
A Theory-Based Representation for
Object-Oriented Domain Models

Scott A. DeLoach, Member, IEEE Computer Society, and Thomas C. Hartrum, Member, IEEE

AbstractÐFormal software specification has long been touted as a way to increase the quality and reliability of software; however, it

remains an intricate, manually intensive activity. An alternative to using formal specifications directly is to translate graphically based,

semiformal specifications into formal specifications. However, before this translation can take place, a formal definition of basic object-

oriented concepts must be found. This paper presents an algebraic model of object-orientation that defines how object-oriented

concepts can be represented algebraically using an object-oriented algebraic specification language O-SLANG. O-SLANG combines

basic algebraic specification constructs with category theory operations to capture internal object class structure, as well as

relationships between classes.

Index TermsÐSoftware engineering, formal methods, domain models, transformation systems.

æ

1 INTRODUCTION

AS the field of software engineering continues to evolve
toward a more traditional engineering discipline, a

concept that is emerging as important to this evolution is
the use of formal specifications, the representation of software
requirements by a formal language [1], [2]. Such a
representation has many potential benefits, ranging from
improvement of the quality of the specification itself to the
automatic generation of executable code. While some
impressive results have emerged from the utilization of
formal specifications [3], [4], the development of formal
specifications to represent a user's requirements is still a
difficult task. This has restricted adoption of formal
specifications by practitioners.

On the other hand, an approach to requirements
modeling that has been gaining acceptance is the use of
object-oriented methods. Initially introduced as a program-
ming paradigm, its application has been extended to the
entire software lifecycle. This informal approach, consisting
of graphical representations and natural language descrip-
tions, has many variations, but Rumbaugh's Object Modeling
Technique (OMT) is typical and perhaps the most widely
referenced [5]. In OMT, three models are combined to
capture the essence of a software system. The object model
captures the structural aspects of the system by defining
objects, their attributes, and the relationships (associations)
between them. The behavior of the system is captured by
the other two models. The dynamic model captures the
control flow as a classical state-transition model, or
statechart, while the functional model represents the system
calculations as hierarchical data flow diagrams and process

descriptions. All three models are needed to capture the
software system's requirements although, for a given
system, one or two of the models may be of lesser
importance, or even omitted.

While systems such as KIDS [3] and Specware [6] have
been making progress in software synthesis, research in the
acquisition of formal specifications has not been keeping
pace. Formal specification of software remains an intricate,
manually intensive activity. Problems associated with
specification acquisition include a lack of expertise in
mathematical and logical concepts among software devel-
opers, an inability to effectively communicate formal
specifications with end users to validate requirements,
and the tendency of formal notations to restrict solution
creativity [7]. Fraser et al. suggest an approach to over-
coming these problems via parallel refinement of semi-formal
and formal specifications. In a parallel refinement ap-
proach, designers develop specifications using both semi-
formal and formal representations, successively refining
both representations in parallel [7].

Fig. 1 shows our concept of a parallel refinement system
for formal specification development. In this system, a
domain engineer would use a graphically based object-
oriented interface to specify a domain model. This domain
model would be automatically translated into formal Class
Theories stored in a library. A user knowledgeable in the
domain would then use the graphically based object-
oriented interface to refine the domain model into a
problem specific formal Functional Specification. Finally, a
software engineer would map the Functional Specification
to an appropriate formal Architecture Theory, generating a
specification capable of being transformed to code by a
system such as Specware.

A critical element for the success of such a system is the
definition of a formal representation that captures all
important aspects of object-orientation, along with a formal
represention of the syntax and semantics of the informal
model and a mapping for ensuring the full equivalence of
the informal and formal models. While formal

500 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 6, JUNE 2000

. The authors are with the US Air Force Institute of Technology, Department
of Electrical and Computer Engineering AFIT/ENG, 2950 P Street,
Wright-Patterson Air Force Base, OH 45433-7765.
E-mail: {scott.deloach, thomas.hartrum}@afit.af.mil.

Manuscript received 30 Sept. 1996; revised 7 Dec. 1998; accepted 25 Feb.
1999.
Recommended for acceptance by L.K. Dillon.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 108403.

0098-5589/00/$10.00 ß 2000 IEEE

representation of the informal model has been done in bits
and pieces [8], [9], [10], a full, consistent, integrated formal
object model does not exist. This paper describes a method
for fully representing an object-oriented model using
algebraic theories [11]. An algebraic language, O-SLANG,
is defined as an extension of Kestrel Institute's Slang [12]. O-
SLANG not only supports an algebraic representation of
objects, but allows the use of category theory operations,
such as morphisms and colimits, to combine primitive
object specifications to form more complex aggregates and
to extend object specifications to capture multiple inheri-
tance [13]. Using this formal representation along with
formal transformations from the informal model, we have
demonstrated the automatic generation of formal algebraic
specifications from commercially available object-oriented
CASE tools.

The remainder of the paper is organized as follows.
Section 2 discusses related work and Section 3 presents
basic algebraic and category theory concepts. Section 4
introduces the basic object model, while Sections 5 through
7 describe inheritance, aggregation, and object communica-
tion in more detail. Finally, Section 8 discusses our
contributions and plans for the future.

2 RELATED WORK

There have been a number efforts designed to incorporate
object-oriented concepts into formal specification lan-
guages. MooZ [14] and Object-Z [15] extend Z by adding
object-oriented structures while maintaining its model-
based semantics. Z++ [16] and OOZE [17] also extend Z,
but provide semantics based on algebra and category
theory. Although these Z extensions provide enhanced
structuring techniques, they do not provide improved

specification acquisition methods. FOOPS [18] is an
algebraic, object-oriented specification language based on
OBJ3 [19]. Both FOOPS and OBJ3 focus on prototyping and
provide little support for specification acquisition. Some
research has been directed toward improving specification
acquisition by translating object-oriented specifications into
formal specifications [10]; however, these techniques are
based on Z and lack a strong notion of refinement from
specification to code.

