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Abstract. An autonomic system is a system capable of managing itself and adjusting its actions in the face of environmental 

changes. Autonomic systems are currently developed using ad-hoc approaches, which do not promote repeatable successes. In 

this paper, we propose a systematic approach for designing autonomic systems. Our approach adopts a multiagent perspective 

based on the Organization Model for Adaptive Computational Systems, which defines the knowledge required for the system 

to be able to self-organize. Furthermore, a customized development process based on the Organization-based Multiagent 

Systems Engineering framework supports our approach. To illustrate the process, we describe the design of one autonomic 

system, the Autonomic Information System, and exemplify how this system fulfills desired autonomic properties. We also 

evaluate the performance of our autonomic system by comparing it to a non-autonomic system. 
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1. Introduction 

The goal of autonomic computing is to create new 

systems that are able to manage themselves. This 

requires that such systems have the ability to self-

configure, self-optimize, self protect, and self-heal 

[10,13,16,24]. As systems become increasingly 

complex, they are expected to handle this complexity 

on their own. Therefore, it is crucial that they exhibit 

autonomic behavior. 

While the advantages of using a multiagent 

approach have been recognized [6,26], many 

autonomic applications are developed from scratch, 

producing ad-hoc designs that work well for the 

proposed application. Unfortunately, the process is 

not repeatable, thus neither it nor the design can be 

reused in other autonomic applications. In our work, 

we adopt a multiagent approach for developing 
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autonomic systems since agents are autonomous and 

map naturally to the autonomic computing principles 

[15]. In addition, our approach is based on a formal 

framework and is supported by a customizable 

multiagent development process. 

The purpose of this paper is to demonstrate the 

effectiveness of a set of related technologies based 

on the Organization Model for Adaptive 

Computational System (OMACS) [7] for designing 

autonomic systems. OMACS defines the knowledge 

required for a system to be able to understand its own 

problem solving state and configuration in order to 

self-organize. Instead of building our system using 

ad-hoc methods, we defined a reusable OMACS-

compliant process that incorporates all the entities 

required by OMACS. We designed this process using 

the Organization-based Multiagent System 

Engineering (O-MaSE) Process Framework [12], 

which is a framework for creating custom multiagent 

development processes. After designing the system 

according to our custom process, we implemented 

the system using our Organization-based Agent 

Architecture (OBAA). The OBAA is an architecture 
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created to support organization-based agents and to 

separate general autonomic reasoning from 

application specific tasks. 

In this paper, we follow the development of one 

particular autonomic system, the Autonomic 

Information System (AIS), and illustrate how it 

realizes autonomic behavior. The goal of the AIS is 

to provide an information system that can adjust its 

processing algorithms and/or information sources to 

provide required information at various levels of 

efficiency and effectiveness. In this system, various 

types of sensors at different locations are used to 

detect enemy vehicles. These sensors are subject to 

failure and erroneous outputs and typically have a 

delay in getting the information categorized. When 

sensor data of interest is available, it is fused with 

other related information to answer queries from the 

commander. A field commander uses the system 

interface to generate queries. To overcome the loss of 

sensors and continue to provide the required 

information, the AIS needs to adapt by replacing the 

failed sensors and adapting the information 

processing adequately without the intervention of the 

user. Our work has four main contributions. 

1. It demonstrates the effectiveness of OMACS for 

building autonomic systems. 

2. It defines a rigorous model-driven process, 

derived from the O-MaSE process framework, 

for designing autonomics systems. 

3. It defines our generic OBAA architecture that 

serves as a blueprint for autonomic agents. 

4. It demonstrates the validity of our approach 

through the design and evaluation of an 

exemplar autonomic system. 

The remainder of this paper is organized as 

follows. First, we present other works related to 

autonomic multiagent systems in Section 2. In 

Sections 3 and 4 we provide an overview of the 

OMACS model and the O-MaSE process framework. 

Section 5 presents the design of our AIS organization 

while Section 6 introduces our OBAA architecture. 

In Section 7, we show the autonomic properties of 

the AIS via a scenario. Finally, a performance 

evaluation of the system is given in Section 8 while 

Section 9 concludes and discusses future work. 

2. Related work 

There have been several architectures proposed 

toward autonomic computing. For example, White et 

al. describe an architectural approach in which they 

suggest some required and optional behaviors, 

interfaces for component interaction, and some 

design patterns about the composition of autonomic 

component to insure a self-managing system [28]. 

Lapouchnian et al. suggest a design capable of 

supporting all alternative behaviors of an autonomic 

system by using a goal-oriented requirements 

engineering methodology [17]. Design templates 

have also been proposed for autonomic elements that 

monitor the system using heartbeat signals [25]. 

Appavoo et al. advocate a hot swapping technique to 

enable autonomic behavior in object-oriented 

systems [1]. Similarly, Schanne et al. propose to add 

autonomic features to object-oriented applications by 

incorporating proxy objects using a Java bytecode 

engineering toolkit [23]. 

Fewer works use multiagent approaches to 

building autonomic systems. One such approach is 

Unity, which is a decentralized software architecture 

in which autonomic elements are agents that have 

predefined responsibilities and reason based on some 

computed utility functions [26]. Like our system, 

Unity uses goals to initiate autonomic behaviors. 

However, the utility functions in Unity are tightly 

coupled with the agents design whereas our work 

offers a clear separation between application-related 

functionalities and autonomicity-related tasks.  

Similarly, other works have their autonomic 

capacities tightly coupled with the agent architecture. 

Kumar and Cohen describe an adaptive agent 

architecture in which broker agents share the same 

knowledge of the system and are thereby aware of 

any agent failure [22], while Bigus et al. propose a 

set of agent component libraries that can be used to 

build autonomic systems [2]. These libraries extend 

the ABLE platform by adding external agents to 

explicitly manage and control the system, thus 

allowing the system to exhibit autonomic properties. 

Pour presents a three-tiered autonomic architecture in 

which different types of agents perform various tasks 

in several subsystems. In particular, the agents in the 

third tier are cognitive agent that are able to reason 

about the state of the system and initiate a 

reconfiguration [20]. 

All these works are similar to ours in the sense that 

agents have system-level knowledge that allows them 

to manage themselves in unpredictable environments. 

However, in these approaches, this system-level 

knowledge is tightly coupled with the application 

system architecture. In our approach, system-level 

knowledge is based on the underlying OMACS 
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model and is implemented using our OBAA 

architecture, which allows us to reuse the system-

level knowledge and systematically develop 

autonomic applications.  

While there have been several architectures 

proposed for autonomic system, it is also essential to 

develop software engineering methodologies for 

building those systems. Bustard et al. [5] propose 

integrating two systems engineering approaches, 

Viable Systems Modeling and Soft Systems 

Methodology, into a methodology for designing 

autonomic systems. However, their approach is not 

agent-based, and thus is very different from our 

work, which provides a rigorous methodology for 

designing flexible multiagent autonomic systems. 

3. Overview of OMACS 

OMACS [7] is a computational model that 

provides a metamodel and a formal framework for 

agent organizations. Essentially, it defines the 

required organizational structure that allows 

multiagent teams to reconfigure autonomously at 

runtime, thus enabling them to cope with 

unpredictable situations in a dynamic environment. 

