

AFIT/EN-TR-00-03
TECHNICAL REPORT
July 2000

Specifying Agent Behavior as Concurrent
Tasks: Defining the Behavior of Social
Agents

Scott A. DeLoach

GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT
AIR FORCE INSTITUTE OF TECHNOLOGY

WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Approved for public release; distribution unlimited

Abstract
Software agents are currently the subject of much research in many interrelated fields. While much

of the agent community has concentrated on building exemplar agent systems, defining theories of agent

behavior and inter-agent communications, there has been less emphasis on defining the techniques

required to build practical agent systems. While many agent researchers refer to tasks performed by roles

within a multiagent system, few really define the what they mean by tasks. We believe that the definition

of tasks is critical in order to completely define what an agent within a multiagent system. Tasks not only

define the types of internal processing an agent must do, but also how interactions with other agents relate

to those internal processes.

In this report, we define concurrent tasks, which specify a single thread of control that defines a task

that the agent can perform and integrates inter-agent as well as intra-agent interactions. We typically

think of concurrent tasks as defining how a role decides what actions to take, not necessarily what the

agent does. This is an important distinction when talking about agents since hard-coding specific

behavior may not be the ideal case. Often agents incorporate the concept of plans and planning to

determine what to do. In these cases, we would develop a concurrent task for determining how the

planning and plan implementation occurs, but not to describe the individual plans themselves.

- ii -

Table of Contents

1. Introduction... 1
2. Background ... 1
3. Concurrent Tasks .. 3

3.1 Syntax ... 4
3.1.1 Transitions... 4
3.1.2 States ... 6
3.1.3 Task Invariants .. 7

3.2 Semantics .. 7
3.2.1 States ... 8
3.2.2 Transitions... 10
3.2.3 Task Invariants .. 13

4. Task Types .. 14
5. Examples... 15

5.1 Information Registration ... 15
5.1.1 Information Source Registration Task .. 16
5.1.2 Request Registration Task... 17
5.1.3 Inform Requestors of New Source Task ... 17
5.1.4 Inform Requestors Task .. 19

6. Related Work .. 20
7. Conclusions... 21
References... 21

- iii -

Table of Figures

Figure 1. Concurrent Task ... 3

Figure 2. Using timeout(t).. 10

Figure 3. Transition Priority Example.. 12

Figure 4. Message Transition Priority.. 13

Figure 5. Concurrent Task with Invariants... 14

Figure 6. Information Source Registration Task .. 16

Figure 7. Request Registration Task .. 17

Figure 8. Inform Requestors of New Source Task... 18

Figure 9. Inform Requestors Task.. 19

1

1. Introduction

Software agents are currently the subject of much research in many interrelated fields. While much

of the agent community has concentrated on building exemplar agent systems, defining theories of agent

behavior and inter-agent communications, there has been less emphasis on defining the techniques

required to build practical agent systems.

Many agent researchers refer to tasks performed by roles within a multiagent system (Kendall 1998,

Wooldridge, Jennings & Kinny 1999). However, few really define the essence of what they mean by

tasks. We believe that the definition of tasks is critical in order to completely define what an agent within

a multiagent system. Tasks not only define the types of internal processing an agent must do, but also

how interactions with other agents relate to those internal processes. Some researchers have focused on

coordination (Barber 1999, Wooldridge, Jennings & Kinny 1999) and some on internal agent reasoning

(Kinny, Georgeff, & Rao 1996), few have combined the two.

2. Background

In general, our research has focused on developing the methodology, techniques, and tools for

building practical agent systems (DeLoach & Wood 2000). To this end, we have developed the

Multiagent Systems Engineering methodology (Wood & DeLoach 2000) that defines multiagent systems

in terms of agent classes and their organization. We define their organization in terms of which agents

can communicate using conversations. There are two basic phases in MaSE: analysis and design. The

first phase, Analysis, includes three steps: capturing goals, applying use cases, and

The first step capturing goals takes user requirements and turns them and top-level system goals.

After defining system level goals, we extract system-level use cases and define Sequence Charts for each

in the applying use cases step. This step defines an initial set of system roles and communications paths.

Using the system goals and roles identified in the use cases, we refine and extend the initial set of roles

and define tasks to accomplish each goal in the refining roles step.

