
Kansas State University
234 Nichols Hall
Manhattan, KS 66506-2302

Phone: (785) 532-6350
Fax: (785) 532-7353
http://macr.cis.ksu.edu/

Guidance and Law Policies in Multiagent Systems∗

Scott J. Harmon, Scott A. DeLoach, and Robby
{harmon, sdeloach, robby}@ksu.edu

MACR-TR-2007-02

March 17, 2007

Abstract

Policies have traditionally been a way to specify properties of a system. In this paper, we show how policies
can be applied to Organization-based Multiagent Systems Engineering (O-MaSE) [6], specifically, in the OMACS
meta-model. In OMACS, policies may constrain assignments of agents to roles, the structure of the goal model
for the organization, or how an agent may play a particular role. We also show how traditional policies can be
characterized aslaw policies. Law policiesmust always be followed by a system. Because of this inflexibility, law
policiesmay constrain a multiagent system too much. In order to preserve flexibility of the system, while still being
able to guide the system into preferring certain behaviors,we introduce the concept ofguidance policies. These
so-calledguidance policiesneed not always be followed. When the system cannot continuewith theguidance
policies, they may be suspended. We show how this can increase performance while not decreasing flexibility of
the system to adapt.Guidance policiesare formally defined and, since multipleguidance policiescan introduce
conflicts, a strategy for resolving conflicts is given.

1 Introduction

As Autonomic computing has become more prevalent, work has been done to aid in the construction of systems
built from autonomous agents. This has led to the use of Multiagent systems, and in turn, Multiagent system
engineering. Work on designing formalisms and methodologies has been done to help software engineers design
multiagent systems. One aspect of multiagent systems that has been considered is policies. Policies allow one to
describe properties of a multiagent system–whether that bebehavior or some other design constraints. To have self-
managing systems, policies must be able to be specified and tested [10]. Policies have traditionally been properties
that must always hold. This does not completely follow the notion of policies in human organizations. Sometimes,
policies cannot be followed. When a policy cannot be followed in a multiagent system, the system cannot achieve
its goals and thus it cannot continue to perform. In human organizations, a policy may be temporarily suspended
in order to allow the system to proceed. This can also be very important in a system built of autonomous agents
because of the autonomy itself. We would like to guide the system, but not constrain it too much so that it cannot
function or be autonomous.

The contributions in this paper are as follows: 1. We give a formal definition of bothlaw andguidancepolicies,
showing how traditional policies may be viewed aslaw policies; 2. We present a conflict resolution strategy for
guidance policies and the intuition behind it; and 3. We present experimental validation of this approach through
simulation.Guidance policiescan have a great impact by allowing designers to better give the system information
about the way they want it to operate. Guidance policies can possibly be used in place of mostlaw policies, save
policies concerningsafe or secureoperation of a system. Theseguidancepolicies come with the benefits of the
directing force given bylaw policies, but without sacrificing the flexibility of the system to adapt to a changing
environment and thus be self-maintaining.

The rest of the paper is organized as follows, we first give some background in policies for multiagent systems.
Next, we present a multiagent system example. We define the notion of system tracesfor a multiagent system,
which are then used to describe policies. A short description of our language for policies and an example policy
is then presented. After which, we definelaw policiesas well asguidance policies. We give examples and show
how guidance policiesare useful for multiagent systems. A method for ordering guidance policies according to
importance and a formal explanation of what is meant by the ordering is given. Experimental results from applying
policies to a multiagent system are then presented and analyzed. Conclusions are made and then we present some
ideas for future work.

∗This work was supported by grants from the US National Science Foundation (0347545) and the US Air Force Office of Scientific
Research (FA9550-06-1-0058).

requires

Organization

Policy

Achieves

Potential

Role Agent

Capabilities

Capable

Possesses

constrains

Goal

Figure 1. OMACS Organization Model.

2 Background

Policies have been considered for multiagent systems for some time. Efforts have been made to characterize,
represent, and reason [1] about policies in the context of multiagent systems. There has also been work on detecting
global properties [19] of a distributed system, which couldin turn be used to suggest policies for that system.
Policies have been proposed as a way to help assure that agents and that the entire multiagent system behave
within certain boundaries. Policies have also been proposed as a way to specify security constraints in multiagent
systems [9, 14].