Specifically, OMACS specifies the type of 

knowledge required for a multiagent system to be 

able to reason about its own state and configuration. 

Hence, multiagent teams are not limited by a 

predefined set of configurations and can have the 

appropriate information about their team, enabling 

them to reconfigure in order to achieve their team 

goals more efficiently and effectively. During the 

design of an OMACS-based system, the designer 

only provides high-level guidance about the 

organization, which then allows the system to self-

configure based on the current goals and team 

capabilities. These characteristics make OMACS 

ideal for designing autonomic multiagent systems.  

3.1. The OMACS metamodel 

The OMACS metamodel is the metamodel upon 

which autonomic systems are designed. Figure 1 

shows a simplified OMACS metamodel. Only the 

entities discussed in this paper are shown. OMACS 

defines an organization as a set of goals that the team 

is attempting to accomplish, a set of roles that must 

be played to achieve those goals, a set of capabilities 

required to play those roles, and a set of agents who 

are assigned to roles in order to achieve organization 

goals. In essence, each organization is an instance of 

the OMACS metamodel presented in Fig. 1 and is 

subject to all the constraints defined by OMACS. At 

runtime, the assignments of agents to play roles to 

achieve goals represent the key functionality that 

allows the system to be autonomic. There are more 

entities defined in OMACS that are not relevant for 

this paper. The reader is referred to [7] for the 

complete model. 

3.2. Goals 

Goals describe a desired state of the world and 

thus provide a high-level description of what the 

system is supposed to do [21]. Typically, each 

organization has a top-level goal that is decomposed 

into sub-goals. Eventually, this top-level goal is 

refined into a set of leaf goals that are pursued by 

agents in the organization. The set of all 

organizational goals is denoted as G. The active goal 

set, Ga, is the current set of goals that an organization 

is currently trying to achieve. Ga changes 

dynamically as new goals are created or existing 

goals are achieved. 

3.3. Roles 

Roles are a high-level description of the behavior 

required to achieve particular goals [9]. In OMACS, 

each organization has a set of roles that it can use to 

achieve its goals. The achieves function, which 

associates a score between 0 and 1 to each 〈goal, 

role〉 pair, tells how well that particular role can be 

used to achieve that goal (1 being the maximum 

score). In addition, each role requires a set of 

capabilities and agents must possess all the required 

 

requires

Organization

Role Agent

Capbility

Goal

possesses

capableachieves

Fig. 1. Simplified OMACS metamodel. 
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capabilities to be considered as a potential candidate 

to assume that role. 

3.4. Capabilities 

In OMACS, capabilities are fundamental in 

determining which agents can be assigned to what 

roles in the organization [18]. In fact, agents are 

capable of playing a role only if they posses all the 

required capabilities. However, the decision whether 

or not a capable agent is actually going to assume a 

role is made at runtime. Agents may possess two 

types of capabilities: hardware capabilities like 

actuator or effectors, and software capabilities like 

computational algorithms or resources.  

3.5. Agents 

OMACS agents are computational systems that 

have the ability to communicate with each other, 

accept assignments to play roles that match their 

capabilities, and work to achieve their assigned 

goals. Each agent is responsible for managing its 

own state and its interactions with the environment 

and with other agents. Once the system assigns a 

goal and role, the agent determines the low-level 

behavior necessary to fulfill the role and achieve the 

goal. This low-level behavior is generally provided 

either as part of the role definition or by a unique 

agent behavior specified by the designer. To capture 

a given agent’s capabilities, OMACS defines a 

possesses function, which maps each 〈agent, 

capability〉 pair to a value between 0 and 1, 

describing the quality of the capability possessed by 

an agent (1 representing the maximum quality). 

In OMACS, a tuple 〈a,r,g〉 represents the 

assignment of agent a to play role r in order to 

achieve goal g. The assignment set, denoted Φ, 

represents the set of all the current assignments in the 

organization. 

3.6. Assignment process 

The set of active goals along with the agents and 

their capabilities can change over time. For this 

reason, the process of assigning agents to play roles 

in order to achieve specific goals is not predefined 

but rather performed dynamically at runtime. This 

process takes into consideration the quality of each 

capability possessed by agents along with how well 

roles can achieve goals. For example, if a new goal is 

instantiated within the organization, a greedy 

algorithm could compute a new assignment by first 

choosing the best role for that goal then the best 

agent capable of playing the chosen role. However, 

OMACS does not prescribe any particular algorithm 

for computing assignments and several algorithms 

been investigated for this purpose [30]. 

4. Overview of O-MaSE 

In this section, we give a brief overview of the 

Organization-based Multiagent System Engineering 

(O-MaSE) Process Framework [12]. O-MaSE is a 

framework that allows designers to create custom 

agent-oriented development processes. This custom 

agent-oriented process is generated following a 

process metamodel and then instantiated from a set 

of method fragments and guidelines by using a 

method engineering approach [4]. Method 

engineering is an approached that has been proposed 

to allow the development of software methodologies 

from several fragments. 

Thus, O-MaSE defines a metamodel, a repository 

of method fragments and a set of guidelines. The 

O-MaSE metamodel defines general concepts used in 

multiagent systems along with their relationships and 

is based on an organizational approach. In fact, there 

is a 1:1 projection of the OMACS metamodel onto 

the O-MaSE metamodel, which allows systems 

developed using appropriate O-MaSE method 

fragments to produce valid instances of the OMACS 

metamodel. Organizations developed using an 

O-MaSE compliant process produce a set of models 

that specify valid instances of the O-MaSE 

metamodel. Method fragments are a set of activities, 

techniques and work products extracted from 

existing agent methodologies and stored in a 

repository. They are later combined to create a 

methodology instance which is used on a project. 

O-MaSE method fragments currently cover the 

requirements, analysis and design phases of a 

multiagent development lifecycle. Finally, O-MaSE 

guidelines specify a set of constraints that must be 

maintained when combining method fragments to 

create valid O-MaSE processes. 

Therefore, designing a custom O-MaSE compliant 

process requires process engineers to select a set of 

methods that suit their needs from the repository and 

combine them into a complete process such that the 

constraints of each fragment are satisfied. O-MaSE 

provides some guidelines to help choose fragments 

but does not guarantee that all processes created will 
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necessarily be efficient. However, the O-MaSE 

Process Framework does allow designers to develop 

rigorous and repeatable processes suitable for their 

particular needs. 

The O-MaSE Process Framework is supported by 

the agentTool Process Editor, which is part of the 

agentTool III2 (aT3) development environment. The 

agentTool Process Editor (APE) allows process 

designers to create custom O-MaSE processes, which 

can then be analyzed and designed using the (aT3) 

development environment. Further details on aT3 and 

APE can be found in [11]. The O-MaSE process used 

in this research is presented next. All the diagrams 

required by this process have been created using aT3. 

5. Designing the AIS organization 

Our autonomic system is an organization-based 

multiagent system [3] built upon OMACS. Hence, to 

implement the system, we first need to create an 

O-MaSE process that captures all the concepts of 

OMACS. Then we can follow our custom process to 

design and implement an OMACS-based 

organization for the AIS application. In the following 

subsections, we define our custom process and 

implement each step of the process. 

