
Towards a systematic approach for designing

autonomic systems
1

Walamitien H. Oyenan
∗

 and Scott A. DeLoach

Department of Computing & Information Sciences, Kansas State University, 234 Nichols Hall, Manhattan,

KS 66506, USA

E-mail: {oyenan, sdeloach}@ksu.edu

Abstract. An autonomic system is a system capable of managing itself and adjusting its actions in the face of environmental

changes. Autonomic systems are currently developed using ad-hoc approaches, which do not promote repeatable successes. In

this paper, we propose a systematic approach for designing autonomic systems. Our approach adopts a multiagent perspective

based on the Organization Model for Adaptive Computational Systems, which defines the knowledge required for the system

to be able to self-organize. Furthermore, a customized development process based on the Organization-based Multiagent

Systems Engineering framework supports our approach. To illustrate the process, we describe the design of one autonomic

system, the Autonomic Information System, and exemplify how this system fulfills desired autonomic properties. We also

evaluate the performance of our autonomic system by comparing it to a non-autonomic system.

Keywords: Autonomic systems, organizations, multiagent systems, self-organization

1. Introduction

The goal of autonomic computing is to create new

systems that are able to manage themselves. This

requires that such systems have the ability to self-

configure, self-optimize, self protect, and self-heal

[10,13,16,24]. As systems become increasingly

complex, they are expected to handle this complexity

on their own. Therefore, it is crucial that they exhibit

autonomic behavior.

While the advantages of using a multiagent

approach have been recognized [6,26], many

autonomic applications are developed from scratch,

producing ad-hoc designs that work well for the

proposed application. Unfortunately, the process is

not repeatable, thus neither it nor the design can be

reused in other autonomic applications. In our work,

we adopt a multiagent approach for developing

1 This work was supported by grants from the US National

Science Foundation (0347545) and the US Air Force Office of

Scientific Research (FA9550-06-1-0058).
∗ Corresponding author.

autonomic systems since agents are autonomous and

map naturally to the autonomic computing principles

[15]. In addition, our approach is based on a formal

framework and is supported by a customizable

multiagent development process.

The purpose of this paper is to demonstrate the

effectiveness of a set of related technologies based

on the Organization Model for Adaptive

Computational System (OMACS) [7] for designing

autonomic systems. OMACS defines the knowledge

required for a system to be able to understand its own

problem solving state and configuration in order to

self-organize. Instead of building our system using

ad-hoc methods, we defined a reusable OMACS-

compliant process that incorporates all the entities

required by OMACS. We designed this process using

the Organization-based Multiagent System

Engineering (O-MaSE) Process Framework [12],

which is a framework for creating custom multiagent

development processes. After designing the system

according to our custom process, we implemented

the system using our Organization-based Agent

Architecture (OBAA). The OBAA is an architecture

Web Intelligence and Agent Systems: An International Journal 8 (2010) 79–97
DOI 10.3233/WIA-2010-0181
IOS Press

1570-1263/10/$27.50 © 2010 – IOS Press and the authors. All rights reserved

79

created to support organization-based agents and to

separate general autonomic reasoning from

application specific tasks.

In this paper, we follow the development of one

particular autonomic system, the Autonomic

Information System (AIS), and illustrate how it

realizes autonomic behavior. The goal of the AIS is

to provide an information system that can adjust its

processing algorithms and/or information sources to

provide required information at various levels of

efficiency and effectiveness. In this system, various

types of sensors at different locations are used to

detect enemy vehicles. These sensors are subject to

failure and erroneous outputs and typically have a

delay in getting the information categorized. When

sensor data of interest is available, it is fused with

other related information to answer queries from the

commander. A field commander uses the system

interface to generate queries. To overcome the loss of

sensors and continue to provide the required

information, the AIS needs to adapt by replacing the

failed sensors and adapting the information

processing adequately without the intervention of the

user. Our work has four main contributions.

1. It demonstrates the effectiveness of OMACS for

building autonomic systems.

2. It defines a rigorous model-driven process,

derived from the O-MaSE process framework,

for designing autonomics systems.

3. It defines our generic OBAA architecture that

serves as a blueprint for autonomic agents.

4. It demonstrates the validity of our approach

through the design and evaluation of an

exemplar autonomic system.

The remainder of this paper is organized as

follows. First, we present other works related to

autonomic multiagent systems in Section 2. In

Sections 3 and 4 we provide an overview of the

OMACS model and the O-MaSE process framework.

Section 5 presents the design of our AIS organization

while Section 6 introduces our OBAA architecture.

In Section 7, we show the autonomic properties of

the AIS via a scenario. Finally, a performance

evaluation of the system is given in Section 8 while

Section 9 concludes and discusses future work.

2. Related work

There have been several architectures proposed

toward autonomic computing. For example, White et

al. describe an architectural approach in which they

suggest some required and optional behaviors,

interfaces for component interaction, and some

design patterns about the composition of autonomic

component to insure a self-managing system [28].

Lapouchnian et al. suggest a design capable of

supporting all alternative behaviors of an autonomic

system by using a goal-oriented requirements

engineering methodology [17]. Design templates

have also been proposed for autonomic elements that

monitor the system using heartbeat signals [25].

Appavoo et al. advocate a hot swapping technique to

enable autonomic behavior in object-oriented

systems [1]. Similarly, Schanne et al. propose to add

autonomic features to object-oriented applications by

incorporating proxy objects using a Java bytecode

engineering toolkit [23].

Fewer works use multiagent approaches to

building autonomic systems. One such approach is

Unity, which is a decentralized software architecture

in which autonomic elements are agents that have

predefined responsibilities and reason based on some

computed utility functions [26]. Like our system,

Unity uses goals to initiate autonomic behaviors.

However, the utility functions in Unity are tightly

coupled with the agents design whereas our work

offers a clear separation between application-related

functionalities and autonomicity-related tasks.

Similarly, other works have their autonomic

capacities tightly coupled with the agent architecture.

Kumar and Cohen describe an adaptive agent

architecture in which broker agents share the same

knowledge of the system and are thereby aware of

any agent failure [22], while Bigus et al. propose a

set of agent component libraries that can be used to

build autonomic systems [2]. These libraries extend

the ABLE platform by adding external agents to

explicitly manage and control the system, thus

allowing the system to exhibit autonomic properties.

Pour presents a three-tiered autonomic architecture in

which different types of agents perform various tasks

in several subsystems. In particular, the agents in the

third tier are cognitive agent that are able to reason

about the state of the system and initiate a

reconfiguration [20].

All these works are similar to ours in the sense that

agents have system-level knowledge that allows them

to manage themselves in unpredictable environments.

However, in these approaches, this system-level

knowledge is tightly coupled with the application

system architecture. In our approach, system-level

knowledge is based on the underlying OMACS

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems80

model and is implemented using our OBAA

architecture, which allows us to reuse the system-

level knowledge and systematically develop

autonomic applications.

While there have been several architectures

proposed for autonomic system, it is also essential to

develop software engineering methodologies for

building those systems. Bustard et al. [5] propose

integrating two systems engineering approaches,

Viable Systems Modeling and Soft Systems

Methodology, into a methodology for designing

autonomic systems. However, their approach is not

agent-based, and thus is very different from our

work, which provides a rigorous methodology for

designing flexible multiagent autonomic systems.

3. Overview of OMACS

OMACS [7] is a computational model that

provides a metamodel and a formal framework for

agent organizations. Essentially, it defines the

required organizational structure that allows

multiagent teams to reconfigure autonomously at

runtime, thus enabling them to cope with

unpredictable situations in a dynamic environment.

Specifically, OMACS specifies the type of

knowledge required for a multiagent system to be

able to reason about its own state and configuration.

