° . Kansas State University
Mu ltl * 234 Nichols Hall
Manhattan, KS 66506-2302
Agent

LoppeTRLive splipheey
RObOtics http://macr.cis.ksu.edu/

Laboratory

Guidance and Law Policies in Multiagent System’s

Scott J. Harmon, Scott A. DeLoach, and Robby
{harmon, sdeloach, robb@ksu.edu

MACR-TR-2007-02

March 17, 2007

Abstract

Policies have traditionally been a way to specify propertid a system. In this paper, we show how policies
can be applied to Organization-based Multiagent Systenggrerring (O-MaSE) [6], specifically, in the OMACS
meta-model. In OMACS, policies may constrain assignmdragents to roles, the structure of the goal model
for the organization, or how an agent may play a particulateroWe also show how traditional policies can be
characterized ataw policies Law policiesmust always be followed by a system. Because of this infigxitaw
policiesmay constrain a multiagent system too much. In order to pvesiexibility of the system, while still being
able to guide the system into preferring certain behaviwrs,introduce the concept gliidance policiesThese
so-calledguidance policieseed not always be followed. When the system cannot contiithehe guidance
policies they may be suspended. We show how this can increase paricenwhile not decreasing flexibility of
the system to adaptGuidance policiesire formally defined and, since multipdeiidance policiegan introduce
conflicts, a strategy for resolving conflicts is given.

1 Introduction

As Autonomic computing has become more prevalent, work bas done to aid in the construction of systems
built from autonomous agents. This has led to the use of Edint systems, and in turn, Multiagent system
engineering. Work on designing formalisms and methodemgias been done to help software engineers design
multiagent systems. One aspect of multiagent systems &sabéen considered is policies. Policies allow one to
describe properties of a multiagent system—whether thiagbavior or some other design constraints. To have self-
managing systems, policies must be able to be specified siadl f0]. Policies have traditionally been properties
that must always hold. This does not completely follow théamoof policies in human organizations. Sometimes,
policies cannot be followed. When a policy cannot be folldwea multiagent system, the system cannot achieve
its goals and thus it cannot continue to perform. In humaamggations, a policy may be temporarily suspended
in order to allow the system to proceed. This can also be veppitant in a system built of autonomous agents
because of the autonomy itself. We would like to guide théesgsbut not constrain it too much so that it cannot
function or be autonomous.

The contributions in this paper are as follows: 1. We giverenfd definition of bothaw andguidancepolicies,
showing how traditional policies may be viewedlaw policies 2. We present a conflict resolution strategy for
guidance policies and the intuition behind it; and 3. We @négxperimental validation of this approach through
simulation.Guidance policiegan have a great impact by allowing designers to better pvsystem information
about the way they want it to operate. Guidance policies casiply be used in place of mdsiv policies save
policies concerningafe or secur@peration of a system. Theg@idancepolicies come with the benefits of the
directing force given byaw policies but without sacrificing the flexibility of the system to ad#p a changing
environment and thus be self-maintaining.

The rest of the paper is organized as follows, we first giveesbatkground in policies for multiagent systems.
Next, we present a multiagent system example. We define ttiennaf system tracefor a multiagent system,
which are then used to describe policies. A short descrigtfoour language for policies and an example policy
is then presented. After which, we defilaav policiesas well agguidance policiesWe give examples and show
how guidance policiesare useful for multiagent systems. A method for orderinglgace policies according to
importance and a formal explanation of what is meant by tHeramg is given. Experimental results from applying
policies to a multiagent system are then presented andzathl{Conclusions are made and then we present some
ideas for future work.

*This work was supported by grants from the US National S@dfmundation (0347545) and the US Air Force Office of Scientifi
Research (FA9550-06-1-0058).

constrains

Organization

P

requires

Capabilities

Potential

Figure 1. OMACS Organization Model.

2 Background

Policies have been considered for multiagent systems faegome. Efforts have been made to characterize,
represent, and reason [1] about policies in the context dtiagent systems. There has also been work on detecting
global properties [19] of a distributed system, which comdurn be used to suggest policies for that system.
Policies have been proposed as a way to help assure thas agehthat the entire multiagent system behave
within certain boundaries. Policies have also been prapase way to specify security constraints in multiagent
systems [9, 14].

