
Converging evidence from psychology, human fac-
tors, management and organizational science, and 
other related fields suggests that humans working in 
teams employ shared mental models to represent and 
use pertinent information about the task, the equip-
ment, the team members, and their roles. In particular, 
shared mental models are used to interact efficiently 
with other team members and to track progress in 
terms of goals, subgoals, achieved and planned states, 
as well as other team-related factors. Although much 
of the literature on shared mental models has focused 
on quantifying the success of teams that can use them 
effectively, there is little work on the types of data 
structures and processes that operate on them, which 
are required to operationalize shared mental models. 
This paper proposes the first comprehensive formal 
and computational framework based on results from 
human teams that can be used to implement shared 
mental models for artificial virtual and robotic agents. 
The formal portion of the framework specifies the nec-
essary data structures and representations, whereas 
the computational framework specifies the necessary 
computational processes and their interactions to 
build, update, and maintain shared mental models.

Keywords: shared mental models, formal computa-
tional framework

IntroductIon
As societies increasingly embrace pervasive 

immersive technologies (e.g., smartphones and 
activity/health monitors), new forms of col-
laboration are emerging that require humans 
to quickly form teams to tackle problems and 

achieve common goals. These teams can range 
from local ad hoc groups formed to solve a cur-
rently pressing problem (e.g., bystanders rescu-
ing passengers from burning cars after a multicar 
crash) to long-standing well-trained profession-
als that provide specialized services (e.g., first 
responders searching for survivors in collapsed 
buildings). Although coordinating team efforts 
may be largely face-to-face in the first case, the 
use of phones and other communication devices 
is critical for the latter. The teaming structure 
in the former is flat and event driven but, in the 
latter, based on a well-established hierarchy and 
prior training. Common to both scenarios—and 
any type of teaming effort in general—are two 
questions: What is required to be an effective 
team? and How can technology support teaming 
and improve team performance?

Prior behavioral research has demonstrated that 
human teams coordinate their activities more 
effectively and achieve better overall task perfor-
mance when team members track and take into 
account one another’s goals, intentions, beliefs, as 
well as other performance and task-related 
states—that is, when they use a “shared mental 
model” (SMM; Cannon-Bowers, Salas, & Con-
verse, 1993; Cooke et al., 2003; M. Lee, Johnson, 
& Jin, 2012; Mathieu, Goodwin, Heffner, Salas, & 
Cannon-Bowers, 2000; Mohammed, Ferzandi, & 
Hamilton, 2010). SMMs are related to and can be 
subsumed under the concept of “mental model,” 
which typically refers to the types of hypothesized 
knowledge structures that humans build to make 
sense of their world, to make inferences based on 
the available information, and to make predictions 
about future states (e.g., Held, Knaff, & Vosgerau, 
2006; Johnson-Laird, 1983; Rouse & Morris, 
1986). Although mental model research in psy-
chology has focused on using mental models to 
explain various types of human reasoning (Borg-
man, 1986; Gray, 1990), mental models in the 
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context of teams have more to do with establish-
ing and maintaining common ground (e.g., Clark, 
1996) and building team mental models (e.g., 
Cannon-Bowers et al., 1993) that aid in decision 
making and the adjustment of one’s behavior 
based on predictions about the other team mem-
bers’ future activities and actions. Thus, team 
mental models are critical for making sense of 
team activities, for understanding the dynamic 
changes of team goals and team needs (including 
the possibly dynamic changes of roles and func-
tions of team members), and for tracking the over-
all moment-to-moment state of the team.

Given the importance of SMMs for human 
teams, it is natural to hypothesize that similar 
SMM capabilities in artificial agents (e.g., vir-
tual or robotic agents) may improve the effi-
ciency and productivity of mixed human-agent 
teams—we call this the shared mental model 
hypothesis for artificial agents. Substantiating 
and evaluating the hypothesis requires the 
implementation of SMMs in artificial agents and 
ultimately performing experiments with mixed 
human-agent systems conducting typical team 
tasks. However, no current control architecture 
for artificial agents is capable of using SMMs, 
and Wizard of Oz–style evaluations (where arti-
ficial agents are teleoperated by humans) can be 
conducted in only a very limited fashion for 
realistic tasks. Thus, making progress toward 
developing (and eventually evaluating) SMM 
capabilities in artificial agents requires a better 
understanding of the representations and pro-
cesses underwriting SMMs in humans. Further-
more, how those representations and processes 
can be captured as computational structures 
must be investigated—that is, what detailed 
information SMMs contain about team mem-
bers, including their intentions, goals, knowl-
edge, beliefs, capabilities, activities, and perfor-
mance factors. The aim of this paper is to pro-
vide the formal and computational foundations 
for integrating SMMs into agent architectures 
for artificial agents to be used in mixed human-
agent teams.

We begin by reviewing the SMM literature and 
relevant features of humans’ SMMs. A typical 
mixed human-agent scenario, in which SMMs can 
improve team coordination and performance, is 
described to directly compare artificial agents 

with and without SMMs. A general formal SMM 
framework in introduced that lays out the neces-
sary SMM concepts and rules for those concepts 
to allow an agent to capture and reason with infor-
mation contained in SMMs. We describe how this 
formal framework can be realized computation-
ally via a computational architecture that has vari-
ous functional components necessary to imple-
ment and use SMMs in artificial agents. Finally, 
representative partial implementations of the for-
mal framework and its application to the human-
agent scenario are provided.

A BrIef overvIew of SMMs

The term mental model refers to hypoth-
esized knowledge structures that humans use 
to reason about the world, to make infer-
ences based on the available information, and 
to make predictions about future states (e.g., 
Held et al., 2006; Johnson-Laird, 1983; Rouse 
& Morris, 1986). Proposals exist regarding 
how mental models are structured (e.g., Held  
et al., 2006; Johnson-Laird, 1983), but much of 
the research focuses on understanding human 
reasoning based on mental models (e.g., Borg-
man, 1986; Gray, 1990). The general concept 
of mental models was extended to teams based 
on the notion that team members have elements 
of their individual mental models in common: 
the SMMs (e.g., Cannon-Bowers et al., 1993; 
Cooke et al., 2003). SMMs aid decision making 
and adjustment of one’s behavior based on pre-
dictions of other team members’ current state, 
future activities, and actions. Thus, SMMs are 
critical for making sense of team activities and 
understanding the dynamic changes in team 
goals and needs, team members’ roles and func-
tions, and the overall team state.

The early SMM research reflected the belief 
that individuals’ SMMs were composed of 
multiple models (e.g., Cannon-Bowers et al., 
1993), which incorporated the equipment 
model, the task model, the team interaction 
model, and the team model. The equipment 
model represents the equipment used for the 
task, whereas the task model represents the 
task. Two models are used to represent the 
team: the team interaction model incorporates 
the team members’ roles, responsibilities, and 
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interactions, while the team model represents 
characteristics unique to each team member, 
such as knowledge, skills, and abilities.

The more recent literature consolidates the four 
early SMM components into only the task and 
team models (e.g., M. Lee et al., 2012; Mathieu  
et al., 2000; Mathieu, Rapp, Maynard, & Mangos, 
2009; Mohammed et al., 2010). The task model 
represents the task and how the environment can 
affect the task demands. The team model incorpo-
rates the representation of the team members and 
their interaction with one another. Mathieu et al. 
(2000) proposed that the team SMM incorporates 
the originally proposed team interaction and the 
team models, whereas the task SMM incorporates 
the originally proposed task and equipment mod-
els. M. Lee, Johnson, Lee, O’Connor, and Khalil 
(2004) proposed that a SMM has five compo-
nents: team knowledge, team skills, team atti-
tudes, team dynamics, and team environment. 
However, more recently, they too have adopted 
the team and task SMM representation (M. Lee  
et al., 2012).

Table 1 provides an overview of the categori-
zations. Although the task components are 
directly related to the specific task, they do not 
change frequently. The associated equipment 
components rarely change; thus, the task model 
is relatively stable. The team interaction compo-
nents change depending on the tasks but are 
moderately stable. However, the team compo-
nents are the most dynamic due to the direct 
relationship to individual team members’ perfor-
mance factors and the task situation. As a result, 
the team model has low stability.