Hence, multiagent teams are not limited by a

predefined set of configurations and can have the

appropriate information about their team, enabling

them to reconfigure in order to achieve their team

goals more efficiently and effectively. During the

design of an OMACS-based system, the designer

only provides high-level guidance about the

organization, which then allows the system to self-

configure based on the current goals and team

capabilities. These characteristics make OMACS

ideal for designing autonomic multiagent systems.

3.1. The OMACS metamodel

The OMACS metamodel is the metamodel upon

which autonomic systems are designed. Figure 1

shows a simplified OMACS metamodel. Only the

entities discussed in this paper are shown. OMACS

defines an organization as a set of goals that the team

is attempting to accomplish, a set of roles that must

be played to achieve those goals, a set of capabilities

required to play those roles, and a set of agents who

are assigned to roles in order to achieve organization

goals. In essence, each organization is an instance of

the OMACS metamodel presented in Fig. 1 and is

subject to all the constraints defined by OMACS. At

runtime, the assignments of agents to play roles to

achieve goals represent the key functionality that

allows the system to be autonomic. There are more

entities defined in OMACS that are not relevant for

this paper. The reader is referred to [7] for the

complete model.

3.2. Goals

Goals describe a desired state of the world and

thus provide a high-level description of what the

system is supposed to do [21]. Typically, each

organization has a top-level goal that is decomposed

into sub-goals. Eventually, this top-level goal is

refined into a set of leaf goals that are pursued by

agents in the organization. The set of all

organizational goals is denoted as G. The active goal

set, Ga, is the current set of goals that an organization

is currently trying to achieve. Ga changes

dynamically as new goals are created or existing

goals are achieved.

3.3. Roles

Roles are a high-level description of the behavior

required to achieve particular goals [9]. In OMACS,

each organization has a set of roles that it can use to

achieve its goals. The achieves function, which

associates a score between 0 and 1 to each 〈goal,

role〉 pair, tells how well that particular role can be

used to achieve that goal (1 being the maximum

score). In addition, each role requires a set of

capabilities and agents must possess all the required

requires

Organization

Role Agent

Capbility

Goal

possesses

capableachieves

Fig. 1. Simplified OMACS metamodel.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems 81

capabilities to be considered as a potential candidate

to assume that role.

3.4. Capabilities

In OMACS, capabilities are fundamental in

determining which agents can be assigned to what

roles in the organization [18]. In fact, agents are

capable of playing a role only if they posses all the

required capabilities. However, the decision whether

or not a capable agent is actually going to assume a

role is made at runtime. Agents may possess two

types of capabilities: hardware capabilities like

actuator or effectors, and software capabilities like

computational algorithms or resources.

3.5. Agents

OMACS agents are computational systems that

have the ability to communicate with each other,

accept assignments to play roles that match their

capabilities, and work to achieve their assigned

goals. Each agent is responsible for managing its

own state and its interactions with the environment

and with other agents. Once the system assigns a

goal and role, the agent determines the low-level

behavior necessary to fulfill the role and achieve the

goal. This low-level behavior is generally provided

either as part of the role definition or by a unique

agent behavior specified by the designer. To capture

a given agent’s capabilities, OMACS defines a

possesses function, which maps each 〈agent,

capability〉 pair to a value between 0 and 1,

describing the quality of the capability possessed by

an agent (1 representing the maximum quality).

In OMACS, a tuple 〈a,r,g〉 represents the

assignment of agent a to play role r in order to

achieve goal g. The assignment set, denoted Φ,

represents the set of all the current assignments in the

organization.

3.6. Assignment process

The set of active goals along with the agents and

their capabilities can change over time. For this

reason, the process of assigning agents to play roles

in order to achieve specific goals is not predefined

but rather performed dynamically at runtime. This

process takes into consideration the quality of each

capability possessed by agents along with how well

roles can achieve goals. For example, if a new goal is

instantiated within the organization, a greedy

algorithm could compute a new assignment by first

choosing the best role for that goal then the best

agent capable of playing the chosen role. However,

OMACS does not prescribe any particular algorithm

for computing assignments and several algorithms

been investigated for this purpose [30].

4. Overview of O-MaSE

In this section, we give a brief overview of the

Organization-based Multiagent System Engineering

(O-MaSE) Process Framework [12]. O-MaSE is a

framework that allows designers to create custom

agent-oriented development processes. This custom

agent-oriented process is generated following a

process metamodel and then instantiated from a set

of method fragments and guidelines by using a

method engineering approach [4]. Method

engineering is an approached that has been proposed

to allow the development of software methodologies

from several fragments.

Thus, O-MaSE defines a metamodel, a repository

of method fragments and a set of guidelines. The

O-MaSE metamodel defines general concepts used in

multiagent systems along with their relationships and

is based on an organizational approach. In fact, there

is a 1:1 projection of the OMACS metamodel onto

the O-MaSE metamodel, which allows systems

developed using appropriate O-MaSE method

fragments to produce valid instances of the OMACS

metamodel. Organizations developed using an

O-MaSE compliant process produce a set of models

that specify valid instances of the O-MaSE

metamodel. Method fragments are a set of activities,

techniques and work products extracted from

existing agent methodologies and stored in a

repository. They are later combined to create a

methodology instance which is used on a project.

O-MaSE method fragments currently cover the

requirements, analysis and design phases of a

multiagent development lifecycle. Finally, O-MaSE

guidelines specify a set of constraints that must be

maintained when combining method fragments to

create valid O-MaSE processes.

Therefore, designing a custom O-MaSE compliant

process requires process engineers to select a set of

methods that suit their needs from the repository and

combine them into a complete process such that the

constraints of each fragment are satisfied. O-MaSE

provides some guidelines to help choose fragments

but does not guarantee that all processes created will

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems82

necessarily be efficient. However, the O-MaSE

Process Framework does allow designers to develop

rigorous and repeatable processes suitable for their

particular needs.

The O-MaSE Process Framework is supported by

the agentTool Process Editor, which is part of the

agentTool III2 (aT3) development environment. The

agentTool Process Editor (APE) allows process

designers to create custom O-MaSE processes, which

can then be analyzed and designed using the (aT3)

development environment. Further details on aT3 and

APE can be found in [11]. The O-MaSE process used

in this research is presented next. All the diagrams

required by this process have been created using aT3.

5. Designing the AIS organization

Our autonomic system is an organization-based

multiagent system [3] built upon OMACS. Hence, to

implement the system, we first need to create an

O-MaSE process that captures all the concepts of

OMACS. Then we can follow our custom process to

design and implement an OMACS-based

organization for the AIS application. In the following

subsections, we define our custom process and

implement each step of the process.

5.1. A process for autonomic systems

We chose relevant method fragments from the

O-MaSE repository in order to derive a process for

building our autonomic system. As we were

interested in developing an OMACS-based system,

we chose method fragments that produced the

appropriate OMACS concepts. Thus, we produced a

customized process that included all the necessary

concepts related to the OMACS goals, roles,

capabilities and agents.

The process we used (and that can be used for

many autonomic systems) is shown in Fig. 2. We

represent it as an activity diagram in which we show

tasks as round-cornered rectangles and models as

square-cornered rectangles. Arrows represent the

input and output of models to and from tasks.

The process starts by translating all the system

requirements into a Goal Model via the Model Goals

and Goal Refinement tasks. Then we use the Goal

Model as an input of the Model Role task in order to

create a Role Model that captures all the interactions

2 See http://agenttool.projects.cis.ksu.edu/.

between roles and external actors. Following that, we

generate a Capability Model using the Model

Capabilities task that allows us to define all

capabilities required in the organization. Once the

Capability Model is completed, we can then design

agent types that are able to play roles in the

organization. Agent types are modeled via an Agent

Class Model produced by the Model Agent Classes

task. In parallel with the Model Capabilities task, we

also specify the message passing protocols required

to allow roles to interact using Protocol Models in

the Model Protocol task. Then, using the Role,

Capability, and Protocol Models as input, we

perform the Model Plans task in order to generate a

Plan Model for each role. Plan Models specify plans

that the agents need to execute in order to play roles

and achieve their assigned goals. All method

fragments have been chosen such that the constructed

organization is consistent with the OMACS

metamodel.

