

 416 Int. J. Agent-Oriented Software Engineering, Vol. 3, No. 4, 2009

Using three AOSE toolkits to develop a
sample design

Scott A. DeLoach
Kansas State University, USA
E-mail: sdeloach@ksu.edu

Lin Padgham*
RMIT University
Melbourne, Australia
Fax: +61 3 9662 1617
E-mail: lin.padgham@rmit.edu.au
*Corresponding author

Anna Perini and Angelo Susi
Fondazione Bruno Kessler – IRST
Trento, Italy
E-mail: perini@itc.it
E-mail: susi@fbk.eu

John Thangarajah
RMIT University
Melbourne, Australia
Fax: +61 3 9662 1617
E-mail: john.thangarajah@rmit.edu.au

Abstract: At the 8th Agent-Oriented Software Engineering Workshop, the
developers of tools supporting three popular agent-oriented methodologies
(Tropos, Prometheus and Organization-based Multiagent Systems Engineering
(O-MaSE)) demonstrated their tools using a common multi-agent system
design case study: the Conference Management System. The methodologies are
representative of the state-of-the-art in agent-oriented software methodologies,
as they are some of the earliest and most mature agent-oriented methodologies
currently available. The paper briefly summarises the three methodologies and
their associated tools and then works through the analysis, architectural design
and detailed design phases of the Conference Management system case study
using each methodology and tool. The paper compares the models and concepts
used during each phase and provides a discussion on the similarities and
differences between them.

Keywords: agent design toolkits; Prometheus; Tropos; Organization-based
Multiagent Systems Engineering; O-MaSE; agent-oriented software
engineering; AOSE.

 Copyright © 2009 Inderscience Enterprises Ltd.

 Using three AOSE toolkits to develop a sample design 417

Reference to this paper should be made as follows: DeLoach, S.A.,
Padgham, L., Perini, A., Susi, A. and Thangarajah, J. (2009) ‘Using three
AOSE toolkits to develop a sample design’, Int. J. Agent-Oriented Software
Engineering, Vol. 3, No. 4, pp.416–476.

Biographical notes: Scott A. DeLoach is an Associate Professor in the
Computing and Information Sciences Department at Kansas State University,
USA. His research focuses on methods and techniques for the analysis, design
and implementation of complex adaptive systems, which have been applied
to both multi-agent and cooperative robotic systems. Dr. DeLoach is best
known for his work in agent-oriented software engineering. He is the creator
of the Multiagent Systems Engineering methodology (MaSE), its follow-on
Organization-based Multiagent Systems Engineering methodology (O-MaSE),
and the associated agentTool analysis and design tool. He has more than 50
refereed publications and has advised over 25 graduate students. Dr. DeLoach
came to Kansas State University after a 20-year career in the US Air Force.

Lin Padgham is a Professor in Artificial Intelligence at RMIT University,
Australia. She has spent more than ten years researching intelligent multi-agent
systems and has developed (with colleagues) the Prometheus design
methodology for building agent systems, and co-authored the first detailed
book (published 2004) on a methodology for building multi-agent systems. In
2005, the supporting tool for this methodology, the Prometheus Design Tool,
won the award for best demonstration at AAMAS’05. Padgham serves on the
editorial board of Autonomous Agents and Multi-Agent Systems, and was
Program Co-Chair for AAMAS 2008.

Anna Perini is a Research Leader at the Software Engineering group of
FBK-IRST CIT (http://se.fbk.eu). Her main research interests are in
agent-oriented software engineering and requirements engineering. She
participates in the Programme Committee of international conferences and
workshops and acts as a Reviewer for major journals in these areas. She has led
several research and industrial projects. She taught Software Engineering at the
University of Trento (1999–2006) and gave tutorials on Agent-Oriented
Software Engineering (Agentlink Summer School EASSS 2004, UPC Master
Course 2007, IEEE Requirements Engineering Conf., 2008).

Angelo Susi is a Researcher in the Software Engineering group at FBK-IRST
in Trento, Italy. His research interests are in the areas of requirements
engineering, agent-oriented software engineering and machine learning applied
to software requirements management. In particular, Susi is active in the
development of the Tropos Agent-Oriented Software Engineering methodology
and of the requirements prioritisations methodology CBRank, based on
machine learning techniques. He participates in the programme committees of
international conferences and workshops, such as AAMAS, ACM SAC and
ICSOC, and he serves as a reviewer for journals in these areas.

John Thangarajah is a Research Fellow at the School of Computer Science at
RMIT University, Australia. He completed his PhD in 2004, which addressed
the issue of managing the interactions between the goals of an agent. His
research expertise and interests at present are in the areas of agent reasoning
and agent-oriented software engineering. He has over 20 refereed international
publications in these two main research areas. He has been involved in
developing the Prometheus Agent development methodology and the

 418 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

Prometheus Design Tool, which has won an award at an international
conference. He has served on the programme committee of top international
conferences and is also the Co-Chair of PROMAS 2009.

1 Introduction

Many Agent-Oriented Software Engineering (AOSE) methodologies have been proposed
over the last five to ten years (Bergenti et al., 2004; Henderson-Sellers and Giorgini,
2005). This has motivated research on how to compare and evaluate these methodologies,
with the purpose of pointing out differences and commonalities and of giving criteria
for selecting the most appropriate methodology, for a given development scenario (Dam
and Winikoff, 2003; Henderson-Sellers and Giorgini, 2005). Presentation of common
examples in the various approaches can also provide assistance in understanding both the
commonalities and the differences between approaches.

At the 8th Agent-Oriented Software Engineering Workshop, held in Hawaii in
May 2007, developers of tools supporting three fairly well developed methodologies,
Tropos (Bresciani et al., 2004), Prometheus (Padgham and Winikoff, 2004) and
Organization-based Multiagent Systems Engineering (O-MaSE) (DeLoach, 2001),
presented their tools (TAOM4E, Prometheus Design Tool (PDT) and aT3 respectively) by
demonstrating their use on a popular multi-agent system design case study: the
Conference Management System.1 The Conference Management System case study was
first proposed in (Ciancarini et al., 1998) and has been used several times in the literature
as a motivating example (Ciancarini et al., 1999; DeLoach, 2002; Zambonelli et al.,
2001). The Conference Management System case study has gained popularity as it is
suitable for illustrating a variety of multi-agent system analysis and design issues.
Presenters were referred to the Conference Management System as described in
(DeLoach, 2002), as a focus for their design and tool presentations. Quoting from
(DeLoach, 2002):

“The Conference Management System is an open multiagent system supporting
the management of various sized international conferences that requires the
coordination of several individuals and groups. There are four distinct phases in
which the system must operate: submission, review, decision and final paper
collection. During the submission phase, authors should be notified of paper
receipt and given a paper submission number. After the submission deadline
has passed, the Programme Committee (PC) has to review the papers by either
contacting referees and asking them to review a number of the papers or
reviewing them themselves. After the reviews are complete, a decision on
accepting or rejecting each paper must be made. After the decisions are made,
authors are notified of the decisions and are asked to produce a final version of
their paper if it was accepted. Finally all final copies are collected and printed
in the conference proceedings.”

This paper presents the application of the three methodologies and their supporting tools
on the Conference Management System over three different design phases: Analysis,
Architectural Design, and Detailed Design. The goal of the paper is to clearly
demonstrate the similarities and differences between the methodologies and their tools as

 Using three AOSE toolkits to develop a sample design 419

well as to showcase the general state-of-the-art in agent oriented analysis and design.
Individual papers presenting each of the approaches are also published in the AOSE
workshop post-proceedings (Luck and Padgham, 2008).

The three methodologies considered in this work are representative of state-of-the-art
AOSE approaches. They are some of the earliest agent-oriented methodologies, each of
which developed from a different perspective. O-MaSE (previously MaSE) descended
from an object-oriented background and adapted the techniques and models to the agent
paradigm. Prometheus arose from significant experience in developing BDI agent
systems and assisting both students and companies in understanding the principles of
designing such systems. This resulted in a set of models to capture the analysis and
design of intelligent agent systems, along with processes for developing these models.
Tropos adopted a requirements driven approach, building on goal oriented approaches
for domain and requirements analysis and adapting their analysis methods to the design
of agent-based systems. Each of these methodologies has evolved since their original
definitions and although mutual influences can be observed, their roots are reflected in
differences in the way some of the agent abstractions are used and in the scope of the
supported process. Both similarities and differences are identified throughout the paper.

It is generally agreed that before any design methodologies will be widely used and
accepted in industrial settings, tools that support those methodologies must be readily
available and have reached a certain level of maturity. Therefore, a common objective
underlying the work presented here is to provide tool-supported frameworks for the
selected methodologies in order to encourage their adoption by industry. We believe that
presenting them side-by-side using the same case study will be beneficial in pointing out
common approaches and techniques, while also comparing their unique perspectives in
addressing common problems.

In the following section we provide a brief overview of the three tools covered in the
paper. We then work through the Analysis, Architectural Design and Detailed Design
phases of the Conference Management case study for each of the three methodologies
and tools. To complete our coverage of the tools, we end by describing additional
features for each, followed by a brief conclusion.

2 Tools overview

All the toolkits covered here are relatively well developed and are publicly available for
download via the internet. Although the developers are working towards a consistent
notation, at the current point in time each toolkit has a different notation. We identify the
symbols used for the graphical models in each system in Figure 1, which will serve as a
legend for many of the figures throughout the paper.

As can be seen, although the symbols are different, there is substantial similarity in
concepts used, although, as we will see, there are some differences in the precise meaning
of some of these concepts. All tools use the concepts of actors and goals, with specific
symbols for these. PDT and aT3 both have agents, roles, capabilities and actions with
meanings similar to each other. TAOM4E uses the actor symbol and concept to cover
agents, conceptualising these as system actors. aT3 and PDT also both have protocols and
messages, although these are shown as arrows in aT3 and as graphical entities in PDT.
The ‘Resource’ of TAOM4E, ‘Data’ of PDT and ‘Object’ and ‘State’ of aT3 all allow for

 420 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

representation of domain information and entities that are outside the agent paradigm.
TAOM4E and aT3 both have a variety of relationships, which they capture by arrows of
different types. In PDT some of this information is not captured, although much is
captured by other means as will be seen as we describe the design process. TAOM4E is
unique in modelling soft goals, PDT is unique in modelling scenarios and aT3 is unique in
modelling organisations.

Figure 1 Graphical symbols used within each of the toolkits (see online version for colours)

Each of the tools are presented briefly below, while a comparison of the similarities and
differences, and strengths and weaknesses of each can be found in Sections 3.4, 4.4, 5.4
and 6.4.

2.1 Tropos methodology and the TAOM4E Tool

The goal of the Tropos methodology is to support the agent paradigm and its associated
mentalistic notions throughout the entire software development life cyle, from the early
phases of requirements analysis through implementation. As its starting point, Tropos
uses a conceptual modelling language based on the i* framework (Yu, 1995). The basic
concepts of the modelling language include actors, goals, plans and goal achievement
dependencies. In addition, UML/AUML activity and sequence diagrams are used to
support detailed design.

 Using three AOSE toolkits to develop a sample design 421

The Tropos development process includes five phases as shown in Table 1:

Early Requirements, Late Requirements, Architectural Design, Detailed Design and
Implementation. The Early Requirements phases focuses on the understanding of the
problem domain prior to the introduction of the system, while the Late Requirements
phases is for analysing the actual system-to-be. In the Architectural Design phase the
system’s global architecture is defined in terms of subsystems while in the Detailed
Design phases the internals of the individual agents are specified. Finally, during the
Implementation phase, code is generated according to the detailed design specifications.
Table 1 shows the modelling activities performed and the artefacts produced during each
phase of the CMS case study, which is a slight adaptation of the general process
described in (Penserini et al., 2007b).

Table 1 The development process in TAOM4E by phases, activities and work products

Phase Modelling activity and concepts Work products

Early Req. (ER) ER actor modelling. Concepts:
actor, dependency

ER actor diagram – Figure 8

 ER goal/plan modelling. Concepts:
goal, plan, decomposition, means_end,
contribution, constraint, annotation

ER goal diagram – Figure 9

Late Req. (LR) LR actor modelling. Concepts:
system-to-be, actor, dependency

LR actor diagram – Figure 10

 LR goal/plan modelling. Concepts:
system-to-be, goal, plan,
decomposition, means_ends,
contribution, constraint, annotation

LR goal diagram –Figure 11

Archit. Design
(AD)

AD actor modelling. Concepts: agent
and agent roles

Agent/Role AD actor diagram
– Figure 22

Detailed Design
(DD)

DD capability/plan modelling.
Concepts: sub-plans of each agent

DD agent goal diagram
– Figure 30

 DD capability modelling: specification
of the dynamic part via UML 2.0
sequence and activity diagrams

Capability’s activity and
sequence diagrams – Figure 31

 DD capability modelling: specification
BDI structures

Computational representation of
BDI concepts – Figure 36

Implement. Code generation MAS structure

Each Tropos phase is supported by the TAOM4E tool.2 TAOM4E is implemented as an
Eclipse3 plug-in and extends the EMF, GEF and Tefkat plug-ins, as shown in Figure 2.
The Eclipse Modelling Framework (EMF) plug-in4 is a modelling framework for
building applications based on an underlying model specified in XMI, which in this case
is the Tropos metamodel. The Graphical Editing Framework (GEF) plug-in5 provides
facilities to build a graphical editor based on the Tropos metamodel. Finally, the Tefkat
plug-in6 is used to transform top-level plans and their decompositions into UML activity
diagrams. The activity diagrams can be edited using any UML2 editor and further refined
by sequence diagrams to define the requisite agent communication protocols.