- 2 -

In the next phase, Design, we transform the analysis models into specific constructs that can be used

to build a multiagent system. The Design phase has four steps: creating agent classes, constructing

conversations, assembling agent classes, and system design. In the first step, creating agent classes, we

define specific agent classes to fill the roles defined in the Analysis phase. Then, after determining the

number and types of agent classes in the system, we can either construct conversations between those

agent classes or define the internal components that comprise the agent classes. These two steps may be

carried out in parallel in the constructing conversations and assembling agent classes steps. Once we

have completely defined the system structure, we define how the system is to be deployed. During this

step the number of individual agents, their locations are defined, and other system specific items are

defined.

The most interesting, and most difficult, part of using the MaSE methodology is transforming the

roles into agent classes and defining the conversations and internal agent behaviors. To help us

accomplish this task, we need to be able to define high-level role tasks that can be transformed into

specific agent functionality. This functionality helps us define the internal components of agents as well

as the details of the conversations in which the agents participate. In this paper, we proposed use a

Concurrent Task model to help define these high-level role and agent class behaviors. We define these

concurrent tasks as a finite state automaton that specifies messages between agent classes and internal

agent components as well is the activities or functions of the agent. Using concurrent tasks, higher level,

complex interaction protocols that require the coordination with multiple agents can be defined. We have

also shown that we can actually verify correct operation of such interaction protocols based on

Concurrent Tasks (Lacey & DeLoach 2000).

In this paper, we cover the syntax and semantics of concurrent task models and describe different

types of tasks that may be developed. We also present a few examples. Although goal of using

Concurrent Task models is to help define the internal agent behavior and conversations, we do not define

a methodology to help us do that at this time.

- 3 -

3. Concurrent Tasks

We define agent behavior to be defined by a number of concurrent tasks. These tasks specify a single

thread of control that defines a task that the agent can perform and integrates inter-agent as well as intra-

agent interactions. We typically think of concurrent tasks as defining how a role decides what actions to

take, not necessarily what the agent does. This is an important distinction when talking about agents

since hard-coding specific behavior may not be the ideal case. Often agents incorporate the concept of

plans and planning to determine what to do. In these cases, we would develop a concurrent task for

determining how the planning and plan implementation occurs, but not to describe the individual plans

themselves. Concurrent tasks are specified graphically using a finite state automaton as shown in Figure

1. All tasks are assumed to start execution upon startup of the agent and continue until the agent

terminates or an end state is reached.

idle
state1

known = check(y)
x = action(y)

state2

terminate

receive(try(y), agent)

[known] / send(do(x), agent)receive(ack, agent)

[NOT known]

Invariants:
known : Boolean

Figure 1. Concurrent Task

We model agent behavior as consisting of n concurrent tasks. Each of these tasks executes in parallel

to define the behavior of the agent. Activities are used to specify actual functions carried out by the agent

and are performed inside the task states. While these tasks execute concurrently and carry out high-level

behavior, they can be coordinated using internal events. Internal events are passed from one task to

another and are specified on the transitions between states. To communicate with other agents, external

- 4 -

messages can be sent and received. These are specified as internal send and receive events. These events

send and retrieve messages from the message-handling component of the agent, which is assumed to

exist. Besides communication with other agents, tasks can interact with the environment via reading

percepts or performing operations that affect the environment. This interaction is typically captured in

functions defined in the states. By including reasoning within tasks, agents are not “hardwired” or purely

reflexive. They can plan, search, or use knowledge-based reasoning to decide on appropriate actions

3.1 Syntax
The syntax of a concurrent task has two components: states and transitions. As defined above, the

states and transitions are similar to the states and transitions of most other finite automata models. States

encompass the processing that goes on internal to the agent. This processing is denoted by a sequence of

activities specified in a functional form. Transitions denote communication between agents or between

tasks. Of each of these components are specified completely below.

3.1.1 Transitions
A transition consists of five items. First, each transition has a single source state and a single

destination state. A transition also has a trigger, which is either a message from an external agent (a

receive event) or an internal event from another task. For example, in Figure 1, the transition between the

idle state and state1 consists of a trigger, receive(try(y), agent). In this case, an event receive is

transmitted to the task. The parameters of the trigger event are the message and the agent from which the

message was sent.

Each transition may also have a guard, which is a Boolean condition that must be true before the

transition may occur. In Figure 1 we can see that the transition from state1 to the idle state is simply [NOT

known], which has only a single guard condition. The variable known is Boolean condition computed in

state1 based on the value of y. The other transition leaving state1, [known]/send(do(x),agent), also

uses known for a guard condition.

A transition may also have transmissions, which are either a message to an external agent (a send

event) or an event sent to another task. The send event in the transition from state1 to state2,

- 5 -

[known]/send(do(x),agent), denotes a transmission. In this case, this is a message to agent to do(x).