It should be noted that policies have been referred to asifathe past. Yoav Shoham and Moshe Tennenholtz
wrote in [17] abousocial lawsfor multiagent systems. They showed how policies could agséem in working
together, similar to how our rules of driving on a predeteri side of the road help the traffic to move smoothly.

The model we will use for this paper is called the Organizafitodel for Adaptive Computational Systems
(OMACS) [7]. Figure 1 gives a graphical depiction of the OM30rganization model. OMACS defines standard
multiagent system components such as goals, roles, ctigabidnd agents. Roles caohievegoals, agents can
posse<apabilities, and agents can bapableof playing roles depending on what capabilities tip@gses The
organization, which represents the entire set of agentsdele which agents tassignto what roles toachieve
particular goals. If an agent sapableof playing a role and that rolachievesa particular goal, then there is a
potentialassignment of that agent to play the role to achieve the §@haén the organization makes assignment
of an agent to a particular role, in order to achieve a spegda, the organization will be constrained by agents
capabilities as well as any applicable policies. Goals @atmiggered (become active) during an agent’s activity
while playing a role. Only active goals may be assigned alwitig a role to an agent.

We may observe events in an OMACS systensy&tem everig simply an action taken by the system. In this
paper we will be concerned with specific actions that the ripgdion takes. For instance, an assignment of an
agent to a role is a system event. The completion of a goastsabkystem event. In an OMACS system we can
have the following system events of interest:

Event Definition
C(g:) goalg; has been completed(achieved).
T(gi) goalg; has been triggered.

A(a;,rj,g1) | agenta; has been assigned
role r; to achieve goaf.

0. Manage conference
submissions

«and»
5. Print
1. Get papers proceedings

«and»
«and» and
3. Review paper

p : Paper
r: Reviewer
«triggers»
4.1 Collect
reviews
4.2 Select papers
«occursy «triggers»

set : PaperSet
«triggers»
. declined(p)
«oceursy triggers» «occurs» «triggers»
created(set)
accepted(p)

Figure 2. Conference Management Goal Model.

«precedes» 4. Select papers

«and»

2. Assign papers
1.2 Distribute

1.1 Collect papers papers <and» .ﬁi

«precedes»

5.1 Collect finals 5.2 Sendto
p : Paper printer

4.3 Inform author

«oceursy

2.2 Assign reviewers

2.1 Partition
papers

2.1 Conference Management Example

A well known example in multiagent systems is the Conferevlamagement [20, 5] example. The Conference
Management example models the workings of a scientific cenée, in which, authors submit papers, review-
ers review the submitted papers, certain papers are sglEt¢he conference and printed in the proceedings.
Figure 2 gives the complete goal model for the conferenceagement example, which we will use to illustrate
our policies. In this example, a multiagent system reprsste goals and tasks of a generic conference paper
management system. Goals of the system are identified ariaken down into subgoals.

The top level goal). Manage conference submissipissiecomposed into severalid subgoals, which means
that in order to achieve the top goal, the system must achilbwaf the ‘and subgoals. These subgoals are then
associated through precedence and trigger relationsprEisedesrrow between goals indicates that the source of
the arrow must bachievedefore the destination can become active. fflggiersarrow indicates that the domain
specific event in the source may trigger the goal in the daetsbin. Theoccursarrow from a goal to a domain
specific event indicates that while playing a role to achidna goal, said event may occur. A goal that triggers
another goal may trigger multiple instances of that goalmihe triggering goal is being worked on.

Leaf goals are goals that have no children. The leaf goalsisretkample consist dfollect papersDistribute
papers Partition papers Assign reviewergCollect reviewsSelect paperdnform author Collect finals andSend
to printer. For each of these leaf goals to be achieved certain rolegquired to be played.

The roles required to achieve the leaf goals are depictedgur& 3. The role model gives seven roles as well
as two outside actors. Each role contains a list of leaf gihalisthe role can achieve. For example, Assigner
role can achieve thAssign reviewerteaf goal. In OMACS, roles only achieve leaf goals. The agdetween
the roles indicates interaction between particular rolem. example, once the agent playing tPertitioner role
has some partitions, it will need to hand off these partgtitmthe agent playing th&ssignemrole. OMACS allows
for the same agent to play multiple roles at once, as longegshave the capabilities required by the role, and are
allowed by the policies.

