
Appl Intell (2006) 25:335–357

DOI 10.1007/s10489-006-0111-2

Achieving dynamic, multi-commander, multi-mission planning
and execution
Eugene Santos Jr · Scott A. DeLoach · Michael T. Cox

C© Springer Science + Business Media, LLC 2006

Abstract The Multi-Agent Distributed Goal Satisfaction

(MADGS) system facilitates distributed mission planning

and execution in complex dynamic environments with a fo-

cus on distributed goal planning and satisfaction and mixed-

initiative interactions with the human user. By understanding

the fundamental technical challenges faced by our comman-

ders on and off the battlefield, we can help ease the burden of

decision-making. MADGS lays the foundations for retriev-

ing, analyzing, synthesizing, and disseminating information

to commanders. In this paper, we present an overview of the

MADGS architecture and discuss the key components that

formed our initial prototype and testbed.

Keywords Mobile multiagent systems . Mixed-initiative

planning . Distributed mission planning and execution .

Intelligent resource allocation . Agent oriented software

engineering

1 Introduction and motivation

Real-time air mission planning and execution occurs in

a highly complex and dynamic environment where new

E. Santos Jr. (�)

Thayer School of Engineering, Dartmouth College, Hanover,

NH 03755

e-mail: Eugene.Santos.Jr@Dartmouth.edu

S. A. DeLoach

Department of Computing and Information Sciences, Kansas

State University, Manhattan, KS 66506-2302

e-mail: sdeloach@cis.ksu.edu

M. T. Cox

Intelligent Distributed Computing Department, BBN

Technologies Cambridge, MA 02138

e-mail: mcox@bbn.com

constraints and conditions frequently arise at all levels of

operation from theater level planning to individual unit task-

ing and execution. Some new conditions are “discovered”

as planning failures arise while completing local objectives

(goals and sub-goals). Planning failures are caused by factors

such as internal planning conflicts, irrevocable commitments

from partial plan execution, and insufficient resources (num-

ber of planes, fuel, etc.). Other conditions are imposed from

outside the system during planning and execution. Such con-

ditions include command modifications in the mission ob-

jectives (human intervention—friendly and/or enemy) and

continuous changes in the external environment (weather

changes, equipment failure, etc.). Moreover, military opera-

tions planning is a distributed activity. Planners at all levels

and in all services cooperate (and compete) to create and

execute operations.

With all this in mind, the burden faced by our comman-

ders/planners in the modern information rich battlespace is

overwhelming to say the least. To be fully aware of the

battlespace situation is simply not feasible. However, the

strength of our commanders lies in what they know com-

bined with what they can easily access in order to get the job

done.

Unfortunately, most of the research to date on mission

planning and execution has been based around the unreal-

istic assumption of a single “point of planning;” that is, all

planning occurs at a single location with unlimited access to

global information. Such an approach does not permit scaling

and is unrealistic in today’s information intensive environ-

ments. First of all, without the ability to scale to large prob-

lems, automated planning will not be able to fit into existing

organizations, or to permit simultaneous planning with plan

execution. A particularly important issue is that local dy-

namic conditions, as discussed in the preceding paragraph,

can result in a rippling effect of plan failures all the way up

Springer

336 Appl Intell (2006) 25:335–357

to the highest levels. Secondly, unlimited global access is

simply not feasible given the size, reliability, and dynamic

reconfigurability of our information network as well as the

necessity of providing information security in such a critical

environment. For mission planning and execution to work

effectively, we must be able to reliably provide commanders

the information when they “need to know” and guarantee the

information security if they “need to know.”

In the real-world dynamic and large-scale setting of air

mission planning and execution, this can only be achieved in

a distributed manner to provide sufficient levels of efficiency,

robustness, and security. This has been the primary theme

for our Multi-Agent Distributed Goal Satisfaction (MADGS)

project.

In our approach, we set out to clearly identify the root

causes of plan failures and when and where such failures can

be best addressed by the human commanders. In particular,

we posited that significant planning failures occur during ex-

ecution when specific resource requirements for a given task

cannot be satisfied because of the dynamic nature of our oper-

ational environment. Instead of forcing a costly re-planning

of the mission, we redefined the problem in terms of satis-

fying resource requirements during mission execution. This

allows us to avoid planning failures if alternative resources

can be located (in a local fashion) for the human commanders

to carry out their tasks. In the case where resources cannot

be allocated, we now have up to date information on rele-

vant resources and availability that can now be passed up the

mission plan hierarchy. Combined with our developments in

mixed-initiative planning through goal-transformations, we

can better assist during re-planning but also limit the scope

necessary of the overall re-planning effort.

Specifically, we have achieved the following: We (1)

designed a model of distributed goal satisfaction to miti-

gate plan resource failures; (2) introduced mixed-initiative

planning through goal transformations; (3) developed and

deployed a scalable mobile multi-agent infrastructure for

dynamically reconfigurable networks; and, (4) built a frame-

work for automated software agent generation and validation.

In the remainder of this paper, we lay out the MADGS archi-

tecture, discuss its key components, and finally present our

evaluation of the MADGS prototype system.

2 Multiagent distributed goal satisfaction

The Multi-Agent Distributed Goal Satisfaction (MADGS)

system is a JAVA-based mobile-agent system that facili-

tates distributed mission planning and execution in com-

plex dynamic environments with a focus on distributed

goal satisfaction [38]. The MADGS system consists of

five key components: a Distributed Goal Satisfaction mod-

ule (DGS), an agent-server framework (Carolina), a set of

application specific mobile-agents, an agent generation capa-

bility (agentTool), and the PRODIGY planner. The primary

issues we explored include robust and reliable communica-

tion protocols, agent design, and a system architecture that

facilitates both agent and agent server autonomy.

The target real-world operational environment for the

MADGS system is a network topology that consist of inter-

mittent nodes and uncertain network connections that exist in

a large-scale, multi-platform dynamic network. The resulting

design developed for this environment addresses the commu-

nications issues faced when handling massive numbers of

mobile-agents in such a topology. Our development process

required the consideration of bandwidth capacities (minimal

broadcasts if any), mobile-agent collaboration issues, and

server awareness of available resources. In designing a sys-

tem capable of handling an unknown but unrestricted number

of communication and agent migrations over the proposed

topology we made an in-depth examination of both agent and

server responsibilities. From this examination we developed

a premise that there exists a marriage between the function-

ality of the Carolina agent-server and the agents themselves

despite their autonomy. For this reason the MADGS architec-

ture was built around this marriage, maintaining autonomy

for both without depreciating the security or performance of

the system. The marriage is one built of necessity. In order

to minimize agent size some functionality was better placed

in the server and offered as a service to the agents.

MADGS mobile-agents are the workhorses of the system

providing the functionality the system users require. Mobile-

agents are injected into the system through the agentTool

[16] component responsible for agent creation. The agent-

Tool component is not a standard component present on all

nodes. As an administrative tool, agentTool, is instantiated at

predetermined points in the network expressly as a defined

creation and entry point for mobile-agents into the MADGS

system. This architecture provides an avenue for insuring a

level of authenticity and thereby security to the system. If

a new mobile-agent or a clone is needed, the requests for

these are filtered through an agentTool component via an

agentToolHandler agent. The DGS module will provide al-

ternative resource configurations to facilitate the completion

of a plan constructed via PRODIGY given constraint failure

without backtracking or replanning. The DGS component

will interact with the resource agent to maintain an accurate

record of available resources using a distributed database of

resource attributes and linear programming tools to make

replacement determinations. The DGS component will rely

on human operators to make resource substitution decisions.

Alternative resource configurations for resources identified

by the plan as mission-critical are given priority by the DGS

component. PRODIGY [46] is a legacy planning system that

will provide the initial master plan for operations. Figure 1

illustrates the interactions between agentTool, PRODIGY,

Springer

Appl Intell (2006) 25:335–357 337

Fig. 1 MADGS system.

Component/agent interaction

flow

Carolina, and the DGS components of MADGS. In this fig-

ure, Carolina is the backplane responsible for the communi-

cations and agent operation environment.

Our MADGS system functions as follows (Fig. 1): For

each human commander, there is an associated PRODIGY

system complete with GTrans interface to assist the comman-

der in formulating plans for their given missions. Also at-

tached to the commander are a ResourceAgent, a PRODIGY

agentHandler, and agentToolHander. When a plan is com-

pleted by the commander with PRODIGY, it consists of

a sequence of specific execution tasks. The PRODIGY

agentHandler now requests agentToolHandler to spawn a

specific planHandler agent from agentTool for this given

plan. In this case, the planHandler can be retrieved from a

library of agents that agentTool has created off line. The plan

sequence is now picked up by our newly created planHandler

agent where a resource analysis is conducted to determine the

resource requirements of each task in the sequence. Execu-

tion of each task is now commenced. For each task being

deployed, MADGS attempts to satisfy the specific resource

requirement by querying the commander’s ResourceAgent

and then negotiating with other ResourceAgents “nearby” if

necessary. When the requirements are satisfiable, the plan-

Handler then requests agentToolHandler to now spawn a spe-

cific task execution agent for the task to be executed. This

continues until all tasks are executed or a failure in a task

execution or resource requirement is encountered. Once en-

countered, the planHandler then gathers the details of the

failures and attempts to overcome the failure to send to the

prodigyAgentHandler and mixed-initiative replanning com-

mences. Also, implicit in the diagram is the ability of the

human decision maker to observe activities on the system.

In the following sections, we detail the individual MADGS

components described above.

2.1 Distributed goal satisfaction

The general problem with the development of the MADGS

system revolves around facilitation of real-time operation

and plan failure handling. One of the common threads across

the aforementioned domains and the general problem is the

need for distributed goal satisfaction that can work coopera-

tively with legacy planning systems yet autonomously handle

changes in constraints. The ability to autonomously handle

changes in the constraints of a plan can mean the success or

failure of any distributed operational mission/goal. The need

to re-plan or backtrack due to constraint changes in any plan

can mean a substantial resource loss; be it lost capital or life,

the expense is real. Our approach seeks to mitigate a signif-

icant amount of this loss by preemptively expecting failure,

defining alternative constraint configurations, developing de-

livery arrangements and in the event of a failure offering an

instant solution to the user.