As it is possible to create a variety of different

processes that are consistent with OMACS, it is

difficult to evaluate the effectiveness of all such

 < < Tas k > >

M odel G oa ls
G oal M odel

< <Tas k > >

M odel P rotoc o ls

< < Tas k > >

M ode l A gent C las s es

< < Tas k > >

M odel C apabilit ies

< < Tas k > >

M odel R oles

< <Tas k > >

G oa l R ef inem ent

< <Tas k > >

M ode l P lans

GM oD S

Goal M odel

R ole M odel

C apab ilty

M odel

P ro toc ol

M ode l

P lan M odelA gen t C las s

M odel

Fig. 2. Autonomic systems process: Round-cornered rectangles

represent Tasks, square-cornered rectangles represent Models and

arrows indicate Models Flows.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems 83

processes. However, we claim that this process, and

similar processes developed using the O-MaSE

Process Framework, do provide a principled,

rigorous and repeatable method to systematically

develop autonomic systems. A further discussion of

the selection of method fragments and the

verification of process consistency can be found in

[11,12].

5.2. Model goals

Following our process, the first step in designing

an autonomic system is to capture the system

requirements in the form of a goal tree via the Model

Goals and Refine Goals tasks. A Goal Model

represents system-level goals and includes goal

definitions and goal decomposition, which

decomposes goals into a set of conjunctive or

disjunctive sub-goals [27].

To capture the dynamic nature of OMACS-based

systems, a time-based relationship exists between

goals. This additional information is captured

through a goal model based on the Goal Model for

Dynamic Systems (GMoDS) [19] during the Refine

Goals task. In a GMoDS goal model, we say goal g1

precedes goal g2, if g1 must be achieved before g2

can be pursued. This allows the organization to work

on one part of the goal tree at a time. During the

pursuit of specific goals, events may occur that cause

the instantiation of new goals. These new goals may

be parameterized to allow a context sensitive

meaning. For instance, if an event e can occur during

pursuit of goal g1 that instantiates goal g2, we say

that e triggers g2 during the pursuit of g1 (as a

shorthand, we often say goal g1 triggers g2). In

addition, GMoDS proposes two types of goals:

achievement goals, which the system seeks to

achieve to insure normal operation and maintenance

goals, which the system uses to continually monitor

its own operation and check for performance

improvement or failures.

The main goal of the AIS application is to answer

each query presented to the system. From the

requirements, we derived the GMoDS goal model

presented in Fig. 3. The boxes represent the goals

and their parameters. Conjunctive sub-goals are

connected to their parents by a diamond shaped

connector (◊) while disjunctive sub-goals are

connected to their parent by a triangle shaped

connector (Δ). The arrows indicate trigger events and

their parameters. The dashed arrows represent

negative triggers, which allow for the cancellation of

Fig. 3. GMoDS Goal Model for the AIS.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems84

a goal and all its sub-goals. As queries are not

predefined, most of the goals in the systems are

triggered after a query has occurred. These goals and

their parameters are instantiated and associated with

specific queries.

From Fig. 3, we can see that the top-level AIS

goal is decomposed into two conjunctive sub-goals:

Process Query and Answer Query. The Answer

Query goal is further decomposed into conjunctive

goals Get Data, Monitor Constraints and Return

Result, all of which have to be achieved in order to

achieve the Answer Query goal. All those sub-goals,

except the Return Result goal, are also further

decomposed into sub-goals. The goal Get Data is

decomposed into conjunctive goals Get Sensors and

Merge Data and the goal Monitor Constraints into

conjunctive goals Monitor Time Constraint and

Monitor Accuracy Constraint, which are both

maintenance goals. Finally, the goal Get Sensor is

decomposed into conjunctive goals Find Sensor and

Read Sensors, whereas the goal Merge Data is

decomposed into disjunctive goals Merge Diverse

and Merge Similar.

The organization only actively pursues the leaf

goals as their completion implies the completion of

their parent goal. The first leaf goal to be achieved by

the organization is the Process Query goal, which

gets the query from the user and triggers the Answer

Query goal based on the event Start parameterized

with a Query. Once the Answer Query goal is

triggered, all its descendants that are not triggered by

other events are also triggered. Thus, goal Find

Sensor is triggered by the same event. This goal aims

at finding all the sensors in the area of interest given

by query Q. Whenever sensors are found, it triggers

goals Read Sensor, and either Merge Diverse or

Merge Similar. Read Sensor is a goal to read data

from a sensor S passed in parameter. The Merge

Diverse goal fuses the data received from the list of

different sensors L for the area specified by query Q.

Sensors in the list L must not all be the same type.

On the opposite, goal Merge Similar fuses the data

received from the list of similar sensors L for the

area specified by query Q. Then, whenever

constraints are specified in the query, the Merge

Data goal triggers either goal Monitor Time

Constraint or goal Monitor Accuracy Constraint.

However, as Merge Data is not a leaf goal, the

trigger is actually generated by one of its sub-goals.

Goals Monitor Time Constraint and Monitor

Accuracy Constraint check the validity of the data

regarding the time constraint and the accuracy

constraint respectively. Finally, when the data are

ready, the Merge Data goal triggers the Return

Result goal, which displays the results of the query Q

in a user-friendly format.

In addition, in some cases of failures, the Merge

Data and Monitor Constraints goals can initiate a

negative trigger that cancels the Answer Query goal

and all its descendants. This negative trigger is

followed by a start event that triggers a new Answer

Query goal and results in the organization retrying to

achieve the query that previously failed.

5.3. Model roles

Once the goals of the system have been captured

and translated into a dynamic goal model, we

identify the required roles and their interactions

through the Model Roles task.

For each leaf goal in the goal model defined in the

previous task, we create a role that can achieve it.

The Role Model for the AIS is presented in Fig. 4. It

shows all the roles along with the protocols that exist

between pairs of roles and between roles and external

actors. For each role, the Role Model specifies which

organizational goals can be achieved and the required

capabilities. Following are the roles we have defined

for the AIS organization, along with a description of

their behavior.

Query Processor: Periodically gets new queries

from the user via the Interact_User protocol. This

role generates an event to notify the organization that

a new query has been entered. There is no explicit

protocol to send the query Q since the Start(Query)

event triggers that creation of a new Answer Query

goal, which has the query Q as its parameter. Each

agent who gets assigned to achieve a goal with the

Query parameter in effect receives a copy of Q.

Sensors Locator: Inquires the sensor database via

the protocol DB_Access in order to find all sensors

available in the area specified by the parameter of the

goal it achieves. Then it executes an algorithm to find

the best coverage based on the set of available

sensors. For each sensor selected, an event is

triggered (event ‘found(S:Sensor)’). This event

results in the organization attempting to find an agent

capable of reading the selected sensor. After all

sensors have been selected, the role generates an

event (event ‘mergeSimilar’ or ‘mergeDiverse’) to

notify the organization that it has found all sensors

capable of providing data for the query.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems 85

Sensor Reader: Reads the data from the sensor

given in parameter of the Read Sensor goal. This role

interacts with the battlefield simulator in order to get

the appropriate data and updates the status of the

sensor in the sensor database via the DB_Access

protocol. The data obtained is sent to any merger

agent interested in those data through the protocol

Data_Request.