It should be noted that policies have been referred to as lawsin the past. Yoav Shoham and Moshe Tennenholtz
wrote in [17] aboutsocial lawsfor multiagent systems. They showed how policies could aid asystem in working
together, similar to how our rules of driving on a predetermined side of the road help the traffic to move smoothly.

The model we will use for this paper is called the Organization Model for Adaptive Computational Systems
(OMACS) [7]. Figure 1 gives a graphical depiction of the OMACS organization model. OMACS defines standard
multiagent system components such as goals, roles, capabilities, and agents. Roles canachievegoals, agents can
possescapabilities, and agents can becapableof playing roles depending on what capabilities theyposses. The
organization, which represents the entire set of agents, decides which agents toassignto what roles toachieve
particular goals. If an agent iscapableof playing a role and that roleachievesa particular goal, then there is a
potentialassignment of that agent to play the role to achieve the goal.When the organization makes anassignment
of an agent to a particular role, in order to achieve a specificgoal, the organization will be constrained by agents
capabilities as well as any applicable policies. Goals can be triggered (become active) during an agent’s activity
while playing a role. Only active goals may be assigned alongwith a role to an agent.

We may observe events in an OMACS system. Asystem eventis simply an action taken by the system. In this
paper we will be concerned with specific actions that the organization takes. For instance, an assignment of an
agent to a role is a system event. The completion of a goal is also a system event. In an OMACS system we can
have the following system events of interest:

Event Definition
C(gi) goalgi has been completed(achieved).
T (gi) goalgi has been triggered.
A(ai, rj , gk) agentai has been assigned

role rj to achieve goalgk.

1.1 Collect papers
1.2 Distribute

papers

2.1 Partition

papers

2.2 Assign reviewers

set : PaperSet

4.1 Collect

reviews

4.2 Select papers

4.3 Inform author

p : Paper

«triggers» «triggers»

«triggers»

created(set)

«occurs»

assign(p,r)

«occurs»

«triggers»

accepted(p)

declined(p)

«occurs»

«occurs»

«precedes»

«precedes»

«precedes»

5.1 Collect finals

p : Paper

5.2 Send to
printer

«triggers»

«and»

0. Manage conference

submissions

«and»

5. Print
proceedings

«and»

1. Get papers

«and»

2. Assign papers

«and»

4. Select papers

3. Review paper

p : Paper
r : Reviewer

Figure 2. Conference Management Goal Model.

2.1 Conference Management Example

A well known example in multiagent systems is the ConferenceManagement [20, 5] example. The Conference
Management example models the workings of a scientific conference, in which, authors submit papers, review-
ers review the submitted papers, certain papers are selected for the conference and printed in the proceedings.
Figure 2 gives the complete goal model for the conference management example, which we will use to illustrate
our policies. In this example, a multiagent system represents the goals and tasks of a generic conference paper
management system. Goals of the system are identified and arebroken down into subgoals.

The top level goal,0. Manage conference submissions, is decomposed into several ‘and’ subgoals, which means
that in order to achieve the top goal, the system must achieveall of the ‘and’ subgoals. These subgoals are then
associated through precedence and trigger relations. Theprecedesarrow between goals indicates that the source of
the arrow must beachievedbefore the destination can become active. Thetriggersarrow indicates that the domain
specific event in the source may trigger the goal in the destination. Theoccursarrow from a goal to a domain
specific event indicates that while playing a role to achievethat goal, said event may occur. A goal that triggers
another goal may trigger multiple instances of that goal when the triggering goal is being worked on.

Leaf goals are goals that have no children. The leaf goals in this example consist ofCollect papers, Distribute
papers, Partition papers, Assign reviewers, Collect reviews, Select papers, Inform author, Collect finals, andSend
to printer. For each of these leaf goals to be achieved certain roles arerequired to be played.