5.1. A process for autonomic systems 

We chose relevant method fragments from the 

O-MaSE repository in order to derive a process for 

building our autonomic system. As we were 

interested in developing an OMACS-based system, 

we chose method fragments that produced the 

appropriate OMACS concepts. Thus, we produced a 

customized process that included all the necessary 

concepts related to the OMACS goals, roles, 

capabilities and agents. 

The process we used (and that can be used for 

many autonomic systems) is shown in Fig. 2. We 

represent it as an activity diagram in which we show 

tasks as round-cornered rectangles and models as 

square-cornered rectangles. Arrows represent the 

input and output of models to and from tasks. 

The process starts by translating all the system 

requirements into a Goal Model via the Model Goals 

and Goal Refinement tasks. Then we use the Goal 

Model as an input of the Model Role task in order to 

create a Role Model that captures all the interactions 
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between roles and external actors. Following that, we 

generate a Capability Model using the Model 

Capabilities task that allows us to define all 

capabilities required in the organization. Once the 

Capability Model is completed, we can then design 

agent types that are able to play roles in the 

organization. Agent types are modeled via an Agent 

Class Model produced by the Model Agent Classes 

task. In parallel with the Model Capabilities task, we 

also specify the message passing protocols required 

to allow roles to interact using Protocol Models in 

the Model Protocol task. Then, using the Role, 

Capability, and Protocol Models as input, we 

perform the Model Plans task in order to generate a 

Plan Model for each role. Plan Models specify plans 

that the agents need to execute in order to play roles 

and achieve their assigned goals. All method 

fragments have been chosen such that the constructed 

organization is consistent with the OMACS 

metamodel. 

As it is possible to create a variety of different 

processes that are consistent with OMACS, it is 

difficult to evaluate the effectiveness of all such 
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Fig. 2. Autonomic systems process: Round-cornered rectangles 

represent Tasks, square-cornered rectangles represent Models and 

arrows indicate Models Flows. 
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processes. However, we claim that this process, and 

similar processes developed using the O-MaSE 

Process Framework, do provide a principled, 

rigorous and repeatable method to systematically 

develop autonomic systems. A further discussion of 

the selection of method fragments and the 

verification of process consistency can be found in 

[11,12]. 

5.2. Model goals 

Following our process, the first step in designing 

an autonomic system is to capture the system 

requirements in the form of a goal tree via the Model 

Goals and Refine Goals tasks. A Goal Model 

represents system-level goals and includes goal 

definitions and goal decomposition, which 

decomposes goals into a set of conjunctive or 

disjunctive sub-goals [27]. 

To capture the dynamic nature of OMACS-based 

systems, a time-based relationship exists between 

goals. This additional information is captured 

through a goal model based on the Goal Model for 

Dynamic Systems (GMoDS) [19] during the Refine 

Goals task. In a GMoDS goal model, we say goal g1 

precedes goal g2, if g1 must be achieved before g2 

can be pursued. This allows the organization to work 

on one part of the goal tree at a time. During the 

pursuit of specific goals, events may occur that cause 

the instantiation of new goals. These new goals may 

be parameterized to allow a context sensitive 

meaning. For instance, if an event e can occur during 

pursuit of goal g1 that instantiates goal g2, we say 

that e triggers g2 during the pursuit of g1 (as a 

shorthand, we often say goal g1 triggers g2). In 

addition, GMoDS proposes two types of goals: 

achievement goals, which the system seeks to 

achieve to insure normal operation and maintenance 

goals, which the system uses to continually monitor 

its own operation and check for performance 

improvement or failures. 

The main goal of the AIS application is to answer 

each query presented to the system. From the 

requirements, we derived the GMoDS goal model 

presented in Fig. 3. The boxes represent the goals 

and their parameters. Conjunctive sub-goals are 

connected to their parents by a diamond shaped 

connector (◊) while disjunctive sub-goals are 

connected to their parent by a triangle shaped 

connector (Δ). The arrows indicate trigger events and 

their parameters. The dashed arrows represent 

negative triggers, which allow for the cancellation of 

 

Fig. 3. GMoDS Goal Model for the AIS. 
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a goal and all its sub-goals. As queries are not 

predefined, most of the goals in the systems are 

triggered after a query has occurred. These goals and 

their parameters are instantiated and associated with 

specific queries.  

From Fig. 3, we can see that the top-level AIS 

goal is decomposed into two conjunctive sub-goals: 

Process Query and Answer Query. The Answer 

Query goal is further decomposed into conjunctive 

goals Get Data, Monitor Constraints and Return 

Result, all of which have to be achieved in order to 

achieve the Answer Query goal. All those sub-goals, 

except the Return Result goal, are also further 

decomposed into sub-goals. The goal Get Data is 

decomposed into conjunctive goals Get Sensors and 

Merge Data and the goal Monitor Constraints into 

conjunctive goals Monitor Time Constraint and 

Monitor Accuracy Constraint, which are both 

maintenance goals. Finally, the goal Get Sensor is 

decomposed into conjunctive goals Find Sensor and 

Read Sensors, whereas the goal Merge Data is 

decomposed into disjunctive goals Merge Diverse 

and Merge Similar. 

The organization only actively pursues the leaf 

goals as their completion implies the completion of 

their parent goal. The first leaf goal to be achieved by 

the organization is the Process Query goal, which 

gets the query from the user and triggers the Answer 

Query goal based on the event Start parameterized 

with a Query. Once the Answer Query goal is 

triggered, all its descendants that are not triggered by 

other events are also triggered. Thus, goal Find 

Sensor is triggered by the same event. This goal aims 

at finding all the sensors in the area of interest given 

by query Q. Whenever sensors are found, it triggers 

goals Read Sensor, and either Merge Diverse or 

Merge Similar. Read Sensor is a goal to read data 

from a sensor S passed in parameter. The Merge 

Diverse goal fuses the data received from the list of 

different sensors L for the area specified by query Q. 

Sensors in the list L must not all be the same type. 

On the opposite, goal Merge Similar fuses the data 

received from the list of similar sensors L for the 

area specified by query Q. Then, whenever 

constraints are specified in the query, the Merge 

Data goal triggers either goal Monitor Time 

Constraint or goal Monitor Accuracy Constraint. 

However, as Merge Data is not a leaf goal, the 

trigger is actually generated by one of its sub-goals. 

Goals Monitor Time Constraint and Monitor 

Accuracy Constraint check the validity of the data 

regarding the time constraint and the accuracy 

constraint respectively. Finally, when the data are 

ready, the Merge Data goal triggers the Return 

Result goal, which displays the results of the query Q 

in a user-friendly format. 

In addition, in some cases of failures, the Merge 

Data and Monitor Constraints goals can initiate a 

negative trigger that cancels the Answer Query goal 

and all its descendants. This negative trigger is 

followed by a start event that triggers a new Answer 

Query goal and results in the organization retrying to 

achieve the query that previously failed.  

5.3. Model roles 

Once the goals of the system have been captured 

and translated into a dynamic goal model, we 

identify the required roles and their interactions 

through the Model Roles task. 

For each leaf goal in the goal model defined in the 

previous task, we create a role that can achieve it. 

The Role Model for the AIS is presented in Fig. 4. It 

shows all the roles along with the protocols that exist 

between pairs of roles and between roles and external 

actors. For each role, the Role Model specifies which 

organizational goals can be achieved and the required 

capabilities. Following are the roles we have defined 

for the AIS organization, along with a description of 

their behavior. 

