
Runtime Models for Automatic Reorganization of
Multi-Robot Systems

Christopher Zhong

Kansas State University
234 Nichols Hall

Manhattan, Kansas USA 66506
1 (785) 532-6350

czhong@k-state.edu

Scott A. DeLoach
Kansas State University

234 Nichols Hall
Manhattan, Kansas USA 66506

1 (785) 532-6350

sdeloach@k-state.edu

ABSTRACT
This paper presents a reusable framework for developing adaptive
multi-robotic systems for heterogeneous robot teams using an
organization-based approach. The framework is based on the
Organizational Model for Adaptive Computational Systems
(OMACS) and the Goal Model for Dynamic Systems (GMoDS).
GMoDS is used to capture system-level goals that drive the
system. OMACS is an abstract model used to capture the system
configuration and allows the team to organize and reorganize
without the need for explicit runtime reorganization rules. While
OMACS provides an implicit reorganization capability, it also
supports policies that can either guide or restrict the resulting
organizations thus limiting unexpected or harmful adaptation. We
demonstrate our framework by presenting the design and
implementation of a multi-robot system for detecting improvised
explosive devices. We then highlight the adaptability of the
resulting system.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques;
D.2.11 [Software Engineering]: Software Architectures

General Terms
Design

Keywords

Self-adaptive systems, runtime models, agent-oriented Software
Engineering, Cooperative Robotics

1. INTRODUCTION
The software being produced today is at least an order of
magnitude more complex than that being developed a decade ago.
Businesses today are demanding applications that operate
autonomously, adapt in response to dynamic environments, and
interact with other distributed applications in order to provide
wide-ranging solutions [17]. To respond appropriately in today’s

complex environments, software needs to be aware of what it is
doing and why in order to take the appropriate steps to achieve its
business objectives. There are several instances of these kinds of
systems including information systems, service-oriented systems,
wireless sensor networks, and multi-robot systems [24]. In each of
these types of systems, one key element of adaptivity is the
allocation of tasks to appropriate system elements, which has
received much attention [3, 11, 13, 14, 23, 28]. However, an
equally important aspect of adaptivity is understanding why those
tasks need to be performed.

A central feature of these systems is that they are closely tied to
their environment and adapt in response to changes in that
environment. Such systems are termed dynamically adaptive
systems[4]. Recently, it has been suggested that requirements
reflection, or reasoning over system requirements available as
runtime objects, is key to developing dynamically adaptive
systems [1, 26]. Specifically, [26] proposes three key challenges
to requirements reflection: a runtime representation of the
requirements, synchronization between the requirements and the
architecture, and dealing with uncertainty. During the last several
years, we have developed an approach that deals explicitly with
the first two of those challenges. We represent requirements as
goals at both design time and runtime, and we adapt the system
architecture based on the current set of active goals in the system.
This paper specifically aims our approach toward cooperative
robotics where the system is closely tied to its environment,
distributed, and dynamically adaptive.

There are three paradigms generally used to develop multi-robot
systems that must adapt autonomously to their environment: (1)
bio-inspired, (2) social, and (3) knowledge-based [24]. Each
tackles adaptivity using different approaches. Bio-inspired
approaches typically assume homogeneous robots [3, 25], thus
they are of little interest here. Social approaches are generally
role-based [9, 28] or market-based [3, 13]. Role-based approaches
use predefined roles to allocate tasks, whereas market-based
approaches allow robots to bid on tasks. Knowledge-based
approaches [11, 21, 23] explicitly model team member
capabilities that are important to the task allocation process. Our
approach combines aspects of both social and knowledge-based
approaches by using runtime models to capture the system
configuration.

In this paper, we propose a framework for multi-robot systems
based on runtime models for understanding (1) what the system
should be doing in terms of system goals and (2) how the system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE'11, May 21-28, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0575-4/11/05... $10.00.

is organized to achieve those goals. The system objectives are
captured via the Goal Model for Dynamic Systems (GMoDS),
which defines the main goals of the system and the relationships
between those goals. The current configuration of the system is
captured in the Organizational Model for Adaptive Computational
Systems (OMACS). Both models are used in the Organization-
Based Agent Architecture (OBAA) to help individual robots
collaborate as part of a team in response to dynamic system goals
and physical and computational capabilities. Finally, we
demonstrate how the robot team uses this knowledge to allocate
tasks efficiently and effectively. While we demonstrate our
models and architecture on a team of robots, we claim that this set
of models can be applied generally to a variety of complex
distributed systems as shown in [8, 15].

The contributions of this paper are a real world demonstration of
the implementation (via OBAA) of our complete framework of
models that capture the goals (via GMoDS) of the system and
uses those goals to drive the self-adaptation of the system in terms
of the assignment of goals to individual robots (via OMACS).