The roles required to achieve the leaf goals are depicted in Figure 3. The role model gives seven roles as well
as two outside actors. Each role contains a list of leaf goalsthat the role can achieve. For example, theAssigner
role can achieve theAssign reviewersleaf goal. In OMACS, roles only achieve leaf goals. The arrows between
the roles indicates interaction between particular roles.For example, once the agent playing thePartitioner role
has some partitions, it will need to hand off these partitions to the agent playing theAssignerrole. OMACS allows
for the same agent to play multiple roles at once, as long as they have the capabilities required by the role, and are
allowed by the policies.

make assignments

review papers
submit review

retrieve abstracts

get reviews

inform authors

submit paper

Reviewer

<<achieves>> review

paper

PaperDB

<<achieves>> collect papers

<<achieves>> distribute papers

<<achieves>> collect finals

retrieve paper

Assigner

<<achieves>> assigns

reviewers

Partitioner

<<achieves>> partition

papers

Review Collector

<<achieves>> collect

reviews

Decision Maker

<<achieves>> select papers

<<achieves>> inform authors

Author

submit final

Finals Collector

<<achieves>> send to

printer

Printer

print proceedings

retrieve finals

Figure 3. Conference Management Role Model.

3.1 Sweep & Mop

a:area

«precedes»

«and»

0. Clean floors

t::totalArea

1. Divide area

t::totalArea

«or»

3. Clean

a:area

2. Pickup

a:area

«precedes»

3.2 Vacuum

a:area

3.1.1 Sweep

a:area

3.1.2 Mop

a:area

«and»

Figure 4. CRFCC Goal Model.

2.2 Robotic Floor Cleaning Example

Another example to illustrate the usefulness of the conceptof guidance policies is the Cooperative Robotic
Floor Cleaning Company Example (CRFCC). This example was first presented by DeLoach et al. in [16]. In
this example, a team of robotic agents clean the floors of a building. The team has a map of the building as well
as indications of whether a floor is tile or carpet. Each team member will have a certain set of capabilities (e.g.
vacuum, mop, etc). These capabilities may become defectiveover time. In their analysis, DeLoach et al. showed
how breaking up the capabilities affected a team’s flexibility to overcome loss of capabilities. We have extended
this example, giving the information that the vacuum cleaner’s bag needs to be changed after vacuuming three
rooms. Thus, we would then like to minimize the number of bag changes. For this we will introduce a guidance
policy and show how it affects the performance of our organization.

The goal model for the CRFCC system is fairly simple. As seen in Figure 4, the overall goal of the system
(Goal 0) is to clean the floors. This goal is then broken into three conjunctive subgoals:1. Divide Area, 2. Pickup,
and3. Clean. The3. Cleangoal is then broken into two disjunctive goals:3.1 Sweep & Mopand3.2 Vacuum.
Depending on the floor type, only one will be needed to accomplish the3. Cleangoal. If an area needs to be
swept and mopped (i.e. it is tile), then goal3.1 Sweep & Mopis broken into two conjunctive goals:3.1.1 Sweep
and3.1.2 Mop. After an agent achieves the1. Divide areagoal, a certain number of2. Pickupgoals will become
active (depending on how many pieces the area is divided into). After the2. Pickupgoals are completed, a certain
number of3. Cleangoals become active, again depending on how many pieces the area was broken into. This
then will activate goals for the tile areas (3.1.1 Sweepand3.1.2 Mop) as well as goals for the carpeted areas (3.2
Vacuum).

Figure 5 gives the role model for the CRFCC. In this role model, each leaf goal of the system is achieved by a
specific role. The role model may be broken down many different ways depending on the system’s goal model as
well as agent and capability models. Thus, depending on the agents and capabilities available the system designer
may choose different role models. For this paper, we will look at just one of these role models. In the role model
in Figure 5, the only role requiring more than one capabilityis thePickuperrole. This role will require both the
searchandmovecapability. Thus an agent, in order to play this role, must possess both capabilities.