Assigner h
<<achieves>> assigns
reviewers

J

make assignments

Partitioner

\

<<achieves>> partition
papers

review papers

retrieve abstracts

SR

Reviewer

Review Collector \

<<achieves>> collect
reviews

get reviews

Decision Maker

\

<<achieves>> select papers

<<achieves>> inform authors

P <<achieves>> review ——submit revie
paper
J
retrieve paper
PaperDB N

<<ach?eves>> cgllept papers < submit paper
<<achieves>> distribute papers o
<<achieves>> collect finals /‘—Smelt final

retrieve finals

Finals Collector)

<<achieves>> send to
printer

print proceeding

Figure 3. Conference Management Role Model.

inform authors

Author

Printer

<and,

M 2. Pickup ™\ 3. Clean
aarea
o

\ ttotaiarea / /@/

«and»
311 Sweep 3.2 Mop

Figure 4. CRFCC Goal Model.

2.2 Robotic Floor Cleaning Example

Another example to illustrate the usefulness of the conoépfuidance policies is the Cooperative Robotic
Floor Cleaning Company Example (CRFCC). This example was fiiresented by DelLoach et al. in [16]. In
this example, a team of robotic agents clean the floors ofldibgi The team has a map of the building as well
as indications of whether a floor is tile or carpet. Each teaemiver will have a certain set of capabilities (e.g.
vacuum, mop, etc). These capabilities may become defemtimetime. In their analysis, DeLoach et al. showed
how breaking up the capabilities affected a team'’s flexibtlb overcome loss of capabilities. We have extended
this example, giving the information that the vacuum cleaneag needs to be changed after vacuuming three
rooms. Thus, we would then like to minimize the number of bagnges. For this we will introduce a guidance
policy and show how it affects the performance of our orgaiin.

The goal model for the CRFCC system is fairly simple. As seeRigure 4, the overall goal of the system
(Goal 0) is to clean the floors. This goal is then broken inted¢tconjunctive subgoal&. Divide Area?2. Pickup
and3. Clean The3. Cleangoal is then broken into two disjunctive goal3.l Sweep & Momnd3.2 Vacuum
Depending on the floor type, only one will be needed to accminghe3. Cleangoal. If an area needs to be
swept and mopped (i.e. itis tile), then g&al Sweep & Mops broken into two conjunctive goal8.1.1 Sweep
and3.1.2 Mop After an agent achieves tle Divide areagoal, a certain number &. Pickupgoals will become
active (depending on how many pieces the area is dividedl iAfter the2. Pickupgoals are completed, a certain
number of3. Cleangoals become active, again depending on how many piecesdhenas broken into. This
then will activate goals for the tile area3.1.1 Sweejand3.1.2 Mop as well as goals for the carpeted area (
Vacuun.

Figure 5 gives the role model for the CRFCC. In this role mpédath leaf goal of the system is achieved by a
specific role. The role model may be broken down many diffenaays depending on the system’s goal model as
well as agent and capability models. Thus, depending ongbeta and capabilities available the system designer
may choose different role models. For this paper, we wilklabjust one of these role models. In the role model
in Figure 5, the only role requiring more than one capabilityhe Pickuperrole. This role will require both the
searchandmovecapability. Thus an agent, in order to play this role, musisgss both capabilities.

2.3 Properties of Interest

At any stage in a multiagent system, there may be certaingptiep of interest. Some may be domain specific
(only relevant to the current system), and others may besyptoperties such as the number of roles an agent is

Role Name | Req. Capabilities Goals Achieved
Organizer | org 1. Divide Area
Pickuper search, move 2. Pickup
Sweeper sweep 3.1.1 Sweep
Mopper mop 3.1.2 Mop
Vacuummer| vacuum 3.2 Vacuum

Figure 5. CRFCC Role Model.

currently playing. State properties that are relevant toesamples are as follows:

Property Definition

a.reviews the number of reviews
agenta has performed
a.vacuumedRooms | the number of rooms
agenta has vacuumed