 422 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

Figure 2 TAOM4E architecture (see online version for colours)

As stated above, the Tropos metamodel was implemented using the Eclipse EMF.
Figure 3 is a UML depiction of the portion of the Tropos metamodel that captures the
Tropos dependency relationship and its four arguments: depender, dependee, dependum
and why. The depender and the dependee are actors while the dependum is a goal. An
optional argument, called why, can be either a goal, plan or resource.

Figure 3 A fragment of the Tropos metamodel implemented in TAOM4E specified in a UML
class diagram

Figure 4 shows the TAOM4E user interface. The interface has five main components:
a set of menus, the diagram editor, the editor palette, the properties window and the
project browser. Tropos models are created using the various views available in the
diagram editor. Actors, goals and dependency relationships are created by selecting
their icons from the palette and placing them onto the current diagram. Dependency
relationships define the social structure of the domain under analysis, which is
represented by the actor diagram’s global view of the model. The individual actor
perspective on how to achieve its goals by means of plans and resources is represented
in the actor’s goal diagram. By double-clicking on the actor, the editor dynamically
switches between the global view and the individual actor views. Model element
properties, such as goal instance, creation, fulfilment and invariant conditions, can be
specified via the property panel window. Such invariants can be automatically mapped

 Using three AOSE toolkits to develop a sample design 423

into a formal Tropos specification and validated using model checking by the T-Tool
(Fuxman et al., 2001). The project browser provides navigation functions to explore a
model by model element type or process phase.

Figure 4 A screenshot of the TAOM4E tool (see online version for colours)

TAOM4E also includes a suite of code generators – UML2JADE, t2x and Tropos2UML
– that produce code skeletons for either JADE or Jadex agents. The code is generated
directly from the UML detailed design specifications, detailed design artefacts and the
Tropos goal model. Tropos2UML generates UML activities diagrams from Tropos goal
models, while UML2JADE generates JADE agent code skeletons from UML activity and
sequence diagrams, which capture Tropos plans (capabilities). Details on TAOM4E code
generation is given in (Penserini et al., 2006).

2.2 Prometheus methodology and the Prometheus design tool

The Prometheus methodology has been developed over more than ten years as a
result of working with industry partners who are building agent systems and agent
development tools. It has also been continually refined and developed through teaching
both undergraduate and postgraduate students as well as running industry seminars. The
tool support has arisen out of the need to provide this at a reasonable level for building
even relatively small systems. For larger systems it is essential in order to maintain
consistency even of such simple things as naming.

 424 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

The PDT is freely available for download7 and runs (currently) under Java 1.5. PDT
is a stand-alone application but is also available as an Eclipse plug-in. Once this plug-in
is installed, PDT can be selected as the design option within Eclipse.8

The design phases of the Prometheus methodology are summarised in Table 2 which
shows the three main phases of design and for each phase the associated design tasks and
the design diagrams available in the tool to support the task. Figure 5 provides a more
detailed overview of the three main phases of design and associated design artefacts.
Some design artefacts are regarded as final and part of the design documentation. Others
are simply part of a process to help designers develop and refine their design.

Table 2 The development process in PDT by phases, activities and work products

Phase Modelling activity and concepts Work products

Identify actors, percepts, actions
and scenarios

Analysis overview

Develop scenarios Scenario specifications

Model goals Goal overview diagram

System specification

Model roles and their associated goals Roles diagram

Model data and the roles that access the
data, Identify the agents and assign
roles to the agents, define any
associations between the agents

Agent descriptors, agent-role
grouping diagram

Define the protocols for communication
between the agents, ensure that the
actions and percepts are handled
appropriately by the agents

Protocol diagrams
and descriptors,
message descriptors

Architectural design

Define any shared data entities System overview diagram

Detailed design Define the internals of the agent in
terms of plans and capabilities, and
the percepts or messages that are
handled by them and the actions or
messages produced

Agent descriptors, Plan
descriptors, Event/Message
descriptors, Capability
descriptors, Agent
overview diagram

 Define the internals of the capability in
terms of plans and sub-capabilities
similar to the agent overview diagram

Capability overview diagram,
plan descriptors,
event/message descriptors,
capability descriptors

The tool supports four main kinds of design activities:

1 Development of graphical models of the system structure. These are listed in the
upper left pane of the tool (see Figure 6) and developed in the upper right pane.
These models are shown as the various overviews in Figure 5.

2 Development of process descriptions for scenarios and protocols. These are
developed in pop-up windows activated from the Entities menu in the toolbar, where
the specific scenario/protocol can be selected. Alternatively the pop-up window can
be accessed by clicking on the relevant entity within the diagram pane. These entities
capturing system dynamics are shown on the left hand side in Figure 5.

 Using three AOSE toolkits to develop a sample design 425

3 Development of detailed descriptors for each entity, which are in the bottom right

pane of the tool (see Figure 6) and consist of a mix of free text fields and structured
fields. These are (mostly) shown on the right hand side in Figure 5.

4 Consistency checking between models, which is activated by selecting this from
the Tools menu on the toolbar. The tool maintains consistency automatically to a
considerable extent, by such things as automated insertion of links in the system
overview diagram, based on the message passing as specified in the protocol.
However, more global consistency checking is done on request and includes such
things as ensuring that all data are both used and produced somewhere in the design,
and that all messages are used in some communication.

Once a design is produced, the code generation option on the ‘Tools’ menu produces
skeleton JACK code based on the PDT models. The developer can iterate between design
model changes (which are then propagated into the code) and development of code
fragments within the skeleton framework. Others have used the framework to produce
Jadex code (mentioned in Sudeikat et al., 2004) as well as proof of concept 3APL code
(Jayatilleke, 2007). The Tools menu also supports production of a design document
containing diagrams of key system models, as well as a data dictionary and descriptions
of all entities. This design document can be customised by selecting which figures and
entities to include. It is produced as an HTML document and is hyperlinked. The
developer can then further develop this document as desired.

Figure 5 Overview of the phases and artefacts of the Prometheus methodology (see online
version for colours)

 426 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

Figure 6 Overview of PDT (see online version for colours)

One of the features of PDT is that in addition to the user selected consistency checking,
available from the Tools menu, it does enforce a degree of consistency between models.
Entities introduced in one model or stage, are often automatically propagated to other
models or stages where appropriate. This assists the developer in maintaining a consistent
and coherent design.

There are a number of additional tools that interface to the models produced by PDT.
These include a tool for automated unit testing of plans, events and beliefs (Zhang et al.,
2007), as well as a tool for runtime debugging based on PDT models (Poutakidis et al.,
2002; Padgham et al., 2005). The testing tool is in the process of also being integrated
into PDT. The CAFnE toolkit (Jayatilleke et al., 2005b) is an extension to PDT
that requires more detailed model based specification but then automatically produces
complete executable code (as opposed to skeleton code which must be augmented to
produce a functioning system). A methodology for designing social institutions using the
Islander tool has also been developed to integrate with Prometheus (Sierra et al., 2007)
and the interfacing of the two toolkits is in process.

2.3 O-MaSE methodology and agentTool III

O-MaSE actually defines a framework, whose goal is to allow the designers to construct
custom agent-oriented methodologies based on a set of method fragments, all of which
are based on a common metamodel. To achieve this, O-MaSE is defined in terms of a
metamodel, a set of method fragments and a set of guidelines. The O-MaSE metamodel

 Using three AOSE toolkits to develop a sample design 427

defines a set of analysis, design and implementation concepts and a set of constraints
between them (Garcia-Ojeda et al., 2007). The method fragments define how a set of
analysis and design products may be created and used within the framework. Finally,
guidelines define how the method fragment may be combined to create a complete
instance of the O-MaSE methodology. A full treatment of these topics is beyond the
scope of this paper; thus an overview of the phases, activities, tasks and work products
currently supported by O-MaSE is shown in Table 3. Process designers select tasks
and work products most appropriate to their situation and then verify that they form a
O-MaSE compliant process by checking the chosen task against the O-MaSE process
constructions guidelines.

Table 3 The development process in agentTool III (aT3) by phases, activities and
work products

Phase Modelling activity and concepts Work products

Model goals AND/OR goal tree

Goal refinement GmoDS model

Requirements

Model organisation interfaces Organisation model

Model roles Role model

Define roles Role description document

Model domain Domain model

Model agent classes Agent class model

Model protocol Protocol model

Analysis

Model plans Agent plan model

Model policies Policy model

Model capabilities Capabilities-action model

Design

Model actions Capabilities-action model

Implementation Code generation Source code

The O-MaSE methodology is supported by agentTool III (aT3) development
environment. aT3 is based on agentTool 1 and 2, which supported the original MaSE
methodology. agentTool was originally written as a standalone Java toolkit that allowed
users to analyse and design multi-agent systems. The original agentTool supported
protocol verification, semi-automatic analysis to design transformations and code
generation. The aT3 project webpage9 contains the latest version of aT3 for download as
well as tutorials, documentation, and examples.

aT3 is a completely new development from the original agentTool and, like TAOM4E
and PDT, aT3 is being developed as a set of Eclipse plugins. Firstly, we have developed a
plugin for each O-MaSE model. Currently there are eight O-MaSE models implemented
including the Goal Model, Organisation Model, Role Model, Agent Class Model,
Protocol Model, Plan Model, Capability-Action Model and Domain Model. We are also
currently developing the Policy Model, which will allow users to specify policies that
apply to an organisation. There is also a single Core plugin that implements the O-MaSE
metamodel entities and handles reading and writing of these entities to files and is used

 428 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

by all aT3 plugins. This architecture of multiple plugins supports the goal of allowing
O-MaSE to be highly tailorable and extensible. None of the models are mandatory and
new models may be easily incorporated into the tool.

A screen shot of the aT3 is shown in Figure 7. On the left side of the screen, the
Eclipse Package Explorer allows the user to organise and store O-MaSE models in
projects. Generally, subdirectories within projects refer to sub-organisations in the system
design, thus the Package Explorer file structure mimics the hierarchical structure of the
system. The model shown is an Agent Class Diagram. The icons shown in the Palette on
the right side of the screen show the valid components and relations that may be added
to the model. To add a component to the model, users simply click on the component
in the Palette and then click where they want to place the component in the model. Once
the component has been placed in the model, it may be edited or moved to another
location. The protocol components are slightly different in that they are added between
two actors or agents. To add a protocol, the user first clicks on the protocol icon in the
Palette and then on the two actors/agents that participate in the protocol. After placing
the protocol, the name may be edited. To add relationships between model components,
the user also clicks on the desired relationship in the Palette and then click on two
components already in the model. Relationships have fixed names that may not be edited.

Figure 7 aT3 agent class diagram (see online version for colours)

The notation used in the aT3 models is very simple and consistent. Model components are
generally represented as a box with several compartments. The top compartment specifies
the type of component and the component name. Thus, in Figure 7, agent classes are
represented as boxes with an Agent type. In the O-MaSE notation, guillemets are

 Using three AOSE toolkits to develop a sample design 429

used to enclose type designators and should not be confused with UML stereotypes.
Directly below the type designation is the name of the agent class. Two unique
component types are external actors and protocols. External actors are represented using
a stick figure with the name of the actor directly below the figure, while a protocol is
represented as an arrow between two components (e.g., roles, agents, organisations). The
name on the arrow is editable and represents the name of the protocol, which can be
defined in detail via a protocol model. (A similar arrow notation is used in the protocol
diagram to represent individual messages and in the goal diagram to represent individual
events.) Relations between components are represented using traditional object-oriented
notation for similar concepts such as inheritance and aggregation, and open headed
arrows with fixed labels for O-MaSE specific relationships. In Figure 7, the plays
arrow is used to define which agents can play which roles, the possesses arrow is
used to define which agents possesses which capabilities, the requires arrow is used
to define which roles require which capabilities, and the provides arrow is used to
define which organisations, roles or agents provide which services.

As shown in Figure 7, aT3 also supports embedding of relations to simplify
the graphical layout of models. For instance, the PCmember agent class has two
embedded relations: plays Assigner and plays Partitioner. This
embedding represents the situation where the model also contains two additional roles
and relationships between the PCmember and those two roles. In aT3, the user
may toggle between the embedded mode and the full mode, which shows all model
components and relations explicitly.

3 Analysis

In developing any substantial software system, it is necessary to develop a relatively
detailed understanding of the system to be produced and to ensure that there is general
agreement between the builders of the system and those paying for its development. The
analysis stage covers processes with a variety of names including requirements analysis
and system specification. It is assumed here that a key aspect of this stage is to refine
and develop a somewhat detailed, documented and agreed understanding of what the
system to be built is intended to do.10 Different approaches place different emphases on
various aspects of this stage and this is also reflected in differences between the three
toolkits covered here. We describe the support given by each of them for this stage and
then discuss some of the similarities and differences.

3.1 Tropos and TAOM4E

This phase of development is broken down into two phases in Tropos: Early
Requirements and the Late Requirements, each with its own respective model. The Early
Requirements phase analyses the domain ‘as is’ while Late Requirements analyses the
same domain once the system-to-be has been introduced.

The two requirements models are each an instantiation of the Tropos metamodel. In
the Early Requirements model, the actors represented are the stakeholders; however, in
the Late Requirements model, an instance of the system-to-be is inserted, which is
represented as an actor. To focus on a specific part of the model under development,

 430 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

Tropos models are visualised using various diagrams, each of which includes a subset
of the current model elements and provides a different perspective. As introduced in
Section 2.1, a Tropos model can be viewed from two different perspectives: the actor
diagram, which defines the global network of dependencies among actors, and the goal
diagram, which is the perspective of a single actor. To help guide the development of the
Early Requirements model, questions such as Who are the stakeholders in the domain?,
What are stakeholder goals and how are they related to each other? and What are their
strategic dependencies between actors for goal achievement? are generally asked.

