architecture

Once the organization design models are defined, we need to define the agents that will be
participating in the organization. In our application, we have two types of agents: Base Station
agents and Mote agents. The system contains one Base Station agent running on a PC platform
and several Mote agents running on a Berkeley mote platform, which is a sensor network

platform [2].

3.1. Overall Architecture

The overall system architecture is presented in Figure 2. The design models (goal model and
role model) and policies obtained from aT* are automatically translated into runtime models
that are used by the Base Station agent to make decision about the reconfiguration of the
organization. We chose to have the entire organizational knowledge in the Base Station agent

because it has more computational resources than the motes and it is less prone to failure.

Table 1: Organization Goals, Roles, Capabilities

Role Goals Achieved | Capabilities
Required
User Define Area, GUI
Interface | Generate
Reports
Coverage | Determine Computation

Processor | Coverage
Monitor | Monitor Area Magnetometer,

Power
Divider Divide Area Computation
Tracker Track Area Magnetometer,
Power

Page 8

NesC
Assignments

Assignments

Policies=—

agentTool Il

Mote Agents

Base Station Agent

Figure 2. Overall System Architecture

Therefore, in our system, the Base Station is the only agent that possesses the organizational
knowledge and decides the next configuration of the organization. Moreover, we assume that

all Mote agents are within communication range of the Base Station.

The Base Station agent runs on a laptop with a base station mote (mote 0) attached to it. This
mote acts as a gateway and allows the Base Station agent running on a PC to interact with the

rest of the agents exclusively running on the mote platform.

Once assignments have been made by the Base Station agent, they are passed on to the proper
Mote agents who execute them and return feedback based on events of interest to the
organization (goal completion, goal failure, application specific events). Consequently, the Mote
agents have limited autonomy as they must agree to play their assigned role and pursue their
assigned goal. Nonetheless, they have freedom in the choice of the specific actions necessary to

play a role.

3.2. Agent Architecture

The Base Station agent and the Mote agents all participate in the same organization and
cooperate to achieve the main organizational goal. Both types of agents are based on the same
general architecture, which consists of two main components: the Control Component and the
Execution Component (Figure 3). The Control Component performs all organization-level
reasoning while the Execution Component provides all the application specific reasoning. This
architecture has been designed to facilitate extensibility and reusability and to provide a clear

separation between organization control and application. With this architecture, control

Page 9

components can be modified to cater for different organization control mechanisms without

sacrificing compatibility with the rest of the system.

The Control Component possesses an organizational knowledge component that stores all the
knowledge about the structure of the organization and a control manager that makes the
decisions. The organizational knowledge is created based on design models and updated at
runtime as organization events arrive. In addition, agents are added to this knowledge base as
they appear and register to participate in the organization. Based on the organizational
knowledge, the control manager can reason about the state of the entire organization and
decide to reconfigure the organization by including/canceling goals or by modifying current
assignments. As each Control Component has its own view of the organization, a deliberation
process might be needed to reach consensus about the next state of the organization.
However, in the system described in this report, we have opted to store the entire

organizational knowledge at the Base Station agent who can make decision alone. Hence, all

CONTROL COMPONENT

Organizational
Knowledge

access/udpate events

Organjzation-related
Control Manager < >
* communications

assignments evénts
]
+ Application-specific
Execution Manager - — >
communications
pla:zs> 1 /uses
Role A

~uses—» Capability 2

| P 4
plays M uses M
. L)

- Role B —s*s® Capability 3

EXECUTION COMPONENT

Figure 3. Generic Agent Architecture

Page 10

Make
Assighments

Update Goals

Control
Component Level

Execution
Component Level

Propagate
Events

Play Roles

Figure 4. System Phases

events from other agents are passed to the Base Station. Decisions taken by the Base Station
agent are passed on to the Control Component of all the agents that are affected, which then

forward these assignments to their attached Execution Components.