Query Processor: Periodically gets new queries 

from the user via the Interact_User protocol. This 

role generates an event to notify the organization that 

a new query has been entered. There is no explicit 

protocol to send the query Q since the Start(Query) 

event triggers that creation of a new Answer Query 

goal, which has the query Q as its parameter. Each 

agent who gets assigned to achieve a goal with the 

Query parameter in effect receives a copy of Q. 

Sensors Locator: Inquires the sensor database via 

the protocol DB_Access in order to find all sensors 

available in the area specified by the parameter of the 

goal it achieves. Then it executes an algorithm to find 

the best coverage based on the set of available 

sensors. For each sensor selected, an event is 

triggered (event ‘found(S:Sensor)’). This event 

results in the organization attempting to find an agent 

capable of reading the selected sensor. After all 

sensors have been selected, the role generates an 

event (event ‘mergeSimilar’ or ‘mergeDiverse’) to 

notify the organization that it has found all sensors 

capable of providing data for the query. 
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Sensor Reader: Reads the data from the sensor 

given in parameter of the Read Sensor goal. This role 

interacts with the battlefield simulator in order to get 

the appropriate data and updates the status of the 

sensor in the sensor database via the DB_Access 

protocol. The data obtained is sent to any merger 

agent interested in those data through the protocol 

Data_Request. 

Diverse Merger: Merges the data collected from 

various sensors covering the area of interest. This 

role uses a processing algorithm that allows it to 

merge data coming from sensors of different type. 

Data are obtained through the Sensor Reader role by 

using the protocol Data_Request. This role can also 

engage in the Monitor_Time and Monitor_Accuracy 

protocols in order to request validation of the data 

merged.  

Similar Merger: Behaves like the Diverse Merger 

role. However, the difference is that this role uses a 

processing algorithm that allows it to efficiently 

merge data coming from sensors of the same type. 

Thus, this role cannot process data from differ types 

of sources. 

Result Interface: Returns the results of the query to 

the GUI for displaying to the user via the protocol 

User_Interact. The results of the query are received 

from merger agents via the event result(Query). 

Time Monitor: Checks the validity of the data 

regarding the time constraint if specified by the user. 

It communicates the results to the data merger agent 

in charge of the query via the Monitor_Time protocol 

and, if the constraint is violated, generates a negative 

trigger failure. 

Accuracy Monitor: Behaves like the Time Monitor 

role but regarding the accuracy constraint. 

5.4. Model capabilities 

The next step into our process is to identify the 

capabilities and specify their actions on the 

environment through the Model Capabilities task. 

This task takes the role model previously defined as 

input. 

During the Model Capabilities task, each 

capability is defined in a Capability Model [8]. 

Figure 5 shows an example of a capability model for 

the User Interaction capability and the Coverage 

Processing capability. Each capability performs 

some actions that are specified by their method 

signature. The capabilities identified for the AIS are 

listed below. 

User Interaction: Used to interact with the user 

through a Graphical User Interface. As shown in 

Fig. 5, this capability provides actions to get a query 

from the user (getQuery) and to display the result of 

a query that has been executed (setQuery). 

Coverage Processing: Used to compute the 

optimal set of sensors that has the maximum 

coverage of the area of interest and that can satisfy 

the time and accuracy constraints. This capability has 

two actions: satisfyConstraints and findOptimal 

Coverage. The action satisfyConstraints takes a 

query and a set of sensors and returns a list of 

 

Fig. 4. AIS Role Model. 
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sensors that satisfy the given time and accuracy 

constraints. The action findOptimalCoverage takes a 

query and a set of overlapping sensors and return a 

minimal set of sensors that has the maximum 

coverage of the area given in the query. 

Sensor Interaction: Interacts with actual battlefield 

sensors. This capability provides an action to query a 

sensor given in parameter and retrieve its data. 

Data Merging Diverse: Provides computational 

algorithms to merge data coming from diverse type 

of sensors. 

Data Merging Similar: Provides fast computa-

tional algorithms to merge data coming from similar 

sources only. 

Monitoring: Provides the ability to check the time 

and/or the accuracy constraints of the data. The 

information about accuracy and timeliness of the 

results are provided by the data sources (sensors). 

Coordination: Provides the ability to communicate 

with other agents. This capability provides actions to 

send/receive messages to/from specific agents in the 

organization. Agents can only communicate between 

them via this capability. 

5.5. Model agent classes 

After the goals, roles and capabilities have been 

identified, we need to populate our multiagent 

organization by creating various agents via the 

Model Agent Classes task. Agents represent the 

autonomic elements of the system. 

We define a set of agent types capable of playing 

at least one role in the organization. Those agent 

types, along with the capabilities they posses, are 

captured in the Agent Class Model shown in Fig. 6. 

While assignments of agents to play roles are 

dynamically decided at runtime, the Agent Class 

Model also shows all possible roles that an agent 

could play. Hence, protocols between roles that were 

defined in the Role Model have to be mapped to the 

appropriate agents in the Agent Class Model. 

 

Fig. 5. AIS Capability Models for UserInteraction and CoverageProcessing capabilities. 

 

Fig. 6. AIS Agent Class Model. 
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During the actual instantiation of the organization, 

an agent of each type is created. For the Data Sensor 

Agent type, each sensor on the battlefield is 

associated with a unique Data Sensor Agent. 

After the Agent Class Model is completed, all 

OMACS entities are defined. However, our process 

has two tasks remaining that are not related to the 

OMACS metamodel but are important in order to 

complete the low-level design of our system. 

5.6. Model protocols 

In the Model Protocols task, we specify all the 

protocols identified in the Role Model. Essentially, 

protocols involving roles are executed by the agents 

enacting those roles. The Protocol Models produced 

by this task are documented via AUML Interaction 

Diagrams [14]. Figure 7 shows two examples 

Protocol Models: the Data_Request protocol and the 

Monitor_Time protocol. The Data_Request protocol 

is used to request data from sensors on the 

battlefield. In this protocol, the Similar Merger role 

sends a query message to the Sensor Reader role 

which replies by sending the data in an inform 

message. This exchange is repeated as long as data is 

needed. The Monitor_Time protocol is used to 

request a validation of the results against the 

constraints specified in a query. In this protocol, the 

Similar Merger role sends a monitor message to the 

Monitor Time role that replies by sending either a 

pass or fail message, depending on whether the query 

meets the time constraints. 

5.7. Model plans 

For each role defined earlier in the process, we 

provide a plan that agents execute in order to play 

that role. The task Model Plans allows us to define 

plans based on the Role Model, the Capability Model 

and the Protocol Model. Essentially, a plan for a 

given role provides an algorithm that exhibits the 

behavior defined in the role. It uses the capabilities 

required by that role and is consistent with all the 

protocols defined for that role. Plans are captured in 

a Plan Model, which is essentially a finite state 

automaton.  