Diverse Merger: Merges the data collected from

various sensors covering the area of interest. This

role uses a processing algorithm that allows it to

merge data coming from sensors of different type.

Data are obtained through the Sensor Reader role by

using the protocol Data_Request. This role can also

engage in the Monitor_Time and Monitor_Accuracy

protocols in order to request validation of the data

merged.

Similar Merger: Behaves like the Diverse Merger

role. However, the difference is that this role uses a

processing algorithm that allows it to efficiently

merge data coming from sensors of the same type.

Thus, this role cannot process data from differ types

of sources.

Result Interface: Returns the results of the query to

the GUI for displaying to the user via the protocol

User_Interact. The results of the query are received

from merger agents via the event result(Query).

Time Monitor: Checks the validity of the data

regarding the time constraint if specified by the user.

It communicates the results to the data merger agent

in charge of the query via the Monitor_Time protocol

and, if the constraint is violated, generates a negative

trigger failure.

Accuracy Monitor: Behaves like the Time Monitor

role but regarding the accuracy constraint.

5.4. Model capabilities

The next step into our process is to identify the

capabilities and specify their actions on the

environment through the Model Capabilities task.

This task takes the role model previously defined as

input.

During the Model Capabilities task, each

capability is defined in a Capability Model [8].

Figure 5 shows an example of a capability model for

the User Interaction capability and the Coverage

Processing capability. Each capability performs

some actions that are specified by their method

signature. The capabilities identified for the AIS are

listed below.

User Interaction: Used to interact with the user

through a Graphical User Interface. As shown in

Fig. 5, this capability provides actions to get a query

from the user (getQuery) and to display the result of

a query that has been executed (setQuery).

Coverage Processing: Used to compute the

optimal set of sensors that has the maximum

coverage of the area of interest and that can satisfy

the time and accuracy constraints. This capability has

two actions: satisfyConstraints and findOptimal

Coverage. The action satisfyConstraints takes a

query and a set of sensors and returns a list of

Fig. 4. AIS Role Model.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems86

sensors that satisfy the given time and accuracy

constraints. The action findOptimalCoverage takes a

query and a set of overlapping sensors and return a

minimal set of sensors that has the maximum

coverage of the area given in the query.

Sensor Interaction: Interacts with actual battlefield

sensors. This capability provides an action to query a

sensor given in parameter and retrieve its data.

Data Merging Diverse: Provides computational

algorithms to merge data coming from diverse type

of sensors.

Data Merging Similar: Provides fast computa-

tional algorithms to merge data coming from similar

sources only.

Monitoring: Provides the ability to check the time

and/or the accuracy constraints of the data. The

information about accuracy and timeliness of the

results are provided by the data sources (sensors).

Coordination: Provides the ability to communicate

with other agents. This capability provides actions to

send/receive messages to/from specific agents in the

organization. Agents can only communicate between

them via this capability.

5.5. Model agent classes

After the goals, roles and capabilities have been

identified, we need to populate our multiagent

organization by creating various agents via the

Model Agent Classes task. Agents represent the

autonomic elements of the system.

We define a set of agent types capable of playing

at least one role in the organization. Those agent

types, along with the capabilities they posses, are

captured in the Agent Class Model shown in Fig. 6.

While assignments of agents to play roles are

dynamically decided at runtime, the Agent Class

Model also shows all possible roles that an agent

could play. Hence, protocols between roles that were

defined in the Role Model have to be mapped to the

appropriate agents in the Agent Class Model.

Fig. 5. AIS Capability Models for UserInteraction and CoverageProcessing capabilities.

Fig. 6. AIS Agent Class Model.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems 87

During the actual instantiation of the organization,

an agent of each type is created. For the Data Sensor

Agent type, each sensor on the battlefield is

associated with a unique Data Sensor Agent.

After the Agent Class Model is completed, all

OMACS entities are defined. However, our process

has two tasks remaining that are not related to the

OMACS metamodel but are important in order to

complete the low-level design of our system.

5.6. Model protocols

In the Model Protocols task, we specify all the

protocols identified in the Role Model. Essentially,

protocols involving roles are executed by the agents

enacting those roles. The Protocol Models produced

by this task are documented via AUML Interaction

Diagrams [14]. Figure 7 shows two examples

Protocol Models: the Data_Request protocol and the

Monitor_Time protocol. The Data_Request protocol

is used to request data from sensors on the

battlefield. In this protocol, the Similar Merger role

sends a query message to the Sensor Reader role

which replies by sending the data in an inform

message. This exchange is repeated as long as data is

needed. The Monitor_Time protocol is used to

request a validation of the results against the

constraints specified in a query. In this protocol, the

Similar Merger role sends a monitor message to the

Monitor Time role that replies by sending either a

pass or fail message, depending on whether the query

meets the time constraints.

5.7. Model plans

For each role defined earlier in the process, we

provide a plan that agents execute in order to play

that role. The task Model Plans allows us to define

plans based on the Role Model, the Capability Model

and the Protocol Model. Essentially, a plan for a

given role provides an algorithm that exhibits the

behavior defined in the role. It uses the capabilities

required by that role and is consistent with all the

protocols defined for that role. Plans are captured in

a Plan Model, which is essentially a finite state

automaton.

As an example, in Fig. 8, we present a plan for the

role Sensors Locator. When the plan starts, the agent

sends a getSensors message to the Sensor Database

to get a list of all sensors registered in a given area

and moves to the Wait state. When the database

returns the list of sensors requested, the plan moves

into the Find Sensors state where it computes a new

list of sensors covering the area of interest and

satisfying the constraints specified in the query. If the

list of sensors is empty, the plan moves to a failure

state where the agent notifies the system that it fails

to find sensors to answer the query. However, if the

list is not empty, the plan moves to the Notify

Sensors state in which a found event is generated for

each sensor in the list. Once the events have been

generated (i.e. the list is empty), a transition is made

towards states Notify Similar Merge or Notify

Diverse Merger depending on the type of sensors

selected. In both states, an event is generated in order

to activate a merger agent to merge data from the

selected sensors.

6. Organization-based agent architecture

In this section, we present the Organization-based

Agent Architecture (OBAA) of the AIS agents,

which represent the autonomic elements of our

system [16]. As Fig. 9 shows, an AIS agent typically

consists of two components: the Execution

Component (EC) and the Control Component (CC).

6.1. Execution component

The EC represents the non-autonomic part of the

agent. Essentially, it corresponds to the application

Fig. 7. Examples of AIS Protocol Models.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems88

specific part of the agent. It is notified by its CC

about what role to play in the organization. Once it

has been assigned a role, the EC plays that role

according to a predefined plan provided at design

time by either the role or the agent designer. During a

role execution, an EC may need to coordinate with

other ECs in order to exchange some data.

Communication between ECs is done by message

passing while the EC reports its status directly to its

CC via method calls.

Fig. 8. AIS Plan Model for the role Sensor Locator.

Fig. 9. Organization-based agent architecture.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems 89

6.2. Control component

The CC represents the autonomic part of the

agent. In general, the more sophisticated this

component, the more autonomy the system displays.

Hence, this component plays a very important role in

achieving fully autonomous systems. By using the

high-level specifications of the organization, the CC

can reason about its own state and communicate it to

others. This self-awareness of the autonomic element

allows the whole system to be self-managed.

Typically, the CC is an intelligent component in

charge of all organization related tasks. Depending

on design strategies, it can have a partial or total

knowledge of the organization structure. We

designed a fixed communication interface between

the CC and the EC. This gives us the flexibility to

plug several different CC designs into our application

without having to modify other application-specific

components (the ECs). Therefore, Control

Components are generic and can be reused for any

other autonomic applications as long as the

communication interface is respected.