3 THEORY FUNDAMENTALS

Theory-based algebraic specification is concerned with:
1) modeling system behavior using algebras (a collection of
values and operations on those values) and axioms that
characterize algebra behavior and 2) composition of larger
specifications from smaller specifications. Composition of
specifications is accomplished via specification building
operations defined by category theory constructs [20]. A
theory is the set of all assertions that can be logically proven
from the axioms of a given specification. Thus, a specifica-
tion defines a theory and is termed a theory presentation.

In algebraic specifications, the structure of a specification
is defined in terms of sorts, abstract collections of values,
and operations over those sorts. This structure is called a
signature. A signature describes the structure of a solution;
however, a signature does not specify semantics. To specify
semantics, the definition of a signature is extended with
axioms defining the intended semantics of signature
operations. A signature with associated axioms is called a
specification. An example of a specification is shown in Fig. 2.

A specification allows us to formally define the internal
structure of object classes (attributes and operations);
however, it does not provide the capability of reasoning

DELOACH AND HARTRUM: A THEORY-BASED REPRESENTATION FOR OBJECT-ORIENTED DOMAIN MODELS 501

Fig. 1. Parallel refinement specification acquisition mechnanism.

about relationships between object classes. To create theory-
based algebraic specifications that parallel object-oriented
specifications, the ability to define and reason about
relationships between theories, similar to those used in
object-oriented approaches (inheritance, aggregation, etc.),
must be available. Category theory is an abstract mathema-
tical theory used to describe the external structure of
various mathematical systems [21] and is used here to
describe relationships between specifications.

A category consists of a collection of C-objects and
C-arrows between objects such that: 1) there is a C-arrow
from each object to itself, 2) C-arrows are composable, and
3) arrow composition is associative. An obvious example is
the category Set, where ªC-objectsº are sets and ªC-arrowsº
are functions between sets. However, of greater interest in
our research is the category Spec. Spec consists of
specifications as the ªC-objectsº with specification morph-
isms as the ªC-arrows.º A specification morphism, �, is a pair
of functions that map sorts (�S) and operations (�
) from
one specification to compatible sorts and operations of a
second specification such that the axioms of the first
specification are theorems of the second specification.
Intuitively, specification morphisms define how one speci-
fication is embedded in another. An example of a morphism
from array to finite-map (Fig. 3) is shown below.

�
 � fassign 7! update; apply 7! applyg
�S � fA 7! M; I 7! D; E 7! Rg

Specification morphisms comprise the basic tool for
defining and refining specifications. Our toolset can be
extended to allow the creation of new specifications from a
set of existing specifications. Often two specifications
derived from a common ancestor specification need to be
combined. The desired combination consists of the unique
parts of two specifications and some ªshared partº common
to both specifications (the part defined in the shared
ancestor specification). This combining operation is a
colimit.

Conceptually, the colimit is the ªshared unionº of a set of
specifications based on the morphisms between the
specifications. These morphisms define equivalence classes
of sorts and operations. For example, if a morphism, �, from
specification A to specification B maps sort � to sort �, then
� and � are in the same equivalence class and thus become
a single sort in the colimit specification of A, B, and �. The
colimit operation creates a new specification, the colimit

specification, and a specification morphism from each
specification to the colimit specification. An example
showing the relationship between a colimit and multiple
inheritance is provided in Section 5.

From these basic tools (morphisms and colimits), we can
construct specifications in a number of ways [20]. We can,
1) build a specification from a signature and a set of axioms,
2) form the union of a set of specifications via a colimit,
3) rename sorts or operations via a specification morphism,
and 4) parameterize specifications. Many of these methods
are useful in translating object-oriented specifications into
theory-based specifications. Detailed semantics of object-
oriented concepts using specifications and category theory
constructs are presented next.

4 OBJECT CLASSES

The building block of object-orientation is the object class
which defines the structure of an object and its response to
external stimuli based its current state. Formally defined in
Section 4.1 as a class type, a class is a template from which
individual object instances can be created. Fig. 4 shows a
specification of a banking account class in O-SLANG.

4.1 Class Structure

In our theory-based object model, we capture the structure
of a class as a theory presentation, or algebraic specification,
as follows.

Definition 1. Object Class Type A class type, C, is a
signature, � � hS;
i and a set of axioms, �, over � (i.e., a
theory presentation, or specification) where

S denotes a set of sorts including the class sort

 denotes a set of functions over S
� denotes a set of axioms over �:

Sorts in S are used to describe collections of data values
used in the specification. In O-SLANG, a distinguished sort,
the class sort, is the set of all possible objects in the class. In
an algebraic sense, this is really the set of all possible
abstract value representations of objects in the class.
Functions in
 are classified in O-SLANG syntax as
attributes, methods, state-attributes, states, events, and
operations. Attributes are defined implicitly by visible

502 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 6, JUNE 2000

Fig. 2. Array specification.

Fig. 3. Finite map specification.

functions which return specific data values. In Fig. 4, the
functions date and bal are attributes. Methods are nonvisible
functions invoked via visible events that modify an object's
attribute values. A method's domain includes an object,
along with additional parameters, while the return value is
always the modified object. In Fig. 4, the functions create-
acct, credit, and debit are methods. The semantics of
functions, as well as invariants between class attribute
values, are defined using first order predicate logic axioms.
In general, axioms define methods by describing their
effects on attribute values as in the following example.

8�a : Acct; x : Amnt� bal�credit�a; x�� � bal�a� � x;

4.2 Class Behavior

4.2.1 States

In our model, a state is a partition of the cross-product of an
object's attribute values. For example, a bank account might
be partitioned into an ok and an overdrawn state based on a
partitioning of its balance values. Formally, a class type has
at least one state sort (multiple state sorts allow modeling
concurrent state models and substate models), a set of states
which are elements in a state sort (defined by nullary
functions), a state attribute defined over each state sort as a
function which returns the current state of an object, and a
set of state invariants, axioms that describe constraints on
class attributes that must hold true while in a given state. In
our object model, we separate state attributes from normal
attributes to capture the notion of an object's abstract state
as might be defined in an statechart. The values of state
attributes of define an object's abstract state while the values
of normal attributes define an object's true state. In Fig. 4,
the class state sort is Acct-State, the class state attribute is
acct-state, the state constants are ok and overdrawn, and the
state invariants are

acct-state�a� � ok) bal�a� � 0;

acct-state�a� � overdrawn) bal�a� < 0;

These axioms state that, when the balance of an account is
greater than or equal to zero, the account must be in the ok
state; however, when the balance of the account becomes
less than zero, the state must become overdrawn. While it is
tempting to replace the implication operators with equiva-
lence operators, doing so would unnecessarily restrict
subclasses derived from this class as defined in Section 5.
Additionally, the axiom

ok 6� overdrawn
ensures correct interpretation of the specification that states
ok and overdrawn are distinct.