As an example, in Fig. 8, we present a plan for the 

role Sensors Locator. When the plan starts, the agent 

sends a getSensors message to the Sensor Database 

to get a list of all sensors registered in a given area 

and moves to the Wait state. When the database 

returns the list of sensors requested, the plan moves 

into the Find Sensors state where it computes a new 

list of sensors covering the area of interest and 

satisfying the constraints specified in the query. If the 

list of sensors is empty, the plan moves to a failure 

state where the agent notifies the system that it fails 

to find sensors to answer the query. However, if the 

list is not empty, the plan moves to the Notify 

Sensors state in which a found event is generated for 

each sensor in the list. Once the events have been 

generated (i.e. the list is empty), a transition is made 

towards states Notify Similar Merge or Notify 

Diverse Merger depending on the type of sensors 

selected. In both states, an event is generated in order 

to activate a merger agent to merge data from the 

selected sensors. 

6. Organization-based agent architecture 

In this section, we present the Organization-based 

Agent Architecture (OBAA) of the AIS agents, 

which represent the autonomic elements of our 

system [16]. As Fig. 9 shows, an AIS agent typically 

consists of two components: the Execution 

Component (EC) and the Control Component (CC). 

6.1. Execution component 

The EC represents the non-autonomic part of the 

agent. Essentially, it corresponds to the application 

 

 

Fig. 7. Examples of AIS Protocol Models. 
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specific part of the agent. It is notified by its CC 

about what role to play in the organization. Once it 

has been assigned a role, the EC plays that role 

according to a predefined plan provided at design 

time by either the role or the agent designer. During a 

 

role execution, an EC may need to coordinate with 

other ECs in order to exchange some data. 

Communication between ECs is done by message 

passing while the EC reports its status directly to its 

CC via method calls. 

 

 

Fig. 8. AIS Plan Model for the role Sensor Locator. 

 

Fig. 9. Organization-based agent architecture. 
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6.2. Control component 

The CC represents the autonomic part of the 

agent. In general, the more sophisticated this 

component, the more autonomy the system displays. 

Hence, this component plays a very important role in 

achieving fully autonomous systems. By using the 

high-level specifications of the organization, the CC 

can reason about its own state and communicate it to 

others. This self-awareness of the autonomic element 

allows the whole system to be self-managed. 

Typically, the CC is an intelligent component in 

charge of all organization related tasks. Depending 

on design strategies, it can have a partial or total 

knowledge of the organization structure. We 

designed a fixed communication interface between 

the CC and the EC. This gives us the flexibility to 

plug several different CC designs into our application 

without having to modify other application-specific 

components (the ECs). Therefore, Control 

Components are generic and can be reused for any 

other autonomic applications as long as the 

communication interface is respected. 

In general, a CC operates based on its knowledge 

and the information collected from other agents via 

their CCs. It can decide to reconfigure the 

organization by including or canceling goals in the 

organization, or by modifying the current 

assignments. This reconfiguration process can be 

distributed or centralized. A distributed 

reconfiguration would involve a deliberation process 

between all the CCs in order to reach a consensus 

about the next state of the organization. However, in 

our current implementation, we have opted for a 

centralized approach in which all CCs report to one 

particular CC that has all the knowledge to make 

appropriate decisions. To differentiate with other 

CCs, we call this particular CC the Organization 

Master (OM). Therefore, the OM possesses all the 

organizational knowledge and is in charge of all the 

organization-related tasks (Fig. 9). The OM reasons 

about the current state of the organization [29] and 

once it reaches a decision about a new configuration, 

it notifies all the CCs that are affected by this 

reconfiguration. This autonomous reasoning is solely 

based on the underlying OMACS architecture and 

results in a reconfiguration, which is fundamental in 

achieving the autonomic properties described in the 

following section. 

7. Autonomic properties of the AIS 

In this section, we present a scenario that 

exemplifies the autonomic behaviors of the AIS. To 

adapt to a variety of unpredictable situations, our AIS 

organization is able to detect changes in the 

performance of the overall organization (self-

monitoring) and modify its structure accordingly 

(self-adjusting). Many changes occur within the 

environment; however, some changes occur within 

the organization itself (e.g., capability failure or goal 

completion). Hence, the AIS is not only aware of its 

environment but it is also aware of its own state 

(self-aware). These self-* properties of the AIS are 

facilitated by our use of OMACS, which provides all 

the necessary knowledge for a self-managing system. 

7.1. AIS scenario 

To demonstrate the AIS system, we use a 

simulated battlefield with sensors and enemy targets. 

In our battlefield simulator, there are five different 

types of vehicles that the system is trying to locate 

and identify: truck, halftrack, tank, artillery, and 

launcher.  

For the specific scenario described in this paper, 

we have defined two types of sensors: ground 

sensors and airborne automatic target recognition 

(ATR) sensors. Sensors do not all provide the same 

accuracy in identifying and locating enemy targets 

and do not refresh their data at the same rate. The 

ground sensors have a fixed location and provide 

information about location and type of enemy 

vehicles with an accuracy of 75%. They are also 

capable of providing requested data within 5 

minutes. The ATR sensors are obviously mobile and 

also very accurate, providing location and enemy 

vehicles type information with an accuracy of 95%. 

Unfortunately, ATR sensors are not very fast; they 

typically can only provide their information in 15 

minutes. Therefore, the simulator can provide 

erroneous or outdated data that might not be of any 

interest for the commander. For this reason, the 

commander can specify some constraints for the 

query.  

The screenshot in Fig. 10 shows the simulated 

battlefield along with the sensors represented by 

circles and enemy targets represented by small 

squares. There are four ground sensors (S1, S2, S3, 

S4) and one ATR sensor (S5). There are also five 

enemy vehicles. We assume that the system is only 
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trying to answer one persistent query and omit the 

query parameter for goals and triggers. The persistent 

query is: “Show the location and type of all enemy 

vehicles in the selected area” (the area selected is 

defined by a rectangle in Fig. 10). 

In what follows, all goals, roles, capabilities and 

agent types are referred to by their id as presented in 

Table 1. 

7.2. Initialization 

At the initialization of the system, all the agents 

interested in participating in the organization register 

with the OM. For this scenario, we have created one 

agent for each agent type except for the agent type 

DSA for which one DSA agent has been created for 

each sensor in the battlefield. Agents are named after 

their types and DSA agents are numbered to match 

their sensor number. The organization only actively 

pursues the leaf goals as their completion implies the 

completion of their parent goal. At initialization, all 

the leaf goals that have no predecessors and do not 

require any triggers are inserted in Ga (the active goal 

set) and thereby pursued by the organization. Based 

on the goal model (Fig. 3), only goal G1 is active 

initially. Once G1 is active, the OM chooses the best 

role to achieve G1. R1 is chosen to achieve G1 

because the pair 〈G1,R1〉 has the highest achieves 

score. In fact, R1 is the only role capable of 

achieving G1 as there is no other 〈goal, role〉 pair 

with a non-null achieves score. Then the 

organization chooses the QA agent to play R1. This 

choice is motivated by the fact that QA possess all 

the required capabilities to play R1. Hence, at 

initialization, the AIS organization assigns QA to 

play role R1 to achieve goal G1. Figure 11 shows the 

successive states of the organization after the 

occurrence of events. States contain the active goal 

Table 1 

Mapping between goals, roles, capabilities, agents and their id 

 Name Id 

Process Query G1 
Find Sensors G2 
Read Sensor G3 
Merge Diverse G4 
Merge Similar G5 
Return Result G6 
Monitor Time Constraint G7 

 

 

 

 

Goals 

Monitor Accuracy Constraint G8 
Query Processor R1 
Sensors Locator R2 
Sensor Reader R3 
Data Merger Diverse R4 
Data Merger Similar R5 
Result Interface R6 
Time Monitor R7 

 

 

 

 

Roles 

Accuracy Monitor R8 
User Interaction C1 
Coverage Processing  C2 
Sensor Interaction  C3 
Data Merging Diverse  C4 
Data Merging Similar  C5 
Monitoring  C6 

 

 

 

 

Capabilities 

Coordination  C7 
Query Agent QA 
Sensor Finder Agent SFA 
Data Sensor Agent DSA 
Merger Agent Diverse MAD 
Merger Agent Similar MAS 

 

 

 

Agents 

Monitor Agent MON 
 

Fig. 10. Battlefield map: Circles S1 to S5 represent sensors and enemy 

vehicles are denoted by small squares. 
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set (Ga) and the set of current assignments (Ф). 