2.4 System Traces

In order to describe multiagent system execution, we usendtien of asystem trace A system trace is a
projection of system execution with only desired state areheinformation preserved (role assignments, goal
completions, domain specific state property changes, lettis paper, we will only be concerned with the events
and properties given above and only traces that result iceessful completion of the system goal. iebe an
event of interest an@ be a property of interest. A change of interest in a propertyéhange for which a system
designer has made some policy. For example, if a certaigenthould never exceed 5, a change of interest would
be when that integer became greater than 5 and when thagiriiegame less than 5. Thus a change of interest in
a property is simply a projection of all the changes in theprty. AP indicates a change of interest in property
P. A system trace may contain both events and changes ofshiarproperties. Changes of interest in properties
may be viewed as events, but for simplicity we will includgtband use both interchangeably. Thus, a system
trace is defined as:

[E|AP] — [E|AP] — ... (1)

As shown in equation 1, a trace is simply a sequence of ecbatsges of interest.
Using our conference management example, a subtrace ofstesrs wherey, is a goal,a; is an agent, ang,
is a role, might be:

.. T(g1) = Alar,r1,91) = C(g1) - - 2

Formula 2 means that gog is triggered, then agemnt; is assigned role; to achieve goaf, finally, goalg, is
completed.

We will be using the term&egal traceandillegal trace An illegal traceis an execution we do not want our
system to exhibit, while #egal traceis an execution that our system may exhibit. Intuitivelyr palicies will
cause some traces to becoittegal, while others will remainegal.

3 Policies

Policies may restrict or proscribe behavior of a system. #gigmment set is a snapshot of the current assign-
ments of agents to roles in a system. Policies concerningt @agsignments to roles have the effect of constraining
the set of possible assignments. This can greatly reducsetireh space when looking for the optimal assignment
set [21].

a.reviews =5 A A(a, REVIEW ER, Review(p))

a.reviews > o

a.reviews < 5V —A(a, REVIEW ER, Review(p))

Ya : Agents,p : Papers

Figure 6. No agent may review more than five papers.

Other policies could be used for verifying that a goal modekts certain criteria. This allows for an easier
statement of properties of the goal model that may be verdgainst candidate goal models at design time. For
example, we might want to ensure that our goal model in Figunell always trigger aReview Papegoal for
each paper submitted.

Yet, other policies may restrict the way that roles can bggala For exampleyhen an agent is moving down
the sidewalk it always keeps to the righthese behavior policies also restrict how an agent interadh its
environment, which in turn means that they can restrictquals and agent interactions. One such policy might
be that an agent playing thlieviewerrole must always give each review a unique number. Thesetpdlicies
rely heavily on domain specific information. This is why imsportant to have an ontology for relevant state and
event information prior to designing policies [8].

3.1 Language for policies

To describe our policies, we use first order logic over oudipaes along with temporal operators. This may be
converted into Linear Temporal Logic (LTL) [12] or Blichitamata [2] for infinite system traces, or to something
like Quantified Regular Expressions [13] for finite systeac#s. The formulas consist of predicates over goals,
roles, events, and assignments (recall that an assignséme joining of an agent and role for the purpose of
achieving a goal). The temporal operators we currently tsgisen below:

Notation | Definition

O(x) x holds always.
O(x) x holds eventually.
Uy z holds untily holds.

We use a mixture of state properties as well as events [3]tairobompact and readable policies. An example
of one such policy formula is:

Vay : Agents, L :0(sizeO f(ay.reviews) < 5) (3)

Formula 3 states that it should always be the case that eamit agver review more than five papers. The
L : indicates that this is &aw policy. The property.reviews can be considered as part of the system’s state
information. This is domain specific and allows a more corpgeresentation of the property. In Figure 3.1, we
show a finite automata representation of this policy.

The use of theA() predicate in Figure 3.1 indicates an assignment oReeiewerole to achieve th&eview
papergoal, which is parametrized on the papeiThis automata depicts the policy in Formula 3, but in a manne
for a model checker or some other policy enforcement meshato detect when violation occurs. The accepting
state indicates that a violation has occurred. Normallg, dlitomata would be run alongside the system, either at
design time with a model checker [4], or at run-time with sqrogcy enforcement mechanism [11].