The primary research focus has been on the 
behavioral phenomenon of SMMs, the mental 
model’s impact on team performance, and asso-
ciated metrics (e.g., Banks & Millward, 2000; 
Cooke et al., 2003; DeChurch & Mesmer- 
Magnus, 2010; Espevik, Johnsen, & Eid, 2011; 
Lim & Klein, 2006). Some have suggested that 
SMMs are composed of schemas (e.g., DuRus-
sell & Derry, 2005), whereas others suggest 
alternative representations (e.g., M. Lee et al., 
2012; Wilson, Salas, Priest, & Andrews, 2007).

Even though the behavioral literature largely 
omits SMM representations that translate into 
computational data structures and algorithms for 
maintaining and accessing SMMs, several prin-
ciples for computational SMM models are nev-
ertheless implied according to how humans real-
ize SMMs:

Consistency: The primary goal is maintaining 
consistency by resolving conflicts due to (a) 
differing perceptions, (b) differing knowl-
edge states, (c) asynchronous information, 
and (d) missing updates.

Reactivity: Effective teams quickly react to 
unanticipated events or state changes by 
informing team members of the changes and 
adapting goals and plans to account for the 
new situations.

Proactivity: Effective teams anticipate prob-
lems, bottlenecks, and failures and take pro-
active actions, such as asking for clarifica-
tion or offering assistance.

Coordination: Effective teams excel at coor-
dinating actions via overall cooperative  

TAbLe 1: The Four Components of a Shared Mental Model

Task Model Team Model

Equipment Task Team Interaction Team (Teammates’)

Equipment functioning Task procedures Roles/responsibilities Knowledge
Operating procedures Likely contingencies Information sources Skills
Likely failures Environmental constraints Interaction patterns Performance history
Equipment/system 

limitations
Task strategies
Likely scenarios

Information flow
Communication channels

Tendencies
Preferences

Task component relationships Role interdependencies Attitudes
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attitudes, such as establishing joint goals 
and plans, transparent task assignments, and 
truthful information sharing.

Knowledge stability: Humans understand the 
stability of information (e.g., team mem-
bers’ location) over time and adjust their 
sampling rates according to their confidence 
in the information’s validity.

Although artificial intelligence, robot-
ics, and human-robot interaction researchers 
have worked toward designing mixed human-
robot teams incorporating some of these prin-
ciples—belief-desires-intentions or theory of 
mind representations (e.g., Bosse, Memon, & 
Treur, 2007; Castelfranchi, 1998; Fong, Nour-
bakhsh, & Dautenhahn, 2003; Georgeff, Pell, 
Pollack, Tambe, & Wooldridge, 2003) as well 
as coordination rules and mechanisms and task 
assignment algorithms (e.g., Dahl, Matarić, & 
Sukhatme, 2009; Luo, Chakraborty, & Sycara, 
2015; Tambe, 1997)—there is currently no 
comprehensive computational SMM address-
ing them all, let alone an implemented robotic 
system.

The software agent literature, for example, 
provides a conceptual SMM ontology (Jonker, 
van Riemsdijk, & Vermeulen, 2010), applies the 
concept of team member roles (Zhang, 2008), 
and proposes a game-theoretic SMM (Richards, 
2001); however, no fundamental details are pro-
vided. An SMM that couples a software agent 
with a human completing a simplistic computer-
based task predicted the human’s cognitive load 
(Fan & Yen, 2007, 2011). This SMM has limited 
scalability to larger teams distributed across a 
broader set of teaming structures and domains 
due to the fundamental assumption that every 
human interacts with an associated agent via a 
graphical user interface.

Some of the underlying concepts related to 
understanding how to represent the human SMM 
construct as a computation framework were repre-
sented as an SMM ontology, which the authors 
clearly state is not intended “as a design for imple-
mentation” (Jonker et al., 2010). Their intent was 
to gain an understanding of the essential SMM 
concepts and the relationships among the concepts; 
as such, our efforts share the same intent but actu-
ally define logical relationships and a software  

system design to support the computational SMM. 
Jonker and colleagues provide an example sce-
nario with some logical relationships (Jonker et al., 
2010; Jonker, Riemsdijk, & Vermeulen, 2011), but 
the sample problems are fairly simplistic; as a con-
sequence, the system will likely suffer from com-
putational limitations as the domain complexity 
increases. Furthermore, the representation does not 
appear to efficiently account for uncertainty.

The human-robot interaction research has 
focused on understanding humans’ mental mod-
els of robots (e.g., Keisler & Goetz, 2002; S.-L. 
Lee, Keisler, Lau, & Chiu, 2005; Syrdal, Dauten-
hahn, Koay, Walters, & Otero, 2010; Stubbs, 
Wettergreen, & Hinds, 2007). Some claim to 
develop mental models (e.g., Miwa, Okuchi, 
Itoh, Takanobu, & Takanishi, 2003; Park, Kwon, 
& Park, 2007) or SMMs (e.g., Burkhard, Bach, 
Berger, Brunswieck, & Gollin, 2002) for cogni-
tive robotics; however, these approaches do not 
align with the traditional human-based mental 
model and SMM literature. For example, Miwa 
et al. (2003) developed a model of mood and 
affect within the robot, whereas Park et al. 
(2007) developed a petri net containing eight 
characteristics of a superego that they incor-
rectly call a mental model. Similarly, it appears 
that Burkhard and colleagues’ (2002) “mental 
model” is actually a representation of a world 
model, intentions, and planning.

Existing robotic mental models incorporate 
underlying assumptions that do not support 
domain independence or generalizability or 
limit the model scalability. For example, 
Goodrich and Yi (2013) present an SMM frame-
work for a human-robot team where the robot 
completes the tasks that robots are best at—as a 
direct assistant, a “wingman,” to the human. 
This approach differs significantly from the pre-
sented approach in that the framework assumes 
that robots must hold more complex objectives 
that are not necessarily in support of the human’s 
primary tasks but may be independent task and 
goal responsibilities. Nikolaidis and Shah (2013) 
share some underlying concepts with the pro-
posed framework and have obtained impressive 
outcomes with actual robot manipulators. 
Although the concept of cross-training to 
develop the SMM is a good fit for their domain, 
relying on cross-training is difficult for uncertain 
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and dynamic environments that are not well 
understood a priori and for larger teams com-
posed of multiple humans and heterogenous 
robots. The framework presented in this paper 
has been designed to accommodate more com-
plex domains and teaming situations.

Others suggest developing (Neerincx, de 
Greef, Smets, & Sam, 2011; Ososky et al., 2012) 
or have developed simulated robotic SMMs 
(Kennedy & Trafton, 2007) but do not provide 
comprehensive frameworks for realizing robot 
SMMs. It is suggested that SMMs are necessary 
to make the robots true teammates (Ososky  
et al., 2012), and ACT-R (adaptive control of 
thought–rational) was used to demonstrate, in 
simulation, the use of mental models to improve 
performance (Libiere, Jentsch, & Ososky, 2013), 
although no comprehensive framework was pro-
vided for integrating SMMs into robots that can 
function in uncertain and dynamic environ-
ments.

A PrototyPIcAl SMM APPlIcAtIon
A mass casualty emergency provides an 

example for understanding the functional role 
of SMMs in team tasks, including what aspects 
are represented, what updates can be made, and, 
most important, how team interactions differ 
depending on whether SMMs are used or not. 
A basic assumption throughout this paper is 
that human-robot teams train with one another, 
just as human teams teams train, such as first 
responders. As a result, the human responders 
develop mental models of the robots and SMMs 
of their team. Furthermore, such training allows 
the robots to develop SMMs for use during 
response deployments.

Imagine that 50,000 people attending a 
National Football League game are exposed to a 
biological contaminant that can cause death 
after 48 hours (Humphrey & Adams, 2009, 

2011, 2013). Approximately 75% of the victims 
require immediate care, whereas the remaining 
victims can wait for care (delayed care). Victims 
requiring immediate care receive some treat-
ment in the contaminated area (hot zone) and are 
transported to an off-site care facility. The tem-
perature is in the low 80s (Fahrenheit), and the 
humidity level is 80%.

The direct human teammates (H; Humphrey, 
2009; Scholtz, 2003) reside in the hot zone and 
interact with the ground robots (R) to achieve 
the assigned tasks and ensure effective team 
interaction. The Level B personal protective 
equipment—including a breathing apparatus, 
hooded chemical-resistant clothing, gloves, and 
boots—limits the humans’ field of view and 
causes increased body temperature. Further-
more, the breathing apparatus limits the deploy-
ment to approximately 2.5 hr.