Arrows between states represent events that occurred 

during the transition. The initial assignment we have 

just described corresponds to State 1 in Fig. 11. 

Once the QA retrieves the query from the GUI, it 

triggers an event start(Query). This trigger results in 

the activation of G2. Upon this activation, the system 

must reconfigure itself to achieve this new active 

goal. By taking the best role and agent to achieve 

goal G2, the SFA is assigned to play role R2 to 

achieve goal G2 (State 2 in Fig. 11). 

When the query has been retrieved, the QA agent 

terminates by sending an achieved message to the 

OM, which causes the goal and its related assignment 

to be removed from Ga and Φ. Next, the SFA agent 

chooses sensors S1, S2, S3 for the query as those 

sensors maximize the area of interest coverage. The 

following events are then generated: found(S1), 

found(S2), found(S3). Each found event triggers a 

parameterized goal G3 having the parameter of that 

event. In our case, goals G3(S1), G3(S2), and 

G3(S3) become active, which again requires a 

reconfiguration resulting in (DSA1,R3,G3(S1)), 

(DSA2,R3,G3(S2)), and (DSA3,R3,G3(S3)) being 

inserted into Φ (State 3 in Fig. 11). 

As all the sensors found by the SFA agent are of 

the same type, an event mergeSimilar(〈S1,S2,S3〉) is 

 

triggered, which results in the activation of the 

parameterized goal G5(〈S1,S2,S3〉). After computing 

the best assignment, the assignment of the Merger 

Agent Similar (MAS) to play role R5 to achieve goal 

G5 is chosen (State 4 in Fig. 11). 

Once all the events have been triggered, the SFA 

agent notifies the OM that it has successfully 

completed its role by sending an achieved message. 

At this point, the MAS agent starts getting data from 

the DSA agents and merges them to extract the 

necessary information. In order to have the results of 

the query checked against the constraints that may 

have been specified by the commander, the MAS 

agent triggers a monitorTime and monitorAccuracy 

event. These events result in the activation of G7 and 

G8. 

Following a system reconfiguration, the 

assignment 〈MON,R7,G7〉 and 〈MON,R8,G8〉 are 

inserted into Φ. Note actually that the MON agent is 

playing R7 and R8 because it has all the required 

capabilities for both roles (State 5 in Fig. 11). As no 

constraints have been specified for the query, the 

constraints are trivially validated and the MON agent 

sends a message to the MAS agent, notifying it that it 

can proceed and then terminates. 

When the results are ready, the MAS agent 

triggers a result event, which results in the activation 

of goal G6. The MAS agent, which has the capability 

to interact with the GUI, is selected to play role R6 to 

achieve goal G6 and sends the results to the GUI 

(State 6 in Fig. 11). When a query update is required, 

the MAS agent coordinates with the same DSA 

agents to get new data. 

For this scenario, the results reported a coverage 

representing 100% of the area of interest and the 

system effectively detected all three targets in the 

selected area: Tank at 29,40, Truck at 20,40 and 

Launcher at 36,47. 

Therefore, this scenario shows an important 

attribute of our autonomic system: self-configuration. 

The system is able to reconfigure itself when new 

goals appear in the organization. Every newly 

activated goal in the organization requires the AIS to 

take action in order to achieve this new goal. Our 

autonomic system is also capable of self-optimizing 

in the case of a goal completion. The achievement of 

a goal can free an agent to take on a new role and 

goal assignment. When this occurs, the organization 

may make new assignments in order to optimize the 

performance of the system. 

Ga = {G3(S1),G3(S2),G3(S3), 

G5(<S1,S2,S3>,G7,G8))}

Ф = {(DSA1,R3,G3(S1)),

(DSA2,R3,G3(S2),  

(DSA3,R3,G3(S3)

(MAS,R5,G5(<S1,S2,S3>))

(MON,R7,G7),(MON,R8,G8)}

State 5

achieved

monitorTime

monitorAccuracy

achievedresult

Ga = {G1}

Ф={(QA,R1,G1)}

State 1

Ga = {G1, G2}

Ф = {(QA,R1,G1)

(SFA,R2,G2)}

State 2

Ga = {G2, G3(S1),G3(S2),

G3(S3)}

Ф = {(SFA,R2,G2),

(DSA1,R3,G3(S1)),

(DSA2,R3,G3(S2)),

(DSA3,R3,G3(S3))}

State 3

Ga = {G2, 

G3(S1),G3(S2),G3(S3), 

G5(<S1,S2,S3>)}

Ф = {(SFA,R2,G2),

(DSA1,R3,G3(S1)),

(DSA2,R3,G3(S2)),  

(DSA3,R3,G3(S3)),        

(MAS,R5,G5(<S1,S2,S3>))}

State 4

Ga = {G3(S1),G3(S2),G3(S3), 

G5(<S1,S2,S3>)),G6}

Ф = {(DSA1,R3,G3(S1)),

(DSA2,R3,G3(S2),  

(DSA3,R3,G3(S3)

(MAS,R5,G5(<S1,S2,S3>))

(MAS,R6,G6)}

State 6

start

achieved

found(S1)

found(S2)

found(S3)

mergeSimilar

(<S1,S2,S3>)

Fig. 11. Organization states during a normal execution. Changes 

from the previous state are in bold. 
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7.3. Sensors failure 

The AIS simulator allows us to fail specific 

sensors. If we make S2 fail, the corresponding DSA 

agent (DSA2), which is the only agent capable of 

playing R3 to achieve G3(S2), can no longer achieve 

its goal. The organization states related to that sensor 

failure are presented in Fig. 12. The first state, 

State 7, corresponds to a state from the normal 

execution in which data are being refreshed. 

Whenever the DSA2 fails, the MAS agent, which 

was coordinating with the DSA2 agent to gather the 

data, interrupts its task and generates a negative 

trigger failure and a trigger start(query). The 

negative trigger causes all the goals related to that 

query to be removed, resulting in the cancellation of 

all their current assignments. Thus, goals G3(S1), 

G3(S2), G3(S3), G5(〈S1,S2,S3〉) are all removed. 

The start(query) event causes the activation of a new 

instance of goal G2 that is achieved by the SFA 

agent playing role R2 (State 8 in Fig. 12). 

Taking into account the loss of capability of the 

DSA2 agent, the SFA agent selects sensors S1, S3, 

S5 as the new optimal set of sensors for the query. 