3.2 Law Policies

The traditional notion of a policy is a rule that must alwagsfbllowed. We will refer to these policies &swv
policies These policies usually restrict or proscribe behavior ®fstem. An example of a law policy with respect
to our conference management example woulddagent may review more than five papdrhis means that our
system can never assign an agent toRlegiewerrole more than five times. A law policy can be defined as:

L :Conditions — Property (4)

Conditions are predicates over state properties and events, whicm kdid true, imply that thé&roperty holds
true. TheConditions portion of the policy may be omitted if thBroperty portion should hold in all conditions,
as in Formula 3.

Intuitively, for the example above, no trace in the systeny gantain a subtrace in which an agent is assigned
to theReviewerole more than five times. This will limit the number of legeddes in the system. In generaw
policies reduce the humber of legal traces for a multiaggstem

The policy to limit the number of reviews an agent can perfdeelpful in that it will ensure that our system
does not overburden any agent with too many papers to revihis. policy as a pure law policy, however, could
lead to trouble in that the system might no longer be able hiese its goal. Imagine that more papers than
expected are submitted. Since there is no bound on the numhipapers submitted, this is a plausible scenario.
If there are not sufficient agents to spread the load, the@systay fail, since it is not able to assign more than
five papers to any agent. This is a common problem with usimglaw policies. They limit theflexibility of the
system. Flexibility of a multiagent system has been defidé&d §s a measure of how well a multiagent system
overcomes failures. We will generalize this definitiorhtmw well the system can adapt to changes

3.3 Guidance Policies

Let us look at the policy that limits the number of reviews gerat can perform. Recall from the section on
law policies how it was a seemingly useful policy, but haddhewback that our system became less flexible. To
overcome this problem, we have defined another type of pobdied guidance policies Take for example the
policy used above, but aggaiidance policy

Vay : Agents, G :0(sizeO f(ay.reviews) < 5) (5)

This is exactly the same as the policy in Formula 3 exceptterG:. The G : indicates that this policy is a
guidance policy In essence, the formalization for guidance and law pdiciee the same, the difference is the
intention of the system designetaw policiesshould be used when the designer wants to make sure that the
property the policy specifies is always true (e.g. for satetgecurity), whileguidance policieshould be used
when the designer simply wants to guide the system.

This policy will limit our system to only have an agent reviey to five paperswhen possible Imagine that
the system gets more submissions than expected, in thishmasgstem can still be successful since it will be able
to assign more than five papers for review to an agent. In tbe where there are sufficient agents, however, the
system will limit each agent to five or fewer reviews.

Conflict resolution In the definition ofguidance policiesbove, we have not clarified how the system should
behave when forced to choose which guidance policy to doMite propose a partial ordering of guidance policies
to allow the system designer to set precedence relatioh&@veen different guidance policies. We arrange the
guidance policies as a lattice, such that a policy that israrppaf another policy in the lattice, is more important
than its children. A system trace can define a set of polidias were violated during that trace. This set of

Figure 7. Partial order of Guidance Policies.

violations may be computed by examining the policies anatking for matches against the system trace. When
there are two traces that have violations with a common émcesd one (and only one) of the traces violate the
common ancestor, we mark the trace with the common ancestlegal. Intuitively, this trace is illegal because
the system had a better option, namely, not violating theermoportant guidance policy. Thus, if the highest node
in each of the two trace is an ancestor of every node in botle$taand that node is not in both traces, then we
know the trace with that node is illegal and should not haympkaed.

Take, for example, the four policies in the table below:

Node | Definition

Py PC Chair should not review papers.
P No agent should review more than 5 papefs.
Ps Each paper should receive at least 3 reviews.

Py An agent should not review a paper from
someone whom they wrote a paper with.

Let these policies be arranged in the lattice shown in Figurdhe lattice in Figure 7 means that poli€y is
more important tha®®, and Ps, and P, is more important thai®?,. Note that we would really like to avoid having
the PC Chair review papers, but, if that is the only way to eahithe goals of the system without violating law
policies, the PC Chair may review papers. However, if theamiy trace that violates any preference policies other
than P, (and that does not violate a law policy), it should be chosear one which violates”; .