2.3 Properties of Interest

At any stage in a multiagent system, there may be certain properties of interest. Some may be domain specific
(only relevant to the current system), and others may be system properties such as the number of roles an agent is

Role Name Req. Capabilities Goals Achieved
Organizer org 1. Divide Area
Pickuper search, move 2. Pickup
Sweeper sweep 3.1.1 Sweep
Mopper mop 3.1.2 Mop
Vacuummer vacuum 3.2 Vacuum

Figure 5. CRFCC Role Model.

currently playing. State properties that are relevant to our examples are as follows:

Property Definition
a.reviews the number of reviews

agenta has performed.
a.vacuumedRooms the number of rooms

agenta has vacuumed.

2.4 System Traces

In order to describe multiagent system execution, we use thenotion of asystem trace. A system trace is a
projection of system execution with only desired state and event information preserved (role assignments, goal
completions, domain specific state property changes, etc).In this paper, we will only be concerned with the events
and properties given above and only traces that result in a successful completion of the system goal. LetE be an
event of interest andP be a property of interest. A change of interest in a property is a change for which a system
designer has made some policy. For example, if a certain integer should never exceed 5, a change of interest would
be when that integer became greater than 5 and when that integer became less than 5. Thus a change of interest in
a property is simply a projection of all the changes in the property. ∆P indicates a change of interest in property
P . A system trace may contain both events and changes of interest in properties. Changes of interest in properties
may be viewed as events, but for simplicity we will include both and use both interchangeably. Thus, a system
trace is defined as:

[E|∆P] → [E|∆P] → . . . (1)

As shown in equation 1, a trace is simply a sequence of events/changes of interest.
Using our conference management example, a subtrace of the system, whereg1 is a goal,a1 is an agent, andr1

is a role, might be:
. . . T (g1) → A(a1, r1, g1) → C(g1) . . . (2)

Formula 2 means that goalg1 is triggered, then agenta1 is assigned roler1 to achieve goalg1, finally, goalg1 is
completed.

We will be using the termslegal traceand illegal trace. An illegal trace is an execution we do not want our
system to exhibit, while alegal traceis an execution that our system may exhibit. Intuitively, our policies will
cause some traces to becomeillegal, while others will remainlegal.

3 Policies

Policies may restrict or proscribe behavior of a system. An assignment set is a snapshot of the current assign-
ments of agents to roles in a system. Policies concerning agent assignments to roles have the effect of constraining
the set of possible assignments. This can greatly reduce thesearch space when looking for the optimal assignment
set [21].

∀a : Agents, p : Papers

a.reviews ≤ 5 Bad
a.reviews > 5

a.reviews = 5 ∧ A(a,REV IEWER,Review(p))

*

a.reviews < 5 ∨ ¬A(a,REV IEWER,Review(p))

Figure 6. No agent may review more than five papers.

Other policies could be used for verifying that a goal model meets certain criteria. This allows for an easier
statement of properties of the goal model that may be verifiedagainst candidate goal models at design time. For
example, we might want to ensure that our goal model in Figure2 will always trigger aReview Papergoal for
each paper submitted.

Yet, other policies may restrict the way that roles can be played. For example,when an agent is moving down
the sidewalk it always keeps to the right.These behavior policies also restrict how an agent interacts with its
environment, which in turn means that they can restrict protocols and agent interactions. One such policy might
be that an agent playing theReviewerrole must always give each review a unique number. These sortof policies
rely heavily on domain specific information. This is why it isimportant to have an ontology for relevant state and
event information prior to designing policies [8].

3.1 Language for policies

To describe our policies, we use first order logic over our predicates along with temporal operators. This may be
converted into Linear Temporal Logic (LTL) [12] or Büchi automata [2] for infinite system traces, or to something
like Quantified Regular Expressions [13] for finite system traces. The formulas consist of predicates over goals,
roles, events, and assignments (recall that an assignment is the joining of an agent and role for the purpose of
achieving a goal). The temporal operators we currently use are given below:

Notation Definition
2(x) x holds always.
3(x) x holds eventually.
x U y x holds untily holds.

We use a mixture of state properties as well as events [3] to obtain compact and readable policies. An example
of one such policy formula is:

∀a1 : Agents, L :2(sizeOf(a1.reviews) ≤ 5) (3)

Formula 3 states that it should always be the case that each agent never review more than five papers. The
L : indicates that this is alaw policy. The property.reviews can be considered as part of the system’s state
information. This is domain specific and allows a more compact representation of the property. In Figure 3.1, we
show a finite automata representation of this policy.