The Execution Component corresponds to the application specific part of the agent. It is
notified by its Control Component about what role to play in the organization. Once it has been
assigned a role, the execution manager uses its capabilities to execute the plan provided for
that role at design time. During role execution, an Execution Component may need to
coordinate with other Execution Components in order to exchange application data. In our
application, the Mote agents report their sensor data to the Base Station agent (acting as a

sink) via their Execution Components.

4. System Implementation

4.1. Runtime Organization

At runtime, the system cycles through four main phases: update goals, make assignments, play
roles, propagate events (cf. Figure 4). The update goals and make assignments phases are
organization-related phases and are performed by agents participating in the organization
control, in our case, the Base Station agent. The play roles and propagate events phases are
application-related phases that concern all agents in the organization. Once goals are added in

response to organizational events, the Base Station agent assigns agents to play roles to

Page 11

achieve the newly added goals. Once an agent has been assigned to play a role, it follows the

role’s plan to achieve its goal and reports all events to the Base Station agent.

To make assignments, the Base Station uses a first-fit greedy algorithm. The assignment
algorithm is shown in Figure 5. For each unassigned goal (line 1), we get the first role that can
achieve it (line 5) and the first agent that has all the required capabilities to achieve that role
(line 8). The assignment thereby produced is checked for policies compliance (line 11). If it fails,
the passPolicies method removes the roles and agents that caused the assignment to fail and a
new assignment is sought. If no assignment exists, the least important policy is deactivated to
ensure that the system can progress. In fact, our policies are guidance policies [11] that guide
the system towards a desired behavior without constraining it. They can be abandoned if they
prevent the system from progressing. Policies are arranged by importance order, allowing the

system to ignore the least important policies when unable to find an assignment.

4.2. Application

The application consists of sensors arranged in a grid. Each Mote agent is represented by an
actual sensor and has the required capabilities to play the Monitor role and the Track role. In
addition, the Base Station agent possesses all the required capabilities to play the User
Interface, Coverage Processor, and Divider roles. The Mote agents have been implemented in

nesC [10], a component-based programming language that is currently used to program the

function makeAssignments(activeGoalSet)returns assignmentSet
1. for each goal g in activeGoalSet.unassigned

2. assignment.goal « g

3. do

4. for each role r in Knowledge.roles

5 if r.achieves(g) then assignment.role « r; break
6 end loop

7. for each agent a in Knowledge.agents

8 iT a.possess(r.requiredCapabilities)

9. then assignment.agent <« a; break

10. end loop

11. until passPolicies(assignment) //can deactivate policy
12. assignmentSet.add(assignment)

13. end loop

14. return assignmentSet

Figure 5. Assignment Algorithm

Page 12

detected
::send area

Figure 6. Plan for the Monitor role

Berkeley motes [2] running on the TinyOS [13] operating system. The Base Station agent is

implemented in Java.

The Base Station agent gets an area of interest via a user interface (User Interface role) and
divides it into subareas such that a unique sensor can cover each subareas (Coverage Processor
role). In fact, sensors can only be given areas that fall entirely within their sensing range. This
division is made while insuring that the minimum number of sensors cover the entire initial

area. Mote agents assigned to the Monitor role execute the role’s plan as shown in Figure 6.

For the Monitor role, agents sense the magnetic field at the rate of 1Hz as long as no target is
detected (Monitor state). Once a target is detected, the agent generates an event to initiate a
track over an area equal to twice its sensing radius (Detected state). This area has been chosen
as a prediction of where the target could soon be located. This event results in the Base Station
agent activating the Track Area goal (see Figure 1). The resultant configuration includes the
Base Station agent playing the Divider role in order to select a set of subareas that need to be
tracked. Subsequently, agents capable of sensing the tracking area are assigned to the Tracking

role for a subarea. The plan for the Track role is depicted in Figure 7.