This distributed goal satisfaction (DGS) process is a pri-

mary background activity of the MADGS system. In the fore-

front, the system is providing an environment for general

operation, sub-plan and sub-task execution, and user inter-

face. It is this aspect of the MADGS system that facilitates

the DGS process. The MADGS system represents every re-

source (including personnel) by at least one agent. However,

this representation allows the MADGS system to facilitate

the DGS process by maintaining a more complete view of

the current state of the world. This world-view is constantly

shifting in any operation especially large-scale operations.

Springer

338 Appl Intell (2006) 25:335–357

For this reason alone communications becomes a crucial as-

pect of our system.

Even though some agent-based mission planning and exe-

cution systems have been developed [47] they do not fully use

the power of agent programming. Our approach is to use the

strengths of legacy systems in conjunction with the strengths

of agent programming coupled with our own approaches to

communications (as outlined above) and resource location

and allocation. Most large-scale operations create a plan off-

line by formulating a problem or suggested outcome and then

determining an optimal plan for the realization of this global

goal. While an agent system could be used for such an op-

eration there are legacy systems in existence optimized for

this purpose. This is why PRODIGY is used to create a Mas-

ter Plan for the MADGS system. This plan is then provided

as input to the MADGS system. The MADGS system then

uses command agents to decompose the plan (if necessary)

into sub-plans which are further decomposed into tasks by

sub-command agents (Command agents with a lower rank)

that assign the tasks to subordinate task agents. This process

is not dissimilar to those present in existing agent-systems.

Our approach is only unique in how we communicate and

plan for alternative courses of action in the event a plan fails

during execution due to changes in the present state of the

‘world’.

Resolving to one course of action (or plan) in a real-time

system poses great difficulty due to the volatile nature of

the constraints and the conditions a plan is based on. A

change in a constraint or condition of a sub-plan could lead

to its total or partial failure that in turn can lead to a rip-

pling effect, thereby negating the validity of the initial plan.

To overcome these points of failure, a robust and flexible

planning system is needed. The DGS agent module seeks

to provide a surrounding technique to improve the robust-

ness and flexibility of the overall planning and execution

process.

We accomplish this by acting on the resources required to

accomplish a given goal, plan or task. A resource is any com-

modity that is necessary to facilitate the completion of a goal.

(i.e.: Goal A requires resource X, quantity 3) The DGS agent

module receives the local version of the plan and a list of the

required constraints (primary resources). With this input a

tree is constructed of the alternative resource configurations

meeting a stated Tolerance level representing a cost-benefit

function for each required primary resource. This data is then

rated based on alternative resource availability to the local

plan (taking into consideration other known pending or cur-

rent local plans). This information is then stored and the DGS

agent module monitors the primary resource statistics. In the

event that a primary resource fails or is exhausted the DGS

agent module suggests alternative resource configurations to

complete the current plan. If accepted the resources are set

into action in place of the primary (failed) resources. During

this process DGS collects and records data on the selections

that users make to give weight to certain configurations and

more importantly to learn new resource alternatives and con-

figurations when users manually manipulate the suggested

configurations prior to commitment. This process when suc-

cessful negates the need to replan or backtracking furthering

the maintenance of a real-time system. In the following sub-

section, we present our formal approach to resource match-

ing.

2.1.1 Intelligent resource allocation

As stated above, backtracking due to plan failure can result

in substantial loss; whether it be loss of capital or or loss

of life, the expense is real. For MADGS, we determined

that we can mitigate a significant amount of this loss by

preemptively expecting failure, defining alternative resource

constraint configurations, developing delivery arrangements.

In the event of a failure, our goal is to offer alternative

solutions to the human commander in an effort to assist them

in accomplishing their mission. Our approach seeks to mimic

and exploit the strengths of our on-site commanders by en-

hancing their own innate resourcefulness. In effect, we at-

tempted to provide targeted resource information to assist

commanders in resource substitution decisions and on the

spot plan alterations.

At its most basic level, resource substitution can be sim-

plified to: Can resource A be substituted by resource B given

a set of mission requirements. While this is the minimum that

is needed to assist the commander’s “scrounging” decisions,

we realized that many more factors must be captured. These

include cost factors such as transportation costs, scheduled

availability, production costs, etc. Also, another more prob-

lematic cost is the possibility of cascading plan failures when

a particular critical resource is diverted toward solving an-

other plan. This is especially unacceptable if the second plan

is not critical to overall theater operations.

In addition, given the vast number of resources available

in any theater, the number of alternative resource suggestions

can actually overwhelm the human commander. Our goal is to

take all these issues into consideration and develop a frame-

work for intelligent resource substitution that can ultimately

further provide global guarantees of mission satisfiability in

the overall theater operations.

Clearly, resource substitution is very much related to lo-

gistics management (e.g., [44]). We can state such a problem

as consisting of a set of suppliers and consumers. Suppliers

provide resources, while consumers utilize some resources

to achieve some goals, such as doing jobs or producing final

products. After more than a decade’s development on logis-

tics management, many kinds of logistics management mod-

els have been proposed and implemented. Some models are

Springer

Appl Intell (2006) 25:335–357 339

stand-alone and centralized, while others use a client/server

approach ([4, 24, 37]). In recent years, researchers have

proposed multi-agent based models ([30, 33, 39, 48, 49]).

However, most of the models regard logistics management

as an auction, in which each entity tries to maximize its

own benefit. Such an approach is only appropriate for inter-

organizational logistics, which consists of competitive enti-

ties. However, this is clearly inappropriate for our problem. In

our case, suppliers (bases, depots, etc.) and consumers (com-

manders) have a common goal to maximize the outcome of

the entire organization (theater operations). People usually

use intra-organizational logistics to describe this case. The

point is that the maximized outcome does not mean the max-

imal benefit of each entity. Therefore, an optimal scheduling

may be built based on sacrificing of some individuals’ ben-

efits. Unfortunately, the typical auction approach does not

account for necessary self-sacrifice.

To address intra-organizational logistics, some re-

searchers have developed coordinating multi-agent logistics

management models. Sadeh et al. in [39] proposed MAS-

COT (Multi-Agent Supply Chain cOordination Tool), a

reconfigurable, multilevel, agent-based architecture for

coordinated supply chain planning and scheduling. Shen

et al. in [43] proposed MetaMorph II architecture for en-

terprise integration and supply chain management, which is

mediator-centric and agent-based. Fox et al. in [21] described

the architecture of the integrated supply chain management

system, in which each agent performs one or more supply

chain management functions, and coordinates its decisions

with other relevant agents. A KQML-based multi-agent

coordination language was proposed in [1] for distributed

and dynamic supply chain management. However, their

approaches are ad hoc and lacking in precise optimization

models.

To overcome their limitations, we believe that it is nec-

essary to formulate the resource allocation problem for-

mally. Luh et al. in [34] utilized Lagrangian Relaxation to

remove couplings between constraints so that the original

problem can be separated into subproblems. Ideally, these

subproblems should be separable/independent. The separa-

bility property is good for us because we can allocate a

different agent to solve each subproblem. If the solutions

for these subproblems are compatible with each other, we

are done. Otherwise, these agents can exchange informa-

tion and find an optimal way to satisfy constraints. We be-

lieve that the formulations we have developed before can

satisfy separability since our formulations are similar to

those found in [34] for manufacturing scheduling. It was

demonstrated that the separability condition does hold for

those problems. In case the separability does not hold in

general, we can still significantly benefit from the problem

decomposition and subproblem groupings to improve our

computations.

2.1.2 Modeling intra-organizational logistics

Before we can model intra-organizational logistics, we need

to know its specific issues. Since suppliers (bases and other

commanders) can only provide limited resources for any

given period, the needs of the consumers (commanders) may

not be fully satisfied. The goal of intra-organizational logis-

tics is to reasonably allocate resources so that the profit of

the whole organization is maximized. Depending on the fol-

lowing factors, the problem may be relatively easy or very

complex:� Number of resource types: For example, typical resource

types are plane, ship, truck, fuel, ammunition, soldiers,

airport, and so on.� Number of suppliers for each consumer: If each consumer

has only one supplier, the problem becomes easy. This is

generally the case when a supplier is in charge of one geo-

graphical area. But with modern transportation means and

networking, a supplier is no longer limited by its location.

Therefore, the typical relationship between consumers and

suppliers is a many-to-many relation.� Task properties: A task can be the mission activities in a

given period. Generally, a deadline is set on each task.

The execution of a task needs a certain amount of re-

sources. Sometimes, a task cannot be started unless all

resources have been received. In other cases, lack of re-

sources only delays the execution time or degrades the

quality of a task. Similarly, extra resources may acceler-

ate the execution of a task or achieve a better goal. A task

may be viewed as a single step operation. Or it can con-

sist of a sequence of stages. It is possible that some stages

are critical. If a critical stage violates the deadline or can-

not be continued for some reason, the whole task may be

regarded as having failed. A consumer may only execute

one task over a long time period or many tasks. Several

tasks may be related, such as having a common goal. Re-

lated tasks have more constraints. For example, two tasks

are required to begin at the same time or one before the

other.� Resource properties: Different resource types are not fully

separated. Two different types of resources may have over-

lapping functionalities. For example, two kinds of planes

can achieve the same objectives, only with different costs.

We call this property resource exchangeability. Based on

resource exchangeability, we can allocate alternative re-

sources if critical resources are in demand. However, if

alternative resources lead to higher costs, a trade-off exists

between using these alternative resources and waiting for

needed resources.� Uncertainty: That the situation is changing over time in-

creases the difficulty of managing intra-organizational lo-

gistics. For instance, tasks arrive dynamically because of

Springer

340 Appl Intell (2006) 25:335–357

great variability of customer demands and resources may

not be provided in time. Due to the insufficient resources or

other uncertainties, like machine breakdown, tasks may not

be finished before the deadline. There are so many uncer-

tainties, how can we manage intra-organizational logistics

efficiently?

Traditional models only consider subsets of these factors

and deal with the problem in a centralized manner, which

means all the information is collected at one place for anal-

ysis.