The use of theA() predicate in Figure 3.1 indicates an assignment of theReviewerrole to achieve theReview
papergoal, which is parametrized on the paperp. This automata depicts the policy in Formula 3, but in a manner
for a model checker or some other policy enforcement mechanism to detect when violation occurs. The accepting
state indicates that a violation has occurred. Normally, this automata would be run alongside the system, either at
design time with a model checker [4], or at run-time with somepolicy enforcement mechanism [11].

3.2 Law Policies

The traditional notion of a policy is a rule that must always be followed. We will refer to these policies aslaw
policies. These policies usually restrict or proscribe behavior of asystem. An example of a law policy with respect
to our conference management example would beno agent may review more than five papers.This means that our
system can never assign an agent to theReviewerrole more than five times. A law policy can be defined as:

L :Conditions → Property (4)

Conditions are predicates over state properties and events, which, when held true, imply that theProperty holds
true. TheConditions portion of the policy may be omitted if theProperty portion should hold in all conditions,
as in Formula 3.

Intuitively, for the example above, no trace in the system may contain a subtrace in which an agent is assigned
to theReviewerrole more than five times. This will limit the number of legal traces in the system. In general,law
policies reduce the number of legal traces for a multiagent system.

The policy to limit the number of reviews an agent can perform, is helpful in that it will ensure that our system
does not overburden any agent with too many papers to review.This policy as a pure law policy, however, could
lead to trouble in that the system might no longer be able to achieve its goal. Imagine that more papers than
expected are submitted. Since there is no bound on the numberof papers submitted, this is a plausible scenario.
If there are not sufficient agents to spread the load, the system may fail, since it is not able to assign more than
five papers to any agent. This is a common problem with using only law policies. They limit theflexibility of the
system. Flexibility of a multiagent system has been defined [16] as a measure of how well a multiagent system
overcomes failures. We will generalize this definition tohow well the system can adapt to changes.

3.3 Guidance Policies

Let us look at the policy that limits the number of reviews an agent can perform. Recall from the section on
law policies how it was a seemingly useful policy, but had thedrawback that our system became less flexible. To
overcome this problem, we have defined another type of policycalledguidance policies. Take for example the
policy used above, but as aguidance policy:

∀a1 : Agents, G :2(sizeOf(a1.reviews) ≤ 5) (5)

This is exactly the same as the policy in Formula 3 except for the G :. TheG : indicates that this policy is a
guidance policy. In essence, the formalization for guidance and law policies are the same, the difference is the
intention of the system designer.Law policiesshould be used when the designer wants to make sure that the
property the policy specifies is always true (e.g. for safetyor security), whileguidance policiesshould be used
when the designer simply wants to guide the system.

This policy will limit our system to only have an agent reviewup to five papers,when possible. Imagine that
the system gets more submissions than expected, in this casethe system can still be successful since it will be able
to assign more than five papers for review to an agent. In the case where there are sufficient agents, however, the
system will limit each agent to five or fewer reviews.

Conflict resolution In the definition ofguidance policiesabove, we have not clarified how the system should
behave when forced to choose which guidance policy to violate. We propose a partial ordering of guidance policies
to allow the system designer to set precedence relationships between different guidance policies. We arrange the
guidance policies as a lattice, such that a policy that is a parent of another policy in the lattice, is more important
than its children. A system trace can define a set of policies that were violated during that trace. This set of

P1

P2 P3

P4

Figure 7. Partial order of Guidance Policies.

violations may be computed by examining the policies and checking for matches against the system trace. When
there are two traces that have violations with a common ancestor, and one (and only one) of the traces violate the
common ancestor, we mark the trace with the common ancestor as illegal. Intuitively, this trace is illegal because
the system had a better option, namely, not violating the more important guidance policy. Thus, if the highest node
in each of the two trace is an ancestor of every node in both traces, and that node is not in both traces, then we
know the trace with that node is illegal and should not have happened.

