An Investigation of Reorganization
Algorithms

Christopher Zhong
czhong@k-state.edu

Scott A. DeLoach

sdeloach@k-state.edu

Kansas State University
Manhattan, KS 66506

Abstract

Organization-based multiagent systems are designed
to be highly adaptable systems. These systems are
able to adapt themselves to changes that occur in
the environment. One of the ways to achieve adapt-
ability is through reorganization. Currently, there
are a number of organization models that achieve
adaptability with reorganization. This paper looks
at how reorganization might occur for the Organi-
zation Model for Adaptive Computational Systems.
This paper highlights the shortcomings of the cur-
rent model with respect to general-purpose reorga-
nization algorithms and provides some suggestions
that could improve efficiency of these reorganization
algorithms.

1 Introduction

As technology presses forward, more complex tasks
are being delegated to computational systems. Gen-
erally, these systems are distributed and expected
to adapt to changes in their environment. While
distributed systems offer increased reliability and
access to distributed resources, adaptive systems
continue to perform effectively while reacting to
their dynamically changing environments.

One approach to building adaptive, distributed
systems is that of multiagent systems. However,
early multiagent systems were typically designed
with a set of predefined goals and emphasized indi-
vidual agents and their interactions. This resulted
in adaptivity at the agent-level with system-level
adaptation being a byproduct of the agent-level
adaptation.

To achieve system-level adaptation, a system-
level mechanism is required. Such a mechanism is
the focus of a number of ongoing research efforts
based on an organizational metaphor. Various re-
search groups are looking to provide mechanisms
that guide a group of agents by specifying high-level
objectives within a predefined organization struc-
ture. [I} 2, [3]

This paper investigates the feasibility of reorga-
nization algorithms for the Organization Model for
Adaptive Computational Systems (OMACS), pro-
vides some suggestions to improving OMACS with
respect to these algorithms, and highlights some
characteristics that can be used for designing “good”
and “efficient” OMACS models.

2 Organization Model for Adap-
tive Computational Systems

Organization-based approaches typically follow the
social definition of an organization. Socially, an
organization is defined as a group of people who
coordinate together to achieve shared goals. Fig-
ure [I| shows the OMACS model [I]. Only a subset
of the model is described here because parts of the
model are not relevant to this paper.

Organization
@ : set(Potential)

oaf() : [0..«]

Capabilities

Possesses

score : [0..1]

Role
reffAgent) : [0..1]

Capable
score : [0.1]

Agent Policy

Achieves

score : [0..1]

Poh;ntial
score : [0..1]
Figure 1: Organization Model

OMACS defines the standard entities of an or-
ganization: goals (G), roles (R), and agents (A).
Furthermore, three additional entities are defined:
capabilities (C), an assignment set (®), and poli-
cies (P).

All organizations, even artificial organizations,
have an overall goal that the organization is at-
tempting to achieve. In OMACS, an organization
contains a set of goals that the organization is try-

ing to achieve. This set of goals is defined by the
goal model. In our research, we use the Goal Model
for Dynamic Systems (GMoDS), which follows a
classic AND/OR goal decomposition. A detailed
description of GMoDS is given in [1].

Capabilities are essential in determining what
roles agents are capable of playing in OMACS. Ca-
pabilities can represent a wide variety of abilities,
both soft and hard. Some examples of soft abil-
ities are having access to resources, communica-
tions, and executing computational algorithms. Ha-
rd abilities typically model the abilities of robots
such as sensors and effectors [IJ.

In OMACS, the goals of an organization are
achieved by a set of roles. Generally, a role is ca-
pable of achieving multiple goals and a goal can
also be achieved by multiple roles. OMACS defines
the achieves function, which takes as input a goal
and a role, and returns a real value (ranging from
0...1) reflecting how well the given role achieves
the given goal. A value of 0 means the given role is
not able achieve a particular goal.

A role cannot be played by just any agent. Be-
fore an agent is allowed to play a given role, that
agent must first meet the requirements of that role.
First, a role requires a set of capabilities that agents
must possess and second, the rcf function, also
known as the role capability function, must return
a positive value. The rcf takes as input a role
and an agent and returns a real value ranging from
0...1. Possessing the required capabilities may not
be a sufficient requirement for playing a role. Thus,
the rcf allows roles to indicate the importance of
certain capabilities.

In OMACS, every organization has a set of het-
erogeneous agents, which are defined as “compu-
tational system instances that inhabit a complex
dynamic environment, sense and act autonomously
in this environment, and by doing so realize a set
of goals”[I]. The possesses function captures the
quality of an agent’s capabilities. The possesses
function takes as input an agent and a capability,
and returns a real value ranging from 0. .. 1, where
0 indicates that an agent does not possess the given
capability.

In OMACS, agents are assigned roles to achieve
goals. How well an agent can achieve a particular
goal is captured by the potential function. The
potential function takes as input a goal, a role,
and an agent, and returns a real value ranging from
0...1 to indicate how well the agent can play the
role to achieve the goal.