Assume that the paramedic team includes (a) 
two robots that can transport supplies and triage 
victims and (b) two direct human teammates  
(H1 and H1). Furthermore, assume robot R1 is tri-
aging victim V, who requires immediate care 
that R1 cannot provide. R1 requests assistance 
from the closest human, H1, who is triaging 
other victims. R2 and H2 are working nearby.

The following scenarios demonstrate robots 
with and without SMMs. As compared with 
robots without SMMs, robots possessing SMMs 
can perceive changes in human responders’ per-
formance and the current situation, and they can 
be proactive in taking actions that minimize the 
demands and impact on the human responders 
while improving the overall team’s performance. 
The scenarios highlight where the SMMs 
achieve these objectives (basic mental model 
representational primitives and human perfor-
mance functions are shown in bold and under-
lined font, respectively; SMM capabilities 
shown in italic).
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Specifically, the scenarios demonstrate that  
R1 without a SMM requires more communica-
tion and increases H1’s and H2’s workloads 
while decreasing overall team task performance 
due to the lack of (proactive) concurrent activi-
ties. Conversely, robots with SMMs minimize 
H1’s and H2’s distractions, interruptions, and 
workloads via proactive communication and 
planning while increasing the team’s overall 
performance (italicized text). Thus, the scenario 
demonstrates the difference in performance 
enabled by SMMs while highlighting the neces-
sary representations and processes needed in 
agents to build, maintain, and utilize SMMs. 
The next two sections introduce the representa-
tional and computational frameworks required 
for general SMM processing in artificial agents.

A GenerAl forMAl frAMework 
for SMMS

From a computational perspective, SMMs 
consist of two key elements: first, data repre-
sentations that capture state information about 
the team, tasks, and environment, as well as 

task-relevant knowledge that is shared among 
team members, such as facts, rules, procedures, 
principles, and obligations; second, computational 
processes that create and maintain the data repre-
sentations. Although the former has components 
that vary from task to task (e.g., the equipment 
used, the task goals, the team composition), 
the latter provides general mechanisms that are 
applicable across tasks (e.g., how to update the 
belief of another team member based on observa-
tions or communicated information). Developing 
algorithms for using SMMs in artificial agents 
requires a comprehensive formal framework that 
provides intuitive mappings of formal constructs 
to existing human SMM structures and extends 
the elements traditionally included in SMMs by 
novel structures that account for human perfor-
mance functions. We significantly extend our 
previous pragmatic and mental modeling frame-
work (Briggs & Scheutz, 2011, 2012) to compre-
hensively capture all relevant aspects of SMMs 
reported in the literature, as well as novel com-
ponents based on human performance functions.

The following variables are used throughout 
the formal framework component specification: 

Scenario Without SMM Scenario with SMM

R
1
does not know how long H1  will need to triage 
V. As H1 begins walking toward V, H1 notes 
the high air temperature and humidity levels, 
coupled with the deployment duration and 
required personal protective gear, and seeks 
to minimize his or her physical workload by not 
carrying any supplies. H1 asks R1 whether R1 
has the necessary supplies, which it does not. 
H1 instructs R1 to find a robot nearby with the 
necessary supplies. R1 begins contacting all 
robots in the order of their last known locations. 
Eventually, R1 contacts R2 to request supplies, 
and R2, in turn, contacts H2, with whom R2 is 
working, for permission to provide R2’s supplies. 
H2 determines that there are sufficient supplies 
and gives R2 permission; R2 moves toward R1’s 
position. H1 is already waiting at that location to 
retrieve the supplies. H1 determines that it will 
take approximately 10 min to treat V. R1 waits 
for H1 to provide a plan for R1 to proceed with 
triaging additional victims.

R1 believes that H1 is capable of triaging V, and 
based on prior training and task predictions, R1 
knows it takes 10 min to treat V. R1 perceives 
the high air temperature and humidity levels, 
coupled with the deployment duration 
and required personal protective gear, and 
instantiates a goal to minimize H1’s physical 
workload by not requiring H1 to carry supplies 
to V’s position. R1 does not have the necessary 
supplies, but knows that R2 has them. Since 
R2 knows that H2 has sufficient supplies, the 
robots determine proactively that R2 will adopt 
a goal to bring the supplies to R1. Managing 
H2’s workload, R2 informs H2 of the plan before 
delivering the supplies, while R1 requests H1’s 
assistance and proactively communicates that it 
will have the necessary supplies. R1 also manages 
H1’s cognitive workload by developing a plan 
to triage additional victims while H1 triages 
V, and R1 communicates the plan, which H1 
acknowledges and R1 adopts.
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φi used for formulas, ai for actions and skills, pi 
for plans, gi for goals and subgoals, σi for situa-
tions, τ1 for object types, η1 for events, and A1 
for agents (which refer to human and artificial 
agents alike). Capturing uncertain knowledge is 
straightforward, and some examples are pre-
sented in the following sections, but a thorough 
presentation is beyond the scope of this manu-
script.

Basic representational Primitives
The formal framework encompasses five 

comprehensive sets of predicates that capture 
different aspects of agents, tasks, and environ-
ments relevant to SMMs:

F1: Agent capabilities and propensities—includ-
ing perceptions, actions, skills, traits, rank, 
and possibly other relevant agent properties

F2: Moment-to-moment agent and task states—
including knowledge, belief, and human per-
formance states; adopted goals and plans; 
and ongoing activities

F3: Known and accepted obligations and norms 
pertaining to the task and performance 
domains (including rules for goal and activ-
ity negotiations) and general norms about 
agent behavior

F4: Activity and equipment types
F5: Functional roles of agents in teams, in terms 

of the activities that they ought to perform

F1: Agent capabilities and propensities.  
Agent capabilities and propensities require 
defining different aspects of the general notion 
CAPABLE(A, X), which states that agent A is 
capable of carrying out X, where X can be an 
action, a skill, or a plan. This general notion of 
capability can be contrasted with a situation-
specific version stated in terms of goal states: 
CAPABLE(A,φ,σ), which means that agent A  
can bring about the state φ in situation σ. For 
example, the agent may be capable of triaging a 
victim: CAPABLE(A, triage–victim).

Analogous to capabilities for behavior, 
PERCEIVABLE(A,X) means that agent  A can 
perceive X, where X can be a type of agent, 
object, event, or activity (e.g., a skill or plan 
being carried out by another agent). Again, 

analogous to capabilities, a notion extended by 
situations is introduced, PERCEIVABLE(A,φ,σ), 
which means that agent A  can perceive whether φ 
is true in situation σ. Capturing imperfections in 
perception can use PERCEIVABLE(A,φ,σ)p, 
where p  is the probability of agent A  perceiving 
whether φ is true in situation σ.

We also represent general agent propensities 
for different situations: TENDSTO(A,X,σ), 
which means that agent A has a tendency to per-
form X in situation σ. For example, a generally 
polite agent will say “hello” when seeing another 
agent:

TENDSTO SAY( SEES(, hello’),{( ,1 1 2 1 2A A A A A, , )}).‘

The definitions can be extended to capture an 
agent’s likelihood to exhibit a particular propen-
sity, by adding probabilities as an argument. 
Probability distributions over agent behaviors in 
different situations can be obtained from these 
augmented definitions to predict what agents are 
likely to do.

F2: Agent and task states. Agent states 
require developing a sufficiently comprehen-
sive account of what humans track about their 
teammates. Therefore, predicates for cognitive 
states (e.g., beliefs and goals) and noncognitive 
states (e.g., workload) provide a sufficiently 
comprehensive account of what humans track 
in relation to their teammates.

Knowledge and beliefs: In addition to the basic 
distinction between “knowledge” and “belief” 
states (i.e., KNOWS(A,φ) versus BELIEVES(A,φ)) 
and their generalizations (COMMON KNOW-
LEDGE(φ) and COMMONBELIEF(φ)), we use 
KNOWS-OF(A,X), where X can be any type of 
entity—agent, object, event, activity, plan, goal, 
and so on; “intends to know”, ITK(A,X), where  X 
can be any type of agent, object, event, activity, 
plan, goal, and so on; and KNOWS-HOW(A,X), 
meaning that agent A  knows how to perform X, 
where X is an action, a skill, or a plan.