Our approach is different from existing approaches above

in that we take into account a precise optimization model.1

Through the use of Lagrangian Relaxation, we can decom-

pose a resource allocation problem into subproblems, each

of which will be solved by a specific agent. If the solutions

for these subproblems are compatible with each other, we

are done. Otherwise, these agents can exchange information

with each other until a global optimal solution is found. Be-

low, we provide various models for use depending on the

complexity of the target planning problem.

Single resource type/single supplier/single job. In this case,

we suppose that only one kind of resource exists in the

system, and each consumer requests resources from a cor-

responding supplier to do a single job. We also fix the cost

of using unit resource. Therefore, there is no need to con-

sider the cost when we do job scheduling and the goal is to

minimize job delay.

Since each consumer is related with only one job, we con-

sider only jobs and suppliers in the remaining section. Let

the number of jobs be Nc and the number of suppliers be Ns .

For each job i = 1, . . . , Nc, bi represents the starting time, ci

represents the completion time, pi represents the execution

time, di represents the deadline for job i , si represents the

supplier from which job i will get resources (si ∈ [1, Ns]),

and ri represents the needed resource number. Also, we use

Ti to measure the delay of job i(Ti ∈ [0, ci − di]). Because

some jobs may be more important than others, it is not de-

sirable to delay these jobs. To reflect this factor, we use wi

to represent the importance of each job. The higher the value

of wi is, the more important the job is. We can define the

objective function as:

minimize

Nc∑
i=1

wi T
2

i

At any given time t , the total granted resources from

one supplier must be less than its capacity. We use N j (j ∈
[1, Ns]) to represent the amount of resources that supplier

j has. We suppose T is long enough to complete all the

1 Existing approaches include [21, 33, 39, 48, 50, 51].

jobs. The resource capacity constraints can be expressed

as:

Nc∑
i=1

δi j t · ri ≤ N j , j = 1, . . . , Ns, t = 1, . . . , T

δi j t =
{

1 If si = j ∧ bi ≤ t ≤ ci

0 Otherwise

In addition, the following processing time constraints must

be satisfied:

ci − bi + 1 = pi , i = 1, . . . , Nc

Single resource type/single supplier/multiple jobs. In this

case, each consumer can execute several jobs. We assume

that at any time, each consumer can execute at most one

job. Therefore, jobs belonging to one consumer cannot be

overlapped. Here, we suppose that sik represents minimal

switching time for executing job k after finishing job i if

these two jobs are executed by the same consumer. For each

job i , oi represents the consumer who will do the job. Com-

pared to the above case, the precedence constraints need to

be considered:

δik(ci + sik + 1 − bk) + (1 − δik)(ck + ski + 1 − bi) ≤ 0,

where i, k = 1, . . . , Nc, i �= k, oi = ok ;

δik =
{

1 If job k occurs after job i has been finished

0 Otherwise

Single resource type/multiple suppliers/multiple jobs. The

drawback of the above models is that a consumer cannot

execute a job until the corresponding supplier has enough re-

sources. Through allowing a consumer to request resources

from multiple suppliers, this model is more flexible. In most

cases, this model can get better job scheduling than the above

two models. However, this model is more complex. Though

we can limit each consumer to only requesting resources from

a specific set of suppliers, we assume each consumer can re-

quest resources from all suppliers. But the costs of using

resources from different suppliers are different. Therefore,

we need to consider the cost factor in the objective function,

shown as the following:

minimize

Nc∑
i=1

(
wi T

2
i +

∑
t

Ns∑
j=1

ri j t cr j

)
,

Springer

Appl Intell (2006) 25:335–357 341

where ri j t represents the number of resources that job i gets

from supplier j at time t ; cr j (j ∈ [1, Ns]) is the cost of using

unit resource from supplier j per unit time.

Also we modify the resource capacity constraints:

Nc∑
i=1

ri j t ≤ N j , j = 1, . . . , Ns, t = 1, . . . , T

Ns∑
j=1

ri j t =
{

ri If bi ≤ t ≤ ci

0 Otherwise

Multiple resource types/multiple suppliers/multiple jobs. If

we permit multiple jobs to be executed by one consumer, we

need to consider the precedence constraints at the same time:

δik(ci + sik + 1 − bk) + (1 − δik)(ck + ski + 1 − bi) ≤ 0,

where i, k = 1, . . . , Nc, i �= k, oi = ok ;

δik =
{

1 If job k occurs after job i has been finished

0 Otherwise

The objective function and resource capacity constraints

are the same as those in the fifth model.

In summary, we have deployed this approach using the

various models above in a testbed that varies the above pa-

rameters in a manner reflecting real-world mission planning

resource needs. We have achieved very good efficiency re-

sults from our testing and simulation. Our technique provides

the ability to guarantee that the resource decisions made by

the commander while satisfying the commander’s need will

also maximize the overall operational success in the theater

without the need for centralized logistics optimization. In ef-

fect, we can naturally decompose and distribute the resource

decisions for effective computation. This also allows us to

provide the commander with informed knowledge concern-

ing the expected impacts of such resource substitution deci-

sions. For complete details of this model and experimental

results, see Santos et al. [40, 41].

2.2 GTrans for mixed-initiative planning

To interface with its team of users, the MADGS system

needed an interface that allowed the users to work together

with the system to facilitate real-time operation and plan fail-

ures. Therefore, we used our theory of distributed goal sat-

isfaction (goal transformation theory) and combined it with

a graphical user interface (GTrans) for mixed-initiative team

planning. To provide the automated planning portion, we

incorporated the PRODIGY planner using a special agent

(Prodigy/Agent) that interfaced to PRODIGY while also

interfacing to the rest of the MADGS multiagent system

([2, 6, 7, 9, 17, 27, 28, 53]). First we discuss Prodigy/Agent

followed by the GTrans user interface.

2.2.1 Prodigy/agent

To provide planning for MADGS, we decided to integrate

a legacy planner instead of developing an agent-based plan-

ner from scratch. We chose to use PRODIGY [5, 46], which

employs a state-space nonlinear planner and follows a means-

ends analysis backward-chaining search procedure to reason

about multiple goals and operators from its domain theory.

We chose this system because it was designed as an archi-

tecture for testing classical theories of planning and learning

and represents a stable platform within the planning com-

munity. Like most classical planners, it assumes complete

knowledge and is deterministic. Such limitations represent a

compromise traded for computational efficiency and are bal-

anced in practice by the human-assisted replanning discussed

below.

A PRODIGY domain theory is composed of a hierarchy

of object classes and a suite of operators and inference rules

that change the state of the objects. A planning problem is

represented by an initial state (objects and propositions about

the objects) and a set of goal expressions to achieve. Planning

decisions consist of choosing a goal from a set of pending

goals, choosing an operator (or inference rule) to achieve a

particular goal, choosing a variable binding for a given op-

erator, and deciding whether to commit to a possible plan

ordering and to get a new planning state or to continue sub-

goaling for unachieved goals. Different choices give rise to

alternative ways of exploring the search space.

However, as a legacy system, PRODIGY was not ca-

pable of directly interacting with the MADGS multi-agent

system. To integrate PRODIGY into the multiagent system,

we developed Prodigy/Agent. Prodigy/Agent [8, 13, 18, 19]

(written in Allegro Common Lisp) “wraps” PRODIGY and

allows it to behave as an independent agent. Prodigy/Agent

communicates directly with PRODIGY via Lisp and uses

KQML (Knowledge and Query Manipulation Language)

[20] as its agent-communication language to interface with

MADGS agents. A single copy of Prodigy/Agent can act

as a general plan server that may be queried by any agent

in the MADGS system. Multiple copies of Prodigy/Agent

operate concurrently and coordinate their planning de-

cisions with respect to resource limitations. The most

important role for Prodigy/Agent in MADGS is in pro-

viding the underlying planning technology for the GTrans

interface.

Springer

342 Appl Intell (2006) 25:335–357

2.2.2 GTrans

To allow users to interact with MADGS, we developed the

GTrans [6, 12, 52, 53] user interface. GTrans interacts di-

rectly with the Prodigy/Agent planner using mixed-initiative

planning techniques. With GTrans, a human planner can fo-

cus on the goals, associated goal priorities, and resource to

goal assignments (all of which can change over time) instead

of low-level details. Rather than presenting planning as a

search mechanism, we give the user a metaphor of planning

as a goal manipulation problem [12]. The primary task for

the user is to make decisions concerning goal change and

management. By selecting goal changes, the user can reduce

an initial goal to a slightly less demanding goal that par-

tially achieves the state originally sought. Other selections

can decompose a goal into a set of distributed subgoals, the

achievement of which will satisfy the parent goal. PRODIGY

provides background support to the user rather than making

decisions regarding goal change itself.

From the commander’s point of view, planning is achieved

by manipulating the GTrans graphical user-interface to

achieve objectives and project hypothetical situations. As

such, it operationalizes an objectives-based planning model

[26] and limits the detail thrust upon the human user because

the focus of planning is change to the goal rather than the

details needed to achieve them. Next, we discuss goal trans-

formations and the GTrans user interface in more detail.

Goal transformations. In a dynamic environment, aspects

that affect a plan and its execution may change at any point.

Traditionally, this determines that a change to the plan be for-

mulated that will allow the goal to be achieved when threat-

ened. However, in many circumstances the goals themselves

may need to change rather than the plan per se [11]. For ex-

ample, it makes no sense to continue to pursue the goal of

securing an airbase, if the battlespace has shifted to a distant

location. At such a point, a robust planner must be able to alter

the goal minimally to compensate. Otherwise, a correct plan

to secure the old location will not be useful at execution time.

A goal transformation represents a goal shift or change.

Conceptually it is a change of position for the goal along a set

of dimensions defined by some abstraction hyperspace [11].

The hyperspace is associated with two hierarchies. First the

theory requires a standard conceptual type-hierarchy within

which instances are categorized. Such hierarchies arise in

classical planning formalisms. They are used to organize ar-

guments to goal predicates and to place constraints on op-

erator variables. Goal transformation theory also requires a

unique second hierarchy.