Multiple transmissions may be separated with a semicolon (;). The semicolon not only separates

transmissions, but also imparts a sequential ordering to their actual transmission. While null transitions

are not allowed (with the exception of the transition from the start state), transitions may be made with

just a guard condition and no triggers or transmissions. Transitions that occur with no communications or

guard conditions separating two states should be combined into a single state or the state being

transitioned to must be the idle state. The syntax for a transition is shown below.

Trigger [guard] / transmission(s)

Generally, events specified in a trigger or transmissions are assumed to come from another task

within the same agent. This allows an agent to coordinate its tasks. For instance the terminate event in

Figure 1 must come from another task being executed within the same agent. However, two special

events are used to indicate that a message is actually sent from the current agent to another agent: send

and receive. The send event is used to send a message to an external agent and has the following syntax.

send(message, agent)

The message is defined as a performative, which describes the intent of the message, along with a set

of parameters that are the content of the message. Again, the transition

[known]/send(do(x),agent)

in Figure 1 involves sending a do message to a particular agent. In this case, do is the performative while

y is the content of the message. The format of a message is shown below where p1 … pn denotes n

possible parameters.

performative(p1 … pn)

It is possible for a message to contain only a performative with no contents. In this case, only the

performative and agent identifier is required. For example, to send a simple acknowledgement message,

the message would have the syntax send(acknowledge, agent), where acknowledge is the performative

and the second parameter is interpreted as the agent to whom the message is sent.

- 6 -

It is also possible to send a message to a group of agents via multicasting. This is a common

capability supported by many inter-agent communication frameworks and can be simulated by sending

multiple messages, if not supported directly by the communication framework. Instead of specifying a

single agent to send a message to, a group name is specified by enclosing the group name with braces

(e.g., <group-name>) . The syntax for a multicast message is shown below.

send(message, <group-name>)

The receive event has a similar syntax to a send event as shown below.

receive(message, agent)

In this case, a receive event is only valid as a trigger and follows the same syntax rules as the send

event. In the case of send and receive events, there must always be at least one parameter denoting the

agent to or from whom the message was sent or received. An example of a receive event that gets a

message ack from another agent is shown in Figure 1. In this case, the transition is from state2 back to

the idle state. The message ack is received with no parameters (i.e., no message contents). Obviously,

the ack is simply an acknowledgement that the previous do(x) message was received by the other agent.

3.1.2 States
States may contain activities, which can be used to represent internal reasoning, reading a percept

from sensors, or performing actions via effectors. Multiple activities may be included in a single state

and are performed in sequence. Once in a state, the task remains in that state until activity processing is

complete and a transition out of the state becomes enabled. Activities are defined in the form of

functions. Each function may return up to one result and may have a number of input parameters. For

example, in state1 in Figure 1, there are two activities performed in sequence: check(y) and action(y).

The check(y) activity returns a value, which is stored in the variable known, while the action(y) activity

returns a value stored in variable x. Once processing starts in state1, both activities must complete before

either of the transitions out of state1 are enable. The syntax of an activity statement is shown below.

result = activity-name(parameter1, parameter2, … parametern)

Multiple results may be returned from activity using tuple notation such as

- 7 -

<x, y> = divide(a, b)

Once a multiple value has been returned in a tuple, the individual variables that make up the tuple can

be referred to as independent variables.

States with an asterisk (*) following their name denote optional states. Optional states are states that

do not have to be entered into for the task to be performed in a valid manner. Specification of optional

states allow for automated verification of task protocols. They do not affect the semantics of the task.

3.1.3 Task Invariants
Each task may have a set of invariants that must hold during then entire life of the task. These

invariants may either specify variable datatypes in the form of

variable : datatype

or specify a general condition using traditional axiomatic expressions. Invariants are annotated in a box

in the lower left of the task model as shown in Figure 1. We do not restrict the actual syntax of the

invariant axioms.

3.2 Semantics
Semantics of concurrent tasks are based on standard finite state automata such as Statecharts.

However, because a single agent is defined by a number of concurrent task models, the state of an agent is

actually defined by the set of current states in each of the agent’s active concurrent tasks. Because

activities occur in states, agents are typically in a state for a finite amount of time. On the other hand, we

assume that transitions between states occur instantaneously. This allows the state of the agent to be

precisely determined at any point in time.