3.1.1 Early requirements

The goal of this phase is the production of the Early Requirements model and the
associated set of actor and goal diagrams. Figures 8 and 9 show the actor and goal
diagram views of the Conference Management System Early Requirements model. The
main stakeholders in the CMS domain include paper authors, the conference programme
committee, the programme committee chair, paper reviewers and the proceedings
publisher. The stakeholders are represented as the actors Author, PC, PC Chair,
Reviewer and Publisher. Next, stakeholder goals are identified. Based on domain
information, the analyst must determine whether or not each goal is achievable by the
actor itself or if the actor must delegate it to another actor. Goal delegation reveals
a dependency relationship between actors, such as the dependency between Author and
PC for the achievement of the Publish proceedings goal as shown in Figure 9. An
analogous analysis is carried out for tasks and resources, according to the Tropos process
described in (Giorgini et al., 2008).

In practice, the Early Requirements model is built by creating an Actor Diagram
in TAOM4E and adding actors, goals, etc., into the model via the editor, as shown in
Figure 8. Circles represent actors, ovals the goals and rectangles the resources, while the
arrows linking pairs of actors, via a resource or goal, capture dependencies between the
two actors for the goal achievement or resource usage.

Figure 8 Early requirements actor diagram (see online version for colours)

 Using three AOSE toolkits to develop a sample design 431

Figure 9 Early requirements of CMS: goal diagram

Additional analysis is used to decompose goals into sub-goals, which may include
capturing alternative ways to achieve a given goal. These alternatives are captured by
OR-decomposition. At this stage, non-functional requirements can be represented as
soft-goals. It is often the case that choosing one alternative over another, leads to the
achievement of different soft-goals. Thus, using OR-decomposition, it is possible to
compare different alternatives and select the most appropriate one based on the desired
soft-goals. This type of analysis can be used on goal diagrams such as those depicted
in Figure 9. In this diagram, only two actors, PC and PC Chair, are represented. The
diagram includes two goal dependencies, Manage conference and Decide deadlines.
The goal Manage conference is analysed from the point of view of its responsible
actor, PC Chair. Manage conference is AND-decomposed into several sub-goals: Get
papers, Select papers, Print proceedings, Nominate PC and Decide deadlines. In
addition, various soft-goals are specified inside the actor goal diagram along with their
contribution relationships to/from other goals. For example, the soft-goal Better quality
papers positively contributes to the soft-goal Conference quality.

Goal diagrams are created and viewed dynamically in TAOM4E. Each actor in the
model has a goal diagram, which can be dynamically opened and closed. These goal
diagrams appear as balloons attached to the respective actors, which allows the analyst
to dynamically visualise the internal perspective of each actor. Notice also that the tool
supports the analyst in identifying the elements to be analysed. For instance, goals that
have been delegated to an actor through dependency relationships appear automatically
in the actor goal diagrams. For instance, in Figure 9 the goal Manage conference
automatically appears in the PC Chair actor’s goal model after being delegated from
the PC.

 432 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

3.1.2 Late requirements

The Late Requirements phase is intended to capture the changes in the domain caused by
the introduction of the system-to-be and the actual properties of the system. The phase
starts by introducing a new actor, the system-to-be, into the domain model.

A partial view of the resulting model is shown in Figure 10 where the CMS System
actor has been introduced. In practice, the analyst creates a new diagram inside the
project and adds the new actor, specifying that it has the property of being a ‘system
actor’. The tool can also be customised to show system actors with a different colour with
respect to domain actor to facilitate model reading.

Figure 10 Late requirements: actor diagram (see online version for colours)

During Late Requirements, the driving analysis questions can be stated as: What are the
goals that can be assigned to the system-to-be? and Which dependencies can be
redirected from domain actors to the system?

In answering these questions, several existing dependencies may be redirected or
new dependencies established between the domain actors and the new CMS System
actor. For example, new goal dependencies, Coordinate conference and Manage
proceedings, have been introduced in Figure 10.

These goals are then analysed from the system actor perspective, as shown in
Figure 11. The goals Coordinate conference and Manage proceedings are
decomposed in new sub-goals. Moreover, operative plans are specified and linked to
system goals. These links indicate a means-ends relationship between the plan and the
goal. For example, in Figure 11, a means-ends relationship exist between the Manage
decision goal and the accept and reject plans.

During this phase, formal properties can be defined for any entity in the model
using the Formal Tropos language (Fuxman et al., 2004), according to the metamodel
defined in Bertolini et al. (2006). Formal Tropos is a language based on Linear Temporal
Logic (LTL) that allows specification of constraints, such as the requirement for
temporal sequencing in the fulfilment of the goals assign_papers_to_reviewers and

 Using three AOSE toolkits to develop a sample design 433

collect_reviews (i.e., the assignment of the papers to the reviewers must be achieved
before the collection of the reviews). This constraint can be expressed in Formal Tropos
as shown below.

Global assertion F(

∀ cmss : CMS System

→ ∀ cr : collect_reviews (cr.actor = cmss

→ ∀ aptr : assign_paper_to_reviewers (aptr.actor = cmss →
Fulfilled(aptr))))

The specification of the constraints is supported by TAOM4E via the annotation of the
Tropos models and is an important feature that allows the designer to formally check
the model using model checking techniques and tools, as described in (Perini and
Susi, 2005).

Figure 11 Late requirements: goal diagram (see online version for colours)

The artefacts resulting from the Late Requirements phase are the extended domain model
and the Late Requirements diagrams.

3.2 Prometheus and PDT

Prometheus assumes that the initial ideas for the system are captured – at least in a few
paragraphs. During System Specification or Analysis this description must be elaborated
and explored, in order to provide a sound basis for system design and development.

 434 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

3.2.1 Analysis overview model

Typically, in Prometheus, the development of the System Specification begins with
identifying the external entities11 (referred to as actors) that will use or interact in some
way with the system and the key scenarios around which interaction will occur. This is
done in PDT using the ‘Analysis Overview Diagram’. In Figure 12 we identify Author,
Printer, PCchair, PCmember and Reviewer as the entities that will interact with the
system. We associate the actors with the four scenarios that correspond to the main
functionality of the system: get papers, review, select papers and print proceedings,
indicating with which scenarios each actor will be associated. Thus reviewer and PC
member are involved with the review scenario, while Author and Printer are involved
with print-proceedings.

Figure 12 Initial analysis overview diagram (see online version for colours)

Having linked actors to scenarios, this diagram is then refined by identifying the percepts
that are input to each scenario and the actions produced by the system for each scenario,
linking them to the appropriate actors as shown in Figure 13. For example, an author
submits a paper as a percept (input) to the system and the system performs an action of
sending an acknowledgement back to the author. During definition of percepts and
actions new links between actors and scenarios maybe established, as is the case here
where a notification is sent from the select papers scenario to the Author, thus connecting
the Author to this scenario as a recipient of the message (action). The analysis overview
diagram thus defines the interface to the system in terms of the percepts (inputs) and
actions (outputs).

3.2.2 Scenario model

The next step is to specify the details of the scenarios that we identified in the analysis
overview diagram. A scenario is a sequence of structured steps where each step can be
one of: goal, action, percept or (sub)scenario. Each step also allows the designer to
indicate the roles associated with that step, the data accessed and a description of the
step. These preliminary goals, roles and data that are identified are used to automatically
propagate information into other aspects of the design. As steps are defined, the relevant
entities are created if they do not yet exist. Figure 14 illustrates the steps of the paper

 Using three AOSE toolkits to develop a sample design 435

reviewing scenario where the first step is a goal to invite reviewers, associated with
the Review_Management role and accesses the ReviewerDB (a data structure to store
reviewer details, their preferences and paper assignments). This is followed by a goal
step collect prefs to collect the preferences of the reviewers, a goal assign_reviewers to
split the available papers between the reviewers, considering preferences, an action
give_assignments to tell reviewers which papers they should review, a percept or input
review report that comes into the system from each reviewer and a goal collect_reviews
where all reviews for a particular paper are assembled.

Figure 13 Refined analysis overview diagram (see online version for colours)

Figure 14 Scenario example – paper review (see online version for colours)

 436 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

3.2.3 Goal model

By default, PDT creates a goal for every scenario, with the same name as the scenario.
This is the goal that the scenario is intended to achieve. The name of the goal can be
changed and, if desired, the same goal can be associated with multiple scenarios,
although this is not usually the case at the most abstract level of the Analysis Overview
diagram. The goals, created from the scenarios, are automatically placed into the ‘Goal
Overview Diagram’, where goal hierarchies further describing the application are
developed. For each goal, we identify its sub-goals by asking the question “how can we
achieve this goal?”. This can result in either a series of smaller subgoals, which are part
of achieving the goal (AND decomposition) or in alternative approaches to achieving the
goal (OR decomposition). The AND/OR is annotated below the parent goal, with the
default being AND. Figure 15 shows the goals of the conference management system.

Figure 15 Goal overview diagram (see online version for colours)

3.2.4 Role model

There is typically substantial iteration between scenario development and goal hierarchy
development until the developer feels that the application is sufficiently described/
defined. At this stage, goals are grouped into cohesive units and assigned to roles, which
are intended as relatively small and easily specified chunks of agent functionality. The
percepts and actions are then also assigned to the roles appropriately to allow the roles to
achieve their goals. This is done using the ‘System Roles’ diagram.

For example, Figure 16 shows that the ‘Assignment’ role is responsible for the goals
to collect preferences (from the reviewers) and assign papers (to the reviewers). To
achieve these goals, the role needs the input (reviewer_info) and reviewer preferences
(prefs) and should perform the actions of requesting preferences from reviewers
(request_prefs) and giving out the paper assignments (give_assignments).

Prometheus deliberately discusses only roles at this stage, leaving decisions about
which agents the system should have until Architectural Design, when some analysis can
be done on what is the preferred system structure.

 Using three AOSE toolkits to develop a sample design 437

Figure 16 System roles diagram (see online version for colours)

3.2.5 Results of analysis

The most important artefacts produced with PDT in this phase are the Scenario
Model and the Role Model (incorporating the Goals), which are directly used in the
Architectural Design. The Analysis Overview is also important as part of the conceptual
design documentation for understanding the purpose of the system.

3.3 O-MaSE and aT3

There are several Requirements and Analysis tasks used in O-MaSE and supported by
aT3 that result in the creation of various requirements and analysis models. These models
include the Goal Model, the Organisation Model, the Role Model, the Role Description
Document and the Domain Model. Each model is demonstrated for the CMS example
with the exception of the Role Description Document due to the simplicity of the
CMS system and space constraints. The first step in O-MaSE is almost always to create
the Goal Model. Once an initial version of the Goal Model has been defined, the
Organisation Model is defined followed by the Role Model and Domain Model.

 438 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

Figure 17 CMS AND/OR goal model (see online version for colours)

 Using three AOSE toolkits to develop a sample design 439

Figure 18 CMS GMoDS goal model (see online version for colours)

 440 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

3.3.1 Goal model

The first step in an O-MaSE compliant process is to create an initial Goal Model that
captures the essential requirements of the CMS system as defined in the system definition
or requirements documents. The Goal Model is defined in aT3 using the Goal Model
diagram. The initial Goal Model for the CMS system is shown in Figure 17. The Model
Goals task uses traditional AND/OR refinement (van Lamsweerde et al., 1998) to
decompose the top-level CMS goal, Manage submissions, into six AND-refined
subgoals: Get papers, Assign papers, Review papers, Select papers,
Inform authors and Print proceedings. An arrow with a filled diamond is
used to represent AND-refinement while an arrow with a filled arrowhead is used to
represent OR-refinement. The semantics of AND-refinement requires that all the children
of a parent goal be achieved in order to achieve the parent, while in OR-refinement,
achievement of only one of the children goals is required to achieve the parent. Each goal
in the model is annotated by the designator Goal . All the subgoals except Review
papers are further decomposed into subgoals that define what must be accomplished
in order to achieve the given goal. For instance, the Select papers goal is
AND-refined into a Collect reviews goal and a Make decision goal. Notice
that the Inform authors goal is OR-refined into an Inform declined and
Inform accepted subgoals. Obviously, the subgoal used to satisfy the Inform
authors goal is based on the decision made whether to accept or reject the paper. aT3
ensures that the goal models drawn use consistent AND/OR refinement and form a
valid tree.

The Goal Refinement task takes the initial Goal Model and adds additional
information to capture the dynamism associated with the CMS system. Specifically, the
initial model is refined into a model based on the Goal Model for Dynamic Systems
(GMoDS) (Miller, 2007). GMoDS models are also captured in aT3 via the Goal Model
diagram, which is simply an extension of the goal model created previously. GMoDS
introduces three concepts into AND/OR goal modelling approaches to handle goal
sequencing and the creation of goal instances and parameterised goals. Sequencing of
goals is provided by goal precedence, which specifies that one goal must be achieved
before a second goal can be achieved. Goal instances are created based on events that
occur during system operation. Goals without a specific trigger are created at system
initialisation, while other goals are created when specific events occur. Finally, goals
can be parameterised to fully define the purpose of the goal. For instance, in the CMS
system, there is a goal to Review papers. However, this goal is ambiguous until the
analyst specifies which set of papers to be reviewed. Thus, a parameter is added to the
goal to specify the papers is to be reviewed. Again, aT3 supports the modeller by
automatically verifying that certain rules about circular precedence and triggering
relations are not violated.