Goals and plans: Predicates are necessary for 
the achievement and maintenance of goals, 
GOAL(A,g); subgoals, SUBGOAL(gi,gj); and 
common goal, CG(g). Plans are sequences of 
actions and skills that achieve a goal in a given 
situation: ACHIEVES(p,φ,σ). Agents can adopt 
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plans, ADOPTED(A,p,σ), and execute them, 
EXECUTING(A,p,σ), in given situations, σ, 
where adopting implies that the agent is trying 
its best to execute the plan in σ or some subse-
quent situation. We introduce the notion “seeing 
to it that φ” STI(A,φ)), which means that agent A  
is carrying out some procedures that attempts to 
establish φ (the standard logical notations are 
defined at http://www.rapidtables.com/math/
symbols/Logic_Symbols.htm):

STI( ADOPTED( ) 

ACHIEVES( )).

A A, , ) : [ , ,

, ,

φ σ π π σ
π φ σ

↔ ∃
Λ

Finally, we introduce the effect predicate 
EFFECT(p,φ,σ), which means that executing p 
establishes φ in σ. Probabilities can be added if 
stochastic domains are to be considered—for 
example, EFFECT(p,φ,σ)p where p is the prob-
ability that φ will be achieved when p is exe-
cuted in σ.

Affective states: Human performance mod-
erator functions can significantly affect overall 
team interactions and performance; thus, we 
allow for modeling noncognitive states, such as 
affect and visceral states. Specifically, qualita-
tive indications are allowed for an agent’s level 
of exhaustion EXHAUSTION(A,L), where L is 
the fatigue level of agent A, and workload 
WORKLOAD(A,L). Additional noncognitive 
states can be added as needed. The important 
point is to be able to include states that can be 
measured during task performance and whose 
measurements may be available to team mem-
bers, which in turn allows them to draw infer-
ences about other team members’ performance. 
For example, if an agent’s workload is high, then 
no additional goals are to be given to that agent, 
and if an agent’s level of exhaustion is high, it 
may no longer be able to carry out all activities 
of which it is capable.

F3: Norms and obligations. Norms and obli-
gations are defined in terms of (modal) opera-
tors O, “obligatory,” and P, “permissible,” to 
capture rules regarding negotiation of goals and 
assignments, obligatory normative behaviors 
(e.g., a first responder triaging a victim), and 
other task-based constraints. For example, 
PROPOSES(A1,A2,X) can indicate that agent A1 

proposes X to agent A2, where X can either be a 
plan or a goal, thus effectively asking whether A2 
will adopt X. In response, A2 either REJECTS 
(A2,A1,X)) or ACCEPTS(A2,A1,X)); in the latter 
case, A2 has committed to carrying out X, if X is a 
plan (i.e., ADOPTED(A2,X,σ)) or A2 has a GOAL 
(A,X). We also introduce the predicate SUPE 
RIOR(A1,A2) to indicate that A1 is higher up in the 
command hierarchy than A2.

F4: Activity and equipment types. Activity 
and equipment types are specified in terms of 
their pre- and postconditions. For example, a 
“victim retrieval” activity can be defined as 
being capable of carrying victims out of danger 
zones (where σ′ is a situation after σ):

ACTIVITY(victim_retrieval): ↔∀A,V, 

σ[AGEMT(A) ∧ VICTIM(V) ∧ CAPABLE(A,carry,V) ∧ 

INDANGERZONE(V, σ) ∧  

PERFORMSON(A,carry,V,σ) → SAFE(V,σ′)].

Equipment types are defined in terms of the 
actions that can be performed with the equip-
ment. For example, a stretcher is an object that 
can be used (by a capable agent) for victim 
retrieval:

STRETCHER ACTION

        AGENT CAPABLE

( ) : , ( )

( ) ( , )

x y A y

A A y

↔∃ ∧
∧

[

∧∧ ∀ ∧

→ ′

σ
σ

σ

, ( ( )

( , , , , )

( ,

V V

A y V x

V

VICTIM

PERFORMSONUSING

RETRIEVED )))].

The specific actions to be performed with a 
stretcher are not defined, since many actions 
can be performed with it to retrieve a victim 
(e.g., putting the victim on it and dragging it to 
a safe location). Generic equipment needs for 
goals and equipment required by agents are 
expressed via REQUIRED(e,φ) (i.e., the 
equipment e is required to achieve goal φ) and 
REQUIRES(A,e) (i.e., agent  A requires equip-
ment e).

F5: Functional roles of agents in teams. Func-
tional roles of agents in teams are defined in terms 
of goals, equipment requirements, necessary capa-
bilities, obligations, permissible and impermissi-
ble states, and actions of the agent assuming the 
role. For example, the role of a searcher can be 
defined as follows:
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A hierarchically structured team can be defined in 
terms of an agent’s roles, the command structure, 
and the available equipment types:

TEAM

HASROLE

MEDIC

( , ) :

! , ( , )

( )

x rescue team

x y z x searcher

y

− ↔
∃ ∃ ∧

∧ aadditional roles

SUPERIOR SUPERIOR

additional

[ ]
∧

∧

( , ) ( , )z x z y

   command relationships

MEDICALKIT MAP

additi

[ ]
∃ ∧ ∃

∧

k k m m( ) ! ( )

 oonal equipment[ ].

Agent roles and equipment types are filled by 
the specific agents assigned to those roles and 
the available equipment.

General rules and update Principles
Overall, updates to an agent’s SMM can be 

triggered by various events and mediated through 
the agent’s perceptual system and internal state 
changes. For example, agent A1 perceives a new 
task-relevant object, which triggers the instantia-
tion of a new goal. Agent A2 observing agent A1 
needs to update its model to accommodate agent 
A1’s new goal. One can define general principles 
for perceptions and actions that allow agents to 
make quick inferences and updates to their SMM 
based on their perceptions of their own and other 
agents’ actions and communications. For exam-
ple, in general, all team members are truthful with 
each other; that is, agent A1 believes what it hears 
from any team member A2 (including itself):

SAID HEARD INTEAM

TEAMOF BELIEVES

( , ) ( , ) ( ,

( )) ( ,
2 1 2

1 1

A A A

A A

φ φ
φ

∧ ∧
→ )).

This principle allows an agent to update its 
SMM based on any communications in which it 
is directly involved or that it overhears. Similar 
principles can be defined for actions that other 
agents perform or for perceptions by other 
agents.

Additional rules can be added for interacting 
with other team members about adopting and 
dropping plans and goals, as plans and goals can 
change or different goal assignments may 
become necessary during task execution (e.g., 
because of unexpected events or the loss of 
capabilities by team members).

For example, a principle can be defined that 
proposed plans to achieve common goals are 
adopted if no previous plans exist:

EFFECT CG PROPOSES

ADOPTED

AC

( , ) ( ) ( , , )

( ( ,
1 2

2

π φ φ π
π π
∧ ∧

∧¬∃ ′ ′

∧

A A

A )

HHIEVES ADOPTED( , )) ( , )2′ →π φ πA .

This predicate allows the formulation of more 
refined principles representing when agents 
accept goal assignments—for example, plans 
ordered by superiors must be adopted, as long as 
they do not violate common goals:

¬ ¬ ∧ ∧ ∧
→

EFFECT CG SUPERIOR

PROPOSES ADOP

( , ) ( ) ( , )

( , , )
1 2

1 2

π φ φ
π

A A

A A TTED( , )2A π .

The above can be augmented by making it 
explicit that an agent has to be available to pur-
sue a goal, AVAILABLEFOR(A,φ).

Principles can be defined to explicitly track 
the interaction between assignments and cogni-
tive states—for example, when agent A1 pro-
poses a goal g  to agent A2 and agent A2 accepts 
it, then both agents believe that A2 has that goal:

PROPOSES ACCEPTS

BELIEVES GOAL

( , , ) ( , , )

( , ( , ))
1 2 2 1

1 2

A A A A

A A

γ γ
γ

∧ →

∧∧BELIEVES GOAL( , ( , ))2 2A A γ .

In some cases, it may be necessary to explicitly 
add capabilities to the principles (i.e., requiring for 
each planned action that the agent must be capable 
of performing the action before it can accept the 
goal). In other cases, when the agent acquires new 
capabilities during task execution, such explicit 
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requirements are not necessary before accepting 
goals; however, the agent must notice that it does 
not have a particular capability to be able to 
request information about it (e.g., how to learn it).

General principles of what is obligatory, what 
is permitted, and what is not permitted are also 
required:

OBLIGATED O STI( , , ) : ( , , )A Aγ σ φ σ↔ ,

which means that agent A is obligated to see to 
it, STI(A,φ,σ), that g is obtained in situation σ. 
Similarly, predicates can be added for obliga-
tions to carry out plans, OBLIGATED(A,p,σ), 
and permissions to achieve goal states or carry 
out plans, PERMISSIBLE(A,φ,σ) and PERMIS   
SIBLE(A,p,σ), respectively. Additional modal 
operators for capturing temporal relationships 
(e.g., “in the future”) can represent temporal 
dependencies, as in when one action is only per-
missible after another has been executed.