When a system cannot achieve its goals without violatingcigs, it may violate guidance policies. There may
be traces that are still illegal, though, depending on tlderdng between policieszor every pair of traces, if the
least upper bound of the violations of both traces, let ustbad policy violationP, is in one (and only one) of
the traces, the trace witl? is illegal. For example, consider the ordering in Figure 8, let traceiolate P, and
P;, while tracet, violates P, and P;. Round nodes represent policies violated;inbox nodes represent policies
violated int,, and boxes with rounded corners represent policies viblatdotht; andt,. SincelP; is the least
upper bound of?;, P,, andP; and sinceP; is not int,, t1 is illegal, and thus should not happen.

As shown in Figure 9, the policies may be ordered in such a Wwal/the policy violations of two traces do
not have a least upper bound. If there is no least upper bd@nduch thatP is in one of the traces, the two
traces cannot be compared and thus both traces are legaked$mn they cannot be compared is that we have
no information about which policies are more important|lating the policies in one set may be just as bad as
violating the policies in the other set. Thus, either opimtegal.

Py

Figure 8. Partial order of Guidance Policies with traces.

Figure 9. Possible Partial order of Guidance Policies.

One may even have the situation as shown in Figure 8, but wherg not violated by either trace. In this
case, the violation sets cannot be compared and thus bottstase legal. In situations such as these, the system
designer may want to impose more ordering on the policies.

Intuitively, guidance policies are constraints on a sysseith that at any given state of the system, if there is
a transition enabled that will not violate a guidance politys transition is always chosen over a transition that
violates a guidance policy. If violation of all guidance ip@s cannot be avoided, a partial ordering of guidance
policies is used to choose which policies may be violated.

4 Experimental Results

Using our CRFCC (Floor cleaning) example and a modified satiart from [16] we have results from running
the simulation with the added guidance policya agent should vacuum more than three rookive contrast this
with the law policy: no agent may vacuum more than three rooffise guidance policy is presented formally in
Equation 6.

Vay : Agents, G :0(a;j.vacuumedRooms < 3) (6)

For this experiment, we used the agent model in Figure 10.s&lsapabilities will restrict what roles our
simulator can assign to particular agents. E.g. the Orgamae may only be played by agemi or agentas,

Agent | Capabilites

a1 org, search, move

a9 search, move, vacuum
as vacuum, sweep

ay sweep, mop

as org, mop

Figure 10. CRFCC Agent Model.

100 T T
Guidance Policy —+—
No Policy ---x---
Law Policy ------

80 T

60

40

System Success Percentage

20

50 60 70 80 90 100
Capability Failure Percentage

Figure 11. The success rate of the system given capability fa ilure.

since those are the only agents with tiig capability. In the simulation we will be choosing randompabilities
to fail. This capability will fail with the probability give by the capability failure rate.

For each experiment, the result of 1000 runs at each capafailiure rate was averaged. In the simulation, at
each step, a goal that is being played by an agent is randarhigveed. Using the capability failure rate, at each
step, a random capability from a random agent may be selezfad. Once a capability fails in the simulation, it
can never return.

In Figure 11, it can be seen that while the system succesdeateases when we enforce the law policy, it does
not, however, decrease when we enforce the guidance p@igiglance policieslo not decrease the flexibility of
a system to adapt to a changing environmevtile law policiesdo decrease the flexibility of a system to adapt to
a changing environment

Figure 12 gives the total number of times the system assigaeduming to an agent who already vacuumed at
least 3 rooms for 1000 runs of the simulation at each failate.rWith no policy, it can be seen that the system
will in fact assign an agent to vacuum more than 3 rooms qutEno With the guidance policy, however, the
extra vacuum assignments §) stay minimal. The violations of the guidance policy in@eas the system must
adapt to an increasing failure of capabilities until it feas a peak. At the peak, increased violations do not aid

1600 T T T T T T T — T —T
Guidance Policy —+—
s No Policy ---x---
1400 % .
X
@ 1200 - 4
|5 “
£ 1000 |- X .
< !
k=2 \
a :
< V5
£ 800 - x .
s \
>
Q
©
>
8 600 .
<
i1]
8
2 400 .
200 e
0 . . .
0 10 20 30 40 50 60 70 80 90 100
Capability Failure Rate
Figure 12. The extra vacuum assignments given capability fa ilure.

in system achievement any longer and eventually the syséamot succeed even without the policy. Thus, the
system designer may now wish to purchase equipment with arloate of failure, or add more redundancy to
the system to compensate. The system designer may als@ievttie peak of the graph and determine whether
the cost of the maximum number of violations exceeds the maxi cost he is willing to incur, and if not, make
appropriate adjustments.

