Using Category Theory to Compose Multiagent Organization Design Models

by

Walamitien H. Oyenan and Scott A. DeLoach

MACR-TR-2010-01

March 25, 2010
Table of Contents

1. Introduction .. 1
2. Organization Design Models ... 2
 2.1. Goal Model .. 3
 2.2. Role Model ... 6
 2.3. Organization Structure .. 7
3. Category Theory Preliminaries ... 9
4. Category of Goal Models ... 13
5. Category of Role Models ... 19
6. Composition of Organization Models ... 24
7. Related Works ... 29
8. Acknowledgements .. 30
9. Conclusion .. 30
10. References .. 31
Abstract

Organization-based Multiagent Systems (OMAS) have been viewed as an effective paradigm for addressing the design challenges posed by today’s complex systems. In those systems, the organizational perspective is the main abstraction, which provides a clear separation between agents and systems, allowing a reduction in the complexity of the overall system. To ease the development of OMAS, several methodologies have been proposed. However, existing multiagent approaches do not provide a rigorous composition process to integrate multiagent organization designs. In this report, we propose a formalization of OMAS designs using concepts from category theory and show how large and complex organization designs can be built from simpler ones.

1. Introduction

Design models are often created by different teams and need to be merged into one main design. Similarly, complex designs can be decomposed into smaller more manageable design models and then integrated later. Moreover, several projects might require the reuse of some previous designs. Unfortunately, most of the current Agent-Oriented Software Engineering (AOSE) methodologies simply suggest the decomposition of organization designs and fail to provide a rigorous process to recombine them. In most cases, the designer informally uses the agent interaction mechanisms to integrate organization designs.

In this report, we define a general framework for the formal composition of Organization-based Multiagent Systems (OMAS) design models. The composition is done solely at the design level, resulting in a single composite organization design that can then be used at runtime. The main organizational models used in this work are the goal and role models, which are key models that provide OMAS their adaptability. These models (in various forms) have been used in several OMAS framework. My work is based on the Organization Model for Computational Adaptive Systems (OMACS) [7]. There are many other organizational models for OMAS [10] and the approach proposed in this report could well be adapted for any of them. OMACS proposes a formal framework for describing organizational models for MAS and is supported by a rigorous methodology tailored from the O-MaSE process framework [13]. OMACS defines an organization as a set of goals (G) that
the organization is attempting to accomplish, a set of roles (R) that must be played to achieve those goals, a set of capabilities (C) required to play those roles and a set of agents (A) who are assigned to roles in order to achieve organizational goals. There are more entities defined in OMACS that are not relevant for this report. The reader is referred to [9] for the complete model.

The goal models and role models represent the persistent part of a multiagent organization, the organization structure [11], which can then be populated later with heterogenous agents to produce a dynamic organization. Hence, this work does not deal with the actual agents that will participate in the organization.

We propose a framework allowing the composition design models, by treating composition as an algebraic operator over models and their relationships. Using a category theoretic approach, we formalize the goal model, the role model, and finally the entire organization. We define each model as a category and then show that these models can be composed by computing their pushout in the appropriate category. By using this mathematical framework, we obtain a formal construction of the composition of organizations that is guaranteed to result in a correct organizational design.

2. Organization Design Models

OMACS defines an organization as a set of goals (G) that the organization is attempting to accomplish, a set of roles (R) that must be played to achieve those goals, a set of capabilities (C) required to play those roles and a set of agents (A) who are assigned to roles in order to achieve organizational goals. The complete OMACS model is defined in [9]. In this report, we use a generalization of the OMACS model and only consider the goals, roles and the relationship that exists between them. These entities represent the persistent part of the organization that can be populated with heterogenous agents to produce a dynamic organization. In the following subsections, we formally define the models that will be used throughout this work.
2.1. Goal Model

In a typical multiagent organization, organizational goals and roles are organized in a goal tree [18, 23, 32, 33] and in a role model [21, 33, 34] respectively. For this report, we chose to organize our goals using a Goal Model for Dynamic Systems (GMoDS) [8]. In a GMoDS goal model, goals are organized in a goal tree such that subgoals of a goal are either an OR-decomposition or an AND-decomposition of that goal. A goal represents a desirable state of a system and is represented by the tuple $g = \langle \text{name}, \text{type} \rangle$ where name is the name of the goal, and type represents the decomposition of the goal, which can be OR, AND, or $LEAF$ (leaf goals are of type LEAF and cannot be decomposed). In addition, the GMoDS goal model contains two time-based relationships between goals: the $precedes$ and $triggers$ relations. We say goal g_1 $precedes$ goal g_2, if g_1 must be satisfied before g_2 can be pursued by the organization. Moreover, during the pursuit of specific goals, $events$ may occur that cause the instantiation of new goals. Instantiated goals may be parameterized to allow a context sensitive meaning. If an event e can occur during the pursuit of goal g_1 that instantiates goal g_2, we say g_1 $triggers$ g_2 based on e.

We extend GMoDs [8] to incorporate the notion of external goals and internal goals. Internal goals (G_i) are the actual goals that the organizations will try to achieve. They are organized in a tree. External goals (G_x) are just placeholders for goals from other organizations and they do not impact the satisfiability of a goal model as they will never be assigned to an agent. External goals are not part of the decomposition tree. They can only trigger internal goals and be triggered by internal goals. In addition, without loss of generality, we assume that all goal models have the same root. This root is represented by an empty AND goal called $generic$ $root$ (g_root). Formally, the goal model can be represented as mathematical structure composed of a rooted tree and a graph. The tree correspond to the AND-OR decompositions between goals. Its edges represent the $parent$ relationship. The graph represents the $time-based$ relationships between goals.

Definition 1: Goal Model

A goal model is a tuple $GM = \langle G, ET, EG, g_root \rangle$ where:
• G : set of organizational goals such that G = Gₓ ∪ Gᵢ, where Gₓ represents the set of external goals and Gᵢ the set of internal goals. We have Gₓ ∩ Gᵢ = ∅;
• ET ∈ Gᵢ × Gᵢ: set of parent edges such that ⟨Gᵢ, ET, g_root⟩ is a rooted tree
• EG ∈ G × G: set of time-based edges such that ⟨G, EG⟩ is a directed graph
• g_root ∈ Gᵢ: the root of the goal model.

Given a goal model GM, the set Gₓ ⊂ Gᵢ represents the leaf goals. The rooted tree is called induced tree and the graph is called induced graph.

Moreover, we define three functions over the nodes goal model: parent, precedes and triggers.