Human Performance functions
The teaming and SMM research does not 

address artificial systems’ prediction and assess-
ment of human performance in real time, which 
can be achieved with human performance func-
tions (HPFs). Team performance is affected by 
internal, environmental, task, and organizational 
influences (e.g., Salvucci, 2001; Weaver, Silver-
man, Shin, & Dubois, 2001); hence, the robots’ 
prediction and perception of human performance 
in real time is key to adapting their behavior and 
interaction to accommodate the human.

HPFs provide one means of predicting human 
performance when establishing initial and updated 
SMMs. Derived from experimental data, HPFs 
determine how human performance is affected by 

combinations of influencing factors in differing 
conditions. Over 500 human performance func-
tions have been analyzed and validated (Silver-
man, Johns, Cornwell, & O’Brien, 2006) for 
domains, such as driving (e.g., Salvucci, 2001), 
power plant operation (e.g., Mumaw, Roth, 
Vicenti, & Burns, 2000), and military applications 
(e.g., Weaver et al., 2001). Prior work focused on 
evaluating the applicability of a subset of these 
HPFs to human-robot interaction (e.g., Harriott & 
Adams, 2013; Harriott, Buford, Zhang, & Adams, 
2015; Harriott, Zhang, & Adams, 2013; Harriott, 
Zhuang, Adams, & DeLoach, 2012).

A large number of HPFs are applicable to 
human-agent teams; however, only a subset is 
presented, as divided into four HPF categories 
based on the frequency of change and the 
human’s ability to directly effect the HPF 
(Adams, Harriott, Zhuang, & DeLoach, 2012). 
Some HPFs cross categories and have a primary 
and a secondary categorization, as indicated in 
Table 2.

The acquired HPFs influence the team SMM 
(as defined in Table 1), are moderately stable, 
and are generally under the individual human’s 
control but can suffer from individual differ-
ences. Prior performance on similar tasks repre-
sents an objective function of the agent’s perfor-
mance on prior, but similar tasks that can be 
assessed during training and real tasks. Vari-
ances in prior performance across agents may be 
a good predictor of future performance. Skills 
represent an agent’s specialties acquired and 
developed during training and from prior experi-
ences, whereas training and experience repre-
sent formal task training and experience or pro-
cedural knowledge obtained during training 

TAbLe 2: The Human Performance Functions Organized by Category

Acquired Dynamic Designed Environmental

Training and experience Physical workload Physical workload Personal protective gear
Skills Cognitive workload Organizational structure Environmental humidity
Prior performance on 

similar tasks
Noise level
Environmental 

temperature

Note. Italics indicate secondary categorization of a human performance function.
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exercises or tasks. These HPFs are known a pri-
ori and can be recorded prior to completing tasks 
as well as after or during training.

The dynamic HPFs change frequently, are 
influenced by the situation, and have low stabil-
ity. Cognitive workload represents the ratio of 
time required to do tasks to the time available 
(Wickens, Lee, Liu, & Gordon-Becker, 2003). 
Physical workload, the maximum physical work 
capacity, varies as a function of the duration of 
work and is the maximum rate of energy produc-
tion during physical work (Wickens et al., 2003). 
These HPFs affect the task and team SMMs.

The designed HPFs represent elements that 
are not under the human’s direct control, may be 
genetically inherent, and can only improve or 
degrade over very long periods. These HPFs can 
also represent human-made elements that pro-
vide overarching structures and capabilities. The 
organizational structure correlates with agent 
responsibilities, authority, supervisors, and com-
munication channels, as in communicating only 
with supervisors or subordinates. The designed 
HPFs tend to be highly stable and affect the team 
and task SMMs.

The environmental HPFs are not within the 
team members’ control, have moderate stability, 
and affect the team and task SMMs. Environ-
mental HPFs may change during a mission but 
are generally constant or change slowly. Per-
sonal protective gear restricts human perception 
of and interaction with the environment. Noise 
level has an impact on communication among 
team members, which can affect understanding 
of task progress. Continuously high noise levels 
can significantly degrade human performance. 
Humidity and temperature can have a significant 
impact on human performance.

Each HPF affects the SMM and must  
be accounted for via predicates that capture 
team members’ cognitive/noncognitive perfor-
mance and visceral states. For example, 
WORKLOAD(A,L), where L is agent A′ s over-
all workload level, represents overall workload, 
and OVERLOADED(A) can indicate when the 
overall workload level exceeds a defined task-
specific threshold. Similarly, the environmental 
noise level affecting an agent, NOISE(A,L), 
and the agent’s physical workload,  
PHYSICALWORK LOAD(A,L), can be defined. 

Critically, the agents will observe and track all of 
these states, which allow inferences about other 
teammates’ performance. For example, if a team-
mate’s overall workload is overloaded, the team-
mate will not be given a new goal, and if a team-
mate’s physical workload level is high, the team-
mate can become physically fatigued and unable to 
complete other physical tasks. Rules and principles 
can be defined according to the quantitative HPF 
results to represent the relationships between 
HPFs and other parts of SMMs, such as goal 
assignments, plans, and so on. Although some of 
the principles are general in nature, others are spe-
cific to the task (e.g., how to react to high levels of 
workload or noise).

A coMPutAtIonAl frAMework
A scalable and extensible computational 

implementation of the SMM framework is 
required to realize the envisioned human-agent 
teams. This section presents the architecture 
and various functional components of a com-
putational framework that applies the formal 
framework from the previous section to repre-
sent SMMs and to reason with them. The goal 
is to maintain consistent SMMs for both the 
humans and the agents, but consistency is easier 
to maintain for artificial agents.

An agent’s knowledge of the current team and 
task states is stored in an internal SMM. As changes 
are made to the SMM contents, the changes must 
be synchronized across all agents, which includes 
resolving possible inconsistencies among internal 
SMMs from different agents. This synchronization 
is an instance of distributed “truth maintenance” 
systems (Bridgeland & Huhns, 1990), which have 
been widely investigated in artificial intelligence 
research through approaches ranging from heuris-
tics (using the knowledge with the later time stamp; 
removing jointly inconsistent items and treating 
them as “missing knowledge”) to those with for-
mal guarantees of synchronization.

As each agent observes the environment 
(including other agents and humans) via sensors, it 
updates its internal SMM, which is synchronized 
with other agents. The agent uses its updated 
knowledge to adapt its behavior within the team 
and perform actions. The computational frame-
work required to implement this vision consists of 
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a distributed data store, with processes to update 
SMM state information (left side of Figure 1) and 
control the agents based on the SMM data (right 
side). The computational framework needs to sup-
port the agent in (a) directly observing humans to 
monitor their behavior and estimate their current 
HPF values; (b) estimating HPFs, which are not 
ascertainable from direct monitoring; (c) tracking 
team/individual progress toward achieving goals; 
(d) predicting the effects of new or modified task 
assignments; (e) assigning new goals and tasks; 
and (f) adapting agent behavior based on the cur-
rent state and future estimates. Steps 1–3 are update 
processes, whereas Steps 4–6 are control processes.

The team and task databases (see Figure 1) 
store a priori HPF values related to team mem-
bers’ skills, training, and experience (Table 2), 
as well as the team’s tasks, equipment, and strat-
egies (Table 1). This information is very stable 

and can be generated offline during training and 
via modeling. The databases are used to initial-
ize the SMM and can be updated in real time 
with data from various update processes.