The SFA agent then triggers the following events: 

found(S1), found(S3), found(S5) which result in the 

activation of goal G3(S1), G3(S3), and G3(S5) 

(State 9 in Fig. 12). As this set of sensors contains 

sensors of different types (S1, S3 are ground sensors 

whereas S5 is an ATR sensor), the SFA agent 

triggers an event mergeDiverse(〈S1,S3,S5〉), which 

results in the activation of goal G4(〈S1,S3,S5〉). To 

achieve this new goal, the system chooses role R4, 

which is played by the Merger Agent Diverse 

(MAD). Then, the SFA sends an achieved message 

to the OM and terminates (State 10 in Fig. 12). The 

system then continues its execution as described in 

the previous section, except that the merger in charge 

of the query is now the MAD agent (States 11 and 12 

in Fig. 12). As the coverage provided by the new set 

of sensors is also 100%, the AIS detects all the 

enemies in the area of interest: Tank at 29,40, Truck 

at 20,40 and Launcher at 36,47. 

Therefore, by effectively detecting the sensor that 

failed and replacing it, the AIS has demonstrated its 

self-healing capability. The failure triggered a 

reconfiguration of the system to allow sensor reading 

tasks to be redistributed among all the DSA agents 

still operational and capable of covering the area of 

interest. Through this reconfiguration, the DSA5 

agent has replaced the DSA2 agent that failed. In 

addition, during this scenario, an illustration of the 

AIS self-optimizing behavior has also occurred when 

the AIS organization has decided to replace the MAS 

agent, which was merging the data prior to the 

failure, by the MAD agent in order to insure a better 

performance. Hence, even though a loss of a sensor 

used to provide information for the query occurred, 

the AIS was able to reconfigure itself and maintain 

the flow of information without the intervention of 

the user. In a rigid system, the loss of a sensor would 

mean an irreversible loss of performance. 

7.4. Maintenance goal failure 

When specifying a query, the commander can 

stipulate some time or accuracy constraints that the 

query needs to satisfy. By default, a query does not 

have any constraints. For the remainder of our 

scenario, we assume that the commander has 

specified that the system should provide query results 

within 8 minutes.  

We continue our example with the system 

currently running the query using the DSA1, DSA3, 

DSA5 and MAD agents as described in the previous 

section. Figure 13 shows the successive states of the 

organization for the events described in this section. 

State 13 in Fig. 13 corresponds to a state in which 

data are being refreshed after the sensor failure. After 

Ga = {G3(S1),G3(S3),G3(S5), 

G5(<S1,S3,S5>,G7,G8))}

Ф = {(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3),  

(DSA5,R3,G3(S5)

(MAD,R4,G4(<S1,S3,S5>))

(MON,R7,G7),(MON,R8,G8)}

State 11

achieved monitorTime monitorAccuracy

achieved

result

Ga = {G2}

Ф = {(SFA,R2,G2)}

State 8

Ga = {G2, G3(S1),G3(S3),

G3(S5)}

Ф = {(SFA,R2,G2),

(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3)),

(DSA5,R3,G3(S5))}

State 9
Ga = {G2, 

G3(S1),G3(S3),G3(S5), 

G5(<S1,S3,S5>)}

Ф = {(SFA,R2,G2),

(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3)),  

(DSA5,R3,G3(S5)),        

(MAD,R4,G4(<S1,S3,S5>))}

State 10

Ga = {G3(S1),G3(S3),G3(S5), 

G5(<S1,S3,S5>)),G6}

Ф = {(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3),  

(DSA5,R3,G3(S5)

(MAD,R4,G4(<S1,S3,S5>))

(MAD,R6,G6)}

State 12

start

found(S1) found(S3) found(S5)

mergeDiverse

(<S1,S3,S5>)

Ga = {G3(S1),G3(S2),G3(S3),

G5(<S1,S2,S3>)}

Ф = {(DSA1,R3,G3(S1)),

(DSA2,R3,G3(S2),  

(DSA3,R3,G3(S3),     

(MAS,R5,G5(<S1,S2,S3>))}

State 7

- failure

Fig. 12. Organization states before and after a sensor failure. 
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the data from the battlefield are refreshed, the MAD 

agent triggers monitorTime and monitorAccuracy 

events in order to check the query against the time 

and accuracy constraints that have been updated. 

These events result in the activation of goals G7 and 

G8. During reconfiguration, the OM assigns the 

MON agent to play both R7 and R8 to achieve G7 

and G8 (State 14 in Fig. 13). 

Once the data is sent to the MON agent for 

checking the constraints, it generates a negative 

trigger failure because the query, as executed, does 

not meet the 8 minutes constraint. In fact, sensor S5 

used in that query, which is an ATR sensor, can only 

provide data within 15 minutes. Therefore, the 

maintenance goal G7 fails. This negative trigger 

causes all the goals related to that query to be 

removed, resulting in the cancellation of all related 

assignments. Thus, goals G3(S1), G3(S3), G3(S5), 

G4(〈S1,S3,S5〉), G7, and G8 are all removed. The 

failure event is immediately followed by a start event 

generated by the MON agent. This event triggers the 

activation of goal G2 that is achieved by the SFA 

agent, playing role R2 (State 15 in Fig. 13). 

Taking into account the time constraint for the 

query, the SFA agent selects sensors S1, S3, S4 as 

the new optimal set of sensor for the query because 

they are all ground sensors capable of covering the 

area of interest and providing data within 5 minutes. 

The SFA agent then triggers the following events: 

found(S1), found(S3), found(S4) which result in the 

activation of goal G3(S1), G3(S3), and G3(S4) (State 

16 in Fig. 13). As the set of sensor contains only 

ground sensors, the SFA agent triggers an event 

mergeSimilar(〈S1,S3,S4〉), which results in the 

activation of goal G5(〈S1,S3,S4〉). To achieve this 

new goal, the system chooses role R5 which is 

played by the MAS agent (State 17 in Fig. 13). The 

execution then continues as described in the normal 

execution (States 18 and 19 in Fig. 13). 

Nevertheless, this reconfiguration has resulted in a 

lost of coverage and the Tank located at (29,40) can 

no longer be detected as the set of sensors selected in 

order to satisfy the time constraint covers only 87% 

of the area. The AIS detects the following enemies: 

Truck at 20,40 and Launcher at 36,47. 

Hence, through this scenario, we can see how the 

AIS exhibits its self-protection and self-optimizing 

properties. The MON agent, in charge of monitoring 

the system for performance degradation, protects the 

system against undesirable behavior. When a 

violation of the query constraints was detected, the 

system decided to reconfigure itself by replacing the 

DSA5 agent by the DSA4 agent in order to insure the 

effectiveness of the query concerning the time 

constraint. This reconfiguration has also replaced the 

MAD by the MAS, which yields a better 

performance in merging data coming from different 

sensors. 