1.1 Demonstration Scenario
In military situations, routes used for convoys must be constantly
monitored for safety, including improvised explosive devices
(IEDs), which are easily disguised and hard to spot as shown in
Figure 1. The United States military currently uses teleoperated
iRobot PackBots [15] to safely identify and disarm IEDs.

To demonstrate our framework, we developed a heterogeneous
robot team to monitor and detect IEDs. A human operator defines
the overall area to be searched and the team divides the total area
into subareas and assigns individual robots to monitor those
subareas. In our scenario, the team is assigned to monitor the
intersection of two roads on a continuing basis. When suspicious
objects are found, the team assigns a robot to investigate. If the
investigating robot cannot identify the suspicious object, the team
asks the human operator to help identify the object. Once an IED
is identified, a robot capable of defusing or disposing of IEDs is
assigned to dispose of it.

The remainder of the paper is organized as follows. Section 2
provides an overview of the OMACS and GMoDS models that are
central to our approach. Section 3 presents the design of the IED
detection system, while Section 4 discusses its implementation
using the OBAA architecture. Section 5 evaluates the system’s
ability to use these models to adapt to changes. Finally, Section 6

provides a general discussion of our approach including current
and future work, while Section 7 discussed related work.

2. MODELS
To help systems be proactive as well as reactive to changes in
their system objectives and environment, we developed a set of
models that allows these systems to design their own organization
at runtime. In essence, we provide the system with organizational
knowledge and let the system design its own organization based
on the system goals and current capabilities. While the designer
can provide guidance, supplying the system with key
organizational information allows it to redesign, or reorganize,
itself to match its current situation. This section presents the two
key elements of this framework, a model for multiagent
organizations called the Organization Model for Adaptive
Computational Systems (OMACS) and the Goal Model for
Dynamic Systems (GMoDS). OMACS defines the knowledge of a
system’s organizational structure and capabilities while GMoDS
captures the system's overall objectives and defines what type of
new objectives can be created in response to events that occur at
runtime.

2.1 Organizational Model for Adaptive
Computational Systems

The Organization Model for Adaptive Computational Systems
(OMACS) [5] is a model that defines the knowledge required to
allow a team of agents to reorganize in response to agent failure or
changing team goals. As shown in Figure 2, an OMACS
organization consists of a set of goals (G), roles (R), agents (A),
capabilities (C), and policies (P). This information is used to
compute the current set of assignments (Φ) that tell which agents
have been assigned to play which roles in the organization in
order to achieve organizational goals.

All organizations, even artificial organizations, are formed with
some specific objective or goal in mind. This high-level
organizational goal is decomposed into specific goals that are
assigned to individual departments or persons within the
organization. In OMACS, the overall goal of an organization is
represented by a set of goals that the organization is trying to
achieve. OMACS assumes that each goal in this set can be
achieved by a single agent. The relationship between the various
goals is not handled directly by OMACS but is entrusted to a goal
model, which in our case is GMoDS (see Section 2.2).

Every OMACS organization has a set of heterogeneous agents,
which are defined as “computational system instances that inhabit
a complex dynamic environment, sense and act autonomously in
this environment, and by doing so realize a set of goals” [5]. The
purpose of OMACS is to help determine the best assignment of
agents to goals in order to achieve the overall objectives of the
organization.

More specifically, OMACS goals are achieved by agents playing
specific roles within the organization. In OMACS, roles are used
to capture a set of responsibilities or the expected behavior of an
agent playing that role. Generally, a role may be capable of
achieving more than one type of goal and each type of goal can be
achieved by more than one role. Thus, part of the assignment
process includes determining the best role to achieve a specific
goal. To support the assignment process, OMACS defines the
achieves function, which takes as input a goal and a role, and
returns a real value in the range [0..1] that reflects how well the

Figure 1. Improvised Explosive Devices (IEDs) [20]

given role achieves the given goal type. A value of 0 means the
given role is not able achieve the goal.

However, a role cannot be played by any given agent. Before an
agent is allowed to play a given role, it must first meet the
requirements of that role. Capabilities are essential in determining
what roles agents are capable of playing. Capabilities are used to
represent a wide variety of abilities, both soft and hard. Examples
of soft abilities include access to resources, communications, and
computational algorithms. Hard abilities typically model the
abilities of robots such as sensors and effectors. If an agent α has
all the required capabilities to play role ρ, the role capability
function (rcf) is used to compute exactly how well α can play ρ.
The rcf takes as input a role and an agent and returns a real value
in [0..1]. Thus, the rcf allows organization designers to indicate
the importance of specific capabilities to each role. For instance, if
all the capabilities required to play a role ρ, are equally important,
the designer can use the default rcf function defined below, which
ensures the rcf falls in the range [0..1]. If any of the agent’s
capabilities that are required to play the role are 0, then the result
is 0; otherwise, it is simply the average of the possesses values for
all the required capabilities.