Take, for example, the four policies in the table below:

Node Definition
P1 PC Chair should not review papers.
P2 No agent should review more than 5 papers.
P3 Each paper should receive at least 3 reviews.
P4 An agent should not review a paper from

someone whom they wrote a paper with.

Let these policies be arranged in the lattice shown in Figure7. The lattice in Figure 7 means that policyP1 is
more important thanP2 andP3, andP2 is more important thanP4. Note that we would really like to avoid having
the PC Chair review papers, but, if that is the only way to achieve the goals of the system without violating law
policies, the PC Chair may review papers. However, if there is any trace that violates any preference policies other
thanP1 (and that does not violate a law policy), it should be chosen over one which violatesP1.

When a system cannot achieve its goals without violating policies, it may violate guidance policies. There may
be traces that are still illegal, though, depending on the ordering between policies.For every pair of traces, if the
least upper bound of the violations of both traces, let us call this policy violationP, is in one (and only one) of
the traces, the trace withP is illegal. For example, consider the ordering in Figure 8, let tracet1 violateP1 and
P2, while tracet2 violatesP2 andP3. Round nodes represent policies violated int1, box nodes represent policies
violated int2, and boxes with rounded corners represent policies violated in botht1 andt2. SinceP1 is the least
upper bound ofP1, P2, andP3 and sinceP1 is not int2, t1 is illegal, and thus should not happen.

As shown in Figure 9, the policies may be ordered in such a way that the policy violations of two traces do
not have a least upper bound. If there is no least upper bound,P, such thatP is in one of the traces, the two
traces cannot be compared and thus both traces are legal. Thereason they cannot be compared is that we have
no information about which policies are more important, violating the policies in one set may be just as bad as
violating the policies in the other set. Thus, either optionis legal.

P1

P2 P3

P4

Figure 8. Partial order of Guidance Policies with traces.

P1

P2 P3

P4

Figure 9. Possible Partial order of Guidance Policies.

One may even have the situation as shown in Figure 8, but whereP1 is not violated by either trace. In this
case, the violation sets cannot be compared and thus both traces are legal. In situations such as these, the system
designer may want to impose more ordering on the policies.

Intuitively, guidance policies are constraints on a systemsuch that at any given state of the system, if there is
a transition enabled that will not violate a guidance policy, this transition is always chosen over a transition that
violates a guidance policy. If violation of all guidance policies cannot be avoided, a partial ordering of guidance
policies is used to choose which policies may be violated.

4 Experimental Results

Using our CRFCC (Floor cleaning) example and a modified simulation from [16] we have results from running
the simulation with the added guidance policy:no agent should vacuum more than three rooms. We contrast this
with the law policy:no agent may vacuum more than three rooms. The guidance policy is presented formally in
Equation 6.

∀a1 : Agents, G :2(a1.vacuumedRooms ≤ 3) (6)

For this experiment, we used the agent model in Figure 10. These capabilities will restrict what roles our
simulator can assign to particular agents. E.g. the Organizer role may only be played by agenta1 or agenta5,

Agent Capabilites
a1 org, search, move
a2 search, move, vacuum
a3 vacuum, sweep
a4 sweep, mop
a5 org, mop

Figure 10. CRFCC Agent Model.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

S
ys

te
m

 S
uc

ce
ss

 P
er

ce
nt

ag
e

Capability Failure Percentage

Guidance Policy
No Policy

Law Policy

Figure 11. The success rate of the system given capability fa ilure.

since those are the only agents with theorg capability. In the simulation we will be choosing randomly capabilities
to fail. This capability will fail with the probability given by the capability failure rate.

For each experiment, the result of 1000 runs at each capability failure rate was averaged. In the simulation, at
each step, a goal that is being played by an agent is randomly achieved. Using the capability failure rate, at each
step, a random capability from a random agent may be selectedto fail. Once a capability fails in the simulation, it
can never return.

In Figure 11, it can be seen that while the system success ratedecreases when we enforce the law policy, it does
not, however, decrease when we enforce the guidance policy.Guidance policiesdo not decrease the flexibility of
a system to adapt to a changing environment, while law policiesdo decrease the flexibility of a system to adapt to
a changing environment.