In normal circumstances the domain engineer creates ar-

bitrary predicates when designing operator definitions. We

require that these predicates be explicitly represented in a

separate predicate abstraction hierarchy that allows goals to

be designated along a varying level of specificity. For exam-

ple consider the military domain. The domain-specific goal

predicate is-ineffective takes an aggregate force unit as an

argument (e.g., (is-ineffective enemy-brigade1)). This pred-

icate may have two children in the goal hierarchy such as is-
isolated and is-destroyed. The achievement of either will then

achieve the more general goal [11]. Furthermore if the predi-

cate is-destroyed had been chosen to achieve in-effective, the

discovery of non-combatants in the battle area may neces-

sitate a change to is-isolated in order to avoid unnecessary

casualties. Note also that to defer the decision, the move-

ment may be to the more general is-ineffective predicate.

Then when the opportunity warrants and further information

exists, the goal can be re-expressed. In any case, movement

of goals along a dimension may be upward, downward or

laterally to siblings.

Goal movement may also be performed by a change of

arguments where the arguments exist as objects of or mem-

bers of the standard object type-hierarchy. The goal repre-

sented as the type-generalized predicate (inside-truck Truck1

PACKAGE) is more general than the ground literal (inside-

truck Truck1 PackageA). The former goal is to have some

package inside a specific truck (thus existentially quanti-

fied), whereas the latter is to have a particular package in-

side the truck. Furthermore both of these are more specific

than (inside-truck TRUCK PACKAGE). Yet movement is

not fully ordered, because (inside-truck Truck1 PACKAGE)

is neither more general or less general than (inside-truck

TRUCK PackageA).

A further way goals can change is to modify an argument

representing a value rather than an instance. For example the

domain of chess may use the predicate outcome that takes

an argument from the ordered set of values checkmate, draw,

lose. Chess players often opt for a draw according to the

game’s progress. Thus to achieve the outcome of draw rather

than checkmate represents a change of a player’s goal given

a deteriorating situation in the game.

GTrans user interface. To directly support the goal manip-

ulation model used in MADGS, we implemented a mixed-

initiative interface through which the user manipulates goals,

the arguments to the goals, and other properties. The inter-

face, written in Java, hides many of the planning algorithms

and knowledge structures from the user and instead empha-

sizes the goal-manipulation process with a menu-driven and

direct manipulation mechanism. GTrans presents a direct ma-

nipulation interface to the user that consists of a graphical

map with drag and drop capability for objects superimposed

upon the map surface. GTrans helps the user create and main-

tain a problem file that is internally represented as follows.

A planning problem consists of an initial state (a set of ob-

jects and a set of relations between these objects) and a goal

state (set of goals to achieve). The general sequence is (1) to

Springer

Appl Intell (2006) 25:335–357 343

Fig. 2 The GTrans interface

create a planning problem, (2) invoke the underlying planner

to generate a plan, and then until satisfied given planning

feedback either (3a) change the goals or other aspects of the

problem and request a plan or (3b) request a different plan

for the same problem. Figure 2 shows the interface presented

to the user.

We extended the GTrans user interface to allow mul-

tiple human planners to operate in teams. Each user has

an independently executing copy of GTrans and a support-

ing component that allows plan manipulation on a common

graphical map representation. The systems work indepen-

dently of each other, yet they have the capacity to take initial

conditions and goal descriptions from any of the other con-

current GTrans interfaces. GTrans uses sockets to commu-

nicate with Prodigy/Agent and with other executing copies

of GTrans. The individual processes may be distributed on

remote machines across a network. As such, we are able to

fully integrate GTrans into the MADGS Carolina environ-

ment and provide mixed-initiative planning assistance to the

human commander.

2.3 Carolina mobile agent server

For MADGS, the critical element for agent communications

lies in the necessity of not having a singular point of failure
in the system. This obviously means that we cannot afford

to use centralized directories or look-up tables. Due to the

network constraints we also cannot leave communications up

to individual agents since this will effect the size of mobile

agents and thereby bandwidth consumption. Another com-

munications issue facing development of the MADGS sys-

tem was location of agents and resources. Without centralized

directories, look-up tables or the ability to farm communica-

tion concerns out to agent resources our research led to the

quick determination that no available system answered the

communication issues, resource tools or adaptability needed

by our project. For this reason we embarked on the design

and implementation of the Carolina agent server and mobile

agent system. Unfortunately no generic agent system with

sufficient basic communications and resource management

abilities could be effectively utilized.

Systems identified made different assumptions and fo-

cused on a specific problem without offering some base func-

tionality that all agent systems could generally use. It is hoped

that one by-product of our work is to define the base func-

tionality needed by all agent systems. This is not to say that

all agent systems should or will be based on of our work

given all systems do not work off general models.

The communication protocols we devised in Carolina at-

tempt to insure several things:

1. The size of an agent will not increase significantly with

increased interactions;

2. Each node will have a consistent view of the ‘world’;

3. The network load posed by communications can be mini-

mized compared with alternate communication methods;

4. There is no central point of failure in the system; and,

5. All communications can be routed within a reasonable

time frame.

These assurances can be made despite the volatile and inter-

mittent nature of our network environment. The first assur-

ance follows from the need for agents to only have an agent’s

Springer

344 Appl Intell (2006) 25:335–357

unique assigned name to maintain a communication link with

that agent. The second assurance is possible because our

system provides for information sharing between nodes that

guarantees all nodes will know the exact location of all mo-

bile resources (agents are resources) assuming no non-server

resource movement for a time-period not to exceed some

constant value τ . The third assurance is possible because our

communication protocol negates the need for broadcast ex-

cept for system-wide alerts that are hypothesized to be rare

in any system. Since our protocol does not utilize a central

look-up table or centrally located directories, there can be no

single point of failure for communications, thus the fourth

assurance. The last assurance stems from the second assur-

ance. Since all nodes are guaranteed to know the location of

all mobile-agents, it is possible to route ALL communica-

tions within a reasonable time frame.

The foundation of the MADGS system is the agent server

named Carolina. Carolina has a three-tier architecture with

several internal components that are described in this section.

There are four main functions in Carolina:

1. Provide an agent execution environment;

2. Insure system integrity through role-based security tech-

niques;

3. Allow access to system resources where appropriate; and,

4. Provide communication services that improve the overall

system performance.

The first function is basic to all agent systems and needs

no further mention. Carolina System Manager Component

oversees the agent interactions to insure that only appropri-

ate communications occur between different types of agents

using cased-based reasoning techniques. Tied into this func-

tionality is the access Carolina provides to system resources

to requesting agents. These resources may only be accessed

through proper channels, in other words through the proper

agent since agents represent all resources. For example, an

attempt to access a database directly instead of through the

databases interface agent would meet with failure and cause

retribution from Carolina as a hostile act. In this event, the

System Manager will sever the agents thread and report the

offending agents class and offense to a system user. The last

function of Carolina currently revolves around communica-

tions. There are three things of interest in this area, server-to-

server communications, agent migration, and agent-to-agent

communications. Server-to-Server communications that is

crucial to the operation of the MADGS system however

only occurs twice, upon Server startup and shutdown. The

primary function of the server-to-server communication is

the location and interconnection the MADGS system, Car-

olina servers and the agents they host. Agent migrations in

Carolina are handled as a form of communication though

migrations are handled through a separate port than com-

Fig. 3 Carolina architecture

munication messages. Since agents in the MADGS sys-

tem are not allowed to directly communicate with another

agent, Carolina must offer a service for local and remote

communications.

The decision to not allow agents to directly communicate

departs strikingly from the standard agent-based system pro-

tocols. The reason we take this unique stance is the limitations

that occur when you allow an unlimited number of agents to

freely migrate and communicate over a constantly changing

network topology. Under such conditions the network traffic

increases significantly as mobile-agents attempt to maintain

the current location of other mobile-agents they are collabo-

rating with. Given our network environment, bandwidth us-

age must be kept to a minimum; therefore management of

this cannot be left to the individual agents. It becomes an

issue of control and performance. Let us begin to examine

the Carolina architecture (see Fig. 3).

Carolina receives agents through its AgentServer Port,

which is controlled by the AgentManager. The AgentMan-
ager receives incoming agents and checks their intended

destination (IP). If the intended destination is local, the

AgentManager registers the agent in the AgentDirectory, de-

serializes it and passes it to the ExecutionContainer where

the agent is provided with a thread for execution. If how-

ever, the agent’s intended IP is not local, the AgentManager
simply reroutes the serialized agent through the AgentClient

Port after registering the transient agent in the AgentDirec-

tory. The AgentDirectory is one of the key components of

the Carolina communication scheme. It maintains data on

all agents that the resident Carolina server has seen. Infor-

mation stored in the AgentDirectory includes typical infor-

mation including the agent’s unique name assigned at cre-

ation, the agent’s class, source IP, current (or last known) IP,

Springer

Appl Intell (2006) 25:335–357 345

and goal. Additionally, AgentDirectory stores a pointer to

the messages stored in the Message Directory for individual

agents.

Finally, since the MADGS system has been designed

for use in a large-scale dynamic network architecture with

massive numbers of mobile agents carrying out communica-

tions, point-to-point communications were not an option. The

protocol we developed extends existing work [29]. Agents are

not responsible for maintaining an address book of any kind.

If communication is needed with a specific agent the agent

only needs that agent’s unique identification tag. Location of

and routing of messages to agents in the network is performed

as a joint effort between the servers and a Communications
Agent. The server logs all agents entering or passing through

the server in route to another node in the network. Carolina

logs the agent name, unique identification tag, class, loca-

tion or destination and time-stamp. In conjunction with this

logging activity, Communications Agents use a random al-

gorithm to canvas the network moving from server to server

collecting the server’s agent directory and compare it to their

‘view’ of the world. This agent then modifies (or cleans)

the servers agent directory making additions, deletions and

correction as needed.

2.4 AgentTool: Developing mobile agent in MADGS

To support MADGS, we created the Multi-agent Systems En-
gineering (MaSE) methodology and an agent development

environment called agentTool [3, 14, 16]. The agentTool

system is integrated into MADGS via the agentToolHan-

dler agent. Using agentTool, developers follow MaSE, which

guides them, step by step, through the analysis and design

of complex, distributed, and dynamic multi-agent systems,

such as MADGS. agentTool is a graphically based, inter-

active software engineering tool that fully supports MaSE.

agentTool helps developers in specifying multi-agent organi-

zations and then semi-automatically generating designs and

correct, executable code. MaSE and agentTool are both in-

dependent of any particular agent architecture, programming

language, or communication framework. Using agentTool,

it is possible to generate implementations targeted at vari-

ous frameworks without changing the design. To support the

MADGS architecture, we have developed specific code gen-

eration modules to produce systems that work in the Carolina

framework.