4.2.2 Events

Events are visible functions that allow objects to commu-
nicate with each other and may directly modify state
attributes. We present a more detailed discussion of the
specification of this communication between objects in
Section 7. As a side effect, receipt of an event may cause the
invocation of methods or the generation of events sent to
other objects. Events are distinct from methods to separate

control from execution. This separation keeps us from
having to embed state-based control information within
methods. Each class has a new event which triggers the
create method and initializes the object's state attributes. In
Fig. 4, the functions new-acct, deposit, and withdrawal are
events. The effect of these events on the class behavior,
which can be represented by the statechart in Fig. 5, is
defined by a set of axioms similar to the following Fig. 4.

acct-state�a� � ok ^ bal�a� < x

) acct-state�withdrawal�a; x��
� overdrawn:

4.2.3 Class Operations

Operations are visible functions that are generally used to
compute derived attributes and may not directly modify
attribute values. In Fig. 4, the function acct-attr-equal is an
operation. Similar to methods and events, the semantics of
operations are defined using first order predicate logic
axioms.

5 INHERITANCE

Class inheritance plays an important role in object-orienta-
tion; however, the correct use of inheritance is not
uniformly agreed upon. In our work, we have chosen to
use a strict form of inheritance that allows a subclass object
to be freely substituted for its superclass in any situation.
This subtype interpretation was selected to simplify reason-
ing about the class's properties and to keep it closely related
to software synthesis concepts [6]. We believe the advan-
tages of strict inheritance outweigh its disadvantages in our
research since most arguments favoring a less strict
approach to inheritanceÐsuch as polymorphism and over-
loadingÐare much more germane to implementation than
to specification. Thus, as a subtype, a subclass may only
extend the features of its superclass. Liskov defines these
desired effects as the ªsubstitution propertyº [22]:

If for each object o1 of type S, there is an object o2 of type T
such that, for all programs P defined in terms of T , the
behavior of P is unchanged when o1 is substituted for o2,
then S is a subtype of T .

The only way to ensure the substitution property holds
in all cases is to ensure that the effects of all superclass
operations performed on an object are equivalent in the
subclass and the superclass. To achieve this, inheritance
must provide a mapping from the sorts, operations, and
attributes in the superclass to those in the subclass that
preserve the semantics of the superclass. This is the basic
definition of a specification morphism (extended for
O-SLANG to map class-sorts to class-sorts, attributes to
attributes, methods to methods, etc.) and provides us a
formal definition of inheritance [13].

Specification morphisms map the sorts and operations of
one algebraic specification into the sorts and operations of a
second specification such that the axioms in the first
specification are theorems in the second specification [13].
Thus, in essence, a specification morphism defines an

DELOACH AND HARTRUM: A THEORY-BASED REPRESENTATION FOR OBJECT-ORIENTED DOMAIN MODELS 503

504 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 6, JUNE 2000

Fig. 5. Account statechart.

Fig. 4. Object class.

embedding of functionality from one specification into a
second specification.

Definition 2. Inheritance A class D is said to inherit from a
class C, denoted D < C, if there exists a specification
morphism from C to D and the class sort of D is a subsort
of the class sort of C (i.e., Dcs � Ccs).

Definition 2 provides a concise, mathematically precise
definition of inheritance and ensures the preservation of the
substitution property as stated in Theorem 1 [11].

Theorem 1. Given a specification morphism, � : C ! D,
between two internally consistent classes C and D such that
Dcs � Ccs, the substitution property holds between C and D.

Since we assume user defined specifications are
initially consistent, we can ensure consistency in a

subclass as long as the user does not introduce new
axioms in the subclass that redefine how a method
defined in the superclass affects an attribute also defined
in the superclass.

An example of single inheritance using a subclass of
the ACCT class is shown in Fig. 6. The import statement
includes all the sorts, functions, and axioms declared in
the ACCT class directly into the new class, while the class
sort declaration SAcct < Acct states that SAcct is a subsort
of Acct and, as such, all functions and axioms that apply
to an Acct object apply to a SAcct object as well. A
statechart for SACCT is shown in Fig. 7. The import
operation defines a specification morphism between
ACCT and SACCT, while the subsort declaration com-
pletes the requirements of Definition 2 for inheritance.
Therefore, SACCT is a valid subclass of ACCT and the
substitution property holds.

DELOACH AND HARTRUM: A THEORY-BASED REPRESENTATION FOR OBJECT-ORIENTED DOMAIN MODELS 505

Fig. 6. Savings class.

5.1 Multiple Inheritance

Multiple inheritance requires a slight modification to the
notion of inheritance as stated in Definition 2. The set of
superclasses must first be combined via a category theory
colimit operation and then used to ªinherit from.º

Based on specification morphisms, the colimit operation
is composed of a set of existing specifications to create a
new colimit specification [21]. This new colimit specifica-
tion contains all the sorts and functions of the original set
of specifications without duplicating the ªsharedº sorts
and functions from a common ªancestorº specification.
Conceptually, the colimit of a set of specifications is the
ªshared unionº of those specifications. Therefore, the
colimit operation creates a new specification, the colimit
specification, and a morphism from each specification to
the colimit specification.

Definition 3. Multiple Inheritance A class D multiply
inherits from a set of classes fC1 :: Cng if there exists a
specification morphism from the colimit of fC1 :: Cng to D
such that the class sort of D is a subsort of each of the class
sorts of fC1 :: Cng.

This definition states that all sorts and operations from
each superclass map to sorts and operations in the
subclass such that the defining axioms are logical
consequences of the axioms of the subclass. This implies

that all operations defined in superclasses are applicable
in the subclass as well. This definition ensures that the
subclass D inherits, in the sense of Definition 2, from
each superclass in fC1 :: Cng, as shown in Theorem 2
below [11].