)(

),(

00),(

)(c

)(c

rrequires

capossesses
else

capossessesif

rrequires

rrequires

∑
∏

 ∈

 ∈

=

The possesses function captures an agent’s capabilities along with
the quality of those capabilities. The possesses function takes as
input an agent and a capability, and returns a real value in [0..1],
where 0 indicates that an agent does not possess the capability.

In OMACS, agents are assigned roles to achieve goals. How well
an agent can achieve a particular goal is captured by the potential
function. The potential function takes as input a goal, a role, and
an agent, and returns a real value in [0..1] indicating how well the
agent can play the role to achieve the goal. The potential of an
agent to play a specific role in order to achieve a specific goal is
defined by multiplying the rcf and achieves functions.

∀ a:A r:R g:G potential(a,r,g) = achieves(r,g) × rcf(a,r)

In OMACS, every organization is governed by a set of policies.
OMACS provides three types of policies: assignment policies
(PΦ), behavioral policies (Pbeh), and reorganization policies
(Preorg). Assignment policies provide restrictions on the assignment

set such as “an agent can only play one role.” Behavioral policies
specify how the organization should behave when some event
occurs, while reorganization policies provide heuristics that guide
the organization when reorganizing.

To determine the best overall set of assignment for a specific set
of goals, OMACS defines the organization assignment function
(oaf), which determines the effectiveness of a given set of
assignments. An assignment is a tuple of agent, role, and goal that
is placed in Φ. For example, 〈a,r,g〉 means that agent a has been
assigned to play role r to achieve goal g. The oaf returns an
organization score of a real value in [0..∞], where the higher the
organization score, the better the organization performs.
Typically, the oaf is application specific; however, a simple oaf is
simply the sum of the potentials from an assignment set.

∑
Φ>∈<

=Φ
gra

grapotentialoaf
,,

),,()(

A complete definition of OMACS can be found in [5].

2.2 Goal Model for Dynamic Systems
The Goal Model for Dynamic Systems (GMoDS) is defined in
terms of two parts: a specification model and a runtime model.
The specification model is defined by the designer and captures
the goal types and their relationships. The runtime model contains
the goals actually instantiated during execution. A complete
definition of GMoDS is contained in [7].

2.2.1 Specification Model
The GMoDS specification model has three main entities: goal
classes, event classes, and parameters. A goal class defines an
observable desired state of the world. An event class specifies an
observable phenomenon of interest that may occur during system
execution. Goal classes and event classes are parameterized to
provide a given goal or event instance with specific meaning
within the system. For instance, a goal type may specify that some
area be searched, where area is a parameter that is given a
specific value when a goal of that class is instantiated.

A goal tree is used in GMoDS to conjunctively or disjunctively
decompose parent goal classes into a set of sub-goals, or children.
Goal classes without children are leaf goal classes. The GMoDS
goal specification tree specifies how the goal classes are related to
one another. A graphical depiction of a GMoDS specification
model is shown in Figure 3, with decomposition denoted by
«and» or «or» labels. The goal classes in the goal specification

Figure 2. Organization Model

tree are analogous to the specification of classes in an object-
oriented language. Classes are designed before hand, and are
instantiated at runtime, with each instance having its own set of
parameter values. The instances of a goal class are independent of
each other. The goal instances are inserted into a goal instance
tree at runtime. Each goal instance is achieved independently of
every other instance of that goal.

GMoDS uses a set of relations within the tree structure to specify
how runtime goals may interact. Because goal instances are
created based on the occurrence of specific events, the effect of
these events on the goal instance tree must be defined. There are
three relations of interest: triggers, negative triggers and precedes.
A triggers relation between g1 and g2 predicated on event e1
specifies that a new goal instance of class g2 is created when e1
occurs during the pursuit of a goal instance of class g1. Likewise,
a negative trigger relation from g1 to g2 on event e1 specifies that
instances of goal g2 matching the parameter values of e1 should
be removed from the goal instance tree when e1 occurs. To
bootstrap the goal instance tree, we define an initial event (or
initial trigger), e0, which implicitly occurs and adds the initial set
of goals (including the root goal) to the goal instance tree. When
the system starts, the initial event occurs and the root goal is
added to the goal instance tree. Then all children not triggered by
some other event are systematically and recursively added to the
goal instance tree.

To allow a full or partial ordered execution of goal instances in
the system, the designer may specify goal precedence between
two goal classes via the precedes relation. Goal precedence
ensures that no agents may work on a specific goal instance until
all goal instances that precede that goal have been achieved. There
are several restrictions on goal precedence in the goal
specification tree, including restrictions on precedence cycles,
mixed trigger/precedence cycles, and a goal preceding its
ancestors.