In general, a CC operates based on its knowledge

and the information collected from other agents via

their CCs. It can decide to reconfigure the

organization by including or canceling goals in the

organization, or by modifying the current

assignments. This reconfiguration process can be

distributed or centralized. A distributed

reconfiguration would involve a deliberation process

between all the CCs in order to reach a consensus

about the next state of the organization. However, in

our current implementation, we have opted for a

centralized approach in which all CCs report to one

particular CC that has all the knowledge to make

appropriate decisions. To differentiate with other

CCs, we call this particular CC the Organization

Master (OM). Therefore, the OM possesses all the

organizational knowledge and is in charge of all the

organization-related tasks (Fig. 9). The OM reasons

about the current state of the organization [29] and

once it reaches a decision about a new configuration,

it notifies all the CCs that are affected by this

reconfiguration. This autonomous reasoning is solely

based on the underlying OMACS architecture and

results in a reconfiguration, which is fundamental in

achieving the autonomic properties described in the

following section.

7. Autonomic properties of the AIS

In this section, we present a scenario that

exemplifies the autonomic behaviors of the AIS. To

adapt to a variety of unpredictable situations, our AIS

organization is able to detect changes in the

performance of the overall organization (self-

monitoring) and modify its structure accordingly

(self-adjusting). Many changes occur within the

environment; however, some changes occur within

the organization itself (e.g., capability failure or goal

completion). Hence, the AIS is not only aware of its

environment but it is also aware of its own state

(self-aware). These self-* properties of the AIS are

facilitated by our use of OMACS, which provides all

the necessary knowledge for a self-managing system.

7.1. AIS scenario

To demonstrate the AIS system, we use a

simulated battlefield with sensors and enemy targets.

In our battlefield simulator, there are five different

types of vehicles that the system is trying to locate

and identify: truck, halftrack, tank, artillery, and

launcher.

For the specific scenario described in this paper,

we have defined two types of sensors: ground

sensors and airborne automatic target recognition

(ATR) sensors. Sensors do not all provide the same

accuracy in identifying and locating enemy targets

and do not refresh their data at the same rate. The

ground sensors have a fixed location and provide

information about location and type of enemy

vehicles with an accuracy of 75%. They are also

capable of providing requested data within 5

minutes. The ATR sensors are obviously mobile and

also very accurate, providing location and enemy

vehicles type information with an accuracy of 95%.

Unfortunately, ATR sensors are not very fast; they

typically can only provide their information in 15

minutes. Therefore, the simulator can provide

erroneous or outdated data that might not be of any

interest for the commander. For this reason, the

commander can specify some constraints for the

query.

The screenshot in Fig. 10 shows the simulated

battlefield along with the sensors represented by

circles and enemy targets represented by small

squares. There are four ground sensors (S1, S2, S3,

S4) and one ATR sensor (S5). There are also five

enemy vehicles. We assume that the system is only

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems90

trying to answer one persistent query and omit the

query parameter for goals and triggers. The persistent

query is: “Show the location and type of all enemy

vehicles in the selected area” (the area selected is

defined by a rectangle in Fig. 10).

In what follows, all goals, roles, capabilities and

agent types are referred to by their id as presented in

Table 1.

7.2. Initialization

At the initialization of the system, all the agents

interested in participating in the organization register

with the OM. For this scenario, we have created one

agent for each agent type except for the agent type

DSA for which one DSA agent has been created for

each sensor in the battlefield. Agents are named after

their types and DSA agents are numbered to match

their sensor number. The organization only actively

pursues the leaf goals as their completion implies the

completion of their parent goal. At initialization, all

the leaf goals that have no predecessors and do not

require any triggers are inserted in Ga (the active goal

set) and thereby pursued by the organization. Based

on the goal model (Fig. 3), only goal G1 is active

initially. Once G1 is active, the OM chooses the best

role to achieve G1. R1 is chosen to achieve G1

because the pair 〈G1,R1〉 has the highest achieves

score. In fact, R1 is the only role capable of

achieving G1 as there is no other 〈goal, role〉 pair

with a non-null achieves score. Then the

organization chooses the QA agent to play R1. This

choice is motivated by the fact that QA possess all

the required capabilities to play R1. Hence, at

initialization, the AIS organization assigns QA to

play role R1 to achieve goal G1. Figure 11 shows the

successive states of the organization after the

occurrence of events. States contain the active goal

Table 1

Mapping between goals, roles, capabilities, agents and their id

 Name Id

Process Query G1
Find Sensors G2
Read Sensor G3
Merge Diverse G4
Merge Similar G5
Return Result G6
Monitor Time Constraint G7

Goals

Monitor Accuracy Constraint G8
Query Processor R1
Sensors Locator R2
Sensor Reader R3
Data Merger Diverse R4
Data Merger Similar R5
Result Interface R6
Time Monitor R7

Roles

Accuracy Monitor R8
User Interaction C1
Coverage Processing C2
Sensor Interaction C3
Data Merging Diverse C4
Data Merging Similar C5
Monitoring C6

Capabilities

Coordination C7
Query Agent QA
Sensor Finder Agent SFA
Data Sensor Agent DSA
Merger Agent Diverse MAD
Merger Agent Similar MAS

Agents

Monitor Agent MON

Fig. 10. Battlefield map: Circles S1 to S5 represent sensors and enemy

vehicles are denoted by small squares.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems 91

set (Ga) and the set of current assignments (Ф).

Arrows between states represent events that occurred

during the transition. The initial assignment we have

just described corresponds to State 1 in Fig. 11.

Once the QA retrieves the query from the GUI, it

triggers an event start(Query). This trigger results in

the activation of G2. Upon this activation, the system

must reconfigure itself to achieve this new active

goal. By taking the best role and agent to achieve

goal G2, the SFA is assigned to play role R2 to

achieve goal G2 (State 2 in Fig. 11).

When the query has been retrieved, the QA agent

terminates by sending an achieved message to the

OM, which causes the goal and its related assignment

to be removed from Ga and Φ. Next, the SFA agent

chooses sensors S1, S2, S3 for the query as those

sensors maximize the area of interest coverage. The

following events are then generated: found(S1),

found(S2), found(S3). Each found event triggers a

parameterized goal G3 having the parameter of that

event. In our case, goals G3(S1), G3(S2), and

G3(S3) become active, which again requires a

reconfiguration resulting in (DSA1,R3,G3(S1)),

(DSA2,R3,G3(S2)), and (DSA3,R3,G3(S3)) being

inserted into Φ (State 3 in Fig. 11).

As all the sensors found by the SFA agent are of

the same type, an event mergeSimilar(〈S1,S2,S3〉) is

triggered, which results in the activation of the

parameterized goal G5(〈S1,S2,S3〉). After computing

the best assignment, the assignment of the Merger

Agent Similar (MAS) to play role R5 to achieve goal

G5 is chosen (State 4 in Fig. 11).

Once all the events have been triggered, the SFA

agent notifies the OM that it has successfully

completed its role by sending an achieved message.

At this point, the MAS agent starts getting data from

the DSA agents and merges them to extract the

necessary information. In order to have the results of

the query checked against the constraints that may

have been specified by the commander, the MAS

agent triggers a monitorTime and monitorAccuracy

event. These events result in the activation of G7 and

G8.

Following a system reconfiguration, the

assignment 〈MON,R7,G7〉 and 〈MON,R8,G8〉 are

inserted into Φ. Note actually that the MON agent is

playing R7 and R8 because it has all the required

capabilities for both roles (State 5 in Fig. 11). As no

constraints have been specified for the query, the

constraints are trivially validated and the MON agent

sends a message to the MAS agent, notifying it that it

can proceed and then terminates.