Theorem 2. Given a specification morphism from the colimit of
fC1 :: Cng to D such that the class sort of D is a subsort of
each of the class sorts of fC1 :: Cng, the substitution property
holds between D and each of its superclasses fC1 :: Cng

It is important to note that Definition 3 only ensures
valid inheritance when the axioms defining each operation
in the superclass specifications fC1 :: Cng are complete.
Failure to completely define operations can result in
inconsistent colimit specifications [11].

We can use multiple inheritance to combine the
features of a savings account with those of a checking
account, CACCT, as defined in Fig. 8. To compute the
resulting class, the colimit of the classes ACCT, SACCT,
CACCT, and morphisms from ACCT to SACCT and
CACCT is computed, as shown in Fig. 9, where an arrow
labeled with an ªiº represents an import morphism and a
ªcº represents a morphism formed by the colimit
operation. A simple extension of the colimit specification
with the class sort definition

Comb-Acct < SAcct; CAcct

yields the desired class, where Comb-Acct is a subclass of
both SAcct and CAcct, as denoted by the < operator in the
class sort definition. Fig. 10 shows the ªlongº version of the
combined specification signature with all the attributes,

506 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 6, JUNE 2000

Fig. 7. Savings account statechart.

Fig. 8. Checking class. Fig. 9. Colimit of accounts.

methods, and events inherited by the Comb-Acct class
(axioms are omitted for brevity).

6 AGGREGATION

Aggregation is a relationship between two classes where
one class, the aggregate, represents an entire assembly and
the other class, the component, is ªpart-ofº the assembly.
Not only do aggregate classes allow the modeling of
systems from components, but they also provide a
convenient context in which to define constraints and
associations between components. Aggregate class beha-
vior is defined by that of its components and the
constraints between them. Thus, aggregates impose an
architecture on the domain model and specifications
derived from it.

Components of an aggregate class are modeled
similarly to attributes of a class through the concept of
Object-Valued attributes. An object-valued attribute is a
class attribute whose sort type is a set of objectsÐthe
class-sort of another class. Formally, they are specification
functions that take an object and return an external object
or set of objects. The effects of methods on object-valued
attributes are similar to those for normal attributes.
However, instead of directly specifying a new value for
an object-valued attribute, an event is sent to the object
stored in the object-valued attribute. We can formally
define an aggregate using the colimit operation and
object-valued attributes.

Definition 4. Aggregate A class C is an aggregate of a set of
component classes, fD1::Dng, if there exists a specification

DELOACH AND HARTRUM: A THEORY-BASED REPRESENTATION FOR OBJECT-ORIENTED DOMAIN MODELS 507

Fig. 10. Combined account signature.

morphism from the colimit of fD1::Dng to C such that C
has at least one corresponding object-valued attribute for
each class sort in fD1::Dng.
An aggregate class combines a number of classes via the

colimit operation to specify a system or subsystem. The

colimit operation also unifies sorts and functions defined in

separate classes and associations to ensure that the

associations actually relate two (or more) specific classes.

To capture a domain model within a single structure, we

can create a domain-level aggregate. To create this

aggregate, the colimit of all classes and associations within

the domain is taken.

6.1 Aggregate Structure

An aggregate consists of a number of classes and provides a

convenient means to define additional constructs and

relationships. These constructs include class sets, individual

components, and associations.

6.1.1 Class Set

A class type definition specifies a template for creating new

instances. In order to manage a set of objects in a class, a

class set is created for each class defined.

Definition 5. Class Set A class set is a class whose class sort

is a set of objects from a previously defined object class, C.

A class set includes a ªclass eventº definition for each event

in C such that the reception of a class event by a class set

object sends the corresponding event in C to each object of

type C contained in the class set object. If the class C is a

subclass of D1:::Dn, then the class set of C is a subclass of

the class sets of D1:::Dn.

The class set creates a class type whose class sort is a set

of objects and defines some basic functions on that set. For

example, in Fig. 11, ACCT-CLASS imports the ACCT class

specification and adds additional ªclassº events. These class

events mirror the ªobjectº events defined in the class type

and distribute the event invocation to each object in the

class set. The resulting specification is effectively a set of

Acct objects. Using the category theory colimit operation, a

class type specification can be combined with a basic SET

specification to automatically derive the class set

specification.

6.1.2 Specification of Components

Components may have either a fixed, variable, or recursive

structure. All three structures use object-valued attributes to

reference other objects and define the aggregate. The

difference between them lies in the types of objects that

are referenced and the functions and axioms defined over

object-valued attributes. In a fixed configuration, once an

aggregate references a particular object, that reference may

not be changed. The ability of an aggregate object to change

the object references of its object-valued attributes is

determined by whether a method exists, other than the

initialization method, to modify the object-valued attribute.

If no methods modify any object-valued attributes then the

aggregate is fixed. If methods do modify the object-valued

attributes, then the aggregate is variable. A recursive

structure is also easily represented using object-valued

attributes. In this case, an object-valued attribute is defined

in the class type that references its own class sort.

6.1.3 Associations

Associations model the relationships between an

aggregate's components. We define a link as a single

connection between object instances and an association as a

group of such links. A link defines what object classes may

be connected along with any attributes or functions defined

over the link. Link attributes and link functions are those that

do not belong to any one of the objects involved, but exist

only when there is a link between objects. Formally,

associations are represented generically as a specification

that defines a set of individual links. A link defines a

specification that uses object-valued attributes to reference

individual objects from two or more classes. Links may also

define link attributes or functions in a manner identical to

object classes. Basically, a link is a class whose class-set is an

association while an association is a set of links. Associa-

tions with more than two classes are handled in a similar

manner by simply adding additional object-valued

attributes.

508 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 6, JUNE 2000

Fig. 11. O-SLANG class set specification.

Definition 6. Link A link is an object class type with two or

more object-valued attributes.

Definition 7. Association An association is the class set of a

link specification.

Multiplicity is defined as the number of links of an

association in which any given object may participate. For a

binary association, an image operation is defined for each

class in the association. The image operation returns a set of

objects with which a particular object is associated and is

used to define multiplicity constraints, as shown in Fig. 12.