2.2.2 Runtime Model
At runtime, goals are instantiated based on the occurrence of
specific events as defined by the GMoDS runtime model. Once
instantiated, each instance goal is put in exactly one of six sets:
Triggered, Active, Achieved, Removed, Failed or Obviated as
shown in Figure 4, where the arrows indicate allowable transitions
of goals between sets. Each goal instance is initially placed in the
Triggered set and stays in that set until it becomes active, failed,
obviated, or is removed. The Active set includes those goals that

have been triggered and are not preceded. Goals in the Active set
remain there until they are achieved, failed, obviated, or removed.
When an agent achieves a goal, that goal is moved from the
Active set into the Achieved set. The Failed set contains goals that
the system can never achieve. The Obviated set contains goals
that are no longer needed by the system; these goals are not
achieved and should not be assigned to any agent. The Removed
set contains goals that have been removed as the result of a
negative trigger. Once in the Removed set, a goal is treated as if it
never existed, which means that any precedence/triggers relations
related to that goal cease to exist.

The system interacts with the runtime model via two operations:
occurred, and initialTrigger. The initialTrigger operation creates
the initial set of goal instances as defined by the specification tree.
The occurred operation updates the runtime model based on the
occurrence of specific events. There are two types of events of
interest: application specific events as defined in the goal
specification tree, and general events such as goal achievement or
goal failure. The goal sets are modified appropriately based on the
event that occurred. Both the initialTrigger and occurred
operations return the changes to the Active goal set (which are
passed to the OMACS model as changes to the organizational
goals). When goals are achieved, the runtime model is updated by
moving the appropriate goals into the Achieved set and possibly
moving (1) parent goals into the Achieved set, (2) obviated goals
to the Obviated set, or (3) goals from the Triggered set into the
Active set (if their precedence restrictions have been removed).

3. SYSTEM DESIGN
To design systems for use with OMACS and GMoDS, we
developed the Organization-based Multiagent System
Engineering (O-MaSE) methodology [6], which provides the
necessary processes, models, tools, and techniques for designing
and implementing OMACS/GMoDS based systems. For our
demonstration scenario, the O-MaSE design process yielded four

Figure 3. Goal Model

Figure 4. GMoDS Runtime Model

key entities: system goals, roles, capabilities, and agent types. The
GMoDS model captures the goals of our system. The roles specify
the behavior and capabilities required to achieve the system goals,
while the agent types define the types of robots in the system
based on the capabilities they possess.

3.1 Goals
Figure 3 shows the GMoDS model for the IED detection system.
The top-level goal is Monitor IEDs, which has four subgoals:
Interact With User, Monitor Area, Identify Object, and Defuse
IED. Initially, the subgoal Interact With User is the only goal that
exists; the rest of the subgoals are triggered by events.

The Interact with User goal is automatically assigned to an
appropriate agent. The Monitor Area goal (and its subgoal Divide
Area) is triggered by the monitor event generated by the agent
pursuing the Interact With User goal. A monitor event occurs
when the human operator specifies an area to monitor for IEDs.
Once the Divide Area goal is triggered, it is assigned to an
appropriate agent. The agent pursing the Divide Area goal raises
the patrol event when it creates a new area to be patrolled. The
patrol event causes an instance of the Patrol Area goal to be
instantiated and assigned to an agent. When the agent pursuing the
Patrol Area goal detects a suspicious object, the identify event is
raised causing an Identify Object goal and its subgoal Machine
Identification to be instantiated; the Machine Identification goal is
then assigned to an agent. If the agent pursuing the Machine
Identification goal cannot identify a suspicious object, it raises the
uncertain event. The uncertain event causes an instance of the
Human Identification goal to be created and ultimately assigned to
the human operator for identification. The defuse event can be
raised by either the human operator or the agent pursuing the
Machine Identification goal when an IED has been identified. The
defuse event causes a Defuse IED goal to be instantiated and then
assigned to a capable agent.

3.2 Roles
Table 1 shows the system roles, the leaf goals that they can
achieve, and the capabilities required to play them. One role has
been defined for each of the six leaf goals in Figure 3.

The User Interaction role allows the human operator to input the
area to be monitored as well as displaying information about the
state of the system such as search areas, agent locations, and the
current assignments.

The Area Divider role partitions the overall search area into
smaller subareas to be assigned to individual robots. When a
subarea is defined, a patrol event is raised causing the creation of
a new Patrol Area goal instance.

The Patroller role defines the behavior required to patrol a search
area. If a suspicious object is found, the robot raises the identify
event and information about the suspicious object is passed to the
User Interaction role.

The Machine Identifier role defines how to analyze a suspicious
object. If the robot cannot classify an object as inert or an IED, it
raises the uncertain event. However, if the object is classified as
an IED, the robot raises the defuse event. In any case, the User
Interaction role is informed of the result.

The Human Identifier role presents information to the human
operator so that the operator can determine if a suspicious object
is an IED. If the human operator decides that the object is an IED,
the agent raises the defuse event. Otherwise, the suspicious object
is classified as inert.