When the results are ready, the MAS agent

triggers a result event, which results in the activation

of goal G6. The MAS agent, which has the capability

to interact with the GUI, is selected to play role R6 to

achieve goal G6 and sends the results to the GUI

(State 6 in Fig. 11). When a query update is required,

the MAS agent coordinates with the same DSA

agents to get new data.

For this scenario, the results reported a coverage

representing 100% of the area of interest and the

system effectively detected all three targets in the

selected area: Tank at 29,40, Truck at 20,40 and

Launcher at 36,47.

Therefore, this scenario shows an important

attribute of our autonomic system: self-configuration.

The system is able to reconfigure itself when new

goals appear in the organization. Every newly

activated goal in the organization requires the AIS to

take action in order to achieve this new goal. Our

autonomic system is also capable of self-optimizing

in the case of a goal completion. The achievement of

a goal can free an agent to take on a new role and

goal assignment. When this occurs, the organization

may make new assignments in order to optimize the

performance of the system.

Ga = {G3(S1),G3(S2),G3(S3),

G5(<S1,S2,S3>,G7,G8))}

Ф = {(DSA1,R3,G3(S1)),

(DSA2,R3,G3(S2),

(DSA3,R3,G3(S3)

(MAS,R5,G5(<S1,S2,S3>))

(MON,R7,G7),(MON,R8,G8)}

State 5

achieved

monitorTime

monitorAccuracy

achievedresult

Ga = {G1}

Ф={(QA,R1,G1)}

State 1

Ga = {G1, G2}

Ф = {(QA,R1,G1)

(SFA,R2,G2)}

State 2

Ga = {G2, G3(S1),G3(S2),

G3(S3)}

Ф = {(SFA,R2,G2),

(DSA1,R3,G3(S1)),

(DSA2,R3,G3(S2)),

(DSA3,R3,G3(S3))}

State 3

Ga = {G2,

G3(S1),G3(S2),G3(S3),

G5(<S1,S2,S3>)}

Ф = {(SFA,R2,G2),

(DSA1,R3,G3(S1)),

(DSA2,R3,G3(S2)),

(DSA3,R3,G3(S3)),

(MAS,R5,G5(<S1,S2,S3>))}

State 4

Ga = {G3(S1),G3(S2),G3(S3),

G5(<S1,S2,S3>)),G6}

Ф = {(DSA1,R3,G3(S1)),

(DSA2,R3,G3(S2),

(DSA3,R3,G3(S3)

(MAS,R5,G5(<S1,S2,S3>))

(MAS,R6,G6)}

State 6

start

achieved

found(S1)

found(S2)

found(S3)

mergeSimilar

(<S1,S2,S3>)

Fig. 11. Organization states during a normal execution. Changes

from the previous state are in bold.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems92

7.3. Sensors failure

The AIS simulator allows us to fail specific

sensors. If we make S2 fail, the corresponding DSA

agent (DSA2), which is the only agent capable of

playing R3 to achieve G3(S2), can no longer achieve

its goal. The organization states related to that sensor

failure are presented in Fig. 12. The first state,

State 7, corresponds to a state from the normal

execution in which data are being refreshed.

Whenever the DSA2 fails, the MAS agent, which

was coordinating with the DSA2 agent to gather the

data, interrupts its task and generates a negative

trigger failure and a trigger start(query). The

negative trigger causes all the goals related to that

query to be removed, resulting in the cancellation of

all their current assignments. Thus, goals G3(S1),

G3(S2), G3(S3), G5(〈S1,S2,S3〉) are all removed.

The start(query) event causes the activation of a new

instance of goal G2 that is achieved by the SFA

agent playing role R2 (State 8 in Fig. 12).

Taking into account the loss of capability of the

DSA2 agent, the SFA agent selects sensors S1, S3,

S5 as the new optimal set of sensors for the query.

The SFA agent then triggers the following events:

found(S1), found(S3), found(S5) which result in the

activation of goal G3(S1), G3(S3), and G3(S5)

(State 9 in Fig. 12). As this set of sensors contains

sensors of different types (S1, S3 are ground sensors

whereas S5 is an ATR sensor), the SFA agent

triggers an event mergeDiverse(〈S1,S3,S5〉), which

results in the activation of goal G4(〈S1,S3,S5〉). To

achieve this new goal, the system chooses role R4,

which is played by the Merger Agent Diverse

(MAD). Then, the SFA sends an achieved message

to the OM and terminates (State 10 in Fig. 12). The

system then continues its execution as described in

the previous section, except that the merger in charge

of the query is now the MAD agent (States 11 and 12

in Fig. 12). As the coverage provided by the new set

of sensors is also 100%, the AIS detects all the

enemies in the area of interest: Tank at 29,40, Truck

at 20,40 and Launcher at 36,47.

Therefore, by effectively detecting the sensor that

failed and replacing it, the AIS has demonstrated its

self-healing capability. The failure triggered a

reconfiguration of the system to allow sensor reading

tasks to be redistributed among all the DSA agents

still operational and capable of covering the area of

interest. Through this reconfiguration, the DSA5

agent has replaced the DSA2 agent that failed. In

addition, during this scenario, an illustration of the

AIS self-optimizing behavior has also occurred when

the AIS organization has decided to replace the MAS

agent, which was merging the data prior to the

failure, by the MAD agent in order to insure a better

performance. Hence, even though a loss of a sensor

used to provide information for the query occurred,

the AIS was able to reconfigure itself and maintain

the flow of information without the intervention of

the user. In a rigid system, the loss of a sensor would

mean an irreversible loss of performance.

7.4. Maintenance goal failure

When specifying a query, the commander can

stipulate some time or accuracy constraints that the

query needs to satisfy. By default, a query does not

have any constraints. For the remainder of our

scenario, we assume that the commander has

specified that the system should provide query results

within 8 minutes.

We continue our example with the system

currently running the query using the DSA1, DSA3,

DSA5 and MAD agents as described in the previous

section. Figure 13 shows the successive states of the

organization for the events described in this section.

State 13 in Fig. 13 corresponds to a state in which

data are being refreshed after the sensor failure. After

Ga = {G3(S1),G3(S3),G3(S5),

G5(<S1,S3,S5>,G7,G8))}

Ф = {(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3),

(DSA5,R3,G3(S5)

(MAD,R4,G4(<S1,S3,S5>))

(MON,R7,G7),(MON,R8,G8)}

State 11

achieved monitorTime monitorAccuracy

achieved

result

Ga = {G2}

Ф = {(SFA,R2,G2)}

State 8

Ga = {G2, G3(S1),G3(S3),

G3(S5)}

Ф = {(SFA,R2,G2),

(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3)),

(DSA5,R3,G3(S5))}

State 9
Ga = {G2,

G3(S1),G3(S3),G3(S5),

G5(<S1,S3,S5>)}

Ф = {(SFA,R2,G2),

(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3)),

(DSA5,R3,G3(S5)),

(MAD,R4,G4(<S1,S3,S5>))}

State 10

Ga = {G3(S1),G3(S3),G3(S5),

G5(<S1,S3,S5>)),G6}

Ф = {(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3),

(DSA5,R3,G3(S5)

(MAD,R4,G4(<S1,S3,S5>))

(MAD,R6,G6)}

State 12

start

found(S1) found(S3) found(S5)

mergeDiverse

(<S1,S3,S5>)

Ga = {G3(S1),G3(S2),G3(S3),

G5(<S1,S2,S3>)}

Ф = {(DSA1,R3,G3(S1)),

(DSA2,R3,G3(S2),

(DSA3,R3,G3(S3),

(MAS,R5,G5(<S1,S2,S3>))}

State 7

- failure

Fig. 12. Organization states before and after a sensor failure.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems 93

the data from the battlefield are refreshed, the MAD

agent triggers monitorTime and monitorAccuracy

events in order to check the query against the time

and accuracy constraints that have been updated.