The variables used in activity definitions in states and in message and event definitions on transitions

are assumed to be globally visible within the task, but not outside of the task. This does not mean that the

variables used in a task definition are visible inside the activities defined in the task. The only way to

transfer information from a task to an activity is by parameters passed to the activity or the result returned

from the activity. The only way to pass information between task models is to explicitly pass information

as parameters in an event call. In Figure 1, the variable y is set when the task receives the try message

- 8 -

from another agent. This value of y is now globally available within the task definition. For instance,

when the check(y) and action(y) activities are performed in state1, the value of y received from the try

message is passed as a parameter. Since activities are defined as functions, the parameter y cannot be

changed inside the check activity and thus has the same value when passed to check and action.

Likewise the result of action gets stored in the variable x which is sent out in the do(x) message on the

transition from state1 to state2.

We also assume that all messages sent between agents and events sent between tasks are queued.

This allows us to ensure that all messages are received even if the agent or task is not in the appropriate

state to handle the message or event immediately. We also allow the task to search the queue for

messages that can be handled in the current state, although messages and events of the same type are

handled in the order they are received.

3.2.1 States
Each task is in exactly one state at any point in time. That means that transitions between states are

instantaneous while states take time. Generally, states are used for two purposes: waiting for an event or

performing internal processing. If there are no activities in a particular state or all activities have been

completed and no transitions have been enabled, then the task is idle waiting on a transition to be enabled.

All activities occur in a state and are executed sequentially. When a task enters a state, the first

activity is automatically executed. Upon completion of the first activity, subsequent activities are

executed one by one. No transitions out of the state are enabled until all activities have been completed.

For example, the execution of state1 in Figure 1 is equivalent to the following code fragment from a

traditional imperative programming language such as C or Java (assuming the send and change of state

happens instantaneously):

 known = check(y);
 x = action(y);
 if (known)
 nextState = idle;
 if (!known)
 send(do(x), agent) and nextState = state2;

- 9 -

Concurrent tasks have a number of predefined activities that deal with mobility, time, and the sending

and receiving of messages. The first predefined activity is the move activity. The move activity specifies

that the agent is to move to a new address. The result of the move activity is a Boolean value that states

whether the move actually occurred. It is possible that an agent may want to move to a new location but

is unable to for some reason. The agent should be able to reason about this and deal with it accordingly.

The syntax for the move activity is shown below.

Boolean = move(location)

The next pair of predefined activities deals with the ability of an agent to determine the passage of

time. To reason about time, tasks provide built in timers. An agent can define a timer using the setTimer

activity. The setTimer activity takes a time as input and returns a timer that will timeout in exactly the

time specified. Thus, the time specified is the offset from the current time. The setTimer activity returns

a timer that can be tested by the agent to see if it has timed out using the timeout activity. The timeout

activity returns a Boolean value that is true if the timer has timed out. Using the setTimer and timeout

activities, an agent can use time in carrying out its assigned responsibilities. The syntax for the setTimer

and timeout functions is shown below.

t = setTimer(time)

Boolean = timeout(t)

Actually, the timeout activity is not generally used in a state, but on transitions as a guard condition.

As shown in Figure 2(a), the timeout(t) activity is placed in state1. According to concurrent task

semantics, the timeout(t) activity would be executed only once. If the t had timed out, the transition

would fire, otherwise, the transition would never fire since the timeout(t) activity would never again be

executed. In Figure 2(b), the timeout(t) activity is actually placed on the transition.

While use of an activity in a guard condition appears to violate the semantics requiring a transition to

be instantaneous, it does not. An activity that returns either a Boolean value or an attribute of a specific

data structure (such as the size of a queue) may be used in a guard condition of a transition. A Boolean

activity on a transition is only tested once all activities in the state have been executed and is continually

- 10 -

tested until a transition is enabled. Multiple Boolean activities on transitions out of the same state are all

executed before checking to see if any transitions are enabled. Thus, the semantics of Figure 2(b) is as

follows. Upon entering state1, the setTimer(time) activity is executed. Once it completes, the state goes

to an idle states where it continually checks to see if timeout(t) is true. When timeout(t) becomes true,

then the transition fires and we move to state2.

state1

t = setTimer(time)
to = timeout(t)

state2

[to]

state1

t = setTimer(time)

state2

[timeout(t)]

(a) (b)

Figure 2. Using timeout(t)

3.2.2 Transitions
As stated above, transitions occur instantaneously and move tasks from one state to another (or

possibly the same state). A transition is enabled if all the following conditions hold.

1. The transition’s source state is the current state of the task.

2. The transition’s trigger event has been generated.

3. The transition’s guard condition evaluates to true.

4. All activities in the transition’s source state have been completed.

If a transition does not have a trigger or a guard, both conditions are assumed to hold. Once a

transition is enabled, it is executed and execution occurs instantaneously. This means that events and

messages are sent instantaneously and the current task state becomes the destination state of the transition.