Definition 2: Functions on goals

Given a goal model GM = ⟨G, ET, EG, g_root⟩ and a set of events Ev, we have:

• parent: Gᵢ → Gᵢ; defines the parent of a given goal
• precedes: Gᵢ → 2⁰(Gᵢ); indicates all the goals preceded by a given goal
• triggers: Ev → 2⁰(Gₓ); ⟨g₁,g₂⟩ ∈ triggers(e) iff g₁ triggers g₂ based on e.

Following this definition, we can characterize the internal and external goals as follows:

Gᵢ = {g ∈ G | g_root ∈ parent*(g)};
Gₓ = {g ∈ G - {g_root} | parent(g) = ∅}.

Moreover, we have:
ET = {⟨g₁,g₂⟩ ∈ Gᵢ × Gᵢ | g₁ = parent(g₂) }.
EG = {⟨g₁,g₂⟩ ∈ G × G | (g₂ ∈ precedes(g₁)) ∨ (∃e ∈ Ev | ⟨g₁,g₂⟩ ∈ triggers(e))}

Example 1

Figure 1 represents the goal model GM_example = ⟨G, ET, EG, g_root⟩, where:

• G = {g_root, g₁, g₂, g₃, g₄, g₅, g₆, g₇, eg₁} with Gᵢ = {g_root, g₁, g₂, g₃, g₄, g₅, g₆, g₇} and Gₓ = eg₁
• ET = {⟨g₁,g_root⟩, ⟨g₂,g_root⟩, ⟨g₃,g₁⟩, ⟨g₄,g₁⟩, ⟨g₅,g₁⟩, ⟨g₆,g₂⟩, ⟨g₇,g₂⟩}
• EG = {⟨eg₁,g₁⟩, ⟨g₃,g₄⟩, ⟨g₄,g₅⟩, ⟨g₅,g₂⟩}
• root = {g_root}
Moreover, for each goal \(g \) in the goal model in Figure 1, the type of the goal (\(g.\text{type} \)) is defined based on the decomposition arrow. Hence, \(g_\text{root}.\text{type}=g_1.\text{type}=\text{AND}; \ g_2.\text{type}=\text{OR}; \ g_3.\text{type}=g_4.\text{type}=g_5.\text{type}=g_6.\text{type}=g_7.\text{type}=\text{LEAF} \).

Figure 2 and Figure 3 respectively show the induced tree and the induced graph for this goal model.
2.2. Role Model

We also organize the roles using a role model that is essentially a set of roles connected by protocols. There are two types of roles: internal roles and external roles. *Internal roles* are roles that are defined inside the organization. *External roles* represent placeholder for roles from external organizations. They represent an interface to the outside world, which will allow organizations to cater for interactions with unknown roles at design time. Eventually, either later on in the design or at runtime, external roles will be replaced by concrete roles (internal roles) from other organizations. Formally, a role model can be viewed as a directed graph having roles as nodes and protocol as edges such that an edge p from role r_1 to role r_2 would indicate a protocol p for which r_1 is the initiator and r_2 the responder. We assume that in a role model, protocols names are unique. This can be enforced by having a protocol naming scheme that takes into account the participants of that protocol. In addition, we assume that given two roles, there is at most one protocol between them. This assumption is valid as if there is more than one protocol between two roles, those protocols can be combined into one protocol having several alternate cases [19].

Definition 3: Role Model

A role model is a tuple $RM = \langle R, P, \text{participant} \rangle$ where:

- R: set of roles
P: set of protocols

participants: $P \rightarrow R \times R$; indicates the pair of roles connected by a given protocol

In addition, we have $R = R_i \cup R_x$ ($R_i \cap R_x = \emptyset$), where R_x represents the set of external roles and R_i the set of internal roles.

This role model corresponds to a directed graph having roles as nodes and protocols as edges.

Example 2

Figure 4 represents the role model $RM_{\text{example}} = (R, P, \text{participant})$, where:

- $R = \{r_1, r_2, r_3, r_4, r_5, er_1, er_2\}$
- $P = \{p_1, p_2, p_3, p_4\}$
- participant $= \{(p_1, \langle r_1, er_1 \rangle), (p_2, \langle r_3, r_4 \rangle), (p_3, \langle r_2, r_4 \rangle), (p_4, \langle r_2, er_2 \rangle)\}$

2.3. Organization Structure

Finally, we define an organization as a goal model and a role model such that each leaf goal is achieved by a role.
Definition 4: Organization

An organization is a tuple $O = \langle GM, RM, \text{achieves} \rangle$ where:
- GM: Goal Model
- RM: Role Model
- achieves $\subseteq R \times G$: set of role-goal pairs such that the role achieves the goal.

Essentially, we can view an organization design as a directed graph with multiple node types and multiple edge types following the structure imposed by the goal and role model. The type of nodes and edges matches the corresponding organizational notions. Hence, the nodes can be of type goal or role while the edges can be of type achieve, protocol, parent or time-based.
Example 3

Figure 5 represents the organization ORG_example = ⟨GM, RM, achieves⟩, where:

- GM = ⟨G, ET, EG, g_root⟩ as depicted in the top part of Figure 5
- RM = ⟨R, P, participant⟩ as depicted in the bottom part of Figure 5
- achieves = {(r₁, g₂), (r₃, g₃), (r₄,g₄), (r₅,g₆), (r₆,g₇)}

3. Category Theory Preliminaries

Category Theory is a mathematical tool originally used to establish a uniform framework in order to study the relations between different mathematical structures appearing in various areas of mathematics such as algebra, topology and logic [14, 24].

There is a clear difference in approaches between set theory and category theory. Set theory characterizes a mathematical object by describing its inner structure, its members. However, category theory takes a different approach. Mathematical objects are black boxes only defined by their interactions with other objects. For this reason, Fiadeiro [12] talks about “the social life of objects” as the basis of category theory. Hence, category theory can be viewed as more “abstract” than set theory. Since in this language there is no way to look at the internal membership structure of objects, all the concepts must be defined by their relations with other objects, and these relations are established by the existence and the equality of particular morphisms. In computer science, category theory is very helpful and can be applied in areas such as algebraic specification, type theory, automata theory, programming language semantics, and graph rewriting [2].

In this section, we briefly introduce the key notions of category theory that are used. Those preliminaries do not constitute a proper introduction to category theory. The reader is referred to [14, 24], for a more elaborate introduction to category theory concepts. A computer science introduction to category theory is provided in [1, 2, 12, 29]. The definitions in this section are adapted from [12] and [15].
Definition 5: Graph
A *Graph* $G = \langle V, E \rangle$ is a mathematical structure consisting of two finite sets V and E. The elements of V are called *vertices* (or *nodes*) and the elements of E are called *edges*. Each edge has two vertices associated to it, which are called endpoints. If two vertices u and v are joined by an edge, this edge is denoted $|u,v|$.