The Defuser role defines how to dispose of an IED, which
includes disarming the IED on the spot or moving the IED to a
safer location for disarming or detonation. The Defuser role
informs the User Interaction role of its status.

3.3 Capabilities
Capabilities are critical to OMACS-based systems as agents are
assigned to roles based on the capabilities they possess.
Capabilities are defined as a set of actions, which can be used to
represent logical/physical interactions with the environment or
computational processes. Environmental interactions include
getting sonar readings, moving a robotic arm, and closing or
releasing a gripper [6]. The capabilities used in our IED detection
system are described in Table 2.

3.4 Agents
OMACS-based systems define agent types by the capabilities they
possess. Table 3 shows the types of agents in the IED system.
Note that in Table 3 the Playable Roles are derived from the
Capabilities Possessed and are not hard coded. The Patroller,
Identifier, and Defuser agents are all played by robots based on
their capabilities, which are defined at an abstract level and are
actually based on physical configurations of the robots. For
instance, a camera is part of the configuration required for the
Suspicious Object Detection and Explosive Device Detection
capabilities, while a robotic arm or gripper is required by the
Explosive Device Disposal capability. The Laptop Agent requires

Table 1. IED Roles

Role Goals Achieved Capabilities Required
User
Interaction

Interact With User User Interface

Area Divider Divide Area Communication
Area Division
Algorithm

Patroller Patrol Area Communication
Movement
Suspicious Object
Detection

Machine
Identifier

Machine
Identification

Communication
Movement
Explosive Device
Detection

Human
Identifier

Human
Identification

Communication
Human Identification
Display

Defuser Defuse IED Communication
Movement
Explosive Device
Detection
Explosive Device
Disposal

the ability to interact with humans using a hand held or laptop
computer.

4. IMPLEMENTATION ARCHITECTURE
The robot software was implemented using the Organization-
Based Agent Architecture (OBAA) [5] shown in Figure 5. Each
OBAA agent (robot) has two main components: the Execution
Component (EC) and the Control Component (CC). The EC
contains application specific behavior of the robot while the CC is
the “brain” of an agent where the organizational knowledge and
decisions are made. The CC code is generally domain
independent.

The EC consists of the Role Control Component (RCC), the role
behavior code, and the software for interfacing to capabilities. The
RCC interfaces between the EC and the CC. Assignments from
the CC are given to the RCC, which determines how the
assignments are carried out. In addition, runtime events are sent to
the CC via the RCC. The RCC controls multi-role execution via a
modified rate-monotonic scheduling algorithm [18].

The CC contains the adaptive behavior logic for an OMACS-
based system, which consists of the Goal Reasoning (GR),
Organization Model (OM), Reorganization Algorithm (RA), and
Organizational Reasoning (OR) components. The GR implements
the GMoDS goal reasoning including goal sequencing, goal
instantiation, and goal achievement. The OM maintains the
knowledge about the organization such as the current agents,
goals, and assignments. The RA computes new assignments when
the need arises. The RA can be application-independent but can
also incorporate application specific policies when required for
optimal or efficient reorganization. For example, the IED system
uses a policy to select the agent with the least workload (i.e., the
least number of assignments) for new goals. Finally, the OR

integrates the functions of the GR, OM, and RA and acts as an
interface to the EC. Assignments are transmitted to the EC and
events from the EC are transmitted to the OR. The OR is
responsible for supplying the OM with updated information about
the agents, assignments, and goals. The OR also decides when to
reorganize and whether the reorganization should be full or
partial.

The agent OR components work together to keep the system
coherent. We are currently using a centralized approach due to the
complexities associated with distributed reasoning (see Section 6
for a discussion of current work in the area). In our centralized

Table 2. Capability Definitions

Capability Description

User Interface
displays monitored area, robot location,
location and classification of suspicious
objects to operator

Area Division
Algorithm

algorithm partitions the monitoring area
into smaller search areas is provided by
the capability

Communication used to communicate assignments, events,
and application specific information

Movement enables robots to move and includes
collision avoidance

Suspicious Object
Detection

algorithm detects objects with certain
profile (e.g., IED); uses sensors such as
sonars, cameras, explosive detectors

Explosive Device
Detection

similar to suspicious object detection but
with more accurate classification ability

Human
Identification
Display

interacts directly with operator; presents
information and returns responses to
object identification requests

Explosive Device
Disposal

allows robots to dispose of IEDs; uses
robot gripper to pick up and move an IED
to a safe location

Figure 5. Agent Architecture

Table 3. Agent Types

Agent
Types Capabilities Possessed Playable Roles

Laptop
Agent

Communication
User Interface
Area Division Algorithm
Human Identification Display

User Interface
Area Divider
Human

Identification

Patroller
Agent

Communication
Movement
Suspicious Object Detection

Patroller

Identifier
Agent

Communication
Movement
Explosive Device Detection

Machine
Identifier

Defuser
Agent

Communication
Movement
Explosive Device Detection
Explosive Device Disposal

Defuser

approach, a team OR ‘master’ handles all the logic processing
such as reorganization, maintaining the OM, and processing
events. The OR ‘slaves’ simply relay information to/from the
master to its EC. We are currently working on distributed
approaches for the ORs. The beauty of the OBAA architecture is
that the CC code can be completely rewritten without affecting the
application specific EC.