- 11 -

In the case of a transition that sends two events or messages, even though the transition occurs

instantaneously, the events and messages are ordered sequentially according to the ordering on the

diagram.

If multiple transitions are enabled simultaneously, the following priority scheme is used.

1. Received events. Any transitions whose trigger contains an event received from other tasks

are processed first. If multiple transitions with internal events are enabled, then they are

processed in the order the events were received. Since events are transmitted instantaneously,

there must be a linear ordering to the events.

2. Send events. Any transitions whose transmissions contain an event to be sent to another task

are processed next. If multiple transitions with send events are enabled, they must be ordered

based on other criteria such as arrival time of trigger, etc. Since guard conditions must be

mutually exclusive (see Guard Condition order below) and events and message triggers are

ordered based on arrival times, there is always an ordering to the sending of events.

3. Received messages. Any transitions whose trigger contains a message received from another

agent are processed next. If multiple transitions with received messages are enabled, then

they are processed in the order the messages were received. Since messages, like events, are

transmitted instantaneously, there must be a linear ordering to the message receipts.

4. Send messages. Any transitions whose transmissions contain a message to be sent to another

agent are processed next. If multiple transitions with send messages are enabled, they must

be ordered based on other criteria such as arrival time of trigger, etc. Since guard conditions

must be mutually exclusive (see Guard Condition order below) and events and message

triggers are ordered based on arrival times, there is always an ordering to the sending of

messages.

5. Guard conditions. Transitions that only have guard conditions are the next priority. The rule

for guard conditions is that states containing multiple guard condition transitions must be

mutually exclusive. Since received events and messages are an implied part of a transition’s

- 12 -

guard condition, these may be conjuncted with the guard condition when determining

exclusiveness.

6. Null transitions. The only allowable null transition is a transition from the start state. If there

is a null transition from the start state, there may be no other transitions from the start state.

Thus in Figure 3, if we are in the wait state, it is possible to have two transitions enabled at the same

time: [timeout(t)] and receive(bid(x),ag). In this case, it clear from our priority rules that the

receive message is handled before the timeout. It is also possible that while handling the receive message

(i.e., we are in state1 in the recordBid activity) we get another receive message. Thus when we transition

back to the wait state and send an acknowledge message, we have the same dilemma. Since the timeout is

in a guard condition and does not have a timestamp associated with it the way a message would, we

handle the message first and go through the same process.

wait

state1

recordBid(x, ag)

state2

/ send(acknowledge, ag)

receive(bid(x), ag)

[timeout(t)]

Figure 3. Transition Priority Example

If instead of a guard condition on the transition from the wait state to state2, we had another receive

message, we would get different results. For example, in Figure 4, assume upon entering the wait state

we have two incoming messages waiting for us: endBidding and bid(x). According to our priority rules,

we take first message to come in that is enabled. In this case, assume bid(x) came in before endBidding

- 13 -

(possibly before we even entered the wait state). We would read the bid(x) message and begin the

activity in state1. Now if we received a second bid(x) message while in state1, that message is cued up

after the endBidding message. Therefore, after the recordBid activity is completed and the task

transitions back to the wait state, the task processes the endBidding message first since it has priority over

the second bid(x) message.

wait

state1

recordBid(x, ag)

state2

/ send(acknowledge, ag)

receive(bid(x), ag)

receive(endBidding, Mgr)

Figure 4. Message Transition Priority

3.2.3 Task Invariants
The semantics of task invariants are straightforward. If the invariant is a variable type definition, the

invariant is taken as definitional. If the invariant is axiomatic, then the semantics are that the axiom must

be true at all times. In essence, the invariant becomes a post-condition of every activity in the task. For

instance, in Figure 5, the invariant size(list) >= 0 is a post-condition for the remove and add

activities. Using standard convention for add and removing from a list, the invariant could affect the

remove activity.

- 14 -

receive(remove-request(agent), ag) / send(acknowledge, ag)

receive(add-request(agent), ag)/ send(acknowledge, ag)

Invariants:
size(list) >= 0

Add
add(agent, list)

Remove
remove(agent, list)

Idle

Figure 5. Concurrent Task with Invariants

4. Task Types

As stated initially, the goal of concurrent tasks is to define the behavior of agents, tying the internal

reasoning processes of the agent to its interaction with other internal processes as well as externally with

other agents. We can categorize these tasks into three types: reactive, proactive, or heterogeneous. A

reactive task has at least one idle state where it waits for a request – from either another task or agent –

before actually starting any processing. A reactive task always starts in one of its idle states. That is, the

start state has a null transition to an idle state. Proactive tasks do not have idle states. They are

continually generating requests for other agents or tasks.