G is a *directed graph* if the set of edges contains ordered pairs of vertices. A *path* represents a sequence of vertices such that from each vertex there is an edge to the next vertex in the sequence. A *cycle* is a path such that the start vertex and end vertex are the same. A graph is called *connected* if every pair of distinct vertices in the graph can be connected through some path.

Definition 6: Rooted Tree
A *rooted tree* $T = \langle V, E, r \rangle$ is a connected acyclic graph $\langle V, E \rangle$ in which vertex r has been designated the root.

Definition 7: Graph Homomorphism
Given two graphs $G_1 = \langle V_1, E_1 \rangle$ and $G_2 = \langle V_2, E_2 \rangle$, a *graph homomorphism* h from G_1 to G_2 consists of two functions $f : V_1 \to V_2$ and $g : E_1 \to E_2$, such that:

- if $e = |a,b| \in E_1$ then $g(e) = |f(a), f(b)| \in E_2$ (preserve edges)

Definition 8: Tree Homomorphism
Given two rooted trees $T_1 = \langle V_1, E_1, r_1 \rangle$ and $T_2 = \langle V_2, E_2, r_2 \rangle$, a *tree homomorphism* f from T_1 to T_2 consists of two functions $f : V_1 \to V_2$ and $h : E_1 \to E_2$, such that:

- $f(r_1) = r_2$ (preserve root)
- if $e=|a,b| \in E_1$ then $h(e) = |f(a), f(b)| \in E_2$ (preserve edges).

Definition 9: Category
A *category* C is given by a collection of *objects* and a collection of *morphisms* ("arrows") that have the following structure:

- Each morphism has a domain and a codomain that are objects; we write $f : X \to Y$ if $X = \text{dom}(f)$ and $Y = \text{cod}(f)$;
Given two morphisms \(f \) and \(g \) such that \(\text{cod}(f) = \text{dom}(g) \), the composition of \(f \) and \(g \), written \(g \circ f \), is defined and has domain \(\text{dom}(f) \) and codomain \(\text{cod}(g) \);

- The composition is associative, that is: given \(f : X \rightarrow Y \), \(g : Y \rightarrow Z \) and \(h : Z \rightarrow W \), \(h \circ (g \circ f) = (h \circ g) \circ f \);
- For every object \(X \) there is an identity morphism \(\text{id}_X : X \rightarrow X \), satisfying \(\text{id}_X \circ g = g \) for every \(g : Y \rightarrow X \) and \(f \circ \text{id}_X \) for every \(f : X \rightarrow Y \).

Essentially, a category is a mathematical structure that has objects and morphisms, with an associative composition operation on the morphisms and an identity morphism for each object. In other words, categories are graphs (with multiple directed edges) with a composition and identity structure.

Definition 10: Pushout

Let \(f : X \rightarrow Y \) and \(g : X \rightarrow Z \) be morphisms of a category \(C \). A pushout of \(f \) and \(g \) consists of an object \(W \) and a pair of morphisms \(f' : Y \rightarrow W \) and \(g' : Z \rightarrow W \) such that:

- \(f' \circ f = g' \circ g \)
- For any other morphisms \(f'' : Y \rightarrow V \) and \(g'' : Z \rightarrow V \) such that \(f'' \circ f = g'' \circ g \), there is a unique morphism \(k : W \rightarrow V \) in \(C \) such that \(k \circ f' = f'' \) and \(k \circ g' = g'' \).

This definition is illustrated in Figure 6.

![Figure 6. Pushout in a category](image-url)
Examples 4

Figure 7 shows a pushout in SET. The proof that this diagram represents a pushout is outlined as follows. We have $f: X \to Y$ and $g: X \to Z$, $f': Y \to W$ and $g': Z \to W$ four functions such that:

$$f = \{(2,2), (4,4)\}, \ g = \{(2,2), (4,4)\}, \ f' = \{(2,2), (4,4), (6,6)\}, \ g' = \{(2,2), (4,4), (3,3)\}.$$

It easy to see that $f' \circ f = g' \circ g$. Moreover, assume that there exists two functions $f'': Y \to V$ and $g'': Z \to V$ such that $f'' \circ f = g'' \circ g$. If $k: W \to V$ is a function such that $k \circ f' = f''$ and $k \circ g' = g''$, then the fact that $f'' \circ f = g'' \circ g$ leaves no choice for the choice of k, which ensures uniqueness.

Remark that the object W computed by pushout of f and g in Figure 7 is just the union of Z and Y.
In general, the pushout allows us to merge objects based on their relationships without violating the requirements that are imposed on their structure and adding any unnecessary duplication of elements. In fact, as pointed out by Goguen [14], pushouts represent a construction to interconnect systems to form a larger systems.

4. Category of Goal Models

In this section, we define the category of Goal Model. We then introduce the key notions that will allow the composition of goal model via pushout.

Definition 11: Goal Model Homomorphism

Given two goal models \(GM_1 = \langle G_1, ET_1, EG_1, \text{root}_1 \rangle \) and \(GM_2 = \langle G_2, ET_2, EG_2, \text{root}_2 \rangle \), a *goal model homomorphism* from \(GM_1 \) to \(GM_2 \) is a function \(\Gamma = \langle f, g, h \rangle \) where:

- \(f : G_1 \to G_2 \), such that \(f(\text{root}_1) = \text{root}_2 \)
- \(g : ET_1 \to ET_2 \), such that if \([a,b] \in ET_1 \) then \(g([a,b]) = [f(a), f(b)] \in ET_2 \)
- \(h : EG_1 \to EG_2 \), such that if \([a,b] \in EG_1 \) then \(h([a,b]) = [f(a), f(b)] \in EG_2 \)

Note that \([a,b]\) denotes an edge. This distinct notation allows edges to be easily differentiated from any other tuples.

Proposition 12: Category of goal models

Goal models along with goal model homomorphisms define the category GOAL_MODEL.

Proof:

Let us prove that goal models along with goal model homomorphisms form a category. For that, we need to identify the objects, morphisms and identity morphisms and verify that the composition of morphism exists and is associative.

Objects: The objects are goal models.

Morphisms: The morphisms are goal model homomorphisms.
Identity: The identity morphism is a function $\text{id}_{\text{GM}} = \langle \text{id}_G, \text{id}_{\text{ET}}, \text{id}_{\text{EG}} \rangle$ such that id_G is an identity function that maps each goal to itself, id_{ET} is an identity function that maps each induced tree edge to itself and id_{EG} is an identity function that maps each induced graph edge to itself.