These events result in the activation of goals G7 and

G8. During reconfiguration, the OM assigns the

MON agent to play both R7 and R8 to achieve G7

and G8 (State 14 in Fig. 13).

Once the data is sent to the MON agent for

checking the constraints, it generates a negative

trigger failure because the query, as executed, does

not meet the 8 minutes constraint. In fact, sensor S5

used in that query, which is an ATR sensor, can only

provide data within 15 minutes. Therefore, the

maintenance goal G7 fails. This negative trigger

causes all the goals related to that query to be

removed, resulting in the cancellation of all related

assignments. Thus, goals G3(S1), G3(S3), G3(S5),

G4(〈S1,S3,S5〉), G7, and G8 are all removed. The

failure event is immediately followed by a start event

generated by the MON agent. This event triggers the

activation of goal G2 that is achieved by the SFA

agent, playing role R2 (State 15 in Fig. 13).

Taking into account the time constraint for the

query, the SFA agent selects sensors S1, S3, S4 as

the new optimal set of sensor for the query because

they are all ground sensors capable of covering the

area of interest and providing data within 5 minutes.

The SFA agent then triggers the following events:

found(S1), found(S3), found(S4) which result in the

activation of goal G3(S1), G3(S3), and G3(S4) (State

16 in Fig. 13). As the set of sensor contains only

ground sensors, the SFA agent triggers an event

mergeSimilar(〈S1,S3,S4〉), which results in the

activation of goal G5(〈S1,S3,S4〉). To achieve this

new goal, the system chooses role R5 which is

played by the MAS agent (State 17 in Fig. 13). The

execution then continues as described in the normal

execution (States 18 and 19 in Fig. 13).

Nevertheless, this reconfiguration has resulted in a

lost of coverage and the Tank located at (29,40) can

no longer be detected as the set of sensors selected in

order to satisfy the time constraint covers only 87%

of the area. The AIS detects the following enemies:

Truck at 20,40 and Launcher at 36,47.

Hence, through this scenario, we can see how the

AIS exhibits its self-protection and self-optimizing

properties. The MON agent, in charge of monitoring

the system for performance degradation, protects the

system against undesirable behavior. When a

violation of the query constraints was detected, the

system decided to reconfigure itself by replacing the

DSA5 agent by the DSA4 agent in order to insure the

effectiveness of the query concerning the time

constraint. This reconfiguration has also replaced the

MAD by the MAS, which yields a better

performance in merging data coming from different

sensors.

8. Experimental results

To evaluate the performance of our autonomic

information system, we performed 100 persistent

queries executed 20 times each for different sensor

failure rates, which we define as the ratio of sensor

failures to the total number of sensors originally

available on the battlefield. We are interested in

evaluating the cost associated with the

implementation of OMACS-based systems. For that,

we compare our autonomic system with a non-

autonomic system. This non-autonomic system is

also designed with a simple O-MaSE compliant

Ga = {G3(S1),G3(S3),G3(S4),

G5(<S1,S3,S4>,G7,G8))}

Ф = {(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3),

(DSA4,R3,G3(S4)

(MAS,R5,G5(<S1,S3,S4>))

(MON,R7,G7),(MON,R8,G8)}

State 18

achieved

monitorTime

monitorAccuracy

achieved result

Ga = {G2}

Ф = {(SFA,R2,G2)}

State 15

Ga = {G2, G3(S1),G3(S3),

G3(S4)}

Ф = {(SFA,R2,G2),

(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3)),

(DSA4,R3,G3(S4))}

State 16

Ga = {G2,

G3(S1),G3(S3),G3(S4),

G5(<S1,S3,S4>)}

Ф = {(SFA,R2,G2),

(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3)),

(DSA4,R3,G3(S4)),

(MAS,R5,G5(<S1,S3,S4>))}

State 17

Ga = {G3(S1),G3(S3),G3(S4),

G5(<S1,S3,S4>)),G6}

Ф = {(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3),

(DSA4,R3,G3(S4)

(MAS,R5,G5(<S1,S3,S4>))

(MAS,R6,G6)}

State 19

start

found(S1)

found(S3)

found(S4)

mergeSimilar

(<S1,S3,S4>)

- failure

Ga = G3(S1),G3(S3),G3(S5),

G5(<S1,S3,S5>)}

Ф = {(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3)),

(DSA5,R3,G3(S5)),

(MAD,R4,G4(<S1,S3,S5>))}

State 13

Ga = {G3(S1),G3(S3),G3(S5),

G5(<S1,S3,S5>,G7,G8))}

Ф = {(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3),

(DSA5,R3,G3(S5),

(MAD,R4,G4(<S1,S3,S5>))

(MON,R7,G7),(MON,R8,G8)}

State 14

monitorTime

monitorAccuracy

Fig. 13. Organization states before and after a maintenance goal

failure.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems94

process in which assignments are predefined at

design time by directly assigning agents to achieve

goals. Hence, this process is not OMACS compliant.

Our first sets of experiments attempted to evaluate

the system robustness. We created a battlefield

containing 40 sensors at fixed locations and 100

merger agents. The sensors were placed such that

each point in the area of interest was covered by at

least two sensors. For each run, we submitted 100

persistent queries and the experiment ran until each

query had been executed 20 times. Experiments were

run on both our autonomic system and a non-

autonomic system that we simulated. Basically, once

the queries were submitted, both systems chose the

optimal set of Data Sensor Agent (DSA) to provide

maximum coverage. However, when a DSA failed,

the non-autonomic system ignored the failure and

continued to provide results whereas the autonomic

system reconfigured. The robustness of the system

was measured in terms of the average coverage

obtained at the end of the experiment for various

sensor failure rates.

As expected, the results, as shown in Fig. 14,

clearly indicate that for any failure rate, the

autonomic system was significantly more robust.

Observe that after 30% failure rate, the autonomic

system was still able to provide a coverage of 100%

whereas this coverage had dropped to 75% for the

non-autonomic system. However, when too many

sensors were lost (around 90% failure rate), the

coverage provided by both system was very close as

the autonomic system could not find any other

sensors to replace the failed sensors. On average, the

autonomic system achieved 25% more coverage than

its counterpart.

In our second set of experiments, we were

interested in characterizing the cost of reconfigura-

tion in terms of the number of messages sent by the

agents. As in the first experiment, we used 40 data

sensor agents and 100 merger agents trying to answer

100 persistent queries. The results in Fig. 15 show

that for the non-autonomic system, the number of

messages decreased as the failure rate increased. This

is due to the fact that as more sensors fail, the system

interacts with less data sensor agents resulting in

fewer messages. For the autonomic system, we

expected a monotonically increasing function due to

the messages involved in an increasing number of

reconfigurations. However, the number of messages

only increased until we reached a failure rate of 30%

and then decreased. These results suggest that before

the 30% failure rate, the number of reconfiguration

messages was larger than the number of messages

generated by sensors prior to their failure. As more

sensors were lost (30% failure rate and larger), the

increase in messages due to reconfiguration was less

than the loss of messages caused by the reduction of

sensor interactions, globally resulting in less

messages sent in the system. Overall, the autonomic

system generated approximately 50% more

messages.

Our final set of experiments attempted to confirm

the influence of the number of data sensor agents on

system performance. We ran the previous

experiments with 3 different numbers of data sensor

agents: 20, 30 and 80. For each set, we measured the

number of messages sent at different failure rates.

The results are shown in Fig. 16. We note that there

is a direct correlation between the number of data

sensor agents and the number of message sent.

However, as the number of data sensor agents

doubles, the number of messages only increases by a

constant factor. This is an important result that

ensures an effective scalability of our system.