5 Conclusions and Future Work

Policies are a very useful tool in the development of muéiidgsystems. As the use of Autonomic computing
grows, so grows the need to be able to specify propertiesaf ausystem. Guidance policies allow a system
designer to guide the system without ‘hard-coding’ a batravihe system is still given a chance to adapt to new
situations. Joaquin Pefa et al. described a situationShifilwhich a policy caused a spacecraft to crash into an
asteroid. Guidance policies along with precedence reiships between the policies, as presented here, could be
one way to resolve such an issue.

Policies may be applied to OMACS by constraining assignmehtagents to roles, the structure of the goal
model for the organization, or how the agent may play a paeiaole. Traditional policies may be viewedlas
policies since they must never be violated. Law policies are stéfuiswhen the system designer never wants a
policy to be violated—regardless of system success. Suaigsomight concern security or human safety.

With the introduction of guidance policies, policies candmme an even better mechanism for describing desired
properties and behaviors of a system. Guidance policiegvdtir more flexibility than law policies in that they
may be violated under certain circumstances. In this papedemonstrated a technique to resolve conflicts when
faced with the choice of which guidance policies to violateis our belief that guidance policies more truly
capture how policies work in human systems. Guidance galigince they may be violated, can have a partial
ordering. That is, one policy may be considered more importi@an another. In this manner, we may better

inform the system allowing it to make better choices wherdawith the decision of which policies to violate.
We now, through the use of OMACS, along with the metrics dbeedrin [16], and with the policy formalisms
presented here, are able to provide an environment in whsgtam designer may evaluate a candidate design, as
well as evaluate the impact of changes to that design wittheploying or even completely developing the system.

Policies can dramatically improve run-time of reorgan@atlgorithms in OMACS as shown in [21]. Guiding
policies can be a way to achieve this run-time improvemetitaut sacrificing system adaptability. System adapt-
ability is an indicator of system flexibility as shown in [16[he greater the flexibility, the better the chance that
the system will be able to achieve its goals.

Policies are an important part of a multiagent system. leuttark is planned to ease the expression and analysis
of policies. Some work has already been done in this area FL&]it has not been integrated with a multiagent
system engineering framework.

Guidance policies add an important tool to multiagent yospecification. However, with this tool comes
complexity. Care must be taken to insure that the partiadrimg given causes the system to exhibit the behavior
intended. Tools, which can visually depict the impact ofesitlgs would be helpful to the engineer considering
various orderings. Other work, can be to see if we can infeeropolicies from a given set of policies. For
example, if a system designer wanted to get their systemttdais which they had a defined policy, what sort of
guidance policies could be automatically generated?

References

[1] J. Bradshaw, A. Uszok, R. Jeffers, N. Suri, P. Hayes, MrsBin, A. Acquisti, B. Benyo, M. Breedy, M. Carvalho,
D. Diller, M. Johnson, S. Kulkarni, J. Lott, M. Sierhuis, aRd V. Hoof. Representation and reasoning for DAML-
based policy and domain services in KAoS and NomadaANAS '03: Proceedings of the second international joint
conference on Autonomous agents and multiagent syspamges 835-842, New York, NY, USA, 2003. ACM Press.

[2] J. R. Buchi. On a decision method in restricted secordkoarithmetics. IfProceedings of International Congress of
Logic Methodology and Philosophy of Sciengages 1-12, Palo Alto, CA, USA, 1960. Stanford Universiigss.