The GMoDS Goal Model for the CMS system is shown in Figure 18. The GMoDS
model has the same basic shape as shown in Figure 17 but with additional arrows
between goals showing precedence and goal triggering as well as parameters for several
goals. In Figure 17, precedence between goals is shown by an arrow labelled with the

precedes designator while triggers are represented by arrows between goals with an
event name and a set of parameters in the form event(p1,...pn). Reading Figure 18, it is
clear that the Collect papers goal precedes both the Distribute papers and
Assign papers goals. Thus, once the Collect papers goal has been achieved,

 Using three AOSE toolkits to develop a sample design 441

the papers may be distributed and the Partition papers goal (a sub-goal of
Assign papers) can begin. The trigger between Partition papers and
Assign reviewers denotes that each time a set of papers is created during the
pursuit of the Partition papers goal, a new goal is instantiated for that set. Once
the Partition papers goal is achieved, the pursuit of the Assign reviewers
goal can begin on each of the Assign reviewers goals. As an assignment is made,
the assign(p, r) trigger creates a new goal to Review papers for each paper set and
reviewer assigned.

When all the Review papers goals have been achieved, the Select papers
goal can be pursued via its subgoals: Collect reviews and Make decision.
When the Collect reviews goal is achieved, then the Make decision goal can
be pursued. As a decision is made on each paper, a declined(p, a) or accepted(p, a) event
occurs. If a paper is declined, an Inform decline goal for that paper is instantiated
while if a paper is accepted, both an Inform accepted and Collect finals goal
is instantiated for that paper. Once all the Collect finals goals are achieved, then
the Send to printer goal can be pursued. Assuming the Inform authors goals
have been achieved, achievement of the Send to printer goal achieves all
the sub-goals and the overall system goal is achieved.

3.3.2 Domain model

The O-MaSE Model Domain task is used to create the Domain Model in aT3, which is a
very important model that is referenced by the Goal Model and extensively used in the
Design Phase. The Domain Model defines the domain-specific entities that are referenced
or manipulated by agents, plans and capabilities as shown later in Section 5.3. In the Goal
Model, the goal and event parameters are defined as elements of the Domain Model.
Thus, the Domain Model is usually developed in conjunction with the Goal Model and
modified as needed during the Design Phase.

The Domain Model for the CMS system is shown in Figure 19. aT3 supports
development of the Domain Model by providing traditional object-oriented concepts of
objects (which actually represent object classes – there are no object instances in a
domain model), associations, inheritance and aggregation/composition. Each object
(class) in the domain has two further descriptions that include attributes and constraints;
these are shown in the Paper object in Figure 19. Association between objects (classes)
can be unidirectional or directed, with traditional role names provided in order
to reference an object from an associated object (class). The notion of association
multiplicities are also provided to allow constraints to be added to the number of
associations allowed.

In the CMS Domain Model, the Reviewer and Author objects will eventually be
represented by an agent and an external actor respectively. As the development
progresses through the process, the Domain Model will be updated to reflect these design
decisions, since agents and actors are actually sub-types of domain objects. The actual
objects – Review, Paper and Papers – define types that are used in the Design
Phase. Specifically, they are used to define parameters of goals, messages and actions.

 442 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

Figure 19 CMS domain model (see online version for colours)

3.3.3 Organisation model

The Organisation Model is created in aT3 via the Model Organisation task, which
takes as input the GMoDS Goal Model derived previously. The aim of the Model
Organisation task is to identify the system’s (which is referred to as the organisation)
interfaces with external actors. In the case of the CMS system (see Figure 20), the system
interfaces with the committee (including the PC chair and the reviewers), the
Authors and the Printer. The various ways that the actors interact with the system
are modelled as protocols, which are represented by arrows from the initiator of the
protocol to the responder. The initiator and responder of a protocol must be either an
external actor or the organisation. The system is represented as an organisation, which is
denoted using the Organization designator.

Figure 20 CMS organisation model (see online version for colours)

 Using three AOSE toolkits to develop a sample design 443

As stated above, the CMS organisation interacts with Authors, the PC chair,
Reviewers and the Printer. Each of these are shown as actors in Figure 20. Using
the system description, the protocols required for interaction between the organisation
and the actors are identified. In the CMS system, an Author submits papers to the
system using the submitPaper protocol. After being reviewed, the CMS notifies the
Author whether their paper is accepted or rejected via the informAuthor protocol. If
the paper was accepted, the Author then submits the final version of the paper using the
submitFinal protocol. The PC chair actor works with the CMS by partitioning
papers into sets via the partitionPaper protocol and then assigns various reviewers
to review those sets of papers via the selectReviewers protocol. Once the reviews
are complete, the PC chair makes the final selections via the selectPapers
protocols. The Reviewers accept or reject their assignments via the getOK protocol
and submit their reviews via the submitReviews protocol. Finally, the final papers are
sent to the Printer for printing via the printProceedings protocol.

3.3.4 Role model

Once the Organisation Model and Goal Model have been sufficiently defined, the task
Model Roles is used to create a Role Model. This focus of the Model Roles task is to
identify the roles required internal to the organisation and their interactions (defined via
protocols) with each other. The actors from the Organisation Model should show up as
actors in the Role Model and the protocols between the actors and the organisation must
be mapped to protocols between those actors and specific roles in the system. Thus, the
Role Model is a refinement of the Organisation Model. In addition, each leaf goal in the
GMoDS Goal Model must be assigned to a role in the Role Model that can achieve it, as
denoted by the achieves designator in the body of the role. Thus, each role should
achieve at least one leaf goal although, in general, a role may achieve multiple leaf goals.
aT3 supports these refinement rules by automatically providing warnings to the user if the
rules are violated. For instance, if a leaf goal in the Goal Model is not assigned to a role
via an achieves relation, a warning will be displayed in the Eclipse Problem window
stating that the leaf goal has not been assigned.

The Role Model for the CMS system is shown in Figure 21. In the CMS system, there
are seven roles: the PaperDB, the Partitioner, the Assigner, the PCreviewer,
the ReviewCollector, FinalsCollector and DecisionMaker. The
PaperDB role acts as the collection and distribution mechanism in the CMS.
Authors (where the Author actor represents only a single contact author of a
paper) submit papers to the PaperDB, while the Partitioner, PCreviewer and
Finals Collector roles access the papers, abstracts and final versions via
protocols with the PaperDB. When all the papers have been submitted, the PC chair
interacts with the Partitioner role to look at the various abstracts and assign them to
groups to be assigned reviewers. Once this task is complete, the PC chair interacts
with the Assigner role to select reviewers to assign to each set of papers. The
Assigner role then interacts with the PCreviewer role via the reviewPapers
protocol, which interacts with the Reviewer via the getOK protocol. The Reviewer
then reviews the papers and submits them to the PCreviewer role using the
writeReviews protocol. The PCreviewer role then sends the reviews to the
ReviewCollector role. Once all the reviews have been submitted, the PC chair
interacts with the DecisionMaker role to select papers for the conference. The

 444 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

status of the papers are relayed to their authors by the DecisionMaker role via the
informAuthors protocol. Once the Author completes the final version, the paper is
submitted to the PaperDB via the submitFinal protocol. When all the final papers
have been submitted, the papers are then forwarded to the Printer from the
FinalsCollector via the printProceedings protocol.

Figure 21 CMS role model (see online version for colours)

The completion of the Goal Model, Domain Model, Organisation Model and Role Model
concludes the analysis phase of this O-MaSE compliant process. Each model in the
analysis phase is supported by an associated aT3 diagram type. During the analysis phase,
aT3 ensures consistency between the models via its validation engine. When completed,
the models describe what the system must do and the logical elements required for the
system to achieve its overall goals.

3.4 Discussion

The analysis phase covers the activities of both domain analysis and system specification.
All three toolkits and their associated methodologies do support both of these aspects.
However, the emphasis is different. In TAOM4E, domain analysis takes on a central role
and the majority of the tool support is oriented towards this. In PDT and aT3 the
development of a detailed understanding of the system to be built is the more central of
the two aspects.

 Using three AOSE toolkits to develop a sample design 445

All three toolkits use the concepts of actor and goal at this stage, although the

semantics are slightly different. TAOM4E considers actors to be the humans that are
important in the domain and then later introduces the system-to-be as an additional actor.
PDT and aT3 both consider actors to be the humans or software systems that will interact
with the system-to-be. In TAOM4E goals at this stage are the goals of the actors, while in
PDT and aT3 they are the goals of the system.

All three tools exploit AND/OR decomposition of goals into more detailed goals. aT3
complements the information of a typical AND/OR goal model to allow representation of
an expanded set of constraints between the goals. In particular, aT3’s GMoDS diagrams
allows the specification of temporal sequences of goals and constraints related to the
instantiation of new goal instances. These constraints are similar to those allowable in
TAOM4E via entity properties in Formal TAOM4E (Fuxman et al., 2004). While Formal
TAOM4E is more expressive, the GMoDS model is much simpler and easier to use in the
design process. In PDT temporal relationships between goals are partially captured by the
sequencing of goals within the steps of a scenario.

Table 4 summarises the concepts used within each of the tools at the Analysis stage.

Table 4 Concepts in the analysis stage of the three tools

Taom PDT aT3

Actor, goal, soft-goal

Resource, plan

Actor, goal

Role, scenario

Percept, action, data

Actor, goal

Role, protocol

Both PDT and aT3 use roles, although in slightly different ways. In both PDT and aT3,
roles capture aspects of the system and are associated directly with system goals.
However, in PDT, roles are also associated with percepts and actions (Figure 16), while
in aT3, roles are associated with required capabilities (Figure 21), which are left until a
later stage in PDT.

Protocols are introduced in aT3 at the analysis stage to capture interaction between
actors and the system (Figure 20). A protocol defines the possible legal sequences of
steps in a particular interaction. At this stage in aT3, the protocols are identified but not
specified in detail. Within PDT, scenarios (Figure 14) play a somewhat similar role in
that they also capture interactions between the system and actors in terms of percepts
(received by the system) and actions (produced by the system). Unlike a protocol that
defines all possible legal sequences of steps, a scenario captures one particular sequence.
Both aT3 and PDT leave the detailed protocol definitions for later in the Architectural
design stage.

Prometheus is the only methodology, hence PDT the only tool, that focuses on
identification of percepts as the input to the agent system and actions as the output (see
PDT Figure 13). While percepts and actions are considered in O-MaSE(aT3), they are
embedded in plans and capabilities defined later in the detailed design.

TAOM4E, with its greater emphasis on domain analysis includes dependencies
between actors and goals at this stage (Figure 8). Actors form dependencies based on
goals or resources. In the late requirements goal diagrams in TAOM4E (Figure 11) plans
are also identified (but not detailed) which operationalise the goals. Both PDT and aT3
leave this to the Detailed design stage.

 446 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

The notion of soft-goals (e.g., in Figure 9, ensure only high quality papers are
accepted) is explicit in TAOM4E, while in PDT goals can be annotated as soft-goals by
using the notes feature. It is, However, absent in aT3.

As noted earlier the Analysis stage includes both domain analysis and system
specification. Table 5 summarises the models related to the Analysis stage within each of
the toolkits.

Table 5 Models in the analysis phase of the three tools

Taom PDT aT3

Early requirements actor diagram

Early requirements goal diagram

Late requirements actor diagram

Late requirements goal diagram

Analysis overview

Scenarios

Goal overview

System roles

Domain model

Organisation model

Goal model

Role model

TAOM4E, with its focus on the Early Requirements phase includes modelling and
analysis of the domain without considering the system-to-be. The Early Requirements
Actor and Goal diagrams of TAOM4E used for this purpose are substantially richer and
more complex than the Analysis Overview model of PDT or the Domain Model of aT3.

PDT with Scenarios and aT3 with Protocols do some preliminary modelling of the
system dynamics at this stage, which is not covered by TAOM4E. PDT and aT3 also
model roles as discussed earlier in this section via the System Roles Diagram and the
Roles Model respectively.

4 Architectural design

Following the system analysis and specification phase, the architectural design
establishes the structure of the system being developed. Each of the systems differ
slightly in what exactly they cover in this phase, and where they draw the line between
architectural and detailed design. We continue with our description of each of the systems
in turn.

4.1 Tropos and TAOM4E

The Tropos Late Requirements model is the basis for the definition of the system
architecture. The Architectural Design artefact defines the system’s overall structure; it is
represented in terms of its sub-systems and of their interdependencies. In the multi-agent
paradigm, sub-systems are agents that can act independently and communicate with
others through message passing. In order to build the architectural design, the engineer
refines the system actor by introducing sub-actors, which are responsible for actually
carrying out specific system goals. Criteria that guide the identification of the high level
system goals to be assigned to the sub-actors include goals that have no relations between
them (independent goals) and existing design patterns (Kolp et al., 2003).

During this refinement activity, the engineer is faced with alternative decompositions.
As in traditional software engineering approaches, designs that results in sub-systems
with stronger internal cohesion and lower coupling should be selected.

 Using three AOSE toolkits to develop a sample design 447

The engineer creates an Architectural Design diagram in TAOM4E for each system

actor defined in the Late Requirements Analysis phase. In this diagram, a dashed box
associated to the system actor represents the system. Within the box, new actors, roles,
and system agents may be created. Subsequently, a single goal, the whole goal tree or
parts of it can be delegated from the system to the new actors, roles or system agents.

Figure 22 displays the resulting architectural design diagram for the CMS System
actor. Based on the actor’s goal model as shown in Figure 11, the engineer has
decomposed the system into sub-actors. In our example the engineer has introduced four
new actors. The Conference Manager manages the top-level goal coordinate
conference, which was delegated to the system by the programme committee actor
PC. The Paper Manager is delegated the goal support paper submission from the
domain actor Author. In addition, some system actors depend on the Paper Manager to
manage papers and depend on the domain actor Author actors to get papers. Similarly,
the additional goals have been delegated to the Review Manager and Proceedings
Manager actors as well. In our case study, the new sub-actors are agents in the
CMS system.