Fig. 15. Comparison of number of messages sent. Fig. 14. Comparison of area coverage.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems 95

9. Conclusions and future work

We have described a comprehensive multiagent

approach for building an Autonomic Systems. Our

approach takes advantage of OMACS, which fits

well in the autonomic computing perspective and

allows autonomic systems to achieve many self-*

properties. Furthermore, we have designed a

customized multiagent development process from the

O-MaSE process framework. Our process fits with

OMACS organizational concepts and provides means

to create a rigorous process to design autonomic

systems. In addition, we have described our OBAA

agent architecture that separates general autonomic

reasoning from application specific tasks. This

allows applications to reuse various autonomic

reasoning strategies without changing their

implementation.

Moreover, through a specific scenario, we have

illustrated the self-configuring, self-optimizing, self-

healing and self-protecting properties of our

exemplar system, the autonomic information system.

As a result of those properties, the system is able

reason about system goals, recover from failures,

recognize and prevent undesirable behaviors and

optimize performance without disrupting the flow of

information and requiring the intervention of the

user.

Finally, we have shown experimentally that our

autonomic information system was more robust than

a non-autonomic version, achieving on average 25%

more coverage after some sensors had failed. Then

we have measured that this increase in robustness

comes with an increase number of messages

generated due to reconfiguration. Our experiments

have demonstrated that the autonomic system

generated 50% more messages than the non-

autonomic one. Lastly, we have shown that, despite

the cost of reconfiguration, our autonomic system

exhibits a good scalability.

In the future work, we want to evaluate our

proposed design process by comparing it with other

autonomic methodologies. In addition, we are

investigating ways to allow a distributed

reconfiguration, as oppose to the centralized

approach used in this paper. This would allow all the

agents to participate in the reconfiguration process,

resulting in a more robust autonomic system.

We are also working on extending the aT
3 tool to

support design metrics, which allows the designer to

explore alternative designs and verify its design for

robustness, flexibility and efficiency thorough the

entire development lifecycle.

Finally, as systems become larger and more

complex, we are also looking into ways to simplify

the design of such systems by allowing reuse of

simpler and smaller organizations through some

composition mechanisms. This would allow the

designer to focus on smaller organizations and would

facilitate the verification process.

References

 [1] J. Appavoo, et al., Enabling autonomic behavior in systems

software with hot swapping. IBM SYSTEMS JOURNAL,

2003. 42(1): p. 60–76.

 [2] J.P. Bigus, et al., ABLE: A toolkit for building multiagent

autonomic systems. IBM Journal of Research and

Development, 2002. 41(3): p. 350.

 [3] P.M. Blau and W.R. Scott, Formal organizations. 1966,

Routledge & Kegan Paul.

 [4] S. Brinkkemper, Method engineering: engineering of

information systems development methods and tools.

Information and Software Technology, 1996. 38(4): p. 275–

280.

 [5] D.W. Bustard, et al., Autonomic system design based on the

integrated use of SSM and VSM. Artificial Intelligence

Review, 2006. 25(4): p. 313–327.

 [6] T. De Wolf and T. Holvoet. Towards autonomic computing:

agent-based modelling, dynamical systems analysis, and

decentralised control. In Industrial Informatics, 2003.

INDIN 2003. Proceedings. IEEE International Conference

on. 2003.

 [7] S. DeLoach, W. Oyenan, and E. Matson, A capabilities-

based model for adaptive organizations. Autonomous

Agents and Multi-Agent Systems, 2008. 16(1): p. 13–56.

 [8] S. DeLoach and J. Valenzuela, An Agent-Environment

Interaction Model. In Agent-Oriented Software Engineering

VII. 2007. p. 1–18.

 [9] J. Ferber, et al. Organization models and behavioural

requirements specification for multi-agent systems. In

MultiAgent Systems, 2000. Proceedings. Fourth

International Conference on. 2000.

Fig. 16. Impact of the number of data sensor agents used.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems96

[10] A.G. Ganek and T.A. Corbi, The dawning of the autonomic

computing era. IBM SYSTEMS JOURNAL, 2003. 42(1):

p. 6.

[11] J.C. Garcia-Ojeda, S.A. DeLoach, and Robby. agentTool

Process Editor: Supporting the Design of Tailored Agent-

based Processes. In Proceedings of the 24th Annual ACM

Symposium on Applied Computing 2009. Honolulu, Hawaii.

[12] J.C. Garcia-Ojeda, et al. O-MaSE: A Customizable Approach

to Developing Multiagent Development Processes. In The

8th International Workshop on Agent Oriented Software

Engineering 2007.

[13] P. Horn, Autonomic Computing: IBM’s Perspective on the

State of Information Technology. IBM TJ Watson Labs, NY,

15th October, 2001.

[14] M.P. Huget and J. Odell. Representing agent interaction

protocols with agent UML. In Autonomous Agents and

Multiagent Systems, 2004. AAMAS 2004. Proceedings of the

Third International Joint Conference on. 2004.

[15] N.R. Jennings, On agent-based software engineering.

Artificial Intelligence, 2000. 117(2): p. 277–296.

[16] J.O. Kephart and D.M. Chess, The vision of autonomic

computing. Computer, 2003. 36(1): p. 41–50.

[17] A. Lapouchnian, et al., Towards requirements-driven

autonomic systems design. In Proceedings of the 2005

workshop on Design and evolution of autonomic application

software. 2005, ACM: St. Louis, Missouri.

[18] E. Matson and S. DeLoach. Capability in Organization

Based Multi-agent Systems. In Proceedings of the Intelligent

and Computer Systems (IS’03) Conference. 2003.

[19] M. Miller, A Goal Model for Dynamic Systems. 2007,

Kansas State University: Manhattan.

[20] G. Pour. Expanding the Possibilities for Enterprise

Computing: Multi-Agent Autonomic Architectures. In

Enterprise Distributed Object Computing Conference

Workshops, 2006. EDOCW’06. 10th IEEE International.

2006.

[21] S.J. Russel and P. Norvig, Artificial intelligence. 2003,

Prentice-Hall.

[22] K. Sanjeev and P.R. Cohen, Towards a fault-tolerant multi-

agent system architecture. In Proceedings of the fourth

international conference on Autonomous agents. 2000,

ACM: Barcelona, Spain.

[23] M. Schanne, T. Gelhausen, and W.F. Tichy. Adding

autonomic functionality to object-oriented applications. In

Database and Expert Systems Applications, 2003.

Proceedings. 14th International Workshop on. 2003.

[24] R. Sterritt. Towards autonomic computing: effective event

management. In Software Engineering Workshop, 2002.

Proceedings. 27th Annual NASA Goddard/IEEE. 2002.

[25] R. Sterritt and D. Bustard. Towards an autonomic computing

environment. In Database and Expert Systems Applications,

2003. Proceedings. 14th International Workshop on. 2003.

[26] G. Tesauro, et al. A multi-agent systems approach to

autonomic computing. In Autonomous Agents and

Multiagent Systems, 2004. AAMAS 2004. Proceedings of the

Third International Joint Conference on. 2004.

[27] A. van Lamsweerde, R. Darimont, and E. Letier, Managing

conflicts in goal-driven requirements engineering. Software

Engineering, IEEE Transactions on, 1998. 24(11): p. 908–

926.

[28] S.R. White, et al. An architectural approach to autonomic

computing. In Autonomic Computing, 2004. Proceedings.

International Conference on. 2004.

[29] C. Zhong, An Investigation of Reorganization Algorithms.

2006, Kansas State University.

[30] C. Zhong and S.A. DeLoach, An Investigation of

Reorganization Algorithms. In International Conference on

Artificial Intelligence (IC-AI’2006). 2006, CSREA Press:

Las Vegas, Nevada.

W.H. Oyenan and S.A. DeLoach / Towards a systematic approach for designing autonomic systems 97