Composition: Let X, Y, Z be three goal models and $\Gamma_1 = \langle f_1, g_1, h_1 \rangle$, $\Gamma_2 = \langle f_2, g_2, h_2 \rangle$ be two goal model homomorphisms such that: $\Gamma_1 : X \rightarrow Y$ and $\Gamma_2 : Y \rightarrow Z$.

The composition is defined as follow: $\Gamma_2 \circ \Gamma_1 = \langle f_2 \circ f_1, g_2 \circ g_1, h_2 \circ h_1 \rangle$.

Associativity: The goal model homomorphism consists of functions between sets. Hence, the associativity property is derived from the corresponding property of functions between sets [22]. □

Definition 13: Configurations of Goal Models

A configuration of goal models specifies all the mappings that will be used to merge two goal models. Given two goal models GM_1 and GM_2, a configuration of goal models GM_1 and GM_2 is a triplet $\text{config}_{\text{goal}} = \langle \text{GM}_0, \Gamma_1, \Gamma_2 \rangle$ where:

- GM_0 is a goal model
- Γ_1 is a goal model homomorphism from GM_0 to GM_1
- Γ_2 is a goal model homomorphism from GM_0 to GM_2

Definition 14: Goal model composition

The composition of two goal models GM_1, GM_2 over a goal model configuration $\langle \text{GM}_0, \Gamma_1, \Gamma_2 \rangle$ is the goal model resulting from the pushout of Γ_1 and Γ_2 in category GOAL_MODEL.

Example 5

The composition of goal models GM_1, GM_2 over the configuration $\langle \text{GM}_0, \Gamma_1, \Gamma_2 \rangle$ is depicted in Figure 8. Goal model GM_3 represents the composed model and it is obtained by pushout. The mappings for the functions comprised in the goal model homomorphisms are shown in Figure 9.
Figure 8. Overview of Pushout of Goal Models
Figure 9. Pushout of Goal Models with detailed functions. Only functions mapping goals (f_i) and induced graph edges (h_i) are shown. Functions mapping tree edges (g_i) are not shown.
The elements for the pushout of goal models shown in Figure 9 are defined as follows:

Goal Model GM₀:

\[
GM₀ = \langle G₀, ET₀, EG₀, g_root \rangle,
\]
\[
G₀ = \{ g_root, g₂, g₄, g₅, g₆, g₇, g₈ \},
\]
\[
ET₀ = \{ |g_root,g₄|, |g₄,g₅|, |g₄,g₆|, |g₅,g₇|, |g₆,g₈| \}
\]
\[
EG₀ = \{ |g₂,g₆'|, |g₇,g₈| \}
\]

Goal Model GM₁:

\[
GM₁ = \langle G₁, ET₁, EG₁, g_root \rangle,
\]
\[
G₁ = \{ g_root, g₁, g₂, g₃, g₄, g₅, g₆, g₇, g₈, eg₁ \},
\]
\[
ET₁ = \{ |g_root,g₁|, |g_root,g₄|, |g₁,g₂|, |g₁,g₃|, |g₄,g₅|, |g₄,g₆|, |g₅,g₇|, |g₆,g₈| \}
\]
\[
EG₁ = \{ |g₂,eg₁|, |g₃,g₆|, |g₇,g₈| \}
\]

Goal Model GM₂:

\[
GM₂ = \langle G₂, ET₂, EG₂, g_root \rangle,
\]
\[
G₂ = \{ g_root, g₄, g₅, g₆, g₇, g₈, eg₂ \},
\]
\[
ET₂ = \{ |g_root,g₄|, |g₄,g₅|, |g₄,g₆|, |g₄,g₇|, |g₆,g₈| \}
\]
\[
EG₂ = \{ |eg₂, g₆|, |g₇,g₈| \}
\]

Goal Model GM₃:

\[
GM₃ = \langle G₃, ET₃, EG₃, g_root \rangle,
\]
\[
G₃ = \{ g_root, g₄, g₅, g₆, g₇, g₈, eg₂ \},
\]
\[
ET₃ = \{ \langle g_root,g₄ \rangle, \langle g₄,g₅ \rangle, \langle g₄,g₆ \rangle, \langle g₄,g₇ \rangle, \langle g₆,g₈ \rangle \}
\]
\[
EG₃ = \{ \langle eg₂, g₆ \rangle, \langle g₇,g₈ \rangle \}
\]

Homomorphism Γ₁: (mappings f₁ and h₁ for Γ₁ are shown in Figure 9)

Γ₁ = (f₁, g₁, h₁) such that: f₁: G₀ → G₁, g₁: ET₀ → ET₁, h₁: EG₀ → EG₁. We have:

- f₁ = \{ \langle g_root, g_root \rangle, \langle g₄, g₄ \rangle, \langle g₅, g₅ \rangle, \langle g₆, g₆ \rangle, \langle g₇, g₇ \rangle, \langle g₈, g₈ \rangle, \langle g₂, g₂ \rangle, \langle g₆', eg₁ \rangle \};
• \(g_1 = \{ \langle |g_root,g_4|, |g_root,g_4| \rangle, \langle |g_4,g_5|, |g_4,g_5| \rangle, \langle |g_4,g_6|, |g_4,g_6| \rangle, \langle |g_6,g_7|, |g_6,g_7| \rangle, \langle |g_6,g_8|, |g_6,g_8| \rangle \}; \)

• \(h_1 = \{ \langle|g_2,g_6'|, |g_2, eg_1| \rangle, \langle |g_7,g_8|, |g_7,g_8| \rangle \}; \)

Homomorphism \(\Gamma_2 \): (Mappings \(f_2 \) and \(h_2 \) for \(\Gamma_2 \) are shown in Figure 9)

\[\Gamma_2 = \langle f_2, g_2, h_2 \rangle \] such that \(f_2 : G_0 \rightarrow G_2; g_2 : ET_0 \rightarrow ET_2; h_2 : EG_0 \rightarrow EG_2. \) We have:

• \(f_2 = \{ \langle g_root, g_root \rangle, \langle g_4, g_4 \rangle, \langle g_5, g_5 \rangle, \langle g_6, g_6 \rangle, \langle g_7, g_7 \rangle, \langle g_8, g_8 \rangle, \langle g_9, g_9 \rangle, \langle g_10, g_10 \rangle \}; \)

• \(g_2 = \{ \langle |g_root,g_4|, |g_root,g_4| \rangle, \langle |g_4,g_5|, |g_4,g_5| \rangle, \langle |g_4,g_6|, |g_4,g_6| \rangle, \langle |g_6,g_7|, |g_6,g_7| \rangle, \langle |g_6,g_8|, |g_6,g_8| \rangle \}; \)