2.4.1 Multiagent systems engineering

The MaSE methodology is a specialization of more tradi-

tional software engineering methodologies. The general op-

eration of MaSE follows the phases and steps shown below

and uses the associated models. The goal of MaSE is to guide

a system developer from an initial system specification to a

multi-agent system implementation. This is accomplished by

directing the developer through this set of inter-related sys-

tem models.

Phases Models
1. Analysis Phase

a. Capturing Goals Goal Hierarchy

b. Applying Use Cases Use Cases, Sequence Diagrams

c. Refining Roles Concurrent Tasks, Role Model

2. Design Phase

a. Creating Agent Classes Agent Class Diagrams

b. Constructing Conversations Conversation Diagrams

c. Assembling Agent Classes Agent Architecture Diagrams

d. System Design Deployment Diagrams

Analysis phase. The goal of the MaSE analysis phase is to

define a set of roles that can be used to achieve the system

level goals. This process is captured in three steps: capturing

goals, applying use cases, and refining roles.� Capturing Goals. The first step is to capture the system

goals by extracting them from the requirements, which is

done by Identifying goals and Structuring goals. The pur-

pose of the Identifying Goals is to derive the overall system

goal and its subgoals. This is done by extracting scenar-

ios from the requirements and then identifying scenarios

goals. After the goals have been identified, the second step,

Structuring Goals, categorizes and structures the goals into

a goal tree, which results in a Goal Hierarchy Diagram that

represents goals and goal/subgoal relationships.� Applying Use Cases. In this step, goals are translated into

use cases, which capture the previously identified scenarios

with a detailed description and set of sequence diagrams.

These use cases represent desired system behaviors and

event sequences.� Refining Roles. Refining Roles organizes roles into a Role

Model [25], which describes the roles in the system and the

communications between them (Fig. 4). Each role (denoted

by boxes) is decomposed into a set of tasks (ovals), which

are designed to achieve the goals for which the role is re-

sponsible. Communications between tasks are denoted by

arrows pointing from the initiating task to the responding

task. The behavior of these tasks is documented using finite

state automata-base Concurrent Task Diagrams. Concur-

rent Task Diagram consist of a set of states and transitions

that represent internal agent reasoning and communica-

tions. A special move action allows the analyst to specify

agent mobility.

An example of a MaSE Concurrent Task Diagram is shown

in Fig. 5, which shows the definition of the CreateAgent task

from the Agent Generator role.

Springer

346 Appl Intell (2006) 25:335–357

Fig. 4 MADGS role model

Fig. 5 createAgent concurrent

task diagram

The state transition syntax trigger(args1)[guard]/

transmission(args2) is interpreted to mean that if an event

trigger is received with a number of arguments args1 and the

condition guard holds, then the message transmission is sent

with the set of arguments args2. Actions may be performed in

a state and are written as functions. Besides communicating

with other agents, tasks can interact with the environment via

reading percepts or performing operations that affect the en-

vironment. This interaction is typically captured by functions

executed while in specific states.

Design phase. The purpose of the design phase is to take roles

and tasks and to convert them into a form more amenable

to implementation, namely agents and conversations. The

MaSE design phase consists of four steps: designing agent

classes, developing conversation, assembling agents and de-

ploying the agents.� Construction of agent classes. The first step in the design

phase identifies agent classes and their conversations and

then documents them in Agent Class Diagrams, as shown in

Fig. 6, which depicts agent classes as boxes and the conver-

sations between them as lines connecting the agent classes.

The Agent Class Diagram that results from this step is

similar to object-oriented class diagrams with two differ-

ences: (1) agent classes are defined by the roles instead

of attributes and methods and (2) relations between agent

classes are conversations. The agentTool and PRODIGY
agent classes do not have assigned roles as they are legacy

systems that work in conjunction with the agentTool Han-
dler and Prodigy Agent agents to provide their functional-

ity.� Constructing conversations. Once the agent classes and

the conversations are identified, the detailed conversation

design is undertaken. Conversations model communica-

tions between two agent classes using a pair of finite state

automata similar in form and function to concurrent tasks.

Each task usually generates multiple conversations, as they

require communication with more than one agent class.

In the current version of agentTool, conversations may

be verified to ensure that they do not deadlock, etc. This

verification is straightforward as it is only done on sin-

gle conversations; it does not check interactions between

Springer

Appl Intell (2006) 25:335–357 347

ReturnResults

GTRANS
Commander

Prodigy Agent

Planner

Prodigy Plan Handler

Plan Handler

agentTool Handler

Agent Generator

Resource Agent

Resource Tracker

Action Agent

Step Executor

PlanProblem

Plan

Plan Handler

Plan Executor

RequestAgent

Create

GetPlan

Assign

RequestResourceList

RequestResourceList

PRODIGY

agentTool

RequestPlanHandler

GetPlan

Report
ReturnResults

Prodigy Plan Handler

Pla

Agent Gen

Action Agent

 Executor

PlanProblem

Plan

Plan Handler

Plan Executor

RequestAgent

Create

GetPlan

Assign

RequestResourceList

RequestResourceList

PRODIGY

agentTool

RequestPlanHandler

GetPlan

Report

Fig. 6 MADGS agent class

diagram

Fig. 7 RequestAgent conversation diagrams

conversations. Verification is done by converting the con-

versations into Promela code, which is verified using SPIN.

Both sides of the RequestAgent conversation are shown

in Fig. 7. The initiator always begins the conversation by

sending the first message. The syntax for Communication

Class Diagrams is similar to that of Concurrent Task Dia-

grams except that conversations are binary exchanges be-

tween individual agents.� Assembling Agent Classes. Assembling Agent Classes in-

volves defining the agentsí internal architecture. MaSE

does not assume any particular agent architecture and al-

lows a wide variety of existing and new architectures to be

used. The architecture is defined using components similar

to those defined in UML.� System Design. The final design step is to choose the actual

configuration of the system, which consists of deciding the

number and types of agents in the system and the platforms

on which they should be deployed. These decisions are

documented in a Deployment Diagram, which is similar

to a UML Deployment Diagram, as shown in Fig. 8. The

three dimensional boxes denote individual agents while

the lines connecting them represent actual conversations.

A dashed-line box encompasses agents that are located on

the same physical platform.

2.4.2 agentTool

The goal of agentTool (Fig. 9) was to support and enforce

the MaSE methodology and to supported automated agent

synthesis. We approached automated agent synthesis along

three major themes in agentTool: (1) automated transforma-

tion of analysis models into design models, (2) verification

of analysis and design models prior to code generation, and

(3) code generation for a variety of agent frameworks.

Analysis to design transformations. This section describes

how agentTool transforms the analysis models into design

models. The goal of these transformations is to take the anal-

ysis specification and transform it into a consistent design.

The process is semi-automatic in that the designer initiates

the transformation process and guides it along when help is

required. The initial input to the transformations is the set

of agent classes and the roles assigned to each agent class.

The transformation system then generates the agent conver-

sations as well as the internal agent component-based de-

sign based on the role model and tasks from the analysis

phase. A detailed discussion of the automated analysis to de-

sign transformations, including a formal specification of the

transformations, can be found in [45].

Springer

348 Appl Intell (2006) 25:335–357

Fig. 8 MADGS deployment diagram

Fig. 9 agentTool

A second set of transformations currently implemented

in agentTool consists of transformations to add function-

ality required for mobility. In the analysis phase, mobility

is specified using a move activity in the state of a concur-

rent task diagram. This move activity is copied directly into

the associated component state diagram during the initial set

of analysis-to-design transformation described above. Dur-

ing the mobility transformation, the existing design must be

modified to coordinate the mobility requirements between

all components in the agent design. According to the mo-

bility design approach, the AgentComponent is responsible

for coordinating the entire move and working with the ex-

ternal agent platform to save its current state and actually

carry out the move. More detailed explanations of the design-

to-design mobile agent transformations are contained in

[42].

Springer

Appl Intell (2006) 25:335–357 349

Automated verification. The second research area in multia-

gent system synthesis was the automatic verification of agent

protocols. Since it is critical that distributed mission planning

systems such as those envisioned by MADGS operate prop-

erly without extensive testing, efforts were focused on ensur-

ing that the protocols used for agent communications were

as reliable as possible before implementation. agentTool, via

the Spin system [23], currently checks classic conversation

centric errors including deadlocks, non-progress loops, live-

lock, infinite overtaking, unused messages, and mislabeled

transitions. agentTool also has the capability to verify that

Sequence Diagrams generated during the analysis phase can

actually be generated by the system design [31, 32].

agentTool performs these verification tasks by generating

Promela code [22] from the system design and passing that

code to Spin. Spin then creates an analyzer to search the con-

versation state space, simulating all possible combination of

messages in the conversation until either a deadlock condi-

tion occurs or the state space is exhausted. Conversations are

considered deadlocked if they terminate in any state other

than the end state. If a deadlock condition is detected, the an-

alyzer writes a trace file that can be used to create a message

sequence trace pinpointing the series of message events that

led to the deadlock. Figure 10 shows the messages agentTool

provides. All errors detected by agentTool are also displayed

graphically by highlighting the state and/or transition that

caused the error.

Code generation. The final focus of agentTool research was

on the automated generation of code from design models.

Currently, agentTool generates Java code that captures the

structural aspects of the system as well as the communica-

tions protocols necessary to work within the Carolina frame-

work. The AgentComponent, each component within the

agents, and each conversation are generated as Java objects.