Figure 22 Architectural design: CMS system decomposition into sub-actors (see online version
for colours)

4.2 Prometheus and PDT

In Prometheus, the main tasks of Architectural Design are to decide the agent types (as
collections of roles) and to define the agent conversations (protocols) that will happen in
order to realise the specified goals and scenarios.

 448 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

4.2.1 Agent types

PDT supports the process of making decisions about which agent types to have in the
system, by providing a data coupling and agent acquaintance diagram to allow the
developer to visualise data and communication coupling, which can influence decisions
about which roles to group. Once decisions have been made about which roles to group
into agents, this is captured in the ‘Agent-Role Grouping Diagram’. Various properties
and relationships are then propagated by the tool, from the roles to the agents.

Figure 23 shows the roles of assigning papers to reviewers (Assignment) and
managing the review process (review_management) as being part of a Review_manager
agent.

Figure 23 Agent-role grouping diagram (see online version for colours)

Once decisions have been made about how roles are grouped into agents, the information
propagated from roles allows PDT to automatically place agents, percepts and actions
onto the ‘System Overview Diagram’, with percepts and actions connected to appropriate
agents. What must be done to complete this overview is to define interactions between
the agents (protocols) and to add information (in the form of an icon, with associated
descriptor) about any data shared between agents. When completed, this diagram
provides an overview of the internal system architecture.

4.2.2 Protocols

Protocols can be instantiated by placing graphical icons onto the system overview
diagram and then specifying their structure in the protocol specification window
(available from the Entities menu or by double clicking the icon in the diagram). The
structure of message flows is specified using a textual notation for describing a modified
AUML2 (Winikoff, 2007) protocol specification. This can then be displayed (by
selecting a tab on the pop-up window) as a figure which is similar in style to AUML2.
Any messages (or other entities) specified in the protocol, but not yet existing in the
design, are created automatically by PDT. Links between agents and protocol symbols
are created automatically in the system overview diagram, based on the specification.

 Using three AOSE toolkits to develop a sample design 449

Prometheus modification of AUML2 allows percepts, actions and actors to be part of
the protocol specification in PDT, in addition to messages and agents. This often
provides a better understanding of a conversation structure than showing only messages
between agents.

Figure 24 shows the AUML2-like diagram of the ‘selection_decision’ protocol,
where interactions involve three agents and four actors (identified by the dotted squares
in the diagram). Percepts (which always originate with an actor and go to an agent)
are written as ‘>percept_name<’ and actions (from an agent to an actor) are written
as ‘<action_name>’.

Figure 24 Selection decision protocol diagram

In Figure 24 showing the selection decision interaction, we see a loop with review
reports arriving as percepts from the Reviewer actor(s) to the Review_manager agent.
This is then followed by a message start_selections from the Review_manager agent to
the Selections_manager agent when all reviews are in, as well as an external message
reviews_in to the PCmember actor. There is then another loop where the PCMember
actor(s) provide selection_opinion percepts to the Selection_manager agent, which, when
these are all in, sends an external message (or action) opinions_in to the PCChair actor,
who sends a select_decision percept regarding all the papers to the Selections_manager
agent. This agent then sends a selections message to the Papers_manager agent who, in
turn, sends external notification messages (actions) to the author actor(s).

Because conversations, or protocols, do include external actors, it is possible to
have a protocol connected to only one agent. An example of this in Figure 25 is the
‘choose_reviewers’ protocol where the review manager interacts with reviewers to give
out assignments. This protocol includes the review manager requesting preferences
(‘request_prefs’ action) from the reviewers,12 receiving the preferences (‘prefs’percept),
giving out assignments and so on.

 450 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

Figure 25 System overview diagram (see online version for colours)

4.2.3 System overview

Figure 25 shows the system overview for our conference management system design.
This diagram provides an overview of the internal system architecture in terms of the
agents, their interactions with each other, the inputs (percepts) to and outputs (actions)
from each agent and any shared data. For example, observing the ‘Papers_manager’
agent, we can see that it receives papers (‘paper’ percept) from authors (that are
external to the system) and provides an acknowledgement (action) to them. It interacts
with the ‘Selections manager’ agent via the ‘selection_decision’ protocol to be able
to send authors a notification of accept/reject (action). It also interacts with the
‘Publishing_manager’ agent via the ‘proceedings_finalisation’ protocol to provide final
versions of papers to publish the proceedings. The ‘papersDB’ is shared between the
‘Papers_manager’ and the ‘review_manager’.

4.3 O-MaSE and aT3

Once the analyst has defined what the system must do (via the Goal Model) along with
the logical elements of the system (via the Domain, Organisation and Role models), the
designer defines the architecture of the system. Essentially, the architecture of the system
is defined by a set of agent types and a set of protocols between these agents, as is the
case with Prometheus. The internal definition of the agent behaviour is left for the
detailed design phase. To capture the types of agents in the system, the Model Agent
Classes task is performed. After the designer has modelled all the agent classes and
mapped the protocols from the Role Model to the Agent Class Model, the details of the
protocols are defined via the Model Protocols task. Each of these models are supported
by aT3 diagrams. In addition, aT3 provides a validation capability to ensure that the
models are consistent as well. For instance, the designer may specify via an Agent Class

 Using three AOSE toolkits to develop a sample design 451

Model that a specific agent class can play a specific system role. The aT3 validation
component ensures that any such specification is consistent with the Role Model defined
in the analysis phase.

4.3.1 Agent class model

The goal of the Model Agent Classes task is to translate the role model, which captures
basic system functionality, into a form more amenable to implementation. In short,
this means mapping roles to agent classes, which is captured in aT3 Agent Class Model.
The result of this mapping for the CMS system is shown in Figure 26. The roles that
each agent has been assigned to play are embedded in the body of the agent classes
and are prefixed with the designator plays . The agent classes are denoted by the

Agent designator.

Figure 26 CMS agent model (see online version for colours)

While the assignment of roles to agents is made by the designer, typical software
engineering concepts such as coupling and cohesion should be used to evaluate the
assignment. In the CMS system, two agent classes play two roles, while the other two
classes play a single role each. The PCmember agent has been assigned to play both
the Assigner and Partitioner roles and thus interacts with the PC chair actor.
Likewise, the PCchair agent also plays two roles – ReviewCollector and

 452 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

DecisionMaker – while also interacting with the PC chair actor. The Referee
agent plays the PCreviewer role and interacts with the Reviewer, while the
Database agent plays the PaperDB role and interacts with the Authors and the
Printer. Notice that the protocols between roles in the Role Model have been mapped
to protocols between the appropriate agents in the Agent Class Model.

After the Agent Model is complete, the agent classes and protocols have been
identified but not defined. The next step in the architectural design is to model the details
of the interactions between agent classes and between agent classes and external actors
via the Model Protocol task.

4.3.2 Protocol models

The goal of the Model Protocols task is to define the details of the protocols identified in
the Role Model and Agent Class Model. aT3 supports defining these details via the aT3
Protocol Model, which defines the protocol in terms of messages passed between agents
or between agents and external actors using the AUML protocol notation in a fashion
similar to Prometheus. As there were 13 protocols identified in the Agent Class Model
(Figure 26), each of the 13 protocols must be defined in individual Protocol Models. The
protocols are modelled using the AUML Interaction Diagrams (Huget and Odell, 2004),
which allow designers to specify message sequences, alternatives, loops and references to
other protocols.

Figure 27 CMS reviewPapers protocol model (see online version for colours)

Due to space constraints, only 3 of the 13 protocol models are presented here:
reviewPapers, submitReviews and retrievePapers. Figure 27 shows the
reviewPapers protocol, which defines the interaction between the PCmember and
Referee agents, which are specified by the Agent designator (protocols can also

 Using three AOSE toolkits to develop a sample design 453

be specified between agents and actors using the same method). This protocol is very
simple. The PCmember sends a reviewpapers message with a list of paperIDs
for the Referee to review. The Referee may respond by either accepting or declining
to review the set using the accept and decline messages respectively.

Figure 28 shows the submitReviews protocol, which defines the interaction
between the Referee agent and the PCchair agent. In this protocol, the Referee
sends several reviews via a submit message to the PCchair agent followed by a done
message. There is no response by the PCchair agent.

Figure 28 CMS submitReviews protocol model (see online version for colours)

Figure 29 CMS retrievePapers protocol model (see online version for colours)

Figure 29 shows the retrievePapers protocol, which defines a simple request
protocol between the Referee and Database agents. According to the protocol,
the Referee issues a request to the Database for a set of papers via a request
message. The Database simply responds with the appropriate set of papers in a
receive message.

 454 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

4.4 Discussion

The goal of Architectural Design is to capture the overall structure of the system. In this
phase, we see two distinct approaches. TAOM4E focuses on refining the system actor into
new actors, roles or system agents and then defining the internal goals and plans of those
actors/roles/agents. In both PDT and aT3, system roles were identified in the Analysis
phase and thus Architectural Design is focused on assigning roles to agents and defining
the interactions between those agents.

Table 6 summarises the concepts used within each of the methodologies at the
Architectural Design stage.

Table 6 Concepts in the architectural design stage of the three tools

TAOM4E PDT aT3

Actor, role, plan, goal Agent, role

Protocol, message

Action, percept, data

Actor, role

Protocol, message

All three tools (and corresponding methodologies) talk about both agents and roles
during the Architectural Design phase. For TAOM4E these two terms are interchangeble
and are also synonomous with system actor, which is the graphical concept icon used in
the diagram. For both PDT and aT3, roles are used to capture some limited aspect of
required behaviour and are then grouped together to define the behaviour of the agents in
the system.

Goals are used explicitly in TAOM4E to further refine the actors/roles/agents
identified in this phase. (Although not shown in this example, aT3 also allows roles to be
further refined with an internal goal model.) PDT would expect further goal refinement to
happen by revisiting the goal hierarchies of the initial phase or, more likely, to wait until
the development of plans in the detailed design. In both PDT and aT3, system level goals
are associated with the roles defined in the Analysis phase. To show how to achieve
internal goals, TAOM4E defines a set of plans for each goal identified; PDT and aT3
define similar plans later in the Detailed Design phase.

Because TAOM4E does not explicitly define the agent interactions, only PDT and aT3
use conversations or protocols. In both approaches, the protocols are used to define
the allowable sequences of messages passed between system agents. Both also represent
interactions with things outside the system as part of the protocols, with PDT using
percepts and actions in protocol diagrams to denote these types of interactions. Finally,
aT3 attaches capabilities to each agent that can be used to define plans or percepts and
actions in the Detailed Design phase.

Table 7 summarises the set of models related to the three methodologies during the
Architectural Design phase.

Table 7 Models in the Architectural design phase of the three tools

TAOM4E PDT aT3

Architectural design diagrams Agent role grouping

System overview

Protocol diagram

Agent model

Protocol model

 Using three AOSE toolkits to develop a sample design 455

All three methodologies and tools have a central model, represented graphically, that is
the outcome of the Architectural design phase. For TAOM4E, this is the Architectural
Design diagram, which decomposes the system actor into actors/roles/agents and relates
them to goals and plans. In PDT, the central model and diagram is the System Overview
diagram, capturing agents, their interactions with each other, shared data stores/structures
and the interface of the system with the external environment. For aT3, the Agent Model
captures the assignment of roles to agents as well as the identification of interaction
protocols between agents and between agents and external actors. Both aT3 and PDT
have additional models for specifying the details of protocols, both using AUML2. PDT
has some subsidiary models that can be used as part of the methodology process (e.g., the
data coupling diagram which shows relations between roles and data, and the agent
role grouping, which simply clusters roles into agents). TAOM4E includes some of the
internals of agents at this level, whereas PDT and aT3 both leave agent internals until
detailed design. We will now explore how each of the tools support continuation of the
design and development process.

5 Detailed design

In detailed design, each of the systems allows specification of further details that can
be mapped into code fairly straightforwardly, with some automated generation of
skeleton code.

5.1 Tropos and TAOM4E

During the Tropos Architectural Design phase, the sub-actors and their delegated goals
and tasks were modelled. The next phase in Tropos, as shown in Table 1, is the Detailed
Design phase, which consists of analysing and designing he goal models of these new
agents (or sub-actors). As in the Late Requirements phase, the engineer can view the
internal design of an agent by opening the balloon that shows the goals delegated to the
agent. This allows the engineer to create a new view for each agent in order to analyse
the goals delegated to it. An agent’s goal model can be further refined by decomposing
goals, attaching plans to goals via means-ends relations or defining the set of capabilities
possessed by the agent.

Figure 30 shows an excerpt of the goal models for two agents: Paper Manager and
Proceedings Manager. As shown, the goal get proceedings has been delegated from
the Publisher actor to the Proceedings Manager resulting in a dependency between
them. The get proceedings goal is AND-decomposed into two sub-goals within
the Proceedings Manager: deal with proceedings, which is further decomposed,
and deliver proceedings, which is operationalised by the send to publisher plan.
The deal with proceedings goal requires access to all the final papers and thus
causes the Proceedings Manager to depend on the Paper Manager to achieve the goal
collect finals.

 456 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

Figure 30 Architectural design: simplified goal model of two sub-actors of CMS (see online
version for colours)

The set of plans possessed by an agent represents its capabilities. As discussed
above, plans are a means to achieve agent goals that are not delegated to other agents.
Defining more than one plan for a goal (as for the goal format proceedings), indicates
alternative approaches to achieving a goal. In this instance, one approach to formatting
the proceedings is to recompile or reformat them manually, while an alternative approach
would be to control the style used by the authors of the posted papers. While the
applicability of individual plans is subject to the availability of resources (the source
files in this example), the final selection of a plan can also be guided by its positive or
negative contribution to soft-goals of interest.