• \(h_2 = \{ \langle|g_2,g_6'|, |g_2, g_6| \rangle, \langle |g_7,g_8|, |g_7,g_8| \rangle \}; \)

Homomorphism \(\Gamma_1' \): (Mappings \(f_1' \) and \(h_1' \) for \(\Gamma_1' \) are shown in Figure 9)

\[\Gamma_1' = \langle f_1', g_1', h_1' \rangle \] such that \(f_1' : G_1 \rightarrow G_3; g_1' : ET_1 \rightarrow ET_3; h_1' : EG_1 \rightarrow EG_3. \) We have:

• \(f_1' = \{ \langle g_root, g_root \rangle, \langle g_1, g_1 \rangle, \langle g_2, g_2 \rangle, \langle g_3, g_3 \rangle, \langle g_4, g_4 \rangle, \langle g_5, g_5 \rangle, \langle g_6, g_6 \rangle, \langle g_7, g_7 \rangle, \langle g_8, g_8 \rangle, \langle eg_1, g_6 \rangle \}; \)

• \(g_1' = \{ \langle |g_root,g_1|, |g_root,g_1| \rangle, \langle |g_1, g_2|, |g_1, g_2| \rangle, \langle |g_1, g_3|, |g_1, g_3| \rangle, \langle |g_root,g_4|, |g_root,g_4| \rangle, \langle |g_4,g_5|, |g_4,g_5| \rangle, \langle |g_4,g_6|, |g_4,g_6| \rangle, \langle |g_6,g_7|, |g_6,g_7| \rangle, \langle |g_6,g_8|, |g_6,g_8| \rangle \}; \)

• \(h_1' = \{ \langle|g_2, eg_1|, |g_2, g_6| \rangle, \langle |g_7,g_8|, |g_7,g_8| \rangle, \langle |g_3,g_6|, |g_3,g_6| \rangle \}; \)

Homomorphism \(\Gamma_2' \): (Mappings \(f_2' \) and \(h_2' \) for \(\Gamma_2' \) are shown in Figure 9)

\[\Gamma_2' = \langle f_2', g_2', h_2' \rangle \] such that \(f_2' : G_2 \rightarrow G_3; g_2' : ET_2 \rightarrow ET_3; h_2' : EG_2 \rightarrow EG_3. \) We have:

• \(f_2' = \{ \langle g_root, g_root \rangle, \langle g_4, g_4 \rangle, \langle g_5, g_5 \rangle, \langle g_6, g_6 \rangle, \langle g_7, g_7 \rangle, \langle g_8, g_8 \rangle, \langle g_9, g_9 \rangle, \langle eg_2, g_2 \rangle \}; \)

• \(g_2' = \{ \langle |g_root,g_4|, |g_root,g_4| \rangle, \langle |g_4,g_5|, |g_4,g_5| \rangle, \langle |g_4,g_6|, |g_4,g_6| \rangle, \langle |g_6,g_7|, |g_6,g_7| \rangle, \langle |g_6,g_8|, |g_6,g_8| \rangle, \langle |g_4,g_9|, |g_4,g_9| \rangle \}; \)

• \(h_2' = \{ \langle|eg_2, g_6|, |g_2, g_6| \rangle, \langle |g_7,g_8|, |g_7,g_8| \rangle \}; \)

GM\(_3\) along with homomorphism \(\Gamma_1' \) and \(\Gamma_2' \) represent the pushout of GM\(_0\) with homomorphism \(\Gamma_1 \) and \(\Gamma_2 \). In fact, we have:
• \(f_1' \circ f_1 = \{ \langle \text{g_root, g_root} \rangle, \langle \text{g_4, g_4} \rangle, \langle \text{g_5, g_5} \rangle, \langle \text{g_6, g_6} \rangle, \langle \text{g_7, g_7} \rangle, \langle \text{g_8, g_8} \rangle, \langle \text{g_2, g_2} \rangle, \langle \text{g_6'}, g_6 \rangle \} \)

• \(f_2' \circ f_2 = \{ \langle \text{g_root, g_root} \rangle, \langle \text{g_4, g_4} \rangle, \langle \text{g_5, g_5} \rangle, \langle \text{g_6, g_6} \rangle, \langle \text{g_7, g_7} \rangle, \langle \text{g_8, g_8} \rangle, \langle \text{g_2, g_2} \rangle, \langle \text{g_6'}, g_6 \rangle \} \)

• \(g_1' \circ g_1 = \{ \langle \text{g_root,g_4}, |\text{g_root,g_4} \rangle \}, \langle \text{g_4,g_5}, |\text{g_4,g_5} \rangle \}, \langle \text{g_4,g_6}, |\text{g_4,g_6} \rangle \}, \langle \text{g_6,g_7}, |\text{g_6,g_7} \rangle \}, \langle \text{g_6,g_8}, |\text{g_6,g_8} \rangle \} \};

• \(g_2' \circ g_2 = \{ \langle \text{g_root,g_4}, |\text{g_root,g_4} \rangle \}, \langle \text{g_4,g_5}, |\text{g_4,g_5} \rangle \}, \langle \text{g_4,g_6}, |\text{g_4,g_6} \rangle \}, \langle \text{g_6,g_7}, |\text{g_6,g_7} \rangle \}, \langle \text{g_6,g_8}, |\text{g_6,g_8} \rangle \} \};

• \(h_1' \circ h_1 = \{ \langle \text{g_2,g_6'}, |\text{g_2,g_6} \rangle \}, \langle \text{g_7,g_8}, |\text{g_7,g_8} \rangle \} \};

• \(h_2' \circ h_2 = \{ \langle \text{g_2,g_6'}, |\text{g_2,g_6} \rangle \}, \langle \text{g_7,g_8}, |\text{g_7,g_8} \rangle \} \};

As \(\Gamma_1' \circ \Gamma_1 = \langle f_1' \circ f_1, g_1' \circ g_1, h_1' \circ h_1 \rangle \) and \(\Gamma_2' \circ \Gamma_2 = \langle f_2' \circ f_2, g_2' \circ g_2, h_2' \circ h_2 \rangle \), we have \(\Gamma_1' \circ \Gamma_1 = \Gamma_2' \circ \Gamma_2. \)

\[5.\quad \text{Category of Role Models}\]

In this section, we define the category of Role Model. We then introduce the concepts that will allow the composition of role model via pushout.