The computational framework is designed  
to support the use of tailorable and reusable 
components. The actual SMMs and databases 
can be reused and adapted to specific teams and 
tasks based on their contents. The underlying 
middleware for synchronizing the state compo-
nents is also designed to be reusable across 
domains. These stable core components provide 
a highly reusable and adaptable interface for 
other components. Many of the general purpose 
processes, shown in white in Figure 1, can be 
reused and tailored to the specific domain and 
task via the contents of the SMM. For example, 
an HPF estimation process will use domain- and 
task-independent algorithms to make estimates, 

Figure 1. The shared mental model (SMM) computational framework. Ovals are processes, and arrows denote 
information flow. DB = database; HPF = human performance function.
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whereas only the SMM content is actually 
domain or task specific. Domain- and task- 
specific processes generally require tailoring the 
processes’ algorithms to the domain and task. 
For instance, the equipment-monitoring process 
must be tailored to the specific types of equip-
ment being monitored, whereas the task perfor-
mance and augmentation algorithms can be tai-
lored to specific domains and tasks, although 
they may use behavior specifications that can be 
executed via general purpose mechanisms.

representing and Synchronizing SMMs
The goal of the computational framework is to 

capture the state information defined in the logical 
framework in a computationally efficient way. It 
is important to note that implementing a genuine 
SMM framework in artificial agents is different 
from simply using mental models in each agent, 
which occurs out of necessity in the humans; that 
is, humans use their mental models to realize 
SMMs by replicating the same knowledge in each 
(human) team member and by synchronizing the 
models via different forms of communication and 
observation. Clearly, this can be a cumbersome 
process, especially when only peer-to-peer com-
munication is available, as every agent will have 
to be individually informed of an information 
update. SMMs in artificial agents do not have 
to replicate this constraint. Instead, an SMM can 
be implemented directly as a single distributed 
mental model shared among all artificial agents, 
which leads to more efficient representations and 
better synchronization with less communication 
overhead, especially among the artificial agents 
but also with the human team members.

Consider a subgroup G of a human team that 
receives an update that Room 7 collapsed: C(r7). 
The members of the subgroup need to explicitly 
represent who knows and does not know about the 
event in each of their individual mental models, 
with the meta-belief that everyone in G  knows. 
For example, the mental model of each team 
member i will have to include C(r7), Bel(Hj, 
C(r7)) for all j ≠ i ∈ G, Bel(Hj,¬C(r7)) for j ∉ G, 
and Bel(Hj, Bel(Hk,C(r7))) for all j ≠ k ∈ G. In 
contrast, a true SMM needs to add only C(r7) and 
Bel(Hj,¬C(r7)) for j ∉ G, which all agents can 
access (it is assumed that if one agent believes a 

fact, all agents believe it). The smaller number of 
facts speeds up inferences, lowers redundancies in 
inferred facts, and reduces communication over-
head with human members that cannot realize an 
SMM in the way that artificial agents can, as fewer 
facts need to be communicated to the humans 
about the agent’s mental model (instead of com-
municating each fact for each agent individually, 
the facts can refer to the whole agent collective; 
e.g., “All agents believe that Room 7 collapsed”).

The efficient shared aspect of SMMs, how-
ever, requires synchronization among agents. A 
distributed blackboard model (Corkill, 2003) 
can support asynchronous updates and distrib-
uted synchronization. During synchronization, 
conflict resolution follows the logical update 
rules for updating SMMs.

It is straightforward to capture logical primi-
tives using object modeling (Rumbaugh, Blaha, 
Premerlani, Eddy, & Lorensen, 1991), which 
converts the logical entities into classes and log-
ical predicates into associations. The Unified 
Modeling Language class models can capture 
these models; see Figure 2, which illustrates a 
simplified team state SMM. (A similar model is 
required for the task state.) Entities such as 
agents, roles, goals, and states are captured 
directly as classes, whereas predicates such as 
CAPABLE, KNOWS-HOW, and ADOPTED 
are captured as associations among the classes.

Some SMM state information—such as the 
team’s goals, roles, agents (human and artifi-
cial), and tasks—is critical to any type of team 
activity and thus is part of any application’s 
SMM state information. This basic state infor-
mation can be augmented with additional infor-
mation derived from the team’s specific domain, 
objectives, and environment. State information 
pertaining to the human team members includes 
the current and predicated HPF values. As sev-
eral processes within an agent asynchronously 
create, update, and use SMM state information, 
SMM state information has a variety of update 
requirements. Information such as task progress, 
current HPF values, and environmental condi-
tions can be updated by continuous monitoring 
processes. Other information, such as new goals 
and assignments, are updated only when a trig-
gering event occurs.
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updating SMMs
Update processes will revise the SMM state 

following the logical framework update rules 
and are extensible to changes in SMM infor-
mation types. Some processes initialize the 
SMM with highly stable information (e.g., 
team member skills, training, experience, rank), 
whereas others will update SMM information 
in real time (e.g., cognitive workload, noise 
levels, current goals, and assignments). The 
real-time processes running on the robots will 
generally receive input directly from sensors, 
either located in the environment or attached to 
humans or robots.

Workload channel estimation. The workload 
channel estimation processes will calculate esti-
mates for workload and the fluctuations over 
time. Each channel estimation process will 
accept metric observations and produce a value 
for that channel. Since workload can vary sig-
nificantly, it is assessed in real time. Overall 
workload is derived from a number of submet-
rics (Boles, Bursk, Phillips, & Perdelwitz, 2007; 
Gawron, 2008). Workload is decomposed into 
the cognitive, auditory, visual, tactile, motor, 
and speech channels (Harriott et al., 2015), 
which is based on the Multiple Resource Ques-
tionnaire (Boles et al., 2007) and the IMPRINT 
Pro workload function (IMPRINT, 2012). The 
workload metrics in Table 3 do not adequately 
capture auditory, tactile, or motor demands. 
However, aspects of physical workload can be 
measured, allowing the tactile and motor chan-
nels to be replaced with a physical resource 
channel. The metrics can be captured with a 

bone microphone for the speech-based metrics 
and a physiological monitor, such as the 
BIOPAC® Systems Inc. Bioharness can capture 
the remaining metrics.

As workload increases, (a) the speaking rate; 
(b) the number of utterance repetitions and sen-
tence fragments, false starts, and syntax errors; 
and (c) the number and duration of silence and 
filler pauses all increase (Berthold & Jameson, 
1999), whereas utterance length decreases 
(Lively, Pisoni, Van Summers, & Bernacki, 
1993). Training can mitigate the sensitivity of 
these metrics to individual differences (Hagm-
ueller, Rank, & Kubin, 2006). The auditory 
resource can be assessed only via a speech 
response time metric. These metrics have to 
account for the ambient noise, provided by the 
noise measure process.

Real-time physiological metrics correlate to 
cognitive workload in that heart rate (Hankins & 
Wilson, 1998; Jorna, 1993; Roscoe, 1993) 
increases as workload increases (Castor et al., 
2003), whereas heart rate variability (Aasman, 
Mulder, & Mulder, 1987; Harriott et al., 2015; 
Vicente, Thornton, & Moray, 1987) and respira-
tion rate (Keller, Bless, Blomann, & Kleinbohl, 
2001) decrease as cognitive workload increases 
(Aasman et al., 1987; Castor et al., 2003; Roscoe, 
1992). An increase in galvanic skin response (i.e., 
the electrical conductance of the skin) indicates 
increased workload (Veltman & Gaillard, 1996), 
whereas skin temperature tends to decrease as 
workload increases (Collet & Averty, 2003).

The workload metrics will each be captured 
as one workload channel estimation process 
(Figure 1). All but the visual workload resource 

Figure 2. Simplified team state shared mental model. Asterisk denotes references to classes from the task state 
model. HP = human performance.
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will be captured as a workload channel estima-
tion process. It is infeasible to directly asses the 
visual resource channel; thus, it will be predicted 
according to models of the application scenario 
and knowledge of the task goals. The overall 
workload metric will be calculated after the 
visual channel demand has been predicted via 
the visual channel estimation process.

The workload channel estimation processes 
will produce continuous values (e.g., 0–100) for 
each channel; however, discrete values repre-
senting the continuous range will also be 
defined—for example, an extreme overload 
(85–100), a very high overload (70–84), a high 
overload (55–69), a moderate load (40–54), an 
underload (20–39), and an extreme underload 
(0–19). Additionally, the direction of change 
over time will be captured. Although measure-
ments may remain within a range over time, the 
direction of change will help predict the human’s 
future performance. Thus, a discrete value indi-
cating increasing, decreasing, or stable work-
load will be determined and stored in the team 
state for use in behavior adaptation. Workload 
channel estimates will be stored in the team 
state, which will be used as inputs to the visual 
channel estimation, task focus, overall workload 
estimation, and task observation processes.

Visual Channel Estimation. The visual chan-
nel estimation process will estimate the visual 
resource channel workload based on the 
human’s current task focus, skills, and rank 
within the organization, along with a priori 
information, such as visual workload models 
and subjective workload assessments from 

training. Tools such as IMPRINT Pro can be 
used to model the visual channel demand, which 
can be refined according to results from training 
and experience. The team database can be 
seeded with the model results, including gath-
ered workload metrics and the human’s skills 
and rank within the organization. Visual chan-
nel estimates will be stored in the team state and 
used by the overall workload estimate process.