For binary associations, we allow five categories of

association multiplicities: exactly one, many, optional, one

or more, or numerically specified. True ternary or higher

level associations are relatively rare; however, they can be

modeled using an association class. In a ternary association,

the image operation returns a set of object tuples associated

with a given object. Since the output is a set of tuples, the
same multiplicity axioms, as shown in Fig. 12, apply.

6.1.4 Banking Example

An example of a link specification between a class of
customers CUST (not illustrated) and the ACCT class to
associate customers with their accounts shown in Fig. 13.
The CA-Link link specification can relate objects from the
two classes without embedding internal references into the
classes themselves. Although the names of the object-
valued attributes and sorts correspond to the CUSTOMER
and ACCT classes, the link specification does not formally
tie the classes together. This relationship is actually
formalized in the aggregate specification. The association
between the ACCT class and the CUSTOMER class is shown
in Fig. 14.

The CUST-ACCT class defines a set of CA-Link objects,
while its axioms define the multiplicity relationships
between accounts and customers, in this case, exactly one

DELOACH AND HARTRUM: A THEORY-BASED REPRESENTATION FOR OBJECT-ORIENTED DOMAIN MODELS 509

Fig. 12. Association multiplicity axioms.

Fig. 13. Customer account link.

customer per account, while each customer may have one
or more accounts.

The CUSTOMER, ACCT, and CUST-ACCT classes are
then combined to form an, aggregate BANK. The sorts
from CUST and CUST-ACCT and the sorts from ACCT
and CUST-ACCT are unified via specification morphisms
that define their equivalence, as shown in Fig. 15. The
actual specification of the aggregation colimit BANK-
AGGREGATE is not shown, but is further refined into
the aggregate specification for BANK, as shown in Fig. 16.
The SET specification is used to unify sorts, while the
INTEGER specification ensures only a single copy of
integers is included. Three copies of the SET specification
are included since each class requires a unique set.

Once the BANK-AGGREGATE specification is com-
puted, the CUST-ACCT association actually associates the
CUSTOMER class to the ACCT class. New functions and
axioms can be added to an extension of colimit specifica-
tion, the BANK class type specification, as shown in
Fig. 16, to describe aggregate-level interfaces and
aggregate behavior based on component events and
methods.

6.2 Aggregate Behavior

Once an aggregate is created via a colimit operation,
further specification is required to make the aggregate
behave in an integrated manner. First, new aggregate
level functions are defined to enable the aggregate to

510 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 6, JUNE 2000

Fig. 15. Aggregation composition.

Fig. 14. Cust-Acct association.

respond to external events. Then, constraints between

aggregate components are specified to ensure that the

aggregate does not behave in an unsuitable or unexpected

manner. Finally, local event communication paths are

defined. The definition of new functions and constraints

is discussed in this section, while communication between

objects is discussed in Section 7.

6.2.1 Specification of Functionality

In an aggregate, components work together to provide

the desired functionality. Functional decomposition, often

depicted using data flow diagrams (DFDs), is used to

break aggregate-level methods into lower-level processes.

Processes defined in the functional model are mapped to

DELOACH AND HARTRUM: A THEORY-BASED REPRESENTATION FOR OBJECT-ORIENTED DOMAIN MODELS 511

Fig. 16. Aggregate specification.

events and attributes defined in the aggregate compo-
nents through aggregate-level axioms.

An example is shown by the data flow diagram in Fig. 17
for the aggregate method add-account, used to implement
aggregate event start-account. The make-deposit and make-
withdrawal events map directly to component events and do
not require further functional decomposition.

The add-account process adds an account for an estab-
lished customer and is defined in terms of operations
defined directly in the bank specification (Fig. 16) or
included into the bank specification via the bank aggregate
specification from the customer-account link specification
(Fig. 13) and the account specification (Fig. 4). The following
axiom defines add-account in terms of these subprocesses
and data flows as depicted in the data flow diagram.

8�b; b1 : Bank; c : Customer�
9�acct : Acct; cust-acct : CA-Link�
add-account�b; c� � b1
^ acct � new-acct�date� %% assume date is built in

^ acct-obj�b1� � update-accts�acct-obj�b�; acct�
^ cust-acct � new-ca-link�c; acct�
^ cust-acct�b1� � update-cust-acct�cust-acct�b�;

cust-acct�;
The add-account method has two parameters, the bank

object, b, plus an existing customer object, as shown in the
data flow diagram, and returns the modified bank object, b1.
The add-account method is defined by its subprocesses. First,
a new account acct is created by invoking the new-acct
process. This is passed to the update-accts process, which
stores the new account in the account class, and to the new-
ca-link process, along with the customer, which returns a
cust-acct link. Finally, the new cust-acct link is passed to the
update-cust-acct process, which stores it in the cust-acct
association. The new-acct and new-ca-link processes are the
events defined in the Acct class and the CA-Link associa-
tion, respectively, and are already available via the
aggregate. The update-accts and update-cust-acct processes
could already exist as part of the account class and cust-acct
association, but, as shown here, are defined in the aggregate
specification.

6.2.2 Specification of Constraints between Components

In an aggregate, component behavior must often be
constrained if the aggregate is to act in an integrated
fashion. Generally, these constraints are expressed by
axioms defined over component attributes. Because the
aggregate is the colimit of its components, the aggregate
may access components directly and define axioms relating
various component attributes.

A simplified automobile object diagram is shown in

Fig. 18. The object diagram contains one engine with an

RPMs attribute, one transmission with a Conversion-Factor

attribute, and four wheels, each with an RPMs attribute.

Two relationships exist between these objects, Drives, that

relates the transmission to exactly two wheels, and

Connected, that relates two wheels (probably by an axle).

Obviously, there are a number of constraints implicit in the

object diagram that must be made explicit in the aggregate.

First, the RPMs of the engine, Conversion-Factor of the

transmission, and RPMs of the wheels are all related. Also,

the wheels driven by the transmission must be ªconnected,º

and all ªconnectedº wheels should have the same RPMs.