By opening the internal view of the Paper Manager actor, the engineer can see the
goal collect finals that was delegated to it from the Proceedings Manager. As shown,
collect finals has been decomposed into sub-goals, which are eventually operationalised
by plans. These plans can be refined by decomposing them into concrete sub-plans. For
example, in Figure 30, the plan store finals in DB has been AND decomposed into
retrieve finals, control format and store in DB.

The detailed design is completed by specifying the details of the plans attached to
each agent goal and the associated interaction protocols. Tropos plans are automatically
transformed into UML activity diagrams using the Tropos2UML tool. The resulting
activity diagram for the plan Store finals in DB is shown in Figure 31(A), which shows
that three subplans of store finals in DB (from the Paper Manager in Figure 30) are
performed in parallel. Activity diagrams can be further detailed and modified using
any UML2 editor capable of reading/writing XMI format. Sequence diagrams, such as
Figure 31(B), which shows the protocol used by the activity Control format, are used to
define the communications required between agents.

 Using three AOSE toolkits to develop a sample design 457

Figure 31 An example of activity (A) and sequence (B) diagrams for the capability internal

design (see online version for colours)

(A)

(B)

Using these diagrams, JADE Behaviour code can be generated to implement the agent’s
reasoning mechanisms for selecting plans at run-time. The generated code skeletons
can be executed on the Jadex platform and exhibit the behaviour specified in the
corresponding goal model.

 458 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

5.2 Prometheus and PDT

The detailed design stage of Prometheus is concerned with design of the agent internals,
to allow the agent to achieve the goals associated with it (via its roles and associated
goals) and to engage in the interactions specified. A generic stage of detailed design
describes agents in terms of capabilities or modules. These capabilities are then finally
specified in terms of plans and events, which are of necessity more specific to the
implementation paradigm or platform, than the preceding steps. Specification of process
diagrams as used in the methodology is not currently supported in PDT.

The detailed design section (bottom left of Figure 32) consists of a list of agent
overview diagrams, one for each agent. Each agent has underneath it a list of capability
overview diagrams, one for each capability included in the agent. Often the capabilities
of the agent will (at least initially)correspond to the roles that were assigned to it,
though roles may also be split into multiple smaller capabilities or merged into a larger
capability. For example, in this case the Review manager agent had two roles assigned
to it (Assignment and review_management) and has three capabilities: ‘Reviewer
registration’, ‘Papers assignment’ and ‘Review Collection’.

Figure 32 Agent overview diagram for reviewer_manager (see online version for colours)

All the entities that were associated with the agent in the system overview diagram are
propagated to the agent overview diagram, including the individual messages from
protocols associated with the agent. Entities in an agent/capability overview diagram that
are propagated form part of the interface to the internals of the agent/capability and
are shown as ‘faded’ icons. These interface entities must then be connected to internal
capabilities or plans defined to use or generate them. The designer needs to ensure that all
the actions, percepts, messages and data access are accounted for. For example, the
‘Reviewer registration’ capability handles the percept ‘review_info’ and modifies data in
the ‘ReviewerDB’.

Capabilities, which are specified using the ‘Capability Overview Diagram’, contain
the plans that actually do things. Similarly to the agent overview diagram, percepts,
messages, actions and data are propagated into this diagram and plans or (sub)capabilities

 Using three AOSE toolkits to develop a sample design 459

are created to handle the relevant entities. A dotted line from a percept or message to
a plan indicates that the percept/message is the trigger of the plan. Figure 33 outlines
the details of the ‘Paper assignment’ capability. The ‘assign-papers-PC’ plan is triggered
by a message to assign the papers (assign_papers), reads data from ‘ReviewerDB’
and ‘PapersDB’, assigns papers to PC members (give_assignments), records the
assignments in ‘ReviewerDB’ and, when all assignments are complete, sends a
‘papers-assigned’ message.

Figure 33 Capability overview diagram for paper assignment (see online version for colours)

Plan descriptors allow for additional information such as a description of the plan, a
context condition specifying the conditions under which this plan is applicable, a failure
condition under which the plan may fail, a failure recovery procedure if the plan fails,
and a description of the plan body where the developer may specify pseudocode that can
be easily translated to code.

As the details of a design are developed, it is very common that one recognises the
need for new percepts, actions, messages and so on. This will inevitably lead to the need
to revise slightly the models developed at an earlier stage. PDT supports this by
automatically introducing any new percepts and actions identified, into the system
overview and analysis overview diagrams. Examples of this in the current design are the
timer that is the trigger to ask reviewers to indicate which of the submitted papers they
would like to review and the reject_ass_paper, which allows a reviewer to reject an
assignment with which they have a conflict. These were identified during detailed design
and, as a result, were introduced into the System Overview, Analysis Overview and
System Roles diagrams. In the System Overview the connections to the appropriate
agents were also able to be made. In this case the decision was made not to leave the
timer percept in the Analysis Overview or System Roles diagrams, as it did not add to
understanding at System Specification level. However, the reject_ass_paper does lead to
a fuller understanding of the system functionality and so was connected to the review
scenario and the Review_management role. The protocol choose_reviewers should then
also be updated to show the role that these two new percepts play in the interaction
around assigning reviewers to papers.

 460 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

Once the detailed design has been completed, it is possible to generate skeleton
(JACK) code from the Tools menu. The developer can then add to this code using a text
editor. In order to maintain consistency between code and design, any additions or
deletions of entities or relationships between entities should be made in the design tool
and code regenerated on this basis. Code that is added outside that which is generated by
PDT is maintained between design code iterations.

5.3 O-MaSE and aT3

The detailed design of the agents are represented by defining their capabilities, which
can be represented as either a set of plans or the definition of the actions within those
plans. These plans and action definitions are captured in aT3 via a set of Plan Models
and Capability-Action Models. Neither O-MaSE or aT3 require any specific agent
architecture to be defined. Instead, a code generation engine is being developed for aT3
that will allow the developer to select the architecture of choice and then produce the
code for that architecture based on the diagrams existing in aT3.

5.3.1 Agent plan model

A plan represents a means by which agents can satisfy a goal in the organisation. Thus a
plan can be viewed as an algorithm for achieving a specific goal. Again, because there
are four different agents defined in the Agent Class Model, there should be at least four
Agent Plan Models developed, one for each agent. Depending on the internal architecture
chosen for each agent, the designer could develop multiple Agent Plan Models for each
agent. This might be the case when a unique plan is required for each role that an agent
could play or if the agent can choose between multiple plans to achieve the same goal. In
either case, the agent architecture would be responsible for selecting the appropriate plans
and interleaving their execution if required. aT3 supports the modelling of plans via the
Agent Plan Model editor.

In aT3, plans are modelled using a finite state automata to specify a single
thread of control that defines the behaviour that the agent should exhibit. As such,
each plan has a start state and an end state. All messages are sent and
received on state transitions. For the Plan Model, the syntax of the transitions is
[guard] receive(message,sender) / send (message,receiver).
The guard defines a Boolean condition that determines whether the transition is
enabled. The receive(message,sender) is a message that is received from the
sender agent that enables the transition, while the send(message,receiver) is a
message sent to the receiver agent when the transition occurs. Messages are specified
in the form performative (p1...pn), where the performative is the name of the message and
p1...pn are the parameters of the message. Each part of the transition is optional and a null
transition may exist between two states. aT3 provides a Transition Properties window for
each transition that allows the user to easily edit the components of the transition and
ensures correct syntax.

Each state has a (possibly empty) set of actions that are executed sequentially once
the state is entered. Each action is represented in the form of a function that returns a
value. These actions may represent internal computations of the agent or be part of
interactions with objects in the environment. Transitions out of a state are not enabled
until all actions have returned their values. The parameters to the actions, the action

 Using three AOSE toolkits to develop a sample design 461

return values and all parameters in messages in the plan are considered variables within a
single name space. Thus a parameter X of a message is the same as the return value of an
action X. aT3 provides a State Properties window for each state that allows the user to
easily edit the actions for each state.

Figure 34 shows the Plan Model for the Reviewer agent. The plan starts upon receipt
of a reviewpapers message from the PCmember agent. Immediately upon receipt
of the message, the agent sends a request message to the Database agent to get
the papers identified by the list of paper identifiers, paperIDs and moves into the
Wait state. When the Database returns a list of the papers requested, the plan
moves into the Evaluate state where it interacts with its associated Reviewer via
the getOK action. If the Reviewer does not agree to review the set of papers, a
decline message is sent to the PCmember agent and the plan ends. However, if the
Reviewer does agree to review the set of papers, an accept message is sent to the
PCmember agent and the plan moves to the Review state. In the Review state,
the plan interacts with the Reviewer via the getSelectedPaper and getReview
actions. Every time a review is completed, the review is submitted to the PCchair agent
via a submit message and the list of papers is reduced in size. Once the papers list is
empty, the plan moves into the Done state and immediately sends a done message to the
PCchair agent.

Figure 34 CMS reviewer plan model (see online version for colours)

As the Agent Plan Model implements the protocols identified in the Agent Class Model
and defined in the Protocol Models, it is critical that a Plan Model be consistent with
all Protocol Models that it is required to implement. Thus, by looking at Figure 26, it
can seen that Referee agent must implement the reviewPapers, getOK,
writeReview, retrievePapers and submitReview protocols. While the
getOK and writeReview protocols interact with the Reviewer actor and are
implemented as actions, the protocols reviewPapers, retrievePapers and
submitReview can be analysed against the Referee Agent Plan Model to verify that
they are indeed consistent. aT3 does not currently support automatic verification of the
correct implementation of protocols within plans, although plans are in the work to
provide that capability using the Bogor model checking framework (Robby et al., 2003).

 462 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

5.3.2 Capability-action model

The purpose of the Capability-Action Model is to further refine the Capabilities
associated with each agent class into a set of actions that the agent plans can use to carry
out the details of a plan. Here, in Figure 35, only the ReviewerInterface capability
and its associated actions are shown. The ReviewerInterface capability is
possessed by the Referee agent as shown in Figure 26 and used by the Reviewer
plan model as shown in Figure 34.

Figure 35 CMS reviewer interface capability-action model (see online version for colours)

Basically, the Capability-Action model defines a set of actions that can be used in a plan
to achieve a specific goal. In Figure 35, there are three actions defined: getOK,
getSelectedPaper, getReview. Each action is defined in terms of its signature
based on objects defined in the Domain Model and a pair of pre- and postconditions
(not shown). These pre- and post-conditions define the intended effect of the actions
on domain objects by accessing and manipulating domain object attributes. aT3 supports
the definition of capabilities and actions via the Capability diagram. aT3 provides
Capability and Action properties panels that allow users to define capability attributes
and action signatures.

5.4 Discussion

The goal of Detailed Design is to capture the design of the individual agents identified in
the Architectural Design phase. Each of the three methodologies and tools focus on
refining each agent based on the goals assigned, either directly or indirectly through
roles, to the agents and defining the agent plans required to achieve those goals.

The concepts employed by the three toolkits in the Detailed Design phase are all very
similar. Each uses the concepts of goals, plans and capabilities while they use various
low-level concepts for defining the internals of the plans such as events, messages, states
and actions. Table 8 summarises these concepts for each tool.

All three methods use the notion of a plan as the central concept for representing the
low-level behaviour of the agents. TAOM4E plan diagrams are used to generate UML
activity diagrams. The activity diagrams are supplemented with UML sequence diagrams
that define the interactions between agents. This is in contrast to both PDT and aT3,

 Using three AOSE toolkits to develop a sample design 463

which both define the interactions during the Architectural Design phase. PDT plans
include a plan description, a pseudocode plan body with conditions under which it may
be applied and a failure recovery procedure and conditions when the plan might fail. aT3
plans are modelled as a finite state machine with actions that are performed in states with
message specifications that are sent/received on state transitions.

Table 8 Concepts in the detailed design stage of the three tools

TAOM4E PDT aT3

Agent, plan

Goals

Agent, plan

Capability, message

Action, percept, data

Agent, plan

Capability, message

Action, state

Each tool also uses the related notion of capabilities, although in slightly different ways.
In TAOM4E, capabilities are essentially the set of plans the agent can apply. In PDT,
capabilities are modules within the agent, the internals of which are then developed to
contain plans, events and data. Finally, in aT3, agents possess a set of capabilities, which
can be refined into plans, or actions, which are typically used to represent actual
hardware such as sensors or effectors.

Table 9 summarises the principal models used to describe the internal structure of the
agents and their capabilities.

Table 9 Models in the detailed design phase of the three tools

TAOM4E PDT aT3

Agent goal

Capability’s activity and
sequence diagram

Agent overview

Capability overview

Agent plan model

Capability model

TAOM4E uses an agent-specific goal model to decompose the system level goal and to
specify which plans map to those goals. PDT uses an Agent Overview Diagram to
connect the previously defined agent interface to internal agent capabilities.

The capabilities are defined using a varied set of models. TAOM4E uses UML
activity and sequence diagrams to specify agent plans and their interactions. PDT uses
capability overview diagrams to show the relationship between plans and internal and
external resources, messages and events; the details of the plans are specified textually.
aT3 capabilities can be either plans or actions. Plans are specified in a detailed finite state
machine where actions are performed within the states while messages can be sent or
received on transitions. Actions, which can represent pre-defined software operations or
hardware specific sensors/effectors, are further refined in Capability-Actions diagrams.

Finally, each of the toolsets supports the generation of agent code skeletons on
various agent platforms.

 464 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

6 Other tool support aspects

To round out our discussion of the three different tools presented, we now briefly explore
additional functionalities which are not necessarily directly related to a particular design
phase presented here. In some cases these functionalities are integrated within the tools,
while in others they are provided by associated tools that operate on the output of the
tools presented.