- 15 -

A heterogeneous task, as the name suggests, is a combination of reactive and proactive tasks. A

heterogeneous task has idle states, but it does not start in an idle state. It generates at least one request for

another agent or task before entering an idle state.

Based on these task definitions, we can categorize agent whose behavior is defined by tasks as either

proactive or reactive. A proactive agent is an agent with at least one proactive or heterogeneous task

while a reactive agent is an agent with all reactive tasks.

5. Examples

5.1 Information Registration
Assume we want to define the behavior of an information registration role and have come up with the

following goals that this role is be responsible for:

1. Keep list of all registered information sources

a. Allow information sources to register and de-register

2. Keep a list of all registered requests for information sources

a. Allow agents to register and de-register on-going requests for information

3. Inform requestors when information is available

a. One-time requests

b. Registered requests

The registration role needs to allow information sources to register with it. To register, the

information source has to supply information on how it can be reached (address and port number) as well

as the type of information it has available. (To simplify this example, we assume that every agent within

the system is using the same ontology.) To define the behavior of this role, we develop a concurrent task

for each of the three main goals. We call these tasks the Information Source Registration task (goal 1),

the Request Registration Task (goal 2), and the Inform Requestors task (Goal 3).

- 16 -

5.1.1 Information Source Registration Task
The Information Source Registration task is shown in Figure 6. This task is relatively simple and

made simpler by the fact that we have not added any error checking. Two basic things can happen in this

task. First, an external agent can send a register-source message to the task with its datatype and

source information (name, address, port, etc.). After receiving the message, the role calls its addSource

activity and returns an acknowledge message and sends a new-info event to the Inform Requestors

task to check if there is anyone who needs to be informed of this new source of information. Having

handled this request, the task waits in the idle state.

Deregister
removeSource(t,s)

idle

Register
addSource(t,s)

receive(deregister-source(type, source), ag) / send(acknowledge, ag)

receive(register-source(type, source), ag)/ send(acknowledge, ag); new-info(type,s)

Figure 6. Information Source Registration Task

The second request the task can handle is from an external agent wanting to de-register the fact that it

can provide a certain type of information. This happens when a deregister-source message is received

with appropriate type and source information. After the message is received, the task invokes its

removeSource activity, which actually removes the information source from the list. After the activity is

complete, the task sends an acknowledge message to the agent verifying that the request was granted.

- 17 -

5.1.2 Request Registration Task
The Request Registration task is similar to the Information Source Registration task as shown in

Figure 7. In this case, the task receives requests to register and de-register standing requests for

information sources containing specific types of data. This is accomplished by an external agent sending

either a register-request or deregister-request message. The message cause internal list

management activities to be performed with an acknowledge message to be returned upon completion.

When a new agent registers, an internal new-request event is generated and passed to the Inform

Requestors task, which searches the list of information sources for any existing information that can be

sent immediately.

Deregister
removeRequest(type,requestor)

idle

Register
addRequest(type,requestor)

receive(deregister-request(type, requestor), ag) / send(acknowledge, ag)

receive(register-request(type, requestor), ag)/ send(acknowledge, ag); new-request(type,requestor)

Figure 7. Request Registration Task

5.1.3 Inform Requestors of New Source Task
The Inform Requestors of New Source (Figure 8) task is more complicated than the first two tasks.

First, it is set in motion by an event from the Information Source Registration tasks: new-info. Once the

task is invoked, it searches the list of agents who have requested information of the type provided by this

new information source and informs them of the new source.

- 18 -

idle
LookupRequestors

list = findRequestors(type)
ag = getRequestor(pop(list))

new-info(type, source)

wait

[size(list) > 0] / send(return-info-source(type,source), ag)

Continue
ag = getRequestor(pop(list))

receive(acknowledge, ag) [size(list) > 0]

[size(list) <= 0]

/ send(return-info-source(type,source), ag)

receive(acknowledge, ag) [size(list) <= 0]

Invariants:
size(list) >= 0

Figure 8. Inform Requestors of New Source Task

There are two inputs to the task: the type of the new information source and the address of the source.

Upon invocation, the LookupRequestors state is entered where the findRequestors, size, and

getRequestor activities are carried out. If no agents have requested the type of information from this

new source (x<=0), the task is terminated.