The axiom

8�a : Automobile; e : Engine; t : Transmission; d : Drives�
e 2 engine-obj�a� ^ t 2 transmission-obj�a�

^ d 2 drives-assoc�a�
) rpm�wheel-obj�d�� � rpm�e� � conversion-factor�t�

defines the relationship between the RPMs of the wheels
driven by the transmission, the transmission conversion-
factor and the engine RPMs. In this case, wheel-obj is an
object valued attribute of a drives link that points to the two
wheels connected to the transmission. The axiom

8�c : Connected�c 2 connected-assoc�a�) rpms�wheel1�c��
� rpms�wheel2�c��;

ensures that the two wheels connected by a connected link
have the same RPMs values (here, wheel1 and wheel2 are the
object valued attributes of the link). The final constraint,
that the two wheels driven by the transmission be

512 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 6, JUNE 2000

Fig. 17. Bank aggregate functional decomposition.

connected, is specified implicitly in the specification of the
create-automobile method. After the transmission and wheel
objects (w1, w2, w3, and w4) are created in lines 1 through 5,
drives and connected links are created and defined to ensure
the appropriate constraints are met in lines 6 through 9.
Finally, in line 10, the engine is created and inserted into the
automobile aggregate.

t � new-transmission�� �1�
^ transmission-obj�create-automobile���

� insert�t; new-transmission-class��� �2�
^ w1 � new-wheel�� ^ w2

� new-wheel�� ^ w3 � new-wheel��
^ w4 � new-wheel�� �3�

^ wheels-obj�create-automobile��� � �4�
insert�w1; insert�w2; insert�w3;
insert�w4; new-wheels-class������ �5�

^ drives-assoc�create-automobile��� � �6�
insert�new- drives-link�t; w2�;
insert�new-drives-link�t; w1�; new-drives���� �7�

^ connected-assoc�create-automobile��� � �8�
insert�new-connected-link�w1; w2�;
insert�new-connected-link�w3; w4�;
new-connected���� �9�

^ engine-obj�create-automobile��� �
insert�new-engine��; new-engine-class���; �10�

Because wheels w1 and w2 are associated with the
transmission via the drives association in the line 6, they are
also associated together via the connected association in
line 8. Thus, the constraint is satisfied whenever an
automobile aggregate object is created.

7 OBJECT COMMUNICATION

At this point, our theory-based object model is sufficient
for describing classes, their relationships, and their
composition into aggregate classes; however, how objects
communicate has not yet been addressed. For example,
suppose the banking system described earlier has an
ARCHIVE object which logs each transaction as it occurs.
Obviously, the ARCHIVE object must be told when a
transaction takes place. In our model, each object is aware
of only a certain set of events that it generates or receives.

From an object's perspective, these events are generated
and broadcast to the entire system and received from the
system. In this scheme, each event is defined in a separate
event theory, as shown in Fig. 19.

An event theory consists of a class sort, parameter sorts,
and an event signature that are mapped via morphisms to
sorts and events in the generating and receiving classes. If
an event is being sent to a single object, then the event
theory class sort is mapped to the class sort of that object
class. However, if the event theory class sort is mapped to
the class sort of a class set, then communication may occur
with a set of objects of that class. The other sorts in an event
theory class are the sorts of event parameters. The final part
of an event theory, the event signature, is mapped to a
compatible event signature in the receiving class. The
colimit of the classes, the event theory, and the morphisms
unify the event and sorts such that invocation of the event
in the generating class corresponds an invocation of the
actual event in the receiving class.

To incorporate an event into the original ACCT class, the
ARCHIVE-WITHDRAWAL event theory specification is
imported into the ACCT class and an object-valued
attribute, archive-obj, is added to reference the archival
object. The axioms defining the effect of the withdrawal
event are modified to reflect the communication with the
ARCHIVE object as shown below.

8�a : Acct; x : Amnt�acct-state�a�
� ok ^ bal�a� � x) acct-state�withdrawal�a; x�� � ok

^ archive-obj�withdrawal�a; x��
� archive-withdrawal�archive-obj�a�; a; x�

^ attr-equal�withdrawal�a; x�; debit�a; x��;
8�a : Acct; x : Amnt�acct-state�a�

� ok ^ bal�a� < x) acct-state�withdrawal�a; x��
� overdrawn

^ archive-obj�withdrawal�a; x��
� archive-withdrawal�archive-obj�a�; a; x�

^ attr-equal�withdrawal�a; x�; debit�a; x��;
Basically, the axioms state that, when a withdrawal event is
received, the value of the archive-obj is modified by the

DELOACH AND HARTRUM: A THEORY-BASED REPRESENTATION FOR OBJECT-ORIENTED DOMAIN MODELS 513

Fig. 18. Automobile aggregate functional decomposition.

archive-withdrawal event defined in the event theory

specification. Thus, the ACCT object knows it communicates

with some other object or objects; however, it does not

know who they are. With whom an object communicates

(or, for that matter, if the object communicates at all) is

determined at the aggregate-level where the actual connec-

tions between communicating components are made.
The modified BANK aggregate diagram that includes the

ARCHIVE-WITHDRAWAL event theory and an ARCHIVE-

CLASS specification is shown in Fig. 20. The colimit

operation includes morphisms from ARCHIVE-

WITHDRAWAL to ACCT-CLASS and ARCHIVE-CLASS that

unify the sorts and event signature in ACCT-CLASS with

the sorts and event signature of ARCHIVE-CLASS. This

unification creates the communication path between ac-

count objects and archive objects.
Communicating with objects from multiple classes

requires the addition of another level of specification which

ªbroadcastsº the communication event to all interested

object classes. The class sort of a broadcast theory is called a

broadcast sort and represents the object with which the

sending object communicates. The broadcast theory then

defines an object-valued attribute for each receiving class.

Fig. 21 shows an example of the ARCHIVE-WITHDRAWAL-

MULT event theory modified to communicate with two

classes. In this case, the ARCHIVE-WITHDRAWAL theory is

used to unify the ARCHIVE-WITHDRAWAL-MULT with

the ACCOUNT class as well as the other two classes. A

simplified version of the colimit diagram specification is

shown in Fig. 22.