8. Experimental results 

To evaluate the performance of our autonomic 

information system, we performed 100 persistent 

queries executed 20 times each for different sensor 

failure rates, which we define as the ratio of sensor 

failures to the total number of sensors originally 

available on the battlefield. We are interested in 

evaluating the cost associated with the 

implementation of OMACS-based systems. For that, 

we compare our autonomic system with a non-

autonomic system. This non-autonomic system is 

also designed with a simple O-MaSE compliant 

Ga = {G3(S1),G3(S3),G3(S4), 

G5(<S1,S3,S4>,G7,G8))}

Ф = {(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3),  

(DSA4,R3,G3(S4)

(MAS,R5,G5(<S1,S3,S4>))

(MON,R7,G7),(MON,R8,G8)}

State 18

achieved

monitorTime

monitorAccuracy

achieved result

Ga = {G2}

Ф = {(SFA,R2,G2)}

State 15

Ga = {G2, G3(S1),G3(S3),

G3(S4)}

Ф = {(SFA,R2,G2),

(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3)),

(DSA4,R3,G3(S4))}

State 16

Ga = {G2, 

G3(S1),G3(S3),G3(S4), 

G5(<S1,S3,S4>)}

Ф = {(SFA,R2,G2),

(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3)),  

(DSA4,R3,G3(S4)),        

(MAS,R5,G5(<S1,S3,S4>))}

State 17

Ga = {G3(S1),G3(S3),G3(S4), 

G5(<S1,S3,S4>)),G6}

Ф = {(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3),  

(DSA4,R3,G3(S4)

(MAS,R5,G5(<S1,S3,S4>))

(MAS,R6,G6)}

State 19

start

found(S1)

found(S3)

found(S4)

mergeSimilar

(<S1,S3,S4>)

- failure

Ga = G3(S1),G3(S3),G3(S5), 

G5(<S1,S3,S5>)}

Ф = {(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3)),  

(DSA5,R3,G3(S5)),        

(MAD,R4,G4(<S1,S3,S5>))}

State 13

Ga = {G3(S1),G3(S3),G3(S5), 

G5(<S1,S3,S5>,G7,G8))}

Ф = {(DSA1,R3,G3(S1)),

(DSA3,R3,G3(S3),  

(DSA5,R3,G3(S5), 

(MAD,R4,G4(<S1,S3,S5>))

(MON,R7,G7),(MON,R8,G8)}

State 14

monitorTime

monitorAccuracy

Fig. 13. Organization states before and after a maintenance goal 

failure. 
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process in which assignments are predefined at 

design time by directly assigning agents to achieve 

goals. Hence, this process is not OMACS compliant.  

Our first sets of experiments attempted to evaluate 

the system robustness. We created a battlefield 

containing 40 sensors at fixed locations and 100 

merger agents. The sensors were placed such that 

each point in the area of interest was covered by at 

least two sensors. For each run, we submitted 100 

persistent queries and the experiment ran until each 

query had been executed 20 times. Experiments were 

run on both our autonomic system and a non-

autonomic system that we simulated. Basically, once 

the queries were submitted, both systems chose the 

optimal set of Data Sensor Agent (DSA) to provide 

maximum coverage. However, when a DSA failed, 

the non-autonomic system ignored the failure and 

continued to provide results whereas the autonomic 

system reconfigured. The robustness of the system 

was measured in terms of the average coverage 

obtained at the end of the experiment for various 

sensor failure rates.  

As expected, the results, as shown in Fig. 14, 

clearly indicate that for any failure rate, the 

autonomic system was significantly more robust. 

Observe that after 30% failure rate, the autonomic 

system was still able to provide a coverage of 100% 

whereas this coverage had dropped to 75% for the 

non-autonomic system. However, when too many 

sensors were lost (around 90% failure rate), the 

coverage provided by both system was very close as 

the autonomic system could not find any other 

sensors to replace the failed sensors. On average, the 

autonomic system achieved 25% more coverage than 

its counterpart. 

In our second set of experiments, we were 

interested in characterizing the cost of reconfigura-

tion in terms of the number of messages sent by the 

agents. As in the first experiment, we used 40 data 

sensor agents and 100 merger agents trying to answer 

100 persistent queries. The results in Fig. 15 show 

that for the non-autonomic system, the number of 

messages decreased as the failure rate increased. This 

is due to the fact that as more sensors fail, the system 

interacts with less data sensor agents resulting in 

fewer messages. For the autonomic system, we 

expected a monotonically increasing function due to 

the messages involved in an increasing number of 

reconfigurations. However, the number of messages 

only increased until we reached a failure rate of 30% 

and then decreased. These results suggest that before 

the 30% failure rate, the number of reconfiguration 

messages was larger than the number of messages 

generated by sensors prior to their failure. As more 

sensors were lost (30% failure rate and larger), the 

increase in messages due to reconfiguration was less 

than the loss of messages caused by the reduction of 

sensor interactions, globally resulting in less 

messages sent in the system. Overall, the autonomic 

system generated approximately 50% more 

messages.  

Our final set of experiments attempted to confirm 

the influence of the number of data sensor agents on 

system performance. We ran the previous 

experiments with 3 different numbers of data sensor 

agents: 20, 30 and 80. For each set, we measured the 

number of messages sent at different failure rates. 

The results are shown in Fig. 16. We note that there 

is a direct correlation between the number of data 

sensor agents and the number of message sent. 

However, as the number of data sensor agents 

doubles, the number of messages only increases by a 

constant factor. This is an important result that 

ensures an effective scalability of our system.  

Fig. 15. Comparison of number of messages sent. Fig. 14. Comparison of area coverage. 
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9. Conclusions and future work 

We have described a comprehensive multiagent 

approach for building an Autonomic Systems. Our 

approach takes advantage of OMACS, which fits 

well in the autonomic computing perspective and 

allows autonomic systems to achieve many self-* 

properties. Furthermore, we have designed a 

customized multiagent development process from the 

O-MaSE process framework. Our process fits with 

OMACS organizational concepts and provides means 

to create a rigorous process to design autonomic 

systems. In addition, we have described our OBAA 

agent architecture that separates general autonomic 

reasoning from application specific tasks. This 

allows applications to reuse various autonomic 

reasoning strategies without changing their 

implementation. 

Moreover, through a specific scenario, we have 

illustrated the self-configuring, self-optimizing, self-

healing and self-protecting properties of our 

exemplar system, the autonomic information system. 

As a result of those properties, the system is able 

reason about system goals, recover from failures, 

recognize and prevent undesirable behaviors and 

optimize performance without disrupting the flow of 

information and requiring the intervention of the 

user. 

Finally, we have shown experimentally that our 

autonomic information system was more robust than 

a non-autonomic version, achieving on average 25% 

more coverage after some sensors had failed. Then 

we have measured that this increase in robustness 

comes with an increase number of messages 

generated due to reconfiguration. Our experiments 

have demonstrated that the autonomic system 

generated 50% more messages than the non-

autonomic one. Lastly, we have shown that, despite 

the cost of reconfiguration, our autonomic system 

exhibits a good scalability. 

In the future work, we want to evaluate our 

proposed design process by comparing it with other 

autonomic methodologies. In addition, we are 

investigating ways to allow a distributed 

reconfiguration, as oppose to the centralized 

approach used in this paper. This would allow all the 

agents to participate in the reconfiguration process, 

resulting in a more robust autonomic system. 

We are also working on extending the aT
3 tool to 

support design metrics, which allows the designer to 

explore alternative designs and verify its design for 

robustness, flexibility and efficiency thorough the 

entire development lifecycle. 

Finally, as systems become larger and more 

complex, we are also looking into ways to simplify 

the design of such systems by allowing reuse of 

simpler and smaller organizations through some 

composition mechanisms. This would allow the 

designer to focus on smaller organizations and would 

facilitate the verification process. 
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