Definition 15: Role models Homomorphism

Given two role models \(\text{RM}_1 = \langle \text{R}_1, \text{P}_1, \text{participant}_1 \rangle \) and \(\text{RM}_2 = \langle \text{R}_2, \text{P}_2, \text{participant}_2 \rangle \), a \textit{role model homomorphism} from \(\text{RM}_1 \) to \(\text{RM}_2 \) is a function \(\Delta = (i, j) \) with \(i : \text{R}_1 \to \text{R}_2 \), \(j : \text{P}_1 \to \text{P}_2 \) such that:

- \(\forall p \in \text{P}_1 \mid \text{participant}_1(p) = (r_1, r_2), j(p) = (i(r_1), i(r_2)) \).

Proposition 16: Category of Role Models

Role models along with role model homomorphisms define the category **ROLE_MODEL**.
Proof:
Let us prove that role models along with role model homomorphisms form a category. For that, we need to identify the objects, morphisms and identity morphisms and verify that the composition of morphism exists and is associative.

Objects: The objects are role models.

Morphisms: The morphisms are role model homomorphisms.

Identity: The identity morphism is a function \(\text{id}_{\text{RM}} = (\text{id}_R, \text{id}_P) \) such that \(\text{id}_R \) is an identity function that maps each role to itself, \(\text{id}_P \) is an identity function that maps each protocol to itself.

Composition: Let \(\text{RM}_1, \text{RM}_2, \text{RM}_3 \) be three role models and \(\Delta_1 = (i_1, j_1), \Delta_2 = (i_2, j_2) \) be two role model homomorphisms such that: \(\Delta_1 : \text{RM}_1 \to \text{RM}_2 \) and \(\Delta_2 : \text{RM}_2 \to \text{RM}_3 \). The composition is defined as follow: \(\Delta_2 \circ \Delta_1 = (i_2 \circ i_1, j_2 \circ j_1) \).

Associativity: The role model homomorphism consists of functions between sets. Hence, the associativity property is derived from the corresponding property of functions between sets [22]. □

Definition 17: Configurations of Role Models

A *configuration of role models* specifies all the mappings that will be used to merge two role models. Given two role models \(\text{RM}_1 \) and \(\text{RM}_2 \), a *configuration of role models* \(\text{RM}_1 \) and \(\text{RM}_2 \) is a triplet \(\text{config}_{\text{role}} = (\text{RM}_0, \Delta_1, \Delta_2) \) where:

- \(\text{RM}_0 \) is a role model
- \(\Delta_1 \) corresponds to a role model homomorphism from \(\text{RM}_0 \) to \(\text{RM}_1 \)
- \(\Delta_2 \) corresponds to a role model homomorphism from \(\text{RM}_0 \) to \(\text{RM}_2 \)

Definition 18: Role model composition

The *composition of two role models* \(\text{RM}_1, \text{RM}_2 \) over a role model configuration \(\langle \text{RM}_0, \Delta_1, \Delta_2 \rangle \) is the role model resulting from the pushout of \(\Delta_1 \) and \(\Delta_2 \) in category \(\text{ROLE_MODEL} \).
Example 6

The composition of role models RM_1, RM_2 over the configuration $\langle RM_0, \Delta_1, \Delta_2 \rangle$ is depicted in Figure 10. Role model RM_3 represents the composed model and it is obtained by pushout. The mappings for the functions comprised in the role model homomorphisms are shown in Figure 11.

The elements for the pushout of role models shown in Figure 11 are defined as follows:

Role Model RM_0:

$RM_0 = \langle R_0, P_0, participant_0 \rangle,$

$R_0 = \{ r_1, r_2, r_4, r_6, r_6' \}$

$P_0 = \{ p_1, p_2 \}$

$participant_0 = \{ \langle p_1, \langle r_1, r_6' \rangle \rangle, \langle p_2, \langle r_2, r_6 \rangle \rangle \}$

Role Model RM_1:

$RM_1 = \langle R_1, P_1, participant_1 \rangle,$

$R_1 = \{ r_1, r_2, r_3, r_4, r_6, er_1, er_2 \}$

$P_1 = \{ p_1, p_2, p_3, p_4 \}$

$participant_1 = \{ \langle p_1, \langle r_1, er_1 \rangle \rangle, \langle p_2, \langle r_2, r_6 \rangle \rangle, \langle p_3, \langle r_3, r_4 \rangle \rangle, \langle p_4, \langle r_3, er_2 \rangle \rangle \}$

Role Model RM_2:

$RM_2 = \langle R_2, P_2, participant_2 \rangle,$

$R_2 = \{ r_2, r_4, r_5, r_6, er_3 \}$

$P_2 = \{ p_1, p_2, p_5 \}$

$participant_1 = \{ \langle p_1, \langle er_3, r_6 \rangle \rangle, \langle p_2, \langle r_2, r_6 \rangle \rangle, \langle p_5, \langle r_2, r_5 \rangle \rangle \}$

Role Homomorphism Δ_1: (mappings i_1 and j_1 for Δ_1 are shown in Figure 11)

$\Delta_1 = \langle i_1, j_1 \rangle$ such that $i_1: R_0 \rightarrow R_1, j_1: P_0 \rightarrow P_1$. We have:

- $i_1 = \{ \langle r_1, r_1 \rangle, \langle r_2, r_2 \rangle, \langle r_4, r_4 \rangle, \langle r_6, r_6 \rangle, \langle r_6', er_1 \rangle \}$;
- $j_1 = \{ \langle p_1, p_1 \rangle, \langle p_2, p_2 \rangle \}$;
Figure 10. Overview of Pushout of Role Models
Figure 11. Pushout of Role Models with detailed functions. Functions mapping roles \((i_i)\) and protocols \((j_i)\) are shown.
Role Homomorphism Δ_2: (mappings i_2 and j_2 for Δ_2 are shown in Figure 11)

$$\Delta_2 = \langle i_2, j_2 \rangle$$ such that $i_2: R_0 \rightarrow R_2$, $j_2: P_0 \rightarrow P_2$. We have:

- $i_2 = \{ \langle r_1, r_1 \rangle, \langle r_2, r_2 \rangle, \langle r_4, r_4 \rangle, \langle r_6, r_6 \rangle, \langle r_0', r_0 \rangle \}$;
- $j_2 = \{ \langle p_1, p_1 \rangle, \langle p_2, p_2 \rangle \}$;

Role Homomorphism Δ_1': (mappings i_1' and j_1' for Δ_1' are shown in Figure 11)

$$\Delta_1' = \langle i_1', j_1' \rangle$$ such that $i_1': R_1 \rightarrow R_3$, $j_1': P_1 \rightarrow P_3$. We have:

- $i_1' = \{ \langle r_1, r_1 \rangle, \langle r_2, r_2 \rangle, \langle r_3, r_3 \rangle, \langle r_4, r_4 \rangle, \langle r_6, r_6 \rangle, \langle r_0, r_0 \rangle, \langle r_1, r_1 \rangle, \langle r_2, r_2 \rangle \}$;
- $j_1' = \{ \langle p_1, p_1 \rangle, \langle p_2, p_2 \rangle, \langle p_3, p_3 \rangle, \langle p_4, p_4 \rangle \}$;

Role Homomorphism Δ_2': (mappings i_2' and j_2' for Δ_2' are shown in Figure 11)

$$\Delta_2' = \langle i_2', j_2' \rangle$$ such that $i_2': R_2 \rightarrow R_3$, $j_2': P_2 \rightarrow P_3$. We have:

- $i_2' = \{ \langle r_2, r_2 \rangle, \langle r_4, r_4 \rangle, \langle r_5, r_5 \rangle, \langle r_6, r_6 \rangle, \langle r_0', r_1 \rangle \}$;
- $j_2' = \{ \langle p_1, p_1 \rangle, \langle p_2, p_2 \rangle, \langle p_3, p_3 \rangle, \langle p_4, p_4 \rangle \}$;

RM$_3$ along with homomorphism Δ_1' and Δ_2' represent the pushout of RM$_0$ with homomorphism Δ_1 and Δ_2. In fact, we have:

- $i_1' \circ i_1 = \{ \langle r_1, r_1 \rangle, \langle r_2, r_2 \rangle, \langle r_4, r_4 \rangle, \langle r_6, r_6 \rangle, \langle r_0', r_0 \rangle \}$
- $i_2' \circ i_2 = \{ \langle r_1, r_1 \rangle, \langle r_2, r_2 \rangle, \langle r_4, r_4 \rangle, \langle r_6, r_6 \rangle, \langle r_0', r_0 \rangle \}$
- $j_1' \circ j_1 = \{ \langle p_1, p_1 \rangle, \langle p_2, p_2 \rangle \}$
- $j_2' \circ j_2 = \{ \langle p_1, p_1 \rangle, \langle p_2, p_2 \rangle \}$

As $\Delta_1' \circ \Delta_1 = \langle i_1' \circ i_1, j_1' \circ j_1 \rangle$ and $\Delta_2' \circ \Delta_2 = \langle i_2' \circ i_2, j_2' \circ j_2 \rangle$, we have $\Delta_1' \circ \Delta_1 = \Delta_2' \circ \Delta_2$.

\[\Box\]

6. Composition of Organization Models

In this section, we define the category of Organizations. We then introduce the concepts that will allow the composition of organizations via pushout.
Definition 19: Organizations Homomorphism

Given two organizations $\text{ORG}_1 = \langle \text{GM}_1, \text{RM}_1, \text{achieves}_1 \rangle$, $\text{ORG}_2 = \langle \text{GM}_2, \text{RM}_2, \text{achieves}_2 \rangle$, an *organization homomorphism* $\Phi = \langle \Gamma, \Delta, k \rangle$ from ORG_1 to ORG_2 consists of:

- $\Gamma = \langle f, g, h \rangle$: goal model homomorphism from GM_1 to GM_2
- $\Delta = \langle i, j \rangle$: role model homomorphism from RM_1 to RM_2
- $k: \text{achieves}_1 \rightarrow \text{achieves}_2$, such that if $|r,g| \in \text{achieves}_1$, then $k(|r,g|) \in \text{achieves}_2$ and $k(|r,g|) = |i(r), f(g)|$

Proposition 20: Category of Organizations

Organizations along with organization homomorphisms define the *category* ORG_MODEL.

Proof:

Let us prove that organizations along with organization homomorphisms form a category. For that, we need to identify the objects, morphisms and identity morphisms and verify that the composition of morphism exists and is associative.

Objects: The objects are organizations.

Morphisms: The morphisms are organization homomorphisms.

Identity: The identity morphism is a function $\text{id}_\text{ORG} = \langle \text{id}_\text{GM}, \text{id}_\text{RM}, \text{id}_k \rangle$ such that id_GM is an identity function that maps each goal model to itself (as defined in Section 4.), id_RM is an identity function that maps each role model to itself (as defined in Section 5.) and id_k is an identity function that maps each achieves edge to itself.

Composition: Let ORG_1, ORG_2, ORG_3 be three organizations and $\Phi_1 = \langle \Gamma_1, \Delta_1, k_1 \rangle$, $\Phi_2 = \langle \Gamma_2, \Delta_2, k_2 \rangle$ be two organization homomorphisms such that: $\Phi_1: \text{ORG}_1 \rightarrow \text{ORG}_2$ and $\Phi_2: \text{ORG}_2 \rightarrow \text{ORG}_3$. The composition is defined as follow:

$\Phi_2 \circ \Phi_1 = \langle \Gamma_2 \circ \Gamma_1, \Delta_2 \circ \Delta_1, k_2 \circ k_1 \rangle$.

Associativity: An organization homomorphism consists of functions between sets (Goal model homomorphisms and role model homomorphisms are set functions). Hence, the associativity property is derived from the corresponding property of functions between sets [22].
Definition 21: Configuration of Organizations

A configuration of organizations specifies all the mappings that will be used to merge two organizations. Given two organizations ORG₁ and ORG₂, a configuration of organizations ORG₁ and ORG₂ is a triplet \(\text{config} = (\text{ORG}_0, \Phi_1, \Phi_2) \) where:

- ORG₀ is an organization
- \(\Phi_1 \) corresponds to an organization homomorphism from ORG₀ to ORG₁
- \(\Phi_2 \) corresponds to an organization homomorphism from ORG₀ to ORG₂

Definition 22: Composition of Organizations

The composition of two organizations ORG₁, ORG₂ over a configuration of organization \(\text{config} = (\text{ORG}_0, \Phi_1, \Phi_2) \) is the organization resulting from the pushout of \(\Phi_1 \) and \(\Phi_2 \) in category ORG_MODEL.

Notation:

This composition is noted \(\longleftarrow (\text{ORG}_1, \text{ORG}_2, \text{config}) = \text{ORG}_1 \longleftarrow^{\text{config}} \text{ORG}_2 \).

The general intuition behind the pushout construction is that it aggregates the unrelated organization structures together without adding anything new and merges the shared structure defined in the configuration. It results in a composite organization that has all elements of both organizations while eliminating duplicates identified in the shared part. In fact, we are interested in composing two organizations that have some elements in common. Actually, composing two completely unrelated organizations is possible but uninteresting.