Multiple receiver classes add a layer of specification;
however, multiple sending classes are handled very simply.
The only additional construct required is a morphism from
each sending class to the event theory mapping the
appropriate object-valued attribute in the sending class to
the class sort of the event theory and the event signature in
the sending class to the event signature in the event theory.

7.1 Communication between Aggregate and
Components

Communication between components is handled at the
aggregate level as described above. However, when the
communication is between the aggregate and one of its
components, the unification of object-valued attributes and
class sorts via event theories does not work since the class
sort of the aggregate is not created until after the colimit is
computed. The solution requires the use of a sort axiom that
equivalences two sorts, as shown below:

sort-axiom sort1 � sort2:
Using the bank example discussed above, assume the
archive-withdrawal event is also received by the Bank
aggregate. The archive-withdrawal event theory is included
in the Account class type and, by the colimit operation, the
Bank aggregate. To enable the Bank aggregate to receive the
archive-withdrawal event, a sort-axiom is used in the Bank
specification to equivalence the Bank sort of the aggregate
with the Archive sort from the event theory, as shown
below:

sort-axiom Bank � Archive:

514 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 6, JUNE 2000

Fig. 19. Event theory.

Fig. 20. Bank aggregate with archive.

Use of the sort axiom unifies the Bank sort and the Archive

sort and, thus, the signatures of the archive-withdrawal

events defined in the event theory and the Bank aggregate

become equivalent.
Communication from the aggregate to the components,

or subcomponents, is much simpler. Since the aggregate

includes all the sorts, functions, and axioms of all of its

components and subcomponents via the colimit opera-

tions, the aggregate can directly reference those compo-

nents by the object-valued attributes declared either in

itself or its components. Because an aggregate is aware of

its configuration, determining the correct object-valued

attribute to use is not a problem.

8 DISCUSSION OF RESULTS AND FUTURE EFFORTS

8.1 Object Model

Our research establishes a formal mathematical represen-

tation for the object-oriented paradigm within a category

theory setting. In our theory-based object model, classes

are defined as theory presentations or specifications and

the basic object-oriented concepts of inheritance, aggrega-

tion, association, and interobject communication are

formally defined using category theory operations. While

some work formalizing aspects of object-orientation exists

[8], [18], [23], [24], [25], ours is the first to formalize all

the important aspects of object-orientation in a cohesive,

computationally tractable framework. In fact, our forma-

lization of inheritance, aggregation, and association,

provides techniques for ensuring the consistency of

DELOACH AND HARTRUM: A THEORY-BASED REPRESENTATION FOR OBJECT-ORIENTED DOMAIN MODELS 515

Fig. 21. Broadcast theory.

Fig. 22. Aggregate using a broadcast theory.

object-oriented specifications based on the composition

process itself.
The completeness of our integrated model allows the

capture of any object-oriented model as a formal
specification. Furthermore, the algebraic language
O-SLANG allows for straightforward translation into
existing algebraic languages, such as Slang or Larch, for
further transformation into executable code. Thus, this
model provides a bridge from existing informal CASE
tools to existing formal specification languages, tying the
ease of use of the former to the technical advantages of
the latter.

8.2 Application of Object Model

To show the applicability of the theory-based object model,
we developed a proof of concept parallel-refinement
specification acquisition system. This system used a
commercially available, OMT-based, object-oriented CASE
tool to capture the informal specification. This included
graphical representation of the object, dynamic, and
functional models along with textual input in the form of
method definitions and class-level constraints (neither of
these have a graphical format defined in OMT and are
generally easier to define directly using first-order axioms).
The output from the user-interface was then parsed and
translated into O-SLANG based on the theory-based object
model. The translation from graphically-based input to
O-SLANG was completely automated.

Two complete object-oriented domain models were
developed using this system: a school records database
and a fuel pumping station. These domains were chosen to
demonstrate the wide diversity of domains, stressing both
functional and dynamic aspects, supported by this model.
In total, over 37 classes, including 76 methods and
operations, 89 attributes, five aggregates, 47 events, and
seven associations were specified. These domain models
were sufficiently large and diverse to demonstrate the
application of the theory-based model to support realistic
problem domains.

8.3 Future Plans

The definition of theory-based models that can be mapped
1:1 to an informal representation provides the necessary
framework for a parallel refinement system for specification
development, as shown in Fig. 1. Our theory-based object
model allows for the development of a domain model as a
library of class theories. This O-SLANG representation can
next be transformed into a Slang specification in a
straightforward manner to allow the full use of the
Specware development system. The Specware system has
already demonstrated the ability to generate executable
code from algebraic specifications. Thus, the technology
now exists to transform informal object-oriented models to
correct executable code.

While the class theories can be translated into code, the
desired approach is to treat them as a full domain model.
From this, a specific specification can be developed for
input to design processing. Thus, the next step is the
development of the specification generation/refinement sub-
system in Fig. 1, an ªelicitor-harvesterº that will elicit
requirements from a user by reasoning over the domain

model and harvesting components of the domain model to
build the desired specification. The ability to map between

an informal model and the theory-based object model will
allow the user to interface with the system using a familiar

informal representation, while the formal model can
support the reasoning needed to guide the user, as well as

assuring that the harvested specification remains consistent
with the constraints of the domain model.

ACKNOWLEDGMENTS

This work has been supported by grants from Rome

Laboratory, the US National Security Agency, and the US
Air Force Office of Scientific Research.

REFERENCES

[1] C. Green et al., ªReport on a Knowledge-Based Software
Assistant,º Readings in Artificial Intelligence and Software Eng.,
C. Rich and R. Waters, eds., pp. 377±428, San Mateo, CA: Morgan
Kauffman, 1986.

[2] M.R. Lowry, ªSoftware Engineering in the Twenty-First Century,º
AI Magazine, Fall 1992.

[3] D.R. Smith, ªKIDS ± A Semi-automatic Program Development
System,º IEEE Trans. Software Eng., vol. 16, no. 9, pp. 1,024±1,043
Sep. 1990.

[4] D.R. Smith, ªTransformational Approach to Transportation
Scheduling,º Proc. Eighth Knowledge-Based Software Eng. Conf.,
pp. 60±68, Oct. 1993.