Figure 12 gives the total number of times the system assignedvacuuming to an agent who already vacuumed at
least 3 rooms for 1000 runs of the simulation at each failure rate. With no policy, it can be seen that the system
will in fact assign an agent to vacuum more than 3 rooms quite often. With the guidance policy, however, the
extra vacuum assignments (> 3) stay minimal. The violations of the guidance policy increase as the system must
adapt to an increasing failure of capabilities until it reaches a peak. At the peak, increased violations do not aid

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 E

xt
ra

 V
ac

uu
m

 A
ss

ig
nm

en
ts

 (
>

3)

Capability Failure Rate

Guidance Policy
No Policy

Figure 12. The extra vacuum assignments given capability fa ilure.

in system achievement any longer and eventually the system cannot succeed even without the policy. Thus, the
system designer may now wish to purchase equipment with a lower rate of failure, or add more redundancy to
the system to compensate. The system designer may also evaluate the peak of the graph and determine whether
the cost of the maximum number of violations exceeds the maximum cost he is willing to incur, and if not, make
appropriate adjustments.

5 Conclusions and Future Work

Policies are a very useful tool in the development of multiagent systems. As the use of Autonomic computing
grows, so grows the need to be able to specify properties of such a system. Guidance policies allow a system
designer to guide the system without ‘hard-coding’ a behavior. The system is still given a chance to adapt to new
situations. Joaquin Peña et al. described a situation in [15] in which a policy caused a spacecraft to crash into an
asteroid. Guidance policies along with precedence relationships between the policies, as presented here, could be
one way to resolve such an issue.

Policies may be applied to OMACS by constraining assignments of agents to roles, the structure of the goal
model for the organization, or how the agent may play a particular role. Traditional policies may be viewed aslaw
policies, since they must never be violated. Law policies are still useful when the system designer never wants a
policy to be violated–regardless of system success. Such policies might concern security or human safety.

With the introduction of guidance policies, policies can become an even better mechanism for describing desired
properties and behaviors of a system. Guidance policies allow for more flexibility than law policies in that they
may be violated under certain circumstances. In this paper,we demonstrated a technique to resolve conflicts when
faced with the choice of which guidance policies to violate.It is our belief that guidance policies more truly
capture how policies work in human systems. Guidance policies, since they may be violated, can have a partial
ordering. That is, one policy may be considered more important than another. In this manner, we may better

inform the system allowing it to make better choices when faced with the decision of which policies to violate.
We now, through the use of OMACS, along with the metrics described in [16], and with the policy formalisms
presented here, are able to provide an environment in which asystem designer may evaluate a candidate design, as
well as evaluate the impact of changes to that design withoutdeploying or even completely developing the system.

Policies can dramatically improve run-time of reorganization algorithms in OMACS as shown in [21]. Guiding
policies can be a way to achieve this run-time improvement without sacrificing system adaptability. System adapt-
ability is an indicator of system flexibility as shown in [16]. The greater the flexibility, the better the chance that
the system will be able to achieve its goals.

Policies are an important part of a multiagent system. Future work is planned to ease the expression and analysis
of policies. Some work has already been done in this area [18], but it has not been integrated with a multiagent
system engineering framework.

Guidance policies add an important tool to multiagent policy specification. However, with this tool comes
complexity. Care must be taken to insure that the partial ordering given causes the system to exhibit the behavior
intended. Tools, which can visually depict the impact of orderings would be helpful to the engineer considering
various orderings. Other work, can be to see if we can infer other policies from a given set of policies. For
example, if a system designer wanted to get their system to a state in which they had a defined policy, what sort of
guidance policies could be automatically generated?

References

[1] J. Bradshaw, A. Uszok, R. Jeffers, N. Suri, P. Hayes, M. Burstein, A. Acquisti, B. Benyo, M. Breedy, M. Carvalho,
D. Diller, M. Johnson, S. Kulkarni, J. Lott, M. Sierhuis, andR. V. Hoof. Representation and reasoning for DAML-
based policy and domain services in KAoS and Nomads. InAAMAS ’03: Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pages 835–842, New York, NY, USA, 2003. ACM Press.