Example 7

Figure 12 shows an example of composition of organization ORG₁ and ORG₂ over the configuration \(\langle \text{ORG}_0, \Phi_1, \Phi_2 \rangle \). This composition results in the pushout organization ORG₃ as depicted in Figure 12. The goal models and role models from the organizations shown here have been studied in Example 5 and Example 6. Therefore, we will not go into the details of the mapping for the goal models and roles models. We will just give the details for the achieves mappings.
Organization ORG₀:

GM₀: defined in Example 5.
RM₀: defined in Example 6.
achieves₀ = { [r₄, g₅], [r₆, g₇], [r₂, g₈] }

Organization ORG₁:

GM₁: defined in Example 5.
RM₁: defined in Example 6.
achieves₁ = { [r₁, g₂], [r₃, g₃], [r₄, g₅], [r₆, g₇], [r₂, g₈] }

Organization ORG₂:

GM₂: defined in Example 5.
RM₂: defined in Example 6.
achieves₂ = { [r₄, g₅], [r₆, g₇], [r₂, g₈], [r₅, g₉] }

Organization Homomorphism Φ₁: (mappings k₁ is shown in Figure 11)

Φ₁ = ⟨Γ₁, Δ₁, k₁⟩ where Γ₁ and Δ₁ have been defined in Example 5 and Example 6 and
k₁: achieves₀ → achieves₁. We have:

- k₁ = { ⟨[r₄, g₅], [r₄, g₅]⟩, ⟨[r₆, g₇], [r₆, g₇]⟩, ⟨[r₂, g₈], [r₂, g₈]⟩ };

Organization Homomorphism Φ₂: (mappings of k₂ is shown in Figure 11)

Φ₂ = ⟨Γ₂, Δ₂, k₂⟩ where Γ₂ and Δ₂ have been defined in Example 5 and Example 6 and
k₂: achieves₀ → achieves₂. We have:

- k₂ = { ⟨[r₄, g₅], [r₄, g₅]⟩, ⟨[r₆, g₇], [r₆, g₇]⟩, ⟨[r₂, g₈], [r₂, g₈]⟩ };

27
Figure 12. Pushout of Organizations. Only achieves edges mappings \((k_i) \) are shown.
Organization Homomorphism Φ_1': (mappings k_1' is shown in Figure 11)

$$\Phi_1' = \langle \Gamma_1', \Delta_1', k_1' \rangle$$
where Γ_1' and Δ_1' have been defined in Example 5 and Example 6 and k_1': achieves$_1 \rightarrow$ achieves$_3$. We have:

$$k_1' = \{ \langle r_1, g_2 \rangle, |r_1, g_2|, \langle r_3, g_3 \rangle, |r_3, g_3|, \langle r_4, g_5 \rangle, |r_4, g_5|, \langle |r_6, g_7|, |r_6, g_7|, \langle |r_2, g_8|, |r_2, g_8| \};$$

Organization Homomorphism Φ_2': (mappings k_2' is shown in Figure 11)

$$\Phi_2' = \langle \Gamma_2', \Delta_2', k_2' \rangle$$
where Γ_2' and Δ_2' have been defined in Example 5 and Example 6 and k_2': achieves$_2 \rightarrow$ achieves$_3$. We have:

$$k_2' = \{ \langle r_5, g_9 \rangle, |r_5, g_9|, \langle r_4, g_5 \rangle, |r_4, g_5|, \langle |r_6, g_7|, |r_6, g_7|, \langle |r_2, g_8|, |r_2, g_8| \};$$

ORG$_3$ along with homomorphism Φ_1' and Φ_2' represent the pushout of ORG$_0$ with homomorphism Φ_1 and Φ_2. In fact, we have:

- $k_1' \circ k_1 = \{ \langle r_4, g_5 \rangle, |r_4, g_5|, \langle r_6, g_7 \rangle, |r_6, g_7|, \langle |r_2, g_8|, |r_2, g_8| \};$
- $k_2' \circ k_2 = \{ \langle r_4, g_5 \rangle, |r_4, g_5|, \langle r_6, g_7 \rangle, |r_6, g_7|, \langle |r_2, g_8|, |r_2, g_8| \};$

Hence, we have $k_1' \circ k_1 = k_2' \circ k_2$. Moreover, we have shown that $\Gamma_1' \circ \Gamma_1 = \Gamma_2' \circ \Gamma_2$ (Example 5) and $\Delta_1' \circ \Delta_1 = \Delta_2' \circ \Delta_2$ (Example 6). As $\Phi_1' \circ \Phi_1 = \langle \Gamma_1' \circ \Gamma_1, \Delta_1' \circ \Delta_1, k_1' \circ k_1 \rangle$ and $\Phi_2' \circ \Phi_2 = \langle \Gamma_2' \circ \Gamma_2, \Delta_2' \circ \Delta_2, k_2' \circ k_2 \rangle$, we have $\Phi_1' \circ \Phi_1 = \Phi_2' \circ \Phi_2$. □

7. Related Works

The problem of composing models has been studied in various domains [4] and many approaches have proposed the use of the notion of colimit in category theory as a formalism to compose various types of models. For instance, some works have been done to compose UML models [3, 16], requirement models [28, 30], statechart models [25], database schemas [5, 27], ontologies [6, 17] and programs [26].

In the multiagent systems community, there are very few works unifying category theory and multiagent systems. Most of those types of research are done at the implementation level. For instance, Johnson et al. [20] use category theory to formalize the
composition multiagent dialogue protocols while Soboll [31] proposes to model multiagent cooperation patterns as categories. However, none of those approaches explicitly considers organizational designs. In this report, we proposed a formal approach to compose a set of interrelated models that compose a multiagent organization design.

8. Acknowledgements

This work was supported by grants from the US National Science Foundation (0347545) and the US Air Force Office of Scientific Research (FA9550-06-1-0058).

9. Conclusion

We have presented a framework for the compositional design of Organization-based Multiagent Systems (OMAS). This framework uses category theory to formalize organization designs consisting of goal and role models. The main contribution of this report is to provide an abstract mechanism for merging OMAS designs. We have shown that the composition of multiagent organizations can be formulated using the pushout notion in category theory. We defined three main categories, GOAL_MODEL, ROLE_MODEL and ORG_MODEL, as the category of goal models, role models and organization models respectively. Then, we have defined the notion of organization homomorphisms and specified the composition of organization as the pushout object of organization homomorphisms. Nevertheless, finding suitable organization homomorphisms is not an easy task. Moreover, arbitrary homomorphisms could potentially lead to semantically incorrect composite organizations that cannot be implemented into a coherent system. In future work, we are investigating how we can provide a specific approach that will guide designers to decide what organizations to compose. Such approach will guarantee the construction of correct homomorphisms that can be used in the composition by pushout.
10. References