[5] J. Rumbaugh et al., Object-Oriented Modeling and Design. Engle-
wood Cliffs, New Jersey: Prentice Hall, 1991

[6] R. Jullig and Y.V. Srinivas, ªDiagrams for Software Synthesis,º
Proc. Eighth Knowledge-Based Software Eng. Conf., 1993.

[7] M.D. Fraser, K. Kumar, and V.K. Vaishnavi, ªStrategies for
Incorporating Formal Specifications,º Comm. ACM, vol. 37, pp.
74±86, Oct. 1994.

[8] R.H. Bourdeau and B.H. Cheng, ªA Formal Semantics for Object
Model Diagrams,º IEEE Trans. Software Engineering, vol. 21, no. 10,
pp. 799±821, Oct. 1995.

[9] D. Harel, ªStatecharts: A Visual Formalism for Complex Systems,º
Science of Computer Programming, vol. 8, pp. 231±274, 1987.

[10] T.C. Hartrum and P.D. Bailor, ªTeaching Formal Extensions of
Informal-Based Object-Oriented Analysis Methodologies,º Proc.
Software Eng. Education, Pittsburgh, Pa.: Software Eng. Education,
Software Eng. Inst. (SEI), Jan. 1994.

[11] S.A. DeLoach, ªFormal Transformations from Graphically-Based
Object-Oriented Representations to Theory-Based Specification,º
PhD thesis, Wright-Patterson AFB: US Air Force, Inst. of
Technology, AFIT/DS/ENG/96-05, AD-A310 608, June 1996.

[12] Kestrel Institute, Slang Language Manual: Specware Version Core4,
Oct. 1994.

[13] J.A. Goguen and R.M. Burstall, ªSome Fundamental Algebraic
Tools for the Semantics of Computation Part I: Comma Categories,
Colimits, Signatures and Theories,º Theoretical Computer Science,
vol. 31, pp. 175±209, 1984.

[14] K. Lano and H. Houghton, ªSpecifying a Concept-Recognition
System in Z++,º Object-Oriented Specification Case Studies, K. Lano
and H. Houghton, eds., pp. 137±157, Prentice-Hall, 1994.

[15] D. Carrington et al., ªObject-Z: An Object-Oriented Extension to
Z,º Proc. Formal Description Techniques, II: Proc. IFIP Second Int'l
Conf. Formal Description Techniques for Distributed Systems and
Comm. Protocol, pp. 281±297, Dec. 1989.

[16] K. Lano and H. Houghton, ªA Comparative Description of Object-
Oriented Specification Languages,º Object-Oriented Specification
Case Studies, K. Lano and H. Houghton, eds., pp. 20±54, Prentice
Hall, 1994.

[17] A.J. Alencar and J.A. Gougen, ªSpecification in OOZE with
Examples,º Object-Oriented Specification Case Studies, K. Lano and
H. Houghton, eds., pp. 158±183, Prentice Hall, 1994.

[18] J.A. Goguen and J. Meseguer, ªUnifying Functional, Object-
Oriented and Relational Programming with Logical Semantics,º
Research Directions in Object-Oriented Programming, B. Shriver and
P. Wegner, eds., pp. 417±477, MIT Press, 1987.

516 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 6, JUNE 2000

[19] J.A. Goguen and T. Winkler, ªIntroducing OBJ3,º Techical Report ,
Computer Science Laboratory, SRI Int'l, Menlo Park, Calif., Aug.
1988.

[20] Y.V. Srinivas, ªAlgebraic Specification: Syntax, Semantics, Struc-
ture,º Techical Report TR 90-15, Dept. of Information and
Computer Science, Univ. of California at Irvine, June 1990.

[21] Y.V. Srinivas, ªCategory Theory Definitions and Examples,º
Techical Report TR 90-14, Dept. of Information and Computer
Science, Univ. of California at Irvine, Feb. 1990.

[22] B. Liskov, ªData Abstraction and Hierarchy,º Proc. Conf. Object
Oriented Programming Systems Languages and Applications
(OOPSLA), 1987.

[23] T. Bar-David, ªPractical Consequences of Formal Defintions of
Inheritance,º J. Object-Oriented Programming, vol. 5, pp. 43±49,
July/Aug. 1992.

[24] X.-M. Lu and T.S. Dillon, ªAn Algebraic Theory of Object-
Oriented Systems,º IEEE Trans. Knowedge and Data Eng., vol. 6, no.
3, pp. 412±419, June 1994.

[25] H. Lin and M. chi Pong, ªModelling Multiple Inheritance with
Colimits,º Formal Aspects of Computing, vol. 2, pp. 301±311, 1990.

Scott A. DeLoach received his BS in computer
engineering from Iowa State University in 1982,
and his MS and PhD in computer engineering
from the US Air Force Institute of Technology in
1987 and 1996. He is currently an assistant
professor of computer science and engineering
at the US Air Force Institute of Technology
(AFIT). His research interests include design
and synthesis of multiagent systems, knowl-
edge-based software engineering, and formal

specification acquisition. Prior to coming to AFIT, he was the technical
director of Information Fusion Technology at the US Air Force Research
Laboratory from 1996 to 1998. From 1987 to 1993, he was chief of
Systems Engineering and Electronic Combat Support at Headquarters,
Strategic Air Command and was a computer resources engineer at
Wright-Patterson AFB, Ohio, from 1982 to 1986. He is a member of the
IEEE Computer Society.

Thomas C. Hartrum received the BSEE and
MS degrees in 1969, and his PhD in 1973 from
Ohio State University, and an MBA in 1979 from
Wright State University. He is currently an
associate professor in the Department of Elec-
trical and Computer Engineering at the US Air
Force Institute of Technology (AFIT), where he
has been a faculty member for 20 years. He is
an adjunct associate professor at Wright State
University and teaches software engineering
there part time. He has been involved in

software engineering for 11 years and specifically with knowledge-
based software engineering (KBSE) since 1990. Prior to AFIT, he was a
research engineer at the US Air Force, Aerospace Medical Research
Laboratory. He is a member of the IEEE and the IEEE Computer Society

DELOACH AND HARTRUM: A THEORY-BASED REPRESENTATION FOR OBJECT-ORIENTED DOMAIN MODELS 517