To ensure the semantics of concurrent tasks are preserved,

each component becomes a separate thread. The state ma-

chines that describe the components and the conversations

are generated as the main function of each thread. The main

Fig. 10 Deadlock detection

Fig. 11 Conversation code generation

functions have a single loop with a switch statement where

each case captures a separate state. Figure 11 shows code

generated for the main loop of the responder side of the Re-
questAgent conversation from Fig. 7. agentTool generated

code has been used in a number of projects [15, 35] and was

the basis for comparing the performance of mobile and static

multiagent systems in [36].

agentToolHandler. In the current version of MADGS, system

designers design and build MADGS mobile agents prior to

deploying the MADGS system. The code for these agents is

passed to the agentToolHandler who instantiates these agents

upon request. In the future, to allow MADGS to evolve be-

yond its deployed configuration, we plan to allow the agent-

ToolHandler to pass specifications for non-existent agents to

the agentTool system where agentTool operators will design

and create agents in real time from a set of existing compo-

nents and communications protocols. As one might imagine,

Springer

350 Appl Intell (2006) 25:335–357

agentTool’s verification and code generation capabilities are

essential to this vision.

3 Putting it all together

To test our approach to distributed constraint satisfaction,

we integrated our ideas discussed above into our prototype

MADGS system. Specifically, we set out to demonstrate three

capabilities:� Mixed-initiative planning and execution. We achieve this

through interactive goal transformation (GTrans) with the

human planner and feedback from intelligent resource re-

allocation during plan failures. We also provided support to

the human user by intelligently re-organizing information

that is made available to them.� Intelligent logistics assistance. This is accomplished by as-

sisting the human planner when resource requirements are

not met for plan execution. The system intelligently and

efficiently reallocates resources to provide alternatives to

the human planner while helping mitigate potential con-

flicts that can arise from multiple missions and goals in the

operational theater.� Mobile and multi-agent infrastructure deployment. We

demonstrate that the needs of the two items above can be

satisfied in a systematic fashion through knowledge-based

software engineering with the automatic generation and

deployment of agent components. We focused on commu-

nications and mobility in order to efficiently deploy our

prototype.

Our MADGS prototype was deployed on a mixture

of hardware platforms. Our underlying Carolina agent

environment was developed in Java and globally executed

on Windows, Linux, and Solaris platforms with a mix of

Pentium and Sparc CPUs. Our purpose in this mix was to

demonstrate the ease of portability and mobility of agents

using our approach for cross platform integration. As smaller

mobile devices such as PDAs increase in power and capabil-

ity, these results allow us to project that moving to smaller

mobile systems will be readily realizable in the near future.

To illustrate the utility of the MADGS system to the com-

mander, we have designed a simple empirical study: Two

commanders are operating in the same theater with indepen-

dent commands. Each commander is given a mission that

potentially conflicts with the other primarily due to resource

availability in the theater. We compose a number of problems

where each commander is faced with a number of rivers, each

spanned by one or more bridges. The goal is to make each

river impassable by destroying the bridges across them. In

order to accomplish this task, the commanders with the help

of MADGS will assign F-15 tactical fighters from a pool

of available aircraft placed at different locations. Each F-15

has the ability to destroy one bridge. However, each com-

mander is only currently aware of the F-15s available near

their immediate command. In this military interdiction sce-

nario, commanders must schedule their strikes and will face

shortages of F-15s that can only be resolved by communicat-

ing and negotiating with the other commander to best utilize

all F-15s and achieve their respective missions. An example

scenario with rivers and target bridges can be see in Fig. 12.

In this section, we first describe our MADGS interface and

operations on one such problem scenario above. We then per-

formed an empirical study to determine the overall efficiency

and effectiveness of our replanning in the face of resource

failure.

Fig. 12 Military interdiction

scenario. Rivers have target

bridges spanning them

Springer

Appl Intell (2006) 25:335–357 351

Fig. 13 Plan execution

commences after initial plan

generated

Figure 2 depicts our GTrans interface that is used by the

human commander. For our prototype, we provide a GTrans

interface to each user with the added capability of observ-

ing other human commanders and their activities to assist in

coordination when necessary. This is depicted in the bottom

right window in Fig. 2. As we can see, the mission goals (cur-

rent goals) are identified and the commander interacts with

PRODIGY to generate their initial plans with input from the

latest information concerning available resources. Once the

plan is generated (as seen in window labeled Prodigy 4.0), ex-

ecution of the plan begins and resources are allocated to begin

scheduling of the plan. Figure 13 shows the final confirma-

tion of the plan by the commander together with the resource

scheduling and execution process. The plan is then sent for

execution with agentTool generating new agents in Carolina

to carry out the plan execution. Figure 14 shows the DGS

in action negotiating for resources as needed. Given multi-

ple human commanders and missions, the resource requests

are handled using our intra-organizational logistics models.

Should a plan failure occur at any point, the commander is

notified and either resource substitutions are recommended

or replanning commences.

We now describe our empirical evaluations of our

MADGS system.

3.1 Evaluation

Here, we consider two experiments to gauge the usefulness

of MADGS using the scenarios we generated above. Our first

experiment considers the usability of our GTrans interface,

independent of the MADGS system. The second experiment

Fig. 14 Resource allocation and negotiation

studies the effectiveness of our overall MADGS approach to

mixed-initiative replanning.

3.1.1 GTrans evaluation

An experiment was performed with human subjects to com-

pare and contrast the models of search and goal manipula-

tion [12, 52]. The first model is represented by users solving

problems in an old interface used in the original PRODIGY

planner [10] and the second model is represented by GTrans

users. The experiment was designed to evaluate the differ-

ences of the two models under differing amount of task com-

plexity using both expert and novices. This experiment uses

18 problems in the military domain as test problems. In these

Springer

352 Appl Intell (2006) 25:335–357

problems, insufficient resources exist with which to solve

problems completely. Choices can be made, however, so that

a solution is produced that achieves a partial goal satisfac-
tion represented as a ratio of the subject’s partial solution to

the optimal partial solution.

Here we introduce a problem that illustrates the trade-

offs between resource allocation decisions in the military

planning domain. The “Bridges Problem” is simply to make

rivers impassable by destroying all bridges across them. This

task universally quantifies the variable <crossing> with the

relation (enables-movement-over <crossing> river) and re-

quires a separate air unit for each crossing in order to achieve

the goal. We simplify the problem by assuming that an air re-

source can destroy one bridge and damage an arbitrary num-

ber of others. When a goal state is composed of conjunctive

goals for multiple rivers, an interesting trade-off exists for

the experimental subject. To maximize the goal satisfaction,

an optimal user will allocate resources to rivers with fewer

crossings [17].

The Bridges Problem is an instance of a class of problems

with the following form

∀x |goal(x)∀y|subgoal(y, x)∃r |
((resources(r) ∧ P(r, y)) ∨ p′(y))

where value(p′(y)) = α(value(p(r, y))) and 0 ≥ α ≥ 1.

The problem is to maximize the value of the quantified

expression above. That is for all goals, x , and for all sub-

goals of x, y, the problem is to maximize the value of the

conjunction of disjunctions p(r, y) or p′(y) using some re-

sources r where the value of the predicate p′ is some frac-

tion between 0 and 1 of the value of p. In the case of the

Bridges Problem, the goals are to make impassable rivers

x by the predicate is-destroyed applied to bridges y over

the rivers or by the predicate is-damaged where a damaged

bridge is considered 50% destroyed (α = 0.5). Thus given

enough resources and the goal to make a river impassable,

it is enough to destroy all bridges across it. Without suffi-

cient resources, a plan to destroy most bridges and damaging

the rest results in maximally restricting the movement across

it.

Figure 12 shows terrain with two rivers, the upper river

having three bridges and the lower two. If four air units

(resources) exist for use, the subject should allocate two

resource units to the two-bridge river and two to the three-

bridge one. By doing so the goal to make the first river impass-

able is achieved completely, whereas the second goal is more

fully satisfied than if the reverse allocation was performed.

Note that this determines a change to the second goal rather

than the first. By transforming the goal (outcome-impassable

river2) to (outcome-restricts-movement river2) the planner is

able to achieve success.

Fig. 15 Goal satisfaction as a function of cognitive model

GTrans provides a unique facility to transform or steer

goals in such situations. When the subject receives feedback

from the underlying Prodigy/Agent planner (either a success-

ful plan that may not be acceptable by the subject, a failure to

generate any plan, or an apparent problem due to the planner

taking too long), the subject can asynchronously modify the

goals and send them back to the planner for another round

of planning. The subject does this by graphically manipulat-

ing the goals by selecting the “Change Goals” choice on the

Planning pull-down menu.

The graph in Fig. 15 shows the mean of the goal satisfac-

tion ratio under the goal manipulation model and the search

model. When presented with the goal manipulation model,

subjects achieved over 95% goal satisfaction on average.

When presented with the search model, subjects achieved

about 80% goal satisfaction on average.

Given that the cognitive model itself is an important fac-

tor as concluded in previous analysis, we next examine the

possible relationships among three independent variables:

planning model, problem complexity, and subject expertise.

Figure 16 plots the average goal satisfaction ratio for each

combination of the planning model and the problem com-

plexity. As can be observed from the graph, when the goal ma-

nipulation model is presented to the user, the goal satisfaction

Fig. 16 Goal satisfaction as a function of problem complexity

Springer

Appl Intell (2006) 25:335–357 353

Fig. 17 Goal satisfaction as a function of expertise

ratio generally remains the same with increasing problem

complexity; but when the search model is presented to the

user, the goal satisfaction ratio decreases as the problem com-

plexity increases. It is very likely that the effect of the plan-

ning model on the user performance depends on the problem

complexity.

The next step of our analysis was to examine the possible

interaction effects between the planning model and the user

expertise level. Figure 17 shows the average goal satisfaction

ratio for each combination of the planning model and the user

expertise level. It is apparent that experts perform better than

novices under both planning models. But the two plot lines

representing each planning model are not parallel, indicating

the possible interactions between the two factors.

3.1.2 Re-planning study

When most planning systems have to replan given changing

environmental conditions such as resource constraints, the

system replans completely. That is, if only a single goal fails,

the system will still replan for all goals to generate a new

solution. Instead, we have extended the Prodigy/Agent com-

ponent of MADGS to identify the source of the failure and

to replan for only that part of the plan that is affected by such

failure. We call these two conditions standard replanning and

focused replanning.

Our hypotheses is that MADGS will be more efficient in

terms measured by the total number of search nodes (plan-

ning choice points) expanded and by the total planning time.