If the tracking agent (the agent playing the tracking role) is on the target trajectory, it
eventually detects the target (Found Target state). Based on the speed of the target, a tracking
agent may have to wait for a certain time before detecting the target (No Target state). Taking
the target speed into consideration, we have set the wait time such that the tracking agent

always detects a target moving in its direction. When the target is lost (Lost Target state) or the

Page 13

::send achieved

Figure 7. Plan for the Tracker role

target has never been detected (No Target state), the agent sends a message to the Base

Station agent indicating that it has achieved its role.

Finally, to maintain the sensor topology, sensors periodically send a beacon message indicating
that there are still in the network. If a beacon is not received after a certain time, the Base
Station considers that the agent has failed and reassigns its roles to other agents. Moreover, to
reduce the number of messages sent in the application, the beacon messages are also used to

report capability status updates (such as power level of the sensors).

5. Experimental Results

The actual test bed for our experiments consisted of 25 sensors evenly distributed in a 5x5 grid
with integer (x, y) coordinates ranging from (0, 0) to (4, 4). The sensors covered an area of 100ft
x 100ft. We chose TOSSIM [15] as a simulation environment since it uses nesC and it can
emulate the execution of the real code on the motes without the need for deployment. In
addition, TOSSIM scripting language, Tython [6], allows us to interact with the simulator
environment by inserting failures and by simulating moving targets. We simulated a moving
target as a magnetometer source that can linearly affect the magnetometer readings of nearby
sensors based on their distance. We set up the detection threshold value such that sensors can
detect the moving target for up to 30 ft. We also set the target to move on straight lines at the
constant speed of 2ft/s. For all our experiments, we assumed that communication is reliable

and that all nodes are within one hop communication range.

Page 14

When an agent fails while achieving a goal, the organization triggers a reorganization that
results in another agent assigned to the failed goal or in another set of alternative goals
assigned to the available agents. Hence, our first set of experiments attempted to see how the
system recovers from sensors failures. We were interested in the failure of the monitor agents.
Such failures are recognized by the organization when monitor agents fail to send beacon
messages. When this happened, the organization tried to find another set of monitoring agents
that can insure a total coverage of the surveillance area. Initially, the organization tried to find
an agent that can cover the same area previously covered by the failed agent. When it was not
possible, all the current monitor agents were de-assigned and replaced by a new set of monitor
agents capable of covering the area. The adaptation of the system was measured in term of the
percentage of the surveillance area covered by monitoring agents after various failure ratios.
The coverage was computed as the average observed over 5 runs of 1000 simulation seconds.
During the simulation, random failures of monitor agents were introduced at a constant rate
(every 50 seconds) between 100 and 900 seconds. In addition, we measured the coverage
obtained in a non-adaptive version of the system for which four agents were statically assigned

to the monitor role at design time and were not replaced after a failure.

Figure 8 shows the results obtained for our adaptive system and for a non-adaptive version.
These results show that even with 6 sensor failures at 350 seconds, our system still provides
100% coverage whereas the non-adaptive version cannot cover the area once all its four static
sensors have failed (250 seconds). By the end of the simulation, the adaptive system has lost
70% of its sensors but still covers more than 65% of the area. These large coverage values with
few sensors are due to the fact that on average, each sensor can cover 25% of the area.
Nevertheless, the organization was able to reorganized in the face of failures and reassign the
failed monitoring goals to available sensors in order to continue to insure a maximum coverage

of the surveillance area.

Our second set of experiments intended to show how the system adapts to decreasing power
levels. Like most surveillance systems, most of the energy is consumed during the surveillance
phase, monitoring for potential targets [12]. Thus, the non-adaptive design with static

monitoring agents leads to the complete energy depletion in the monitoring agents while the

Page 15

—=—Adaptive =¥=Non-Adaptive

120

100 A

mn
mn
n
i

80 A

60

Coverage (%)

40

20 \
LN

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

Simulation Time (seconds)