[3] S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and Mh8&. State/event-based software model checking. In
E. A. Boiten, J. Derrick, and G. Smith, editoRroceedings of the 4th International Conference on Integtdormal
Methods (IFM '04) volume 2999 of ecture Notes in Computer Scienpages 128—-147. Springer-Verlag, April 2004.

[4] E. M. Clarke Jr., O. Grumberg, and D. A. Pelédodel CheckingThe MIT Press, 1999.

[5] S. A. DeLoach. Modeling organizational rules in the nyalgent systems engineering methodologyAtilvances in
Artificial Intelligence: 15th Conference of the Canadiarct&ty for Computational Studies of Intelligence (Al 2002)
volume 2338 oL ecture Notes in Computer Scienpages 1-15. Springer-Berlin/Heidelberg, May 2002.

[6] S.A.DelLoach. Engineering organization-based muéiiggystems. IisSoftware Engineering for Multi-Agent Systems
IV, volume 3914 of ecture Notes in Computer Scienpages 109-125. Springer-Berlin/Heidelberg, May 2006.

[7] S.A.DeLoachandW. H. Oyenan. An organizational modeldynamic goal model for autonomous, adaptive systems.
Multiagent & Cooperative Robotics Laboratory TechnicapBe MACR-TR-2006-01, Kansas State University, March
2006.

[8] J. DiLeo, T. Jacobs, and S. DeLoach. Integrating onfiel®@to multiagent systems engineering.Fyurth Interna-
tional Conference on Agent-Oriented Information Systeah®$-2002) CEUR-WS.org, July 2002.

[9] L. Kagal, T. Finin, and A. Joshi. A policy based approacrsecurity for the semantic web. Fhe SemanticWeb -
ISWC 2003volume 2870 ot.ecture Notes in Computer Scienpages 402—-418. Springer-Berlin/Heidelberg, 2003.

[10] J. O. Kephartand D. M. Chess. The vision of autonomicgotimg. Computer 36(1):41-50, 2003.

[11] J. Ligatti, L. Bauer, and D. Walker. Edit automata: BEmfment mechanisms for run-time security policies. In
International Journal of Information Securijtyolume 4, pages 2-16. Springer-Verlag, 2004.

[12] Zz. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent Systems:if®jagion. Springer-Verlag,
1991.

[13] K. Olender and L. Osterweil. Cecil: A sequencing coaistr language for automatic static analysis generatiBEE
Transactions on Software Engineerjig(3):268-280, 1990.

[14] P. Paruchuri, M. Tambe, F. Ordo6fiez, and S. Kraus. Sgdn multiagent systems by policy randomization AAMAS
'06: Proceedings of the fifth international joint conferenen Autonomous agents and multiagent systeages 273—
280, New York, NY, USA, 2006. ACM Press.

[15] J. Pefia, M. G. Hinchey, and R. Sterritt. Towards mauglispecifying and deploying policies in autonomous and
autonomic systems using an AOSE methodoldgSE 0:37-46, 2006.

[16] Robby, S. A. DeLoach, and V. A. Kolesnikov. Using desigatrics for predicting system flexibility. IRundamental
Approaches to Software Engineering (FASE 2006lume 3922 of ecture Notes in Computer Scienpages 184-198.
Springer-Berlin/Heidelberg, March 2006.

[17] Y. Shoham and M. Tennenholtz. On social laws for araficigent societies: Off-line desigrrtificial Intelligence
73(1-2):231-252, 1995.

[18] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Ostetilvéropel: an approach supporting property elucidation. |
ICSE '02: Proceedings of the 24th International ConferenneSoftware Engineeringpages 11-21, New York, NY,
USA, 2002. ACM Press.

[19] S. D. Stoller, L. Unnikrishnan, and Y. A. Liu. Efficientetection of global properties in distributed systems using
partial-order methods. I8omputer Aided Verificatignpages 264-279, 2000.

[20] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Orgational rules as an abstraction for the analysis and desig
of multi-agent systemslnternational Journal of Software Engineering and KnovgedEngineering11(3):303-328,
2001.

[21] C. Zhong and S. A. DeLoach. An investigation of reorgation algorithms. IrProceedings of the International
Conference on Atrtificial Intelligence (IC-AlI'200§)ages 514-517. CSREA Press, June 2006.