5. EVALUATION
In this section, we evaluate our system on its ability to adapt to
failures, which includes total robot failure or the degradation of a
robot’s capability. We implemented the system using a
heterogeneous team of three Pioneer 3-AT robots and a single
laptop agent. The robots are of the Patroller Agent type while the
laptop is of the Laptop Agent type.

To test system adaptability, random robots were disabled in one of
two ways after the system had assigned their search areas and had
started patrolling. First, we simply turned a robot off. The OR
constantly polled the Communication capability to detect if a
robot was no longer active, in which case the OR removed that
robot from the OM knowledge. The OR then called the RA to
compute a new set of assignments in which the two remaining
robots took on the assignments of the disabled robot. Second, we
simulated capability degradation by modifying the possesses score
for a robot’s capability. This caused either (1) the robot to detect
that it was unable to proceed and report a failure, or (2) the OR to
detect that the robot was unable to continue. In both cases,
reorganization occurred and the affected assignments were
reassigned to capable robots.

We ran eight experiments. Figure 6 shows a picture of our
experimental setup with five search areas (A, B, C, D, and E). We
disabled up to two robots in each experiment. Each time the OR
successfully reassigned the goals from disabled robots to the
remaining robots. In one experiment, robot 1 was initially
assigned to patrol area A and B, robot 2 was assigned to patrol
area E, and robot 3 was assigned to patrol area C and D. When

robot 1 was disabled, robot 2 was assigned area A while robot 3
was assigned area B. Upon disabling robot 2, robot 3 was
assigned all five areas (A, B, C, D, and E).

To validate our results for scalability, we also simulated the same
scenario. The simulated configuration consisted of 11 robots, 9 of
the Patroller Agent (Patroller 1..9) type, 1 of Identifier Agent
(Identifier 1) type, and 1 capable of both the Defuser Agent and
Laptop Agent types (Defuser 1). With a larger number of agents,
we were able to test several permutations. Figure 7 illustrates one
example of how the system adapted. Figure 7(a) shows the
assignments before any failures. There are 13 assignments; 11 are
for patrolling and all 11 Patroller robots are assigned since they
all are capable of playing the Patroller role. In Figure 7, an
assignment such as <A:Defuser 1, R:Area Divider, G:Divide
Area(…)> means that the Defuser 1 robot has been assigned to play
the Area Divider role to achieve the Divide Area(…) goal. Figure
7(b) illustrates the reassignment that occurred when Patroller 3
failed. The OR detected the failure and reassigned the most
suitable agent Patroller 5. Figure 7(c) illustrates the reassignment
that occurred when three additional robots (Patroller 2, Patroller
4, and Patroller 6) failed. Again, the OR detected the failures and
new assignments were made. In this case, area 11 was assigned to
Patroller 8 while areas 6 and 7 were reassigned to Patroller 7.

Hundreds of combinations were tested and in all cases, the OR
adapted appropriately to the failures. The only exception occurred
when Defuser 1 failed, since Defuser 1 was the master in our
centralized OR implementation.

The adaptive behavior demonstrated is a result of reorganization
made possible by the organizational knowledge in OMACs. This
knowledge is obtained directly from the O-MaSE models
developed and thus the results presented are repeatable.

6. DISCUSSION AND FUTURE WORK
The OMACS and GMoDS models have been successfully used in
several types of complex distributed systems including

Figure 6. IED Detection System

information systems [8], wireless sensor networks [15],
cooperative robotics [5, 6], and a variety of multiagent systems [5,
8]. The key to this generality is that we do not try to model the
system elements directly as components, but use an abstract
representation based on human organizations. Using this
abstraction, we have demonstrated the ability to organize and
reorganize a system around a set of system level goals. These
goals, therefore, are the key to a system that responds
appropriately. Thus, GMoDS provides the driving force behind
OMACS. By being able to specify system objectives as high-level
goals that are decomposed into individual goals, there is a direct
tie from the low-level goals or tasks being accomplished to the
overall objectives of the system. By including the notion of event
triggers, GMoDS provides a model of system objectives that can
react to events that occur in the environment or in the system
configuration.

While the implementation presented in this paper uses a
centralized algorithm, we are currently working on a fully
distributed algorithm for the OR. Our approach focuses on
keeping information about the OMACS and GMoDS models
synchronized, which allows all assignment computation to be
done without requiring interaction between the robots. Our
distributed implementation will eliminate failure due to a
centralized OR and will work in with imperfect communications.