Assuming agents interested in the new information source are found (x>0), the task goes about the

business of sending the new source to each requesting agent, one at a time. In this case, the task

transitions out of the LookupRequestors state and sends a return-info-source message to the

requesting agent, passing both the type and address information of the new information source, and enters

the wait state. Upon entering the wait state, the task basically enters a loop where it waits for an

acknowledge message from the requesting agent and then, if there are more agents on the list, gets the

next requesting agent from the list and sends it the new information source. This is shown in the wait –

continue – wait loop. In the continue state, the list size counter, x, is decremented, the next requestor

is popped off the list. If there are no more agents on the list (x=0), the last acknowledge message sends

the task to the idle state.

- 19 -

5.1.4 Inform Requestors Task
The Inform Requestors task is very similar to the last task. As shown in Figure 9, there are two

differences. The first difference is that the task is initiated by an event from the Request Registration

task, new-request, or by a one-time request from an agent via a request message. The second

difference is that it searches the list of registered information sources to find sources that match the

request. Once invoked, the task searches the list of registered information sources for those who can

provide the type of information requested and informs the requestor.

idle
LookupSources

list = findSources(type)
source = getSource(pop(list))

receive(request(type), ag)

wait

[size(list) > 0] / send(return-info-source(type,source), ag)

Continue
source = getSource(pop(list))

/ send(return-info-source(type,source), ag)

receive(acknowledge, ag) [size(list) <= 0]
/ send(end-of-list(), ag)

[size(list) <= 0] / send(end-of-list(), ag)

new-request(type, ag)

receive(acknowledge, ag) [size(list) > 0]
Invariants:
size(list) >= 0

Figure 9. Inform Requestors Task

Regardless of the method of invocation, there are two inputs to the task: the type of information being

requested and the agent who needs the information. Upon invocation, the LookupSources state is entered

where the findSources, size, and getSource activities are carried out. If there are no possible

information sources found (x<=0), the task is terminated and the end-of-list message is returned to

the requesting agent.

Assuming there are information sources of interest found (x>0), the task goes about the business of

sending each information source, one at a time. In this case, the task transitions out of the

- 20 -

LookupSources state and sends a return-info-source message to the requesting agent, passing both the

type and address information of the source, and enters the wait state. Upon entering the wait state, the

task basically enters a loop where it waits for an acknowledge message from the requesting agent and

then gets the next information source from the list and returns it to the agent. This is shown in the wait –

continue – wait loop. In the continue state, the list size counter, x, is decremented, the next

information source is removed from the list. When the all information sources on the list have been sent

(x=0), the task transitions to the idle state when it receives the last acknowledge message.

6. Related Work

Much of our work on Concurrent Task Models stem from work originally done by Harel on

Statecharts (Harel 1998), which was the basis for state diagrams in Rumbaugh’s Object Modeling

Technique (OMT) (Rumbaugh 1991) and the Unified Modeling Language (UML 1997). The original

goal of Statecharts was to model reactive systems, which Harel define as systems that continually interact

with their environment using input and output whose timing may be unpredictable. Statecharts are a very

large, complex language supporting concurrency, conditional transitions, and event input and output. The

basic difference between Concurrent Tasks and Statecharts is the ability to define parameterized events

and activities inside states in Concurrent Tasks. Statecharts have no way to define internal processing and

how information passed in events relates to those activities. The only significant advantage of Statecharts

is the ability to model substates for complex models. We specifically chose to leave substates out of

Concurrent Tasks to simplify the language. We assume typical Concurrent Tasks are fairly simple with

much of the complex processing performed within activities.

Concurrent Task Models are really much more akin to OMT and UML state diagrams, which are used

to model object class or method behavior. However, we have provided an precise semantics that allows

for a specific implementation. These semantics differ from OMT or UML in that we assume all tasks run

concurrently and that activities within states are non-interruptible. While our simplifications may reduce

- 21 -

the ease of use of Concurrent Tasks, we argue that they have the same general expressiveness and a

specific semantics that makes automatic agent synthesis possible.

Concurrent tasks are also similar to Parunak and Singh’s use of Dooley graphs for agent coordination

(Singh 1998) (Parunak 1996), among others. The strength of Concurrent Tasks in relation to these efforts

is its ability to tie agent coordination issues to internal agent reasoning and computation.

7. Conclusions

Concurrent tasks allow us to capture the behavior of agents in a uniform fashion. Whether or not the

tasks are internal to a single agent or carried out between multiple agents makes little different other than

a minor syntactical change. This allows us to define multiple concurrent tasks and then determine to

which agent they should belong.