[2] J. R. Büchi. On a decision method in restricted second-order arithmetics. InProceedings of International Congress of
Logic Methodology and Philosophy of Science, pages 1–12, Palo Alto, CA, USA, 1960. Stanford University Press.

[3] S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/event-based software model checking. In
E. A. Boiten, J. Derrick, and G. Smith, editors,Proceedings of the 4th International Conference on Integrated Formal
Methods (IFM ’04), volume 2999 ofLecture Notes in Computer Science, pages 128–147. Springer-Verlag, April 2004.

[4] E. M. Clarke Jr., O. Grumberg, and D. A. Peled.Model Checking. The MIT Press, 1999.
[5] S. A. DeLoach. Modeling organizational rules in the multi-agent systems engineering methodology. InAdvances in

Artificial Intelligence: 15th Conference of the Canadian Society for Computational Studies of Intelligence (AI 2002),
volume 2338 ofLecture Notes in Computer Science, pages 1–15. Springer-Berlin/Heidelberg, May 2002.

[6] S. A. DeLoach. Engineering organization-based multiagent systems. InSoftware Engineering for Multi-Agent Systems
IV, volume 3914 ofLecture Notes in Computer Science, pages 109–125. Springer-Berlin/Heidelberg, May 2006.

[7] S. A. DeLoach and W. H. Oyenan. An organizational model and dynamic goal model for autonomous, adaptive systems.
Multiagent & Cooperative Robotics Laboratory Technical Report MACR-TR-2006-01, Kansas State University, March
2006.

[8] J. DiLeo, T. Jacobs, and S. DeLoach. Integrating ontologies into multiagent systems engineering. InFourth Interna-
tional Conference on Agent-Oriented Information Systems (AIOS-2002). CEUR-WS.org, July 2002.

[9] L. Kagal, T. Finin, and A. Joshi. A policy based approach to security for the semantic web. InThe SemanticWeb -
ISWC 2003, volume 2870 ofLecture Notes in Computer Science, pages 402–418. Springer-Berlin/Heidelberg, 2003.

[10] J. O. Kephart and D. M. Chess. The vision of autonomic computing.Computer, 36(1):41–50, 2003.
[11] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms for run-time security policies. In

International Journal of Information Security, volume 4, pages 2–16. Springer-Verlag, 2004.
[12] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer-Verlag,

1991.
[13] K. Olender and L. Osterweil. Cecil: A sequencing constraint language for automatic static analysis generation.IEEE

Transactions on Software Engineering, 16(3):268–280, 1990.
[14] P. Paruchuri, M. Tambe, F. Ordóñez, and S. Kraus. Security in multiagent systems by policy randomization. InAAMAS

’06: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems, pages 273–
280, New York, NY, USA, 2006. ACM Press.

[15] J. Peña, M. G. Hinchey, and R. Sterritt. Towards modeling, specifying and deploying policies in autonomous and
autonomic systems using an AOSE methodology.EASE, 0:37–46, 2006.

[16] Robby, S. A. DeLoach, and V. A. Kolesnikov. Using designmetrics for predicting system flexibility. InFundamental
Approaches to Software Engineering (FASE 2006), volume 3922 ofLecture Notes in Computer Science, pages 184–198.
Springer-Berlin/Heidelberg, March 2006.

[17] Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: Off-line design.Artificial Intelligence,
73(1-2):231–252, 1995.

[18] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil. Propel: an approach supporting property elucidation. In
ICSE ’02: Proceedings of the 24th International Conferenceon Software Engineering, pages 11–21, New York, NY,
USA, 2002. ACM Press.

[19] S. D. Stoller, L. Unnikrishnan, and Y. A. Liu. Efficient detection of global properties in distributed systems using
partial-order methods. InComputer Aided Verification, pages 264–279, 2000.

[20] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational rules as an abstraction for the analysis and design
of multi-agent systems.International Journal of Software Engineering and Knowledge Engineering, 11(3):303–328,
2001.

[21] C. Zhong and S. A. DeLoach. An investigation of reorganization algorithms. InProceedings of the International
Conference on Artificial Intelligence (IC-AI’2006), pages 514–517. CSREA Press, June 2006.