We are also currently using OMACS and GMoDS to develop new
forms of supervisory control for robot teams, which we term
organizational control. The main concept in organizational
control is that the operator interacts directly with a team instead of
individual robots. They key to interacting with a team is the Team
Intelligence layer as shown in Figure 8, which abstracts individual
robots into a team allowing the operator to directly task the team
without worrying about how the team decomposes and distributes
those commands to individual robots. The Team Intelligence layer
is implemented by the collective control components of each
robot on the team. The IED system demonstrates organizational
control in the form of control by design. Control by design occurs
when the operator is explicitly taken into account during the
design of the system. We are also investigating a second form of
organizational control called control by model manipulation in
which the operator is not considered during the system design.

Instead, the operator controls the team by manipulating the
runtime model data directly.

7. RELATED WORK
Using runtime models of systems has become popular in recent
years as an approach to developing self-adaptive systems [2]. In
general, various aspects of the system (e.g., architecture) are
modeled explicitly and populated and monitored at runtime to
help with automatic reconfiguration of the system when required.

While there has been some application of runtime models to
single robot systems, we are unaware of the explicit use of
runtime models to configure or organize multiple robot systems.
In [12], explicit runtime architectural models are applied to
manage runtime adaptation within simulated robots. The system
uses the model to modify the runtime architecture configuration
thus allowing the robots to change their behavior based on
specific situations. Other use of runtime models to configure
single robots includes [21], where a preliminary version of
OMACS was used to overcome sensor/effector loss. In the
system, the robot was controlled internally by a multiagent system
whose agents were various sensors and effectors; when a sensor or
effector failed, the system reorganized to provide the best

 (a) (b) (c)
Figure 7. Samples of Reassignments

Figure 8. Organizational Control

alternative configuration.

The use of goal-based models to capture requirements has been
proposed for several years and most current methods find their
roots in KAOS or i* [31, 34]. More recent entries such as Techne
[16] and RELAX [33] extend existing approaches to deal with
uncertainty and inconsistency. However, to our knowledge there
are no models that are used directly for capturing requirements as
well as at runtime to drive system behavior and adaptation. There
has been several organization models developed to support
multiagent systems including OMNI [10], OperA [9] and
HarmonIA [32]. However, these models were developed to
support open multiagent systems and have not been applied to
robotic systems.

8. ACKNOWLEDGMENTS
This work was supported by grants from the US National Science
Foundation (0347545) and the Air Force Office of Scientific
Research (FA9550-09-1-0108), and a contract from the US
Marine Corps Systems Command to M2 Technologies, Inc.

9. REFERENCES
[1] Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A. and

Letier, E. 2010. Requirements reflection: requirements as
runtime entities. Proc. of the 32nd ACM/IEEE Intl. Conf on
Software Engineering - Vol 2 (ICSE '10), ACM, 199-202.

[2] Blair, G. Bencomo, N. and France, R.B. 2009. Models@
run.time, Computer, (Oct. 2009), 22-27.

[3] Botelho, S. C., Alami, R.: M+: a scheme for multi-robot
cooperation through negotiated task allocation and
achievement. 1999. Proceedings of IEEE Int Conference on
Robotics and Automation, pp. 1234-1238.

[4] Cheng, B.H.C., Sawyer, P., Bencomo, N., and Whittle, J.
2009. A Goal-Based Modeling Approach to Develop
Requirements of an Adaptive System with Environmental
Uncertainty. Proc. of the 12th Intl. Conf. on Model Driven
Engineering Languages and Systems, Springer, 468-483.

[5] DeLoach, S.A. 2009. Organizational model for adaptive
complex systems. in Dignum, V. (ed.) Multi-agent systems:
semantics and dynamics of organizational models. IGI
Global.

[6] DeLoach, S.A. and Garcia-Ojeda, J.C. 2010. O-MaSE: a
customizable approach to designing and building complex,
adaptive multiagent systems. Int J. of Agent-Oriented
Software Engineering. 4, 3, 244-280.

[7] DeLoach, S.A. and Miller, M. 2010. A goal model for
adaptive complex systems. Int J. of Computational
Intelligence: Theory and Practice. 5, 2.

[8] DeLoach, S.A., Oyenan, W. and Matson, E.T. 2008. A
capabilities-based model for adaptive organizations. J. of
Autonomous Agents and Multi-Agent Systems, 16, 1, 13–56.

[9] Dignum, V. 2004. A model for organizational interaction:
based on agents, founded in logic. PhD thesis, Utrecht Univ.

[10] Dignum, V., Vázquez-Salceda, J., Dignum, F. 2004. Omni:
introducing social structure, norms and ontologies into agent
organizations. Programming Multi-Agent Systems: Second
Intl. Workshop (ProMAS 2004), LNCS 3346, 181–198,
Springer: Berlin, 2004.