References

1. K. S. Barber, T. H. Liu, and D. C. Han. Agent-Oriented Design. In: Multi-Agent System
Engineering 9th European Workshop on Modelling Autonomous Agent in a Multi-Agent World
(MAAMAW’99), Lecture Notes in Artificial Intelligence no. 1647, Springer-Verlag, 1999.

2. Mihai Barbuceanu and Mark S. Fox. COOL: A Language for Describing Coordination in Multi
Agent Systems. In Proceedings of the International Conference on Multi-Agent Systems,
ICMAS-95, San Francisco, CA, 1995.

3. Scott A. DeLoach and Mark Wood. Developing Multiagent Systems with agentTool. The
Seventh International Workshop on Agent Theories, Architectures, and Languages (ATAL-2000).
Boston, MA, July 7-9, 2000.

4. David Harel, and Politi, Michael. Modeling Reactive System with Statecharts : the Statemate
Approach. McGraw-Hill, New York, New York. 1998.

5. Elizabeth A. Kendall, Agent Roles and Role Models: New Abstractions for Intelligent Agent
System Analysis and Design. International Workshop on Intelligent Agents in Information and
Process Management, 1998.

6. David Kinny, Michael Georgeff, and Anand Rao. A Methodology and Modelling Technique for
Systems of BDI Agents. Technical Note 58. Australian Artificial Intelligence Institute. January
1996.

7. Timothy H. Lacey and Scott A. DeLoach, Verification of Agent Behavioral Models. The 2000
International Conference on Artificial Intelligence (IC-AI'2000). Las Vegas, Nevada, June 2000.

8. H. V. D. Parunak. Visualizing agent conversations: Using Enhanced Dooley graphs for agent
design and analysis. In Proceedings of the 2nd International Conference on Multiagent Systems,
pages 275-282. AAAI Press, 1996.

- 22 -

9. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen.
Object-Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, New Jersey. 1991.

10. Munindar P. Singh, Developing Formal Specification to Coordinate Heterogeneous Autonomous
Agents. Proceedings of the International Conference on Multiagent Systems (ICMAS), July 1998,
pages 261-268..

11. UML. Unified Modeling Language Notation Guide. Rational. 1997.

12. Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems. Vol 3
(3) 2000.

13. Wood, Mark & Scott A. DeLoach, An Overview of the Multiagent Systems Engineering
Methodology. The First International Workshop on Agent-Oriented Software Engineering
(AOSE-2000), Limerick Ireland, June 2000.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 2000
3. REPORT TYPE AND DATES COVERED

Technical Report, June 1999 - July 2000
 4. TITLE AND SUBTITLE
Specifying Agent Behavior as Concurrent Tasks: Defining the Behavior of Social
Agents

5. FUNDING NUMBERS

99NM097 (AFOSR)

HE-WSU-99-09 (DAGSI) 6. AUTHOR(S)
Scott A. DeLoach

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFIT/ENG
2950 P. Street
Wright-Patterson AFB OH 45433-7765

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NM, 801 N Randolph St. Arlington, VA 22203-1977

Dayton Area Graduate Studies Institute
3171 Research Boulevard, Suite 109 Kettering OH 45420

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFIT/EN-TR-00-03

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT
Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Software agents are currently the subject of much research in many interrelated fields. While much of the agent community
has concentrated on building exemplar agent systems, defining theories of agent behavior and inter-agent communications,
there has been less emphasis on defining the techniques required to build practical agent systems. While many agent
researchers refer to tasks performed by roles within a multiagent system, few really define the what they mean by tasks. We
believe that the definition of tasks is critical in order to completely define what an agent within a multiagent system. Tasks
not only define the types of internal processing an agent must do, but also how interactions with other agents relate to those
internal processes. In this report, we define concurrent tasks, which specify a single thread of control that defines a task that
the agent can perform and integrates inter-agent as well as intra-agent interactions. We typically think of concurrent tasks as
defining how a role decides what actions to take, not necessarily what the agent does. This is an important distinction when
talking about agents since hard-coding specific behavior may not be the ideal case. Often agents incorporate the concept of
plans and planning to determine what to do. In these cases, we would develop a concurrent task for determining how the
planning and plan implementation occurs, but not to describe the individual plans themselves.

14. SUBJECT TERMS
Multiagent systems, agent-oriented software engineering, distributed systems, software
engineering

15. NUMBER OF PAGES

27
16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Standard Form 298 (Rev. 2-89) (EG)