Figure 8. Coverage obtained by injecting a monitor failure every 50 seconds

remaining agents used almost no energy. Hence, we were interested in having the system
adapt to maintain a uniform level of energy among all the nodes while trying to always insure a
maximum coverage. For that, we introduced several guidance policies aiming at putting a lower
bound on the energy required to play a monitor role. This allowed agents to give up the
monitoring role when their energy dropped below a certain threshold. We defined three energy

policies (EP) and one coverage policy (CP) ordered by least-importance.
e all monitor agents should have less than 20% of their energy used (EP20)
e all monitor agents should have less than 50% of their energy used (EP50)
e all monitor agents should cover 100% of the surveillance area (CP100)

As we explained earlier, the system satisfies all the policies as long as compliant assignments
can be made. If no assignment can be found, the system deactivates the least important policy
among all the active ones in order to proceed. Therefore, with EP20 active, every time a
monitor agent energy usage rose above 20%, there was a reorganization aiming at finding
another agent to play the monitor role. When there were no agents with less than 20% energy

usage or those with less than 20% energy usage could not cover 100% of the area, the system

Page 16

deactivated EP20. This process continued until all the policies were deactivated, in which case

the system could assign monitoring roles without ensuring maximum coverage.

We compared the energy level of each agent at the end of a simulation with and without the
policies. The system running without energy policies kept the same monitor roles throughout
the entire simulation, whereas the system with policies behaved as indicated above. We used
the number of radio messages sent as a measure of energy consumption, which is reasonable
given that radio communication largely dominates energy on the motes [19]. Note that during
the monitor or track roles, agents are constantly sending sensor readings and beacon messages

back the base station.

Figure 9 shows the energy consumed for both systems. The results were observed over a run of
1000 simulation seconds with 3 targets appearing one at a time along the same path. Globally,
there was a target present 20% of the time. In the non-adaptive version, agents 6, 9, 21 and 24
used more energy than any of the other agents did. This is because these agents were playing
the monitor role during the entire simulation. On the other hand, we observed that the
adaptive version kept the energy level uniform among all agents. In fact, even though both
systems used 41% of their global energy, the standard deviation for the adaptive system was
12% whereas the one for the non-adaptive version was 28%. These results support the fact that

our adaptive system was able to reorganize in order to maintain a uniform distribution of the

120%

100% -

80%

@ Adaptive
m Non-Adaptive

60%

Energy Usage

40%

20% -

0% -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Agent ID

Figure 9. Energy Usage discrepancies between the adaptive and non-adaptive system

Page 17

energy usage as directed by the policies.

6. Related Work

Several multiagent approaches have been proposed to develop sensor networks. A survey of
MAS perspectives for WSN is available in [21]. However, most of the multiagent approaches do

not consider an organizational design, which provide a better abstraction for MAS.

Organizational approaches for WSN have been used in [14, 20, 22]. Like ours, these approaches
use organization mechanisms to manage sensor nodes. However, these approaches only deal
with specific problems and do not specifically tackle the issue of adaptation. In addition, they
do not follow a rigorous development process. Our organizational approach provides systems
with enough knowledge to be able to self-organize and is supported by the O-MaSE process

framework [9].

7. Conclusion

We presented the design and implementation of an adaptive surveillance application that uses
wireless sensor nodes to collaboratively monitor and track all vehicles entering an area. Our
design was based on a multiagent organizational design paradigm [5] that provides the sensor
nodes with the required knowledge to self-organize. We developed designs models that
capture important organizational concepts and implemented them into runtime models that
were used to support adaptation decisions. The implementation was tested on a simulator in
order to demonstrate the adaptive properties gained from developing applications using our
organizational design approach. This implementation demonstrated the following adaptive

properties:

e Self-configuration: The system was able to reconfigure itself when new goals appear in
the organization in order to achieve this new goal.

e Self-healing: The system was able to reorganize to overcome the loss of a sensor.

Page 18

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

8. Acknowledgements

This work was supported by grants from the US National Science Foundation (0347545) and the
US Air Force Office of Scientific Research (FA9550-06-1-0058).