6.1 Tropos and TAOM4E

During the Tropos development process, other tools can be used in conjunction with
TAOM4E. These tools include code generators that automatically produce agent code and
automated testing tools.

6.1.1 Code generation

The goal models created in the design phase are the basis for implementing the software
agents. Of prime interest is the knowledge level, which is the part of an agent responsible
for selecting the appropriate plans in order to achieve the desired goals. In an agent’s
goal model, the knowledge level consists of the agent’s goals and their decomposition,
contributions, dependencies to other agents and means-end relations to plans. This
knowledge is input to the t2x (Tropos to Jadex) component, which generates BDI agent
skeletons that are executable on the Jade BDI agent platform (Pokahr et al., 2005). The
mapping between Tropos goal model elements and Jadex constructs is described in
(Penserini et al., 2007a; Morandini, 2006).

The generated BDI code skeleton implements the reasoning part of a software agent,
which consists of an Agent Definition File (ADF), in XML format. The ADF defines the
goals, plans, beliefs and messages for every system agent defined in the goal model.
Plans are implemented in Java and are linked to agents via the ADF. The t2x tool is used
to generate Jadex ADFs by simply selecting a system agent in the goal model and starting
the automatic generation process. For the CMS system, code was generated for the two
system agents, the Proceedings Manager agent and Paper Manager agent.

The t2x tool analyses an agent’s goal model by exploring its goal decomposition
hierarchy. The goal hierarchy is converted to Jadex goals and the Java code that
implements the decomposition logic in the form of decomposition graphs. Plans are
implemented as Java code and are connected to their related goals by a triggering
mechanism. These goal decomposition graphs, together with the contributions to
soft-goals and dependencies with other agents, are stored in the agent’s belief base,
which allows the agent to control its run-time behaviour by navigating the goal graph.
The generated code skeleton is executable on the Jadex platform and can be modified
and customised as needed. In particular, the agent code can be extended with code
generated by UML2JADE tool, which generates code for the activity diagrams specified
during the detailed design.

Figure 36 shows Jadex XML code for the Paper Manager agent, which corresponds
to the goal model on the top-left side of the figure. A visualisation generated by the
Introspector tool on the Jadex platform for the goal model’s run-time reasoning trace is
shown on the bottom-left.

 Using three AOSE toolkits to develop a sample design 465

Figure 36 Simplified goal diagram for Paper Manager, part of generated Jadex XML code

(the code corresponding to three goals and a plan is highlighted), and example Jadex
run-time agent instance with activated goals and plans, visualised by the Introspector
tool provided by the Jadex platform (see online version for colours)

6.1.2 Testing

Tropos analysis and design is complemented by testing activities that follow the
goal-oriented testing methodology presented in (Nguyen et al., 2007). The eCAT13
Eclipse plugin helps derive test suites from goal diagrams and can be integrated with
TAOM4E. The eCAT tool allows testers to define test inputs and oracles as well as to
automatically generate and evolve additional test inputs during the course of testing.
eCAT runs these test inputs continuously to extensively stress the system under test
(Nguyen et al., 2008a–b).

The eCAT tool generates test suites for every elementary relationship between a goal
and a plan. The test suite is used to guide the Autonomous Tester Agent, which triggers
the appropriate goals in order to verify the execution of the corresponding plan. In the
case of CMS, eCAT takes the architectural diagram from Figure 30 as an input and
generates a set of test suites for each agent. When generating test suites, developers
can choose which communication protocols the Autonomous Tester Agent will use to
communicate with the agents. Figure 37 illustrates a test suite for testing whether the
Paper Manager agent is able to achieve the goal collect finals in DB. The graphical
part of the figure gives an intuitive understanding of the test suite, which is formalised in
XML. When executing tests, the Autonomous Tester Agent sends a ‘REQUEST’ message
along with the goal name collect finals in DB to the Paper Manager. It then waits for a
reply and decides whether to finish the test or to continue with other requests.

 466 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

Figure 37 Example of a test scenario. An excerpt of the XML specification is depicted in the
right part (see online version for colours)

Other tool-supported analysis techniques are available in Tropos. These techniques
include formal analysis on requirements and system design goal models via the GR-Tool
(Giorgini et al., 2005) as well as the previously mentioned validation of requirements
specification via model-checking with the T-Tool (Fuxman et al., 2001). These types of
analysis are particularly useful with complex models. Figure 38 shows the tools that
support the various activities and phases of the Tropos process. The Agent-Oriented
modelling activity spans the first four phases and is completely supported by TAOM4E
while the implementation phase is supported by the TAOM4E generator components.
The GR-tool (Giorgini et al., 2005) and T-Tool support reasoning and validation
activities during the early phases of the development while the eCAT component supports
continuous testing over the entire process.

 Using three AOSE toolkits to develop a sample design 467

Figure 38 Tropos development process phases: activities and supporting tools (see online version

for colours)

6.2 Prometheus and PDT

PDT has a number of additional tools, or extended versions, that offer capabilities not yet
integrated into the mainstream version of PDT. In addition, it has a number of features
which are important for a software engineering support tool but which are not necessarily
agent-specific, Prometheus-specific or related to a particular phase of the design process.
For example, the user interface will continuously prevent the following sorts of errors:

1 Definition: it is not possible to have references to non-existent entities, since creating
a reference will create the entity if it does not exist and when an entity is deleted all
references to it are deleted as well.

2 Naming: it is not possible for two entities to have the same name, for example a goal
and a plan both called ‘assign-Papers-PC’.

3 Simple type errors: for example, it is not possible in PDT to connect an action and
another action.

4 Scope constraints: for example, it is not possible to create an incoming percept to a
plan without that percept also being:

• shown on the system overview diagram

• shown as incoming to the agent whose plan it is.

5 Violations of interface declarations: for example, if an agent is specified as reading
a belief set, then it is not possible to create an arrow from one of the agent’s plans
to the belief set. Similarly, if an agent specifies that it only sends a message, then
its plans cannot receive the message. PDT does not allow the user to violate
this constraint.

PDT also has a number of additional features available from the tools menu shown
in Figure 39. These build on the particular characteristics of agent designs and, while
they are specific to PDT and Prometheus, many of them could readily be adapted in
principle to other methodologies and tools. Some of the additional features that PDT
provides include:

• Crosschecking – this is a consistency check that is performed on demand, generating
a list of errors and warnings that can be checked by the developer. Examples of a
warning are writing of internal data that are never read, while an example of an error
is a mismatch between the interaction protocol specified between two agents and the
messages actually sent and received by processes within those agents.

 468 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

• Code generation – the detailed design specification is close to code and the tool
currently provides a code generation feature that generates skeleton code of the
system in the JACK agent language (Busetta et al., 1998). The skeleton code can
then be completed by the developers. The tool supports repeated code generation
from the design, preserving any user-edited code segments.

• Report generation – one of the very useful features of the tool is its ability to
generate an HTML design document. This document contains both figures and
textual information, as well as an index over all the design entities. The report can
also be customised such that only certain entities are included in the report. The tool
can also save printable images of the various diagrams (in PNG format).

• Auto save and backup – PDT can be set to automatically save the current project at a
set time interval (which can be changed) and also allows for creating backup files,
which save the current version into a different file specified by the user.

PDT is also available with an Eclipse plugin, enabling it to be used within a broader IDE,
supporting aspects such as syntax highlighting, version management and so on. Details
are available from the PDT home page.14

Figure 39 Tools in PDT (see online version for colours)

There are also a number of separate tools that can take PDT produced files as input or
that are extended versions of PDT. Some of these are in the process of incorporation into
the main version of the software. They include:

• Automated unit testing: we have a prototype tool that does fully automated
generation and execution of test cases for plans, events and beliefs within an agent,
based on the design model (Zhang et al., 2007). The tool provides a report to the
user. Users can interact with the tool to specify additional test cases, and test case
libraries can be maintained. This is currently being integrated with the public version
of PDT and will be released shortly.

 Using three AOSE toolkits to develop a sample design 469

• Design-driven debugger: we have a prototype debugging tool and framework that

uses the design documents produced by PDT to identify and provide alerts regarding
errors. This has been evaluated in a thorough user study and shown to provide
substantial help in detecting errors (Poutakidis et al., 2002; Padgham et al., 2005).

• Model-based code generation: we have an extended version of PDT that supports
more detailed but also more constrained, models that are sufficient for automated
generation of fully operational code. This was developed primarily to allow
modification of a system by domain experts in an application area. It has been
evaluated in the meteorology domain (Jayatilleke et al., 2005a–b).

• Priority-based incremental development: we have developed mechanisms for taking
high level priorities on scenarios and propagating these in a coherent manner through
the system, to support guided incremental development of functionality (Padgham
and Perepletchikov, 2007). This was incorporated in an earlier version of PDT but
needs updating into the current version.

• Maintenance support at the design level: we have prototype tools which assist a
developer when making changes required for new releases during the life of a system
(the maintenance phase). These use formally specified Object Constraint Language
(OCL) constraints and a metamodel to assist the engineer to make suitable secondary
changes to return the design to a consistent state following a primary change. This
work is presented in (Dam and Winikoff, 2008).

6.3 O-MaSE and aT3

In addition to the model plugins, aT3 also provides several features to better supports
developers. Specifically, aT3 includes the following features:

• the agentTool Process Editor – a process definition and verification tool

• the aT3 Verification Framework – a tool for verifying consistency in and
between models

• a suite of predictive metrics computed using model checking techniques

• a code generation capability.

A unique feature to aT3 is the inclusion of the agentTool Process Editor (APE) plugin,
which was developed to support the design and definition of O-MaSE compatible
processes. As discussed in Garcia-Ojeda et al. (2007), O-MaSE is actually a framework
that helps process engineers define custom multi-agent systems development processes.
O-MaSE implements a Method Engineering approach to process construction. The APE
plugin is based on the Eclipse Process Framework and provides an Eclipse perspective
for designing O-MaSE compliant processes. A process designer may use the APE plugin
to extend O-MaSE with new tasks, models or usage guidelines. The plugin also provides
the ability to create new process instances by selecting various tasks, models and
producers from the O-MaSE method fragment library and then verify that they meet
process guidelines.

 470 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

Once a process designer has developed a process for a specific use, the designer may
verify that it is O-MaSE compliant, via the aT3 APE verification tool. Basically, the APE
verification tool checks to ensure that the task ordering as defined by the process designer
is valid and that each task has the appropriate inputs. Warnings and error messages are
displayed to the designer using the familiar Eclipse Problems view.

The aT3 Verification Framework plugin uses a set of rules to check model validity as
well as consistency between models. This verification checking is done in real-time with
warnings and errors displayed in the Eclipse Problem view in a fashion similar to Eclipse
compiler warnings and errors as shown in Figure 40. The Verification Framework allows
for the easy addition of new rules as well as the ability for the user to turn rules on and
off as required.

Figure 40 AgentTool verification framework (see online version for colours)

The verification plugin runs in the background every time a diagram is saved.
The verification plugin has a number of rules that it runs against the current model,
which may require loading in data from other saved model diagrams as well. Thus,
the verification plugin keeps an updated version of all related models in memory
in order to verify the current model. Figure 40 shows the case where a leaf goal,
informAccepted, has not been assigned to a role in the role model. Here
informAccepted should be assigned to be played by the DecisionMaker role.
Some other examples of the errors and warnings handled for the various models include:

 Using three AOSE toolkits to develop a sample design 471

• Each leaf goal in a Goal Model should be ‘achieved’ by some role in the

Role Model.

• Each agent connected to a role by a ‘plays’ relation must also be connected to every
capability that the role is connected to by a ‘requires’ relation in the role diagram by
a ‘possess’ relation.

• Each role in an Agent Class Model should exist in a Role Model in the
current directory.

• No two agents may be connected via a ‘protocol’ relation unless the roles they
connect to with the ‘plays’ relation are themselves connected by a ‘protocol’ relation
in a Role Model.

There are also a current effort to develop plugin support for a set of predictive metrics
using the Bogor model checker (Robby et al., 2003). The idea of these predictive metrics
is to provide design-time support that predicts how a multi-agent system will behave at
run-time. The metrics for measuring system flexibility and the importance of specific
goals to the overall system have already been defined. The envisioned plugins will allow
the designer to literally push a button and get feedback predicting how the system will
operate within a set of user-defined assumptions.

Finally, a Code Generation Framework plugin is being developed that will allow
aT3 to generate code for a variety of architecture/platform combinations. The first plugin
has been focused towards the Cooperative Robotic Organisation System (CROS)
simulator, which was developed at Kansas State University. While the current code
generated is specific to the CROS simulator and the OMACS agent architecture, a
pattern-based approach is being used that will make the framework easily extensible to
other platforms and architectures.

6.4 Discussion

Again there is quite a lot of similarity between the tools described here but also some
differences. Both Tropos and Prometheus support code generation while this is also
underway in O-MaSE. Prometheus also has an extension that supports fully automated
model driven code generation, using more detailed model specifications. Tropos provides
support tools for formal validation and also for formal analysis of the goal model.
Prometheus and O-MaSE on the other hand provide built in rule-based consistency
checking and verification within and between models. Prometheus has the ability to
generate a design document and also has a separate prototype debugging tool that
uses the design models. Both Prometheus and Tropos have automated testing tools
based on the design models. O-MaSE is unique in having a process editor that
allows composition of models. O-MaSE is also in the process of providing a plug-in for
predictive metrics, while Prometheus has a version of PDT that provides support for
incremental development by propagating priorities.

Table 10 compares the additional areas of work and functionality of the
different approaches.