The first dependent variable measures planning effort di-

rectly, because the fewer nodes expanded in the search tree,

the fewer poor planning decisions are made. On the other

hand, time is an indirect measure because factors other than

that spent in planning may affect performance. For example

on networked systems, network traffic has an effect.

Using our scenario template above, we generate a number

of problems for this experiment. Each problem description

contained 2n F-15s, where n is the number of rivers in the

problem.

In order to test the replanning efficiency of each system

(standard vs. focused), 20 tests were run. Each test came from

one of four series, containing 2, 4, 6, or 8 rivers. For each

series, the number of resource failures was varied from 1 to

n. This means that for each test, two plans were computed by

the underlying Prodigy/Agent planner within GTrans. The

plans are the completely recomputed plan and the revised

plan which solves the resource failure only. For example,

Test 2.1 has two rivers, and one resource failure. This means

that the planner assigns an F-15 to each bridge, and is then no-

tified by Carolina that one of the F-15s assigned is no longer

available. This causes the planner to replan for the missing

aircraft. Similarly, Test 2.2 has two rivers, but 2 resource

failures. The case in which no resource failures occur was

not tested since both systems use the same strategy and per-

form identically in this case. Figures 18 and 19 depict the time

spent on replanning with and without GTrans and the number

Standard vs Focused Replanning Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Test

T
im

e
 (

s
)

Standard

Focused

Fig. 18 Replanning time for

standard (without GTrans) and

focused (with GTrans)

Springer

354 Appl Intell (2006) 25:335–357

Standard vs Focused Replanning Expanded Nodes

0

20

40

60

80

100

120

140

160

180

Test
E

x
p

a
n

d
e
d

 N
o

d
e
s

Standard

Focused

Fig. 19 Replanning nodes

explored for standard and

focused

of search nodes expanded during the replanning process,

respectively.

For the small problems run with these tests, MADGS un-

der the focused condition does not show a significant time

savings over the standard condition. In many cases, Tests

2.2, 4.3, 4.4, 6.3–6.6, and 8.6–8.8, the focus condition re-

quires more time. This can be attributed to two factors: The

first is that for small problems like these, the computational

overhead of identifying the removable goals is greater than

the savings of replanning for a smaller problem. Note that

with greater problem complexity, the performance measured

by time begins to improve. Future testing should be run to

show if this is true by evaluating the two systems on large,

real-world problems where the replanning time would be sig-

nificant. The other factor affecting the times is the planning

environment itself. Each of our tests was run on our lab server.

Due to lack of resources, the machine under test was being

used by other people, causing times to fluctuate depending

on the load. Future testing should be carried out on a separate

machine in single user mode in order to isolate the tests from

these kinds of problems.

Even with the time overhead issues, the focused condi-

tion did have significantly better direct performance over the

standard condition when measured by the number of search

nodes expanded. Indeed, at no time does the standard con-

dition surpass the focused condition. At most it equals the

performance. This is to be expected since the replanning done

by the focused condition is only on a subset of the original

problems.

4 Conclusion

We presented the MADGS framework for multi-commander

dynamic mission planning and execution. We described the

major elements of MADGS and illustrated the fundamental

logistical and planning support that MADGS can provide to

the battlefield commander through our case study. MADGS

is currently capable of handling more complicated sce-

narios which include complex resource substitutions and

intelligent allocation recommendations to the commander.

Furthermore, in the face of imminent plan failure, MADGS

also assists the commander through goal transformations in

order to best achieve their given mission. The generation and

deployment of agents via agentTool provides a dynamic, ef-

ficient, and robust environment that captures the changing

nature of battlefield conditions.

We also detailed our prototype implementation of

MADGS in order to provide a proof-of-concept behind our

ideas as well as a better understanding of the complexities

involved in such a system. The scenario we utilized in our

prototype demonstrates our MADGS concept and the interac-

tions between the major elements in MADGS. In particular,

the scenario helps to highlight the assistance provided to the

user (commander) and, more generally, the idea of replanning

in the face of resource failures. Finally, another aim of this

paper has been to provide a broad overview of the research

conducted in carrying out the MADGS project.

One of the elements we intend to pursue next is to address

the practical concerns of explaining the choices made (and

rejected) by MADGS on recommendations to the comman-

der. Such explanations are doubly critical during on-the-fly

planning with partial execution. Hence, we must track the

rationale for decisions in order to know when a decision has

become inappropriate, due to the changes (either internal or

external to the planning system). This will provide the needed

transparency of understanding and context to the human com-

mander with regards to MADGS’ recommendations.

We must also realize that such complex mission planning

will involve disparate types of units/entities; and simply pro-

viding a complete global explanation of the entire plan is

often counter-productive and counter-intuitive. Most global

Springer

Appl Intell (2006) 25:335–357 355

information in the overall planning is often irrelevant at the

lower levels. Thus, the appropriate context must be generated

in the explanations with respect to the planning level of the

commander(s) we are currently assisting.

The future of assisting the commander on and off the

battlefield relies on a foundational understanding of the dy-

namics of the environment and the requirements of achiev-

ing various mission objectives. The MADGS project focuses

on addressing the issues of multi-commander, multi-mission

planning and execution. In particular, within a single theater

of operation, multiple missions among multiple commanders

which are potentially in conflict or in competition with one

another.

Finally, in the MADGS project, we have also kept an eye

toward the current technology trends such as portable mobile

computing devices like PDAs, etc. and the potential capabil-

ities that are needed to achieve a MADGS environment. We

have envisioned that in the near future, with an understanding

of the issues through MADGS, our military commanders, lo-

gistics officers, and intelligence analysts can be “armed” with

PDAs that provide the critical information they need, when

they need it, and also help them in their decision-making.

Issues such as incomplete or uncertain information (fog of

war) are naturally addressed through a MADGS framework.

This paper has detailed the results of our MADGS project

and also identified the next steps that should be pursued in

reaching our ultimate vision.

Acknowledgments This project was supported in part by Air Force

Office of Scientific Research Grant No. F49620-99-1-0244. We would

also like to especially thank the reviewers for their comments which

greatly improved this article.

References

1. Barbuceanu M, Fox MS (1996) Coordinating multiple agents in

the supply chain. In: Proceedings of the Fifth Workshops on En-

abling Technology for Collaborative Enterprises(WET ICE’96),

IEEE Computer Society Press, pp 134–141

2. Brown S, Cox MT (1999) Planning for information visualization in

mixed-initiative systems. In: Cox MT (ed) Proceedings of the 1999

AAAI-99 Workshop on Mixed-Initiative Intelligence, AAAI Press,

Menlo Park, CA, pp 2–10

3. Bryson J, Decker K, DeLoach SA, Huhns M, Wooldridge M (2001)

Agent development tools. In: Intelligent Agents VII–Proceedings of

the 7th International Workshop on Agent Theories, Architectures,

and Languages (ATAL’2000), 2000 Springer Lecture Notes in AI,

Springer Verlag, Berlin

4. Caldwell B (1995) Managing your inventory. Information WEEK

554:88

5. Carbonell JG, Blythe J, Etzioni O, Gil Y, Joseph R, Kahn D,

Knoblock C, Minton S, Perez A, Reilly S, Veloso MM, Wang

X (1992) Prodigy4.0: The manual and tutorial. Technical Report

CMU-CS-92-150, Computer Science Department, Carnegie Mel-

lon University

6. Cox MT (2000) A conflict of metaphors: modeling the planning pro-

cess. In: Proceedings of 2000 Summer Computer Simulation Con-

ference, 2000. The Society for Computer Simulation, San Diego,

CA, pp 666–671,

7. Cox MT (2000) Interfaces for mixed-initiative planning. In:

IUI’2000 Workshop on Using Plans in Intelligent User Interfaces,

Cambridge, MA, MERL

8. Cox MT, Edwin G, Balasubramanian K, Elahi M (2001) Mul-

tiagent goal transformation and mixed-initiative planning using

Prodigy/Agent. In: Proceedings of the 5th World Multiconference

on Systemics, Cybernetics and Informatics, vol VII, pp 1–6

9. Cox MT, Kerkez B, Srinivas C, Edwin G, Archer W (2000) To-

ward agent-based mixed-initiative interfaces. In: Arabnia HR (ed)

Proceedings of the 2000 International Conference on Artificial In-

telligence, CSREA, vol. 1 Press, pp 309–315

10. Cox MT, Veloso MM (1997) Supporting combined human and ma-

chine planning: an interface for planning by analogical reasoning.

In: Case-Based Reasoning Research and Development: Second In-

ternational Conference on Case-Based Reasoning, pp 531–540

11. Cox MT, Veloso MM (1998) Goal transformations in continuous

planning. In: Proceedings of the AAAI Fall Symposium on Dis-

tributed Continual Planning, AAAI Press

12. Cox MT, Zhang C (2005) Planning as mixed-initiative goal ma-

nipulation. In: Biundo S, Myers K, Rajan K (eds) Proceedings of

the Fifteenth International Conference on Automated Planning and

Scheduling, AAAI Press, Menlo Park, CA, pp 2282–2291

13. Cox MT, Elahi M, Cleereman K (2003) A distributed planning

approach using multiagent goal transformations. In: Proceedings

of the 14th Midwest Artificial Intelligence and Cognitive Science

Conference, pp 18–23

14. DeLoach SA (2001) Analysis and design using mase and agent-

tool. In: Proceedings of the 12th Midwest Artificial Intelligence

and Cognitive Science Conference (MAICS 2001), Miami Univer-

sity, Oxford, Ohio, March 31–April 1 2001

15. DeLoach SA, Matson ET, Li Y (2003) Exploiting agent oriented

software engineering in the design of a cooperative robotics search

and rescue system. The International Journal of Pattern Recognition

and Artificial Intelligence

16. DeLoach SA, Wood M (2001) Developing multiagent systems with

agenttool. In: Intelligent Agents VII - Proceedings of the 7th In-

ternational Workshop on Agent Theories, Architectures, and Lan-

guages (ATAL’2000), 2000 Springer Lecture Notes in AI, Springer

Verlag, Berlin

17. Edwin G, Cox MT (2001) Resource coordination in single agent and

multiagent systems. In: Proceedings of the 13th IEEE International

Conference on Tools with Artificial Intelligence, IEEE Computer

Society, Los Alamitos, CA, pp 18–24

18. Elahi MM (2003) A distributed planning approach using multiagent

goal transformations. Master’s thesis, Wright State University

19. Elahi MM, Cox MT (2003) User’s manual for Prodigy/Agent, Ver

1.0. Technical Report WSU-CS-03-02, Dept. of Computer Science

and Engineering, Wright State University

20. Finin T, McKay D, Fritzson R (1992) An overview of KQML:

a knowledge query and manipulation language. Technical report,

Computer Science Department, University of Maryland

21. Fox MS, Chionglo JF, Barbuceanu M (1993) The integrated supply

chain management system Technical report, University of Toronto

22. Holzmann GJ (1991) Design and validation of computer protocols.

Prentice Hall

23. Holzmann GJ (1997) The model checker SPIN. IEEE Trans Softw

Engi 23(5):279–295

24. Kataoka N, Koizumi H, Simizu H (1997) Architecture of an au-

tonomous distributed system and verification of implementation

as a logistics information management system. In: Proceedings of

the 3rd International Workshop on Object-Oriented Real-Time De-

pendable Systems (WORDS’97)