9. References

S. Coleri, S.Y. Cheung, and P. Varaiya. Sensor networks for monitoring traffic. in Allerton conference on
communication, control and computing. 2004.

Crossbow. Wireless sensor networks (mica motes). [cited 2009; Available from:
http://www.xbow.com/.

S.A. DelLoach. The agentTool Il Project. [cited 2008; Available from: http://agenttool.cis.ksu.edu/.

S.A. DelLoach and M. Miller, A Goal Model for Adaptive Complex Systems. International Journal of
Computational Intelligence: Theory and Practice, 2010. 5(2).

S.A. Deloach, W.H. Oyenan, and E. Matson, A capabilities-based model for adaptive organizations.
Autonomous Agents and Multi-Agent Systems, 2008. 16(1): p. 13-56.

M. Demmer, et al., Tython: A Dynamic Simulation Environment for Sensor Networks, U.o.C. EECS
Department, Berkeley. 2005.

V. Dignum, Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational
Models. 2009: Information Science Reference.

A. Estefania, J. Vicente, and B. Vicente, Multi-Agent System Development Based on Organizations.
Electronic Notes in Theoretical Comp. Sci., 2006. 150(3):p.55-71.

J.C. Garcia-Ojeda, et al. O-MaSE: A Customizable Approach to Developing Multiagent Development
Processes. in 8th International Workshop on Agent Oriented Software Engineering 2007.

D. Gay, et al. The nesC language: A holistic approach to networked embedded systems. in PLDI '03:
Programming language design and implementation. 2003. California.

S. Harmon, S. Deloach, and Robby, Trace-Based Specification of Law and Guidance Policies for Multi-
Agent Systems, in ESAW: Engineering Societies in the Agents World VIIl. 2008. p. 333-349.

T. He, et al., VigilNet: An integrated sensor network system for energy-efficient surveillance. ACM Trans.
Sen. Netw., 2006. 2(1): p. 1-38.

J. Hill, et al., System architecture directions for networked sensors. SIGPLAN Notice, 2000. 35(11): p. 93-
104.

Page 19

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

B. Horling, et al., Using autonomy, organizational design and negotiation in a distributed sensor network,
in Distributed Sensor Networks: A multiagent perspective, V. Lesser; and Tambe, M. 2003, Kluwer
Academic.

P. Levis, et al. TOSSIM: accurate and scalable simulation of entire TinyOS applications. in SenSys '03:
Proceedings of the 1st international conference on Embedded networked sensor systems. 2003. Los
Angeles, California.

A. Mainwaring, et al., Wireless sensor networks for habitat monitoring, in Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications. 2002, ACM: Atlanta, Georgia,
USA.

W.H. Oyenan and S.A. Deloach, Towards a Systematic Approach for Designing Autonomic Systems. Web
Intelligence and Agent Systems (WIAS): An International Journal, 2010. 8(1).

J.S. Sandhu, A.M. Agogino, and A.K. Agogino, Wireless sensor networks for commercial lighting control:
decision making with multi-agent systems. AAAl workshop on sensor networks, 2004: p. 131-140.

V. Shnayder, et al. PowerTOSSIM: Efficient Power Simulation for TinyOS Applications. in ACM Conference
on Embedded Networked Sensor Systems (SenSys). 2004.

M. Sims, D. Corkill, and V. Lesser, Automated organization design for multi-agent systems. Autonomous
Agents and Multi-Agent Systems, 2008. 16(2): p. 151-185

M. Vinyals, J.A. Rodriguez-Aguilar, and J. Cerquides. A survey on sensor networks from a multi-agent
perspective. in Proceedings of the 2nd Int. Workshop on Agent Technology for Sensor Networks. 2008.

Estoril, Portugal.

[22] H. Zafar, et al., Using organization knowledge to improve routing performance in wireless multi-agent

networks, in Proceedings of the 7th international joint conference on Autonomous agents and

multiagent systems . 2008.

Page 20