Overall workload estimation. The overall 
workload estimation process will combine a 
human’s workload and the visual channel esti-
mates with the environmental noise measure-
ments into a moving average of the human’s 
overall workload. Each channel estimate will 
have custom weights derived from subjective 
workload metrics collected during training. The 
overall workload estimate with the individual 
channel estimates will be stored in the team 
state and used for behavior adaptation.

Noise measure. The noise measure process 
will measure the level of environmental noise in 
decibels via a sound-level meter or a dosimeter 
(Proctor & VanZandt, 2008) and output a dis-
crete decibel range and the direction of change 
(increasing, decreasing or stable). Sustained 
loud noise levels can stress humans, increase 
workload, and negatively influence task prog-
ress, whereas sudden changes in noise levels 
can be distracting (Harris, 2011; Nassiri et al., 
2013; Szalma & Hancock, 2011). The American 
Academy of Audiology provides seven discrete 
decibel noise levels (American Academy of 
Audiology, 2013), represented by four ranges: 

TAbLe 3: The Workload Metrics, Expected Change Under High-Workload Conditions, and Associated 
Channels

Metrics Response Overall Cognitive Auditory Speech Physical

Speaking rate Increases  
No. of sentence fragments, false 

starts, and syntax errors
Increases  

No. of filler or delay utterances Increases  
No. of utterance repetitions Increases  
Response time: Speech Increases  
Heart rate variability Decreases  
Respiration rate Decreases  
Skin temperature Increases  
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<50, soft; 50–70, moderate; 70–90, loud; and, 
>90, very loud. Noise measurements will be 
stored in the task state and used by the overall 
workload estimation process to compute a mov-
ing average of the human’s overall workload.

Task focus. Task focus will estimate on which 
tasks a human is currently focused, based on the 
human’s HPFs and assigned goals and tasks. For 
example, an increased number of utterances may 
imply that a human is engaged in a specific task 
with a teammate, is providing task assignments 
or instructions, or is uncertain about a team-
mate’s status. Thus, task focus will be estimated 
by identifying the subset of the human’s assigned 
tasks whose expected HPF values most closely 
match the human’s current channel estimates. 
Expected HPF values will be seeded in the task 
database. For instance, if a human has two 
tasks—(a) supervising a robot performing an 
area search and (b) searching an adjacent area—
the task focus process will check each combina-
tion of tasks, {1}, {2}, and {1, 2}, to determine 
which subset most closely matches the current 
HPF estimates. Subsets will be ordered by likeli-
hood, according to factors such as task priority, 
recently completed tasks, or human’s prior loca-
tion. Once a sufficiently close subset is found, it 
will be reported. The results of the task focus 
process will be stored in the team state and will 
be used by the visual channel estimation and task 
observation processes.

Task observation. Task observation will esti-
mate a human’s progress toward completing 
assigned tasks according to task information, 
current HPF estimates, the human’s task focus, 
and a priori performance data. Although an agent 
can continually update the team on its progress, it 
is unreasonable to expect humans to do likewise. 
Thus, agents will estimate the human’s progress. 
Although assessing a human’s actions and ascer-
taining progress toward task achievement is dif-
ficult in general, a solution is feasible given an 
adequate model of the human’s tasks and HPF 
estimates. For example, agents can use subtask 
structure to estimate progress. If a task requires a 
human to triage three victims, the agent can esti-
mate that the task is two-thirds complete if the 
human has completed two of the triage subtasks. 
Additionally, agents can estimate progress using 

direct physical measurements (e.g., distance 
traveled) or a priori task performance data (e.g., 
average task completion time). The objective 
is to develop domain- and task-independent 
techniques; however, it is also necessary to 
understand the limitations of such approaches 
and when to augment them with domain- and 
task-specific techniques.

General update processes. The assignment-
monitoring process will monitor interactions 
among teammates to determine when they need 
to be assigned or reassigned to roles or tasks 
and will update the SMM team state when such 
assignment occurs. The team task–monitoring 
processes will monitor team task status, includ-
ing which tasks are active, achieved, or pre-
ceded, and update the SMM task state. Team 
task monitoring is straightforward, as demon-
strated in our previous multiagent and robotic 
systems (DeLoach, 2009; Zhong & DeLoach, 
2011). The equipment-monitoring processes 
will monitor equipment status and update the 
SMM task state. A priori equipment status will 
be loaded from the team database. Finally, an 
agent-learning process will monitor human and 
agent performance and update the knowledge, 
skills, abilities, preferences, and tendencies in 
the SMM team state.

using SMMs to Adapt Agent Behavior
Control processes will use SMM state infor-

mation to control agent and team behavior. 
These processes will cooperate to determine 
how and to what level to adapt agent behavior 
based on the human’s current task assignments 
and expected performance changes. The task 
prediction process will estimate changes in 
human performance based on potential modifi-
cations to the human’s current task assignments 
(i.e., the addition/removal of tasks). The task 
performance and augmentation process and 
task assignment process will use the predictions 
to allow agents to determine how to adapt the 
agent’s behavior. The task performance and 
augmentation process will adapt internal behav-
ior, whereas the task assignment process will 
adapt team behavior. For example, if human HA 
is focused on triaging a victim, a robot working 
close by may tell HB, the team leader, that it has 
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completed its assigned search task. However, 
if HA is the team leader, the robot may wait to 
inform HA and take over one of HA’s lower-
priority tasks.

The task prediction process will determine 
the expected changes in human performance 
based on potential modifications to the human’s 
current task assignments (i.e., the addition/
removal of tasks). The task prediction inputs 
will include (a) the human’s current and pro-
posed task assignments, (b) a set of the human’s 
potential task assignment modifications, and (c) 
the current HPF estimates, including values for 
the individual workload channels. The process 
will produce the predicted overall workload and 
a prioritized list of workload channels for each 
potential modification. This process will con-
sider each potential modification separately by 
predicting the effect on human performance.

The task performance and augmentation pro-
cess will provide a mechanism to allow agents to 
modify their behavior to compensate for human 
performance degradation or external factors that 
negatively affect the team. For example, environ-
mental noise can increase human stress and hinder 
communication. Additionally, humans may not 
have the appropriate training or skills to ade-
quately perform an assigned task. This process 
will use a variety of inputs from the SMM for task-
specific purposes, and the output will be appropri-
ate agent behavior. Task augmentation will allow 
agents to assist other teammates by suggesting 
solutions, carrying out additional tasks, or modify-
ing their own behavior to support their teammates. 
The task assignment process will consider the 
SMM state variables, including current task 
assignments and predictions. Using workload as 
the example, this process will determine the 
human’s current state: no overload/underload—no 
changes are considered; extreme underload/over-
load—analyze task assignments and potential 
reallocations that significantly increase/decrease 
the human’s overall workload, and allocate/reas-
sign tasks; and underload/overload—agents may 
adapt their behavior or initiate a task reallocation 
to increase/decrease human workload. Tasks that 
can adjust the human’s workload will be consid-
ered, with the modification effects determined by 
the task prediction process. The modifications will 
be based on their effect on human workload.

As an example, assume that human H1 is 
assigned two goals: G1 to triage victim V and G2 
to provide status information to the team leader. 
In addition, robot R1 is assigned goal G3 to assist 
in H1’s triage effort. As H1 performs the triage 
process, sensor data indicate that H1’s heart rate 
variability is decreasing and the speaking rate 
and speech response time are increasing. The 
associated workload process estimation pro-
cesses update H1’s values in the team state, 
changing H1’s cognitive and speech workloads 
from the high to very high state, thus pushing 
H1’s workload into the extreme overload state in 
the team state. The task assignment process 
monitors all the current assignments and, based on 
H1’s change to the extreme overload state, recom-
putes potential assignments for goal G1. These 
computations are performed with an application-
specific function, ascore(agent,operation,goal), 
that accounts for basic agent capabilities, as  
modified by HPF values and the operations 
available to the agent to achieve the goal, 
similar to organizational assignment function 
(DeLoach, Oyenan, & Matson, 2008). If 
a R o G a H o Gscore score( , , ) > ( , , )1 2 1 2′   then, G2 is reas-
signed from H1 to R1.