25. Kendall E (1988) Agent roles and role models: new abstractions

for multiagent system analysis and design. In: Proceedings of the

Springer

356 Appl Intell (2006) 25:335–357

International Workshop on Intelligent Agents in Information and

Process Management, Bremen, Germany

26. Kent GA, Simons WE (1994) Objective-based planning. In: Davis

PK (ed), New challenges for defense planning: rethinking how

much is enough RAND, pp 59–71

27. Kerkez B, Cox MT (2000) Planning for the user interface: window

characteristics. In: Proceedings of the 11th Midwest Artificial In-

telligence and Cognitive Science Conference, AAAI Press, Menlo

Park, MA, pp 79–84

28. Kerkez B, Cox MT, Srinivas C (2000) Planning for the user in-

terface: Window content. In: Arabnia HR (ed), Proceedings of the

2000 International Conference on Artificial Intelligence CSREA

Press, vol. 1, pp 345–351

29. Kramer KH, Minar N, Maes P (1999) Tutorial: mobile soft-

ware agents for dynamic routing. http://www.media.mit.edu/ nel-

son/research/routes/sigmobile.ps

30. Kutanoglu E, Wu SD (1999) An auction-theoretic modeling of pro-

duction scheduling to achieve distributed decision making. PhD

thesis, Dept. of Industrial and Manufacturing Systems Engineer-

ing, Lehigh University

31. Lacey TH (2000) A formal methodology and technique for ver-

ifying communication protocols in a multi-agent environment.

Afit/eng/00m-12, School of Engineering, Air Force Institute of

Technology (AU), Wright-Patterson Air Force Base Ohio, USA

32. Lacey TH, DeLoach SA (2000) Automatic verification of multia-

gent conversations. In: Proceedings of the 11th Annual Midwest

Artificial Intelligence and Cognitive Science Conference, Fayet-

teville, Arkansas

33. Liu J-S, Sycara KP (1997) Coordination of multiple agents for

production management. Ann Oper Res 75:235–289

34. Luh PB, Hoitomt DJ (1993) Scheduling of manufacturing systems

using the lagrangian relaxation technique. IEEE Trans Autom Contr

38:1066–1080

35. McDonald JT, Talbert ML, DeLoach SA (2000) Heterogeneous

database integration using agent oriented information systems. In:

Proceedings of the International Conference on Artificial Intelli-

gence (IC-AI’2000), Monte Carlo Resort, Las Vegas, Nevada June

26–29 2000

36. O’Malley SA, Self AL, DeLoach SA (2000) Comparing perfor-

mance of static versus mobile multiagent systems. In: National

Aerospace and Electronics Conference (NAECON), Dayton, OH,

October 10–12, 2000

37. QuÈinnec P, Padiou G (1993) Flight plan management in a dis-

tributed air traffic control system. In: First International Symposium

on Autonomous Decentralized Systems (ISADS-93)

38. Saba GM, Santos E, Jr (2000) The multi-agent distributed goal sat-

isfaction system. In: Proceedings of the International ICSC Sympo-

sium on Multi-Agents and Mobile Agents in Virtual Organizations

and E-Commerce, pp 389–394

39. Sadeh NM, Hildum DW, Kjenstad D, Tseng A (1999) Mascot:

an agent-based architecture for coordinated mixed-initiative sup-

ply chain planning and scheduling. In: Proc. 3rd Int’l. Conf. on

Autonomous Agents (Agents’99) Workshop on Agent-Based De-

cision Support for Managing the Internet-Enabled Supply Chain,

Seattle, WA

40. Santos E, Jr, Zhang F, Luh PB (2001) Multi-agent logistics manage-

ment. In: Proceedings of the International Conference on Internet

Computing (IC ’2001), pp 240–246

41. Santos E, Jr, Zhang F, Luh PB (2003) Intra-organizational logis-

tics management through multi-agent systems. Electr Comm Res

3:337–364

42. Self A (2001) Design and specification of dynamic, mobile, and re-

configurable multiagent systems. Afit/eng/01m-11, School of Engi-

neering, Air Force Institute of Technology (AU), Wright-Patterson

Air Force Base Ohio, USA

43. Shen W, Norrie DH (1998) An agent-based approach for manu-

facturing enterprise integration and supply chain management. In:

Jacucci G (ed), Globalization of manufacturing in the digital com-

munications era of the 21st century: innovation, agility, and the

virtual enterprise Kluwer Academic Publishers, pp 579–590

44. Shi L, Chen C-H, Ycesan E (1999) Simultaneous simulation ex-

periments and nested partition for discrete resource allocation in

supply chain management. In: The 1999 Winter Simulation Con-

ference (WSC’99)

45. Sparkman CH (2001) Transforming analysis models into de-

sign models for the multiagent systems engineering methodology.

Afit/eng/01m-21, School of Engineering, Air Force Institute of

Technology (AU), Wright-Patterson Air Force Base Ohio, USA

46. Veloso MM, Carbonell JG, Perez A, Borrajo D, Fink E, Blythe J

(1995) Integrating planning and learning: The PRODIGY architec-

ture. J Theor Exper Artif Intell 7(1):81–120

47. Wagner T, Garvey A, Lesser VR (1997) Design-to-criteria schedul-

ing: Managing complexity through goal-directed satisficing. In:

Proceedings of the AAAI Workshop on Building Resource-

Bounded Reasoning Systems

48. Walsh WE, Wellman MP (1998) A market protocol for decentral-

ized task allocation. In: Proceedings of the Third International Con-

ference on Multi-Agent Systems, Paris, France, pp 325–332

49. Wellman MP (1996) Market-oriented programming: Some early

lessons. In: Clearwater S (ed) Market-based control: a paradigm

for distributed resource allocation, chapter 4 World Scientific

50. Yung SK, Yang CC (1999) A new approach to solve supply

chain management problem by integrating multi-agent technology

and constraint network. In: Proceedings of the 32nd Hawaii In-

ternational Conference on System Sciences(HICSS-1999), Maui,

Hawaii

51. Zeng DD, Sycara K (1999) Dynamic supply chain structuring for

electronic commerce among agents. In: Klusch M, (ed) Intelligent

information agents, Springer

52. Zhang C (2002) Cognitive models for mixed-initiative planning.

Master’s thesis, Wright State University

53. Zhang C, Cox MT, Immaneni T (2002) GTrans version 2.1 user

manual and reference. Technical Report WSU-CS-02-02, Dept. of

Computer Science and Engineering, Wright State University

Eugene Santos, Jr. received the B.S. degree in mathematics and Com-

puter science and the M.S. degree in mathematics (specializing in nu-

merical analysis) from Youngstown State University, Youngstown, OH,

in 1985 and 1986, respectively, and the Sc.M. and Ph.D. degrees in com-

puter science from Brown University, Providence, RI, in 1988 and 1992,

respectively.

He is currently a Professor of Engineering at the Thayer School

of Engineering, Dartmouth College, Hanover, NH, and Director of the

Distributed Information and Intelligence Analysis Group (DI2AG). Pre-

viously, he was faculty at the Air Force Institute of Technology, Wright-

Patterson AFB and the University of Connecticut, Storrs, CT. He has

over 130 refereed technical publications and specializes in modern

statistical and probabilistic methods with applications to intelligent sys-

tems, multi-agent systems, uncertain reasoning, planning and optimiza-

tion, and decision science. Most recently, he has pioneered new research

Springer

Appl Intell (2006) 25:335–357 357

on user and adversarial behavioral modeling. He is an Associate Editor

for the IEEE Transactions on Systems, Man, and Cybernetics: Part B

and the International Journal of Image and Graphics.

Scott DeLoach is currently an Associate Professor in the Department

of Computing and Information Sciences at Kansas State University.

His current research interests include autonomous cooperative robotics,

adaptive multiagent systems, and agent-oriented software engineering.

Prior to coming to Kansas State, Dr. DeLoach spent 20 years in the

US Air Force, with his last assignment being as an Assistant Profes-

sor of Computer Science and Engineering at the Air Force Institute of

Technology. Dr. DeLoach received his BS in Computer Engineering

from Iowa State University in 1982 and his MS and PhD in Computer

Engineering from the Air Force Institute of Technology in 1987 and

1996.

Michael T. Cox is a senior scientist in the Intelligent Distributing Com-

puting Department of BBN Technologies, Cambridge, MA. Previous to

this position, Dr. Cox was an assistant professor in the Department of

Computer Science & Engineering at Wright State University, Dayton,

Ohio, where he was the director of Wright State’s Collaboration and

Cognition Laboratory. He received his Ph.D. in Computer Science from

the Georgia Institute of Technology, Atlanta, in 1996 and his undergrad-

uate from the same in 1986. From 1996 to 1998, he was a postdoctoral

fellow in the Computer Science Department at Carnegie Mellon Uni-

versity in Pittsburgh working on the PRODIGY project. His research

interests include case-based reasoning, collaborative mixed-initiative

planning, intelligent agents, understanding (situation assessment), in-

trospection, and learning. More specifically, he is interested in how

goals interact with and influence these broader cognitive processes. His

approach to research follows both artificial intelligence and cognitive

science directions.

Springer