 472 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

Table 10 Additional functionalities, prototypes and plug-ins for the three methodologies

Tropos Prometheus O-MaSE

Automated testing Automated testing

Separate formal validation tool Rule based consistency checks Rule based consistency checks

Code generation Code generation Code generation in process

 Design document generation

 Prototype debugging tool

 Priority propagation prototype

 Process editor

 Predictive metrics (in process)

7 Conclusion and future work

This paper has explored in detail the design process of a Conference Management
System, using the toolkits of three different methodologies. All three methodologies
(and toolkits) are ongoing active research projects, exploring the kinds of advanced
support that is needed and can be provided for the design and development of agent
systems. This paper, and the workshop session from which it arose, has been a concerted
effort to understand and compare the similarities and differences between the toolkits
and the underlying approaches. It is clear that although there are differences, there is
substantial similarity, and the core underlying design issues and questions that are being
supported are substantially similar. Some work has already been done between these
authors and others on discussing potential notation standardisation, which would be a
helpful first step for users to more readily be able to compare design artefacts across
the methodologies.

As the field of support tools for Agent Oriented Software Engineering matures within
the academic domain, it is to be hoped that the core ideas may be taken up by companies
willing to provide commercial tools. There is still much useful work to be done in such
areas as metrics, maintenance support tools, more advanced testing and debugging,
formal verification and other such areas.

Acknowledgements

The work associated with Prometheus was supported by the Australian Research Council
(ARC) and Agent-Oriented Software, under grant LP0453486 ‘Advanced Software
Engineering Support for Intelligent Agent Systems’. The work associated with O-MaSE
was supported by grants from the US National Science Foundation (0347545) and the
US Air Force Office of Scientific Research (FA9550-06-1-0058). The work associated
with Tropos was supported by the STAMPS project financed by the Autonomous
Province of Trento, Italy.

 Using three AOSE toolkits to develop a sample design 473

References
Bergenti, F., Gleizes, M-P. and Zambonelli, F. (Eds.) (2004) Methodologies and Software

Engineering for Agent Systems. The Agent-Oriented Software Engineering Handbook, Kluwer
Publishing, ISBN: 1-4020-8057-3.

Bertolini, D., Novikau, A., Susi, A. and Perini, A. (2006) ‘TAOM4E: an eclipse ready tool for
agent-oriented modeling. Issue on the development process’, Technical report, Fondazione
Bruno Kessler – irst.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. and Mylopoulos, J. (2004) ‘Tropos: an
agent-oriented software development methodology’, Autonomous Agents and Multi Agent
Systems, Vol. 8, No. 3, pp.203–236.

Busetta, P., Rönnquist, R., Hodgson, A. and Lucas, A. (1998) ‘JACK intelligent agents
– components for intelligent agents in Java’, Technical report, Melbourne, Australia: Agent
Oriented Software Pty. Ltd., http://www.agent-software.com.

Ciancarini, P., Niestrasz, O. and Tolksdorf, R. (1998) ‘A case study in coordination: conference
management on the internet’, ftp://cs.unibo.it/pub/cianca/coordina.ps.gz., citeseer.ist.psu.edu/
ciancarini98case.html.

Ciancarini, P., Omicini, A. and Zambonelli, F. (1999) ‘Multiagent system engineering: the
coordination viewpoint’, in N. Jennings and Y. Lesperance (Eds.) 6th Int. Workshop on
Agent Theories, Architectures, and Languages (ATAL), Berlin: Springer-Verlag, Vol. 1757,
pp.250–259, citeseer.ist.psu.edu/article/ciancarini00multiagent.html.

Dam, K. and Winikoff, M. (2003) ‘Comparing agent-oriented methodologies’, Proceedings
of the 5th Int’l Bi-Conference Workshop on AgentOriented Information Systems (AOIS),
Melbourne, Australia.

Dam, K.H. and Winikoff, M. (2008) ‘Cost-based bdi plan selection for change propagation’,
Proceedings of the Seventh International Joint Conference on Autonomous Agents and Multi
Agent Systems (AAMAS’08), pp.217–224.

DeLoach, S.A. (2001) ‘Analysis and design using MaSE and agentTool’, Proceedings of the 12th
Midwest Artificial Intelligence and Cognitive Science Conference (MAICS 2001), Miami
University, Oxford, Ohio, 31 March–1 April.

DeLoach, S.A. (2002) ‘Modeling organizational rules in the multi-agent systems engineering
methodology’, AI ’02: Proceedings of the 15th Conference of the Canadian Society for
Computational Studies of Intelligence on Advances in Artificial Intelligence, London, UK:
Springer-Verlag, pp.1–15.

Fuxman, A., Liu, L., Mylopoulos, J., Roveri, M. and Traverso, P. (2004) ‘Specifying and analyzing
early requirements in tropos’, Requir. Eng., Vol. 9, No. 2, pp.132–150.

Fuxman, A., Pistore, M., Mylopoulos, J. and Traverso, P. (2001) ‘Model checking early
requirements specifications in Tropos’, IEEE Int. Symposium on Requirements Engineering,
Toronto, Canada: IEEE Computer Society, pp.174–181.

Garcia-Ojeda, J., DeLoach, S.A., Robby and Valenzuela, J. (2007) ‘O-MaSE: a customizable
approach to developing multiagent development processes’, Agent Oriented Software
Engineering VIII (AOSE’07) (postproceedings, 2007), LNCS, Springer.

Giorgini, P., Mylopoulos, J., Perini, A. and Susi, A. (2008) ‘The Tropos methodology and software
development environment’, in P. Giorgini, N. Maiden, J. Mylopoulos and E. Yu (Eds.) Social
Modelling for Requirements Engineering, MIT Press.

Giorgini, P., Mylopoulos, J. and Sebastiani, R. (2005) ‘Goal-oriented requirements analysis and
reasoning in the tropos methodology’, Engineering Applications of Artificial Intelligence,
Vol. 18, No. 2, pp.159–171.

Henderson-Sellers, B. and Giorgini, P. (Eds.) (2005) Agent-Oriented Methodologies, Idea
Group Publishing.

 474 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

Huget, M-P. and Odell, J. (2004) ‘Representing agent interaction protocols with agent UML’,
Proceedings of the Fifth International Workshop on Agent Oriented Software Engineering
(AOSE), http://www.jamesodell.com/aose2004.

Jayatilleke, G. (2007) ‘A model driven component agent framework for domain experts’,
PhD thesis, RMIT University, School of Computer Science and Information Technology.

Jayatilleke, G.B., Padgham, L. and Winikoff, M. (2005a) ‘A model driven component-based
development framework for agents’, Computer Systems Science and Engineering, Vol. 4,
No. 20.

Jayatilleke, G.B., Padgham, L. and Winikoff, M. (2005b) ‘Component Agent Framework for
Non-experts (CAFnE) toolkit’, Software Agent-Based Applications, Platforms and
Development Kits, Birkhäuser, ISBN: 3-7643-7347-4, pp.169–195.

Kolp, M., Giorgini, P. and Mylopoulos, J. (2003) ‘Organizational patterns for early requirements
analysis’, Proceedings of CAiSE, Springer, Vol. 2681 of Lecture Notes in Computer Science,
pp.617–632.

Luck, M. and Padgham, L. (Eds.) (2008) Agent Oriented Software Engineering VIII (AOSE’07),
Springer, Vol. 4951 of LNCS.

Miller, M. (2007) ‘A goal model for dynamic systems’, Technical report, Kansas State University,
Computer Science Department, Masters Thesis.

Morandini, M. (2006) ‘Knowledge level engineering of BDI agents’, Master’s thesis, Department
of Computer Science, University of Trento, Italy, http://dit.unitn.it/~morandini/resources/
ThesisMirkoMorandini.pdf.

Nguyen, C.D., Perini, A. and Tonella, P. (2008a) ‘Constraint-based evolutionary testing
of autonomous distributed systems’, Proc. of the International Workshop on Search-Based
Software Testing (SBST), 9–11 April.

Nguyen, C.D., Perini, A. and Tonella, P. (2008b) ‘Ontology-based test generation for multi
agent systems’, Proceedings of the 7th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2008), 12–16 May, pp.1315–1318.

Nguyen, D.C., Perini, A. and Tonella, P. (2007) ‘A goal-oriented software testing methodology’,
8th International Workshop on Agent-Oriented Software Engineering, AAMAS, http://sra.itc.it/
people/cunduy/publications/gotesting-cmr.pdf.

Padgham, L. and Perepletchikov, M. (2007) ‘Prioritisation mechanisms to support incremental
development of agent systems’, IJAOSE, Vol. 1, Nos. 3–4, pp.477–497.

Padgham, L. and Winikoff, M. (2004) Developing Intelligent Agent Systems: A Practical Guide,
John Wiley and Sons, ISBN: 0-470-86120-7.

Padgham, L., Winikoff, M. and Poutakidis, D. (2005) ‘Adding debugging support to the
prometheus methodology’, Journal of Engineering Applications in Artificial Intelligence,
Vol. 18, No. 2.

Penserini, L., Perini, A., Susi, A. and Mylopoulos, J. (2006) ‘From stakeholder intentions to
software agent implementations’, Proceedings of the 18th Conference on Advanced
Information Systems Engineering (CAiSE’06), Luxemburg: Springer-Verlag, Vol. 4001 of
LNCS, pp.465–479.

Penserini, L., Perini, A., Susi, A. and Mylopoulos, J. (2007a) ‘From stakeholder intentions to agent
capabilities’, Sixth International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS’07), Haway, USA: ACM Press.

Penserini, L., Perini, A., Susi, A. and Mylopoulos, J. (2007b) ‘High variability design for software
agents: extending Tropos’, ACM TAAS, Vol. 2, No. 4.

Perini, A. and Susi, A. (2005) ‘Agent-oriented visual modeling and model validation for
engineering distributed systems’, Computer Systems Science & Engineering, Vol. 20, No. 4,
pp.319–329.

 Using three AOSE toolkits to develop a sample design 475

Pokahr, A., Braubach, L. and Lamersdorf, W. (2005) ‘Jadex: a bdi reasoning engine’, in

J.D.R. Bordini, M. Dastani and A.E.F. Seghrouchni (Eds.) Multi-Agent Programming, USA:
Springer Science+Business Media Inc., pp.149–174, book chapter.

Poutakidis, D., Padgham, L. and Winikoff, M. (2002) ‘Debugging multi-agent systems using
design artifacts: the case of interaction protocols’, Proceedings of the First International Joint
Conference on Autonomous Agents and Multi Agent Systems (AAMAS’02), Bologna, Italy,
pp.960–967.

Robby, Dwyer, M.B. and Hatcliff, J. (2003) ‘Bogor: an extensible and highly-modular software
model checking framework’, ‘ESEC/FSE-11: Proceedings of the 9th European Software
Engineering Conference Held Jointly with 11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering’, New York, NY: ACM, pp.267–276.

Santos, D., Blois, M. and Bastos, R. (2007) ‘Developing a conference management system with
the multi-agent systems unified process a case study’, 8th International Workshop on
Agent-Oriented Software Engineering, Honolulu, Hawaii, USA, pp.212–224.

Sierra, C., Thangarajah, J., Padgham, L. and Winikoff, M. (2007) ‘Designing institutional
multi-agent systems’, in L. Padgham and F. Zambonelli (Eds.) Agent Oriented Software
Engineering VII: 7th International Workshop, AOSE 2006, LNCS, Springer-Verlag,
pp.84–103.

Sudeikat, J., Braubach, L., Pokahr, A. and Lamersdorf, W. (2004) ‘Evaluation of agent-oriented
software methodologies: examination of the gap between modeling and platform’, in
P. Giorgini, J. Müller and J. Odell (Eds.) Agent Oriented Software Engineering, New York,
USA, July.

Van Lamsweerde, A., Letier, E. and Darimont, R. (1998) ‘Managing conflicts in goal-driven
requirements engineering’, IEEE Trans. Softw. Eng, Vol. 24, No. 11, pp.908–926.

Winikoff, M. (2007) ‘Defining syntax and providing tool support for agent UML using a textual
notation’, Int. J. Agent-Oriented Software Engineering, Vol. 1, No. 2, pp.123–144.

Yu, E. (1995) ‘Modelling strategic relationships for process reengineering’, PhD thesis, University
of Toronto, Department of Computer Science, University of Toronto.

Zambonelli, F., Jennings, N.R. and Wooldridge, M. (2001) ‘Organizational abstractions for the
analysis and design of multi-agent system’, First International Workshop, AOSE 2000 on
Agent-Oriented Software Engineering, Secaucus, NJ: Springer-Verlag New York, Inc.,
pp.235–251.

Zhang, Z., Thangarajah, J. and Padgham, L. (2007) ‘Automated unit testing for agent systems’,
2nd International Working Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE-07), pp.10–18.

Notes
1 An additional system Multi-agent Systems Unified Process (MASUP) was also presented but

is not included in this paper (Santos et al., 2007).

2 http://se.fbk.eu/en/tools

3 http://www.eclipse.org

4 http://www.eclipse.org/emf

5 http://www.eclipse.org/gef

6 http://tefkat.sourceforge.net

7 http://www.cs.rmit.edu.au/agents/pdt/

8 At the time of writing the PDT plugin runs under Eclipse version 3.2 and higher. There is a
commitment to maintain compatibility with new versions of Eclipse where possible.

9 http://agenttool.cis.ksu.edu/

 476 S.A. DeLoach, L. Padgham, A. Perrini, A. Susi and J. Thangarajah

10 Although it should be noted that in other approaches, discussion of system-related
characteristics would be called design.

11 These may be humans or other software systems.

12 Reviewers are actors external to the system and are not shown on the system
overview diagram.

13 http://sra.itc.it/people/cunduy/ecat

14 www.cs.rmit.edu.au/agents/pdt