PrelIMInAry IMPleMentAtIonS
Although there is currently no complete inte-

grated implementation of the proposed architec-
ture, various aspects of the system have been 
implemented and evaluated on robotic platforms 
and artificial agents in the context of team tasks. 
The organizational model for adaptive complex 
systems (DeLoach, 2009), for example, imple-
ments a subset of the proposed SMM focused on 
the assignment of agents to tasks within a team 
context. The basic model was used to imple-
ment an explosive device detection robot team 
(Zhong & DeLoach, 2011), which was extended 
to include physiological and subjective work-
load values and used to implement a hazard-
ous materials reconnaissance scenario (Harriott  
et al., 2012).

Additional implementations of parts of the 
computational framework for SMMs (without 
monitoring of HPFs but with synchronization of 
SMMs across at least two robotic platforms) 
were implemented in the DIARC architecture 
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(Scheutz et al., 2013). For example, we demon-
strated that pragmatic reasoning algorithms in 
the robot’s natural language system can be used 
to automatically detect and correct wrong 
assumptions made by human teammates (e.g., 
Briggs & Scheutz, 2011). Conversely, human 
teammates can correct a robot’s (wrong) beliefs 
explicitly through natural language instructions, 
which can lead to an update of the SMM for all 
robots in the team.

Two SMM implementation examples in the 
context of human-robot teams are presented. 
The examples indicate that full-fledged SMMs 
will significantly improve team performance. 
The first demonstrates how mental models fig-
ure critically in team-based human-robot inter-
actions (in this case, natural language interac-
tions), and the second demonstrates how robots 
can coordinate activities with human teammates 
through belief modeling and human-aware plan-
ning, even when communication is infeasible.

Simple SMMs
This example, which was implemented and 

evaluated on a robotic platform, presents a simple, 
minimal SMM that consists of several rules about 
perceptions, actions, and interactions (based on 
Briggs & Scheutz, 2012). The first rule about 
beliefs results from perceptions: If agent A1 per-
ceives another agent A2 at location L, then A1 also 
believes that A2 is at that location:

PERCEIVABLE

BELIEVES

( , ( , ))

( , ( , ))
1 2

1 2

A at A L

A at A L

⇒
.

The following three rules focus on agent 
actions. If agent A has a goal to be at location L, 
then A  is also going there:

GOAL GOINGTO( , ( , )) ( , )A at A L A L⇒ .

If agent A1 is supposed to follow agent A2 and if 
A2 is heading to location L, A1 is also going to L:

FOLLOW GOINGTO

GOINGTO

( , ) ( , )

( , )
1 2 2

1

A A A L

A L

∧
⇒ .

If agent A1 is supposed to meet with agent A2 and 
if A2 is currently at location L with no plans to 
move, then A1 needs to move toward L:

GOAL

GOINGTO GOINGTO

( , ( , )) ( , )

( , ) ( ,
1 1 2 2

2 1

A meet A A at A L

A L A A

∧ ∧
¬ ′ ⇒ 22 ),

(where ′ ≠L L).

The next rule triggers a notification event. If an 
agent A1 is supposed to inform agent A2 when a 
condition φ is achieved, then when φ is achieved, 
A1 generates an intention-to-know φ for A2, which 
can leverage the agent’s dialogue-generation 
capabilities (generating a surface realization of the 
φ; for details, see Briggs & Scheutz, 2011):

INFORM ITK( , , ) ( , )1 2 2A A Aφ φ φ∧ ⇒ .

Several rules were defined for communica-
tive interactions and the interpretation of utter-
ances—for example, if an agent A1 commands 
another agent to go to a location L, then one can 
infer that A2 will have a goal to be at L, that A1 
wants to be informed when A2 reaches L, and 
that A1 wants to know whether A2 heard the 
command (the last inference is a dialogue behav-
ior to generate appropriate acknowledgments):

PROPOSES GOAL

INFORM

( , , ( , )) ( , ( , ))

( , ,
1 2 2 2 2

1 2

A A at A L A at A L

A A at

⇒
∧ (( , )) ( ,

( , ( , ( , ))))
2 1

2 2 2

A L A

A A at A L

∧ ITK

              HEARD GOAL ..

Now suppose that H1 orders robot R1 to go to a 
triage location L1 and R2 to follow robot R1. R1 and 
R2 share the SMM (and represent their beliefs 
about themselves in exactly the same way as they 
represent beliefs about other agents); thus, the 
SMM after the instruction contains the following 
items (we indicate an agent’s beliefs in set notation, 
using BA to denote the set of the agent’s beliefs):

B R at R L

R follow R R

H1 1 1 1

2 2 1

, ( ,

, ( ,

: ,{ ( ))

( ))},

= G

G

B R at R L

H at R L H

heard R

R1 1 1 1

1 1 1 1

, ( ,

, ( , ,

(

: ,{ ))

)),

=  G(

inform( ITK(

11 1 1 1, ( , ( ,G R at R L ))))},

B R follow R R

H follow R R Hinform

R2 2 2 1

1 2 1 1

, ( ,

, ( ,

: ,{ ( ))

( )),

=  G

ITK( ,,

( , ( , ( ,2 2 2 1heard R G R follow R R ))))}.

The inform and ITK predicates are derived 
through the rule about what it means to receive 
an order. Suppose that H1 wants to know where 
R2 is going. R2 can use the SMM to inspect the 
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beliefs of all involved agents. R2 can use the fol-
low rules to infer that it is following R1 and that 
R1 is going to location L1; thus, R2 is going to 
location L1 and answers H2’s question. This level 
of reasoning is infeasible without the SMM.

coordination through Human-Aware 
Planning

The robots in the prior example have an 
SMM, but shared models may not always be 
possible between agents and humans (e.g., the 
human is out of communications range or busy). 
Robots can be out of communication range, 
but the shared mental models are synchronized 
when connectivity is reestablished. An algo-
rithm based on distributed truth maintenance 
can automatically resolve any inconsistencies 
due to the interrupted communication.

Suppose that human H1 informs R1 that triage 
support is needed at two triage locations, L1 and 
L2, H2 is assigned to location L2, and a medical kit 
is needed in each location. Moreover, R1 and R2 
have medical kits, but R1 is located closer to H2 
and R2 is located very close to L1. Thus, H2 meets 
R1 to pick up the medical kit, and R2 proceeds to 
location L1. However, assume that R1 knows that 
H2 believes that R2 has a medical kit, but R1 does 
not know whether H2 also believes that R1 has a 
medical kit. In this case, R1 does not plan to meet 
H2 but instead proceeds directly to location L1 
because H2 will likely move toward R2 and not R1; 
furthermore, there is no way to contact H2 with 
updated information about the robots’ locations. 
R1 can determine this fact by generating all rea-
sonable plans for H2 based on the information 
available in the SMM shared by R1 and R2 about 
H2’s beliefs and goals (for details on this situation 
and the associated planning, see Talamadupula, 
Briggs, Chakraborti, Scheutz, & Kambhampati, 
2014). Once R1 has determined that H2 intends to 
meet up with R2, it adopts the goal to go to location 
L1, and R2 adopts the goal to move toward H2, thus 
reducing H2’s effort while optimizing the overall 
team’s performance (by delivering the medical 
kits more quickly to each triage location).

concluSIonS
The literature has demonstrated the impor-

tant role that mental models and SMMs play 

in improving human team performance. As 
technology improves and we move toward a 
world that will team various types of autono-
mous (or semiautonomous) agents with humans, 
one must consider the potential agent capa-
bilities. Such human-agent teams will exist and 
become prevalent only if they are able to carry 
out tasks as effectively and with as good as or 
better performance than human-only teams. 
This paper introduces a comprehensive frame-
work for defining, implementing, and applying 
SMMs in artificial agents such as robots to 
improve the performance of mixed human-
agent teams. Specifically, the general formal 
framework provides the representational and 
formal principles for capturing important state 
information and knowledge-based aspects of 
SMMs, whereas the computational framework 
provides a detailed overview of a computational 
architecture and the various processes and their 
function needed to create, update, and maintain 
SMMs. The prototypical SMM scenario illus-
trates how the SMM framework can be applied 
to a real-world situation, including how various 
framework components will arise in artificial 
agents.

Although artificial intelligence, robotics, and 
human-robot interaction researchers have 
worked toward designing mixed human-agent 
(robot) teams incorporating principles such as 
belief-desires-intention frameworks, theory-of-
mind representations, coordination rules and 
mechanisms, and task assignment algorithms, 
there is currently no comprehensive computa-
tional SMM framework that addresses the 
breadth and depth of the presented computa-
tional framework, let alone one that has been 
implemented for artificial agent systems.
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