[11] Fua C.H., and Ge, S.S. 2005. COBOS: cooperative backoff
adaptive scheme for multirobot task allocation. IEEE Trans.
on Robotics, 21, 6, 1168–1178.

[12] Georgas, J.C., van der Hoek, A., and Taylor, R.N. 2009.
Using architectural models to manage and visualize runtime
adaptation, Computer, 42, 10 (Oct. 2009), 52-60.

[13] Gerkey, B.P, and Matarić, M.J. 2002. Sold! : auction
methods for multirobot coordination. IEEE Trans. on
Robotics and Automation, 18, 5, 758–768.

[14] Gerkey, B.P, and Matarić, M.J. A formal analysis and
taxonomy of task allocation in multi-robot systems. The Intl.
J. of Robotics Research, 23, 9, 939–954.

[15] iRobot PackBot, http://www.irobot.com/sp.cfm?pageid=171.

[16] Jureta, I.J., Borgida, A., Ernst, N.A., Mylopoulos, J. 2010.
Techne: towards a new generation of requirements modeling
languages with goals, preferences, and inconsistency
handling. Proc of 18th Intl Req. Eng Conf. 115-124, IEEE.

[17] Kube, C.R., and Zhang, H. 1993. Collective robotics: from
social insects to robots. Adaptive Behavior, 2, 2, 189–218.

[18] Liu, J.W.S. 2000. Real-Time Systems. Prentice Hall, Upper
Saddle River, NJ.

[19] Luck, M., McBurney, P., Shehory, O. and Willmott, S. 2005.
Agent technology: computing as interaction (a roadmap for
agent based computing). AgentLink: Southampton, UK.

[20] M2 Technologies. 2007. M2 and MC IED Awareness:
Controlling Robots Teams in Urban Environments.
Presentation.

[21] Matson, E., and DeLoach, S.A. 2004. Enabling intra-robotic
capabilities adaptation using an organization-based
multiagent system. Proceedings of the IEEE Intl Conf on
Robotics and Automation. 3, 2135- 2140.

[22] Oyenan, W.H., DeLoach, S.A. and Singh, G. 2010. An
organizational design for adaptive sensor networks.
Proceedings of the 2010 IEE/WIC/ACM Intl Conf on
Intelligent Agent Technology, 2, 239-242.

[23] Parker, L.E. 1998. ALLIANCE: an architecture for fault
tolerant multirobot cooperation. IEEE Trans. on Robotics
and Automation, 14, 2, 220–240.

[24] Parker, L.E. 2008. Distributed intelligence: overview of the
field and its application in multi-robot systems. J. of Physical
Agents, 2, 1, 5–14.

[25] Passino, K.M. 2002. Biomimicry of bacterial foraging for
distributed optimization and control. IEEE Control Systems
Magazine, 22, 3, 52–67.

[26] Sawyer, P., Bencomo, N., Whittle, J., Letier, E, Finkelstein,
A. 2010. Requirements-Aware Systems: A Research Agenda
for RE for Self-adaptive Systems. Proc of 18th IEEE Intl
Requirements Engineering Conf. 95-103, IEEE.

[27] Simmons, R., Singh, S., Hershberger, D., Ramos, J. and
Smith, T. 2001. First results in the coordination of
heterogeneous robots for large-scale assembly. In
Experimental Robotics VII, Lecture Notes in Control and
Information Sciences 271, 323–332. Springer, Berlin.

[28] Stone P., and Veloso, M. 1999. Task decomposition,
dynamic role assignment, and low-bandwidth
communication for real-time strategic teamwork. Artificial
Intelligence, 110, 2, 241–273.

[29] Tang, F., and Parker, L.E. 2005. ASyMTRe: automated
synthesis of multi-robot task solutions through software
reconfiguration.” In Proc. of the 2005 IEEE Intl. Conf. on
Robotics and Automation, IEEE, 1501–1508.

[30] Tang, F., and Parker, L.E. 2005. Distributed multi-robot
coalitions through ASyMTRe-d. Proceedings of the Intl.
Conf. on Intelligent Robots and Systems, IEEE, 2606–2613.

[31] van Lamsweerde, A., Letier, E., and Darimont, R. 1998.
Managing conflicts in goal-driven requirements engineering.
IEEE Trans. on Software Engineering, 24, 11, 908–926.

[32] Vazquez-Salceda, J., and Dignum, F. 2003. Modelling
electronic organizations. in Multi-agent Systems and
Applications III, LNAI 2691, 584–593, Springer: Berlin.

[33] Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel,
J.-M. 2009. RELAX: Incorporating Uncertainty into the
Specification of Self-Adaptive Systems. Proc of 17th Intl
Req. Eng Conf. 79-88, IEEE.

[34] Yu, E.S.K. 1997. Towards modelling and reasoning support
for early-phase requirements engineering. Proc. of the Third
Intl. Symp on Req Eng. 226-235. IEEE.