In OMACS, every organization has a set of poli-
cies that govern it. OMACS provides three types of

policies: assignment policies (Pg), behavioral poli-
cies (Ppep), and reorganization policies (Preorg)-
Assignment policies provide restrictions on the as-
signment set such as “an agent can only play one
role”. Behavioral policies specify how the organi-
zation should behave when some event occurs. Re-
organization policies provide heuristics that guide
the organization when reorganizing.

OMACS contains an oaf function, also known
as the organization assignment function, that de-
termines the effectiveness of the current assignment
set. The oaf returns an organization score of a real
value ranging from 0...oco0, where the higher the
organization score the better the organization per-
forms. Typically, the oaf is application specific.
However, a default oaf is given in [I] as the sum
of the potentials from the assignment set. An as-
signment is a tuple of agent, role, and goal that
is placed in ®. For example, (a, r, g) means that
agent a has been assigned to play role r to achieve

goal g.

Oaf = Z potential(m r, g) (1)
Y{a,r,g)€P

3 Reorganization Algorithm

In our research, a general purpose reorganization
algorithm that produces an optimal solution was
developed for use with OMACS. Figure [2] shows
the pseudo code for the reoganization algorithm.
An optimal organization score is the organization
with the highest organization score returned by the
oaf. Therefore, finding the optimal organization
score requires going through every possible com-
bination of the assignment set and computing the
organization score for each combination.

Lines 1-5 find and create all the possible role-
goal mappings between every goal from wg and
the roles that are able to achieve that goal. Line
6 creates a powerset from the mappings (which is
a set of sets of mappings) and then uses the as-
signment policies to remove invalid sets of map-
pings. Lines 7-13 find and create all the possible
assignments between the agents from w4 and the
elements from the reduced powerset. If an agent
is capable of playing a given set of role-goal map-
ping(s), then an assignment is created. Line 14
removes invalid assignments from the based on the
assignment policies, and then computes the com-
binations of the assignments. A combination is an
assignment set. Lines 15-24 go through each com-
bination and keeps track of the best combination
so far. Line 25 returns the best combination (as-

function reorganize(oaf, wg, wa)
1: for each goal g from wg do

2: for each role r that achieves g do
3 m U (r, g)

4: end for

5: end for

6: ps — Pg(powerset(m))
7. for each agent a from w4 do
8: for each set s from ps do

9: if a is capable of playing s then
10 pa U (a, s)

11: end if

12: end for

13: end for

14: ¢ « combinations(Pg(pa))

15: for each combination ¢ from ¢ do
16: for each assignment x from pa do
17: P U (x.a, x.8;)

18: end for

19: if Pg(®) is valid then

20: if (score < oaf(®)) > best.score then
21: best — (score, ®)

22: end if

23: end if

24: end for

25: return best.®

Figure 2: Pseudo Code

signment set).

The best case time complexity of the algorithm
is ©(29%7av99) and ©(29*"ev99*%) ig the worst case,
where 74,4 is the average number of roles that can
achieve each goal (see [] for proof details). The
exponential time complexity is the result of the
“blackbox” functionality provided by the oaf and
rcf. This exponential time complexity prevents
any practical use of a general purpose reorganiza-
tion algorithm during runtime.

4 Reducing Time Complexity

There are several approaches to reducing the time
complexity of the algorithm.

Because OMACS provides a “blackbox” func-
tionality to reorganization algorithms, the lack of
information on the internal workings of the oaf and
rcf restrict the use of heuristics in general purpose
reorganization algorithms. Efficient reorganization
algorithms have to be application specific or make
assumptions about the organization.

Exposing the internal workings of the oaf and
rcf requires a modification to OMACS. A better

interface to the oaf and rcf would allow more ef-
ficient algorithms to be designed for general use.
For instance, for the oaf, knowing that when two
agents are playing the same role, their combined
score would be a factor instead of the simple ad-
ditive score would help tremendously in reducing
the search space. Again, for the rcf, knowing how
much a capability contributes to the rcf score would
also help. One approach to exposing the internal
workings of the oaf and rcf would be to encode
the internal workings of the oaf and rcf into some
standardized data structure. Algorithms would then
be able to extract information from the data struc-
ture about the oaf and rcf. Further research into
this area may reveal how the oaf and rcf can be
redesigned for more effective uses.

An overview of the communication costs for dis-
tributed reorganization algorithms is given in [4],
which shows that a simple distributed algorithm
improved the time complexity by a factor. The
best case is O((g X Tavgg) + [2“?#] + €), where
€ is the communication cost, and the worst case
is O(29%Tave9%e 4 ¢). By adopting a purely dis-
tributed approach to designing reorganization al-
gorithms, there could be significant gains in the
time complexity as the number of agents increases.
However, the additional communication costs could
be significant as well. Further research into this
area may unveil the advantages and disadvantages
of distributed reorganization algorithms.

Assignment policies have varying effects on the
time complexity of reorganization algorithms. For
instance, if there is a policy where “agents can only
play one role at a time”, the search space for each
agent is reduced significantly. For example, as-
sume an agent is able to play five roles and each
role achieves three goals. Without the policy, this
agent has 2°%3=15 = 32 768 possible assignments.
However, with the policy, this agent only has 5 x
3 = 15 possible assignments. If there are four
of such similar agents, then there are 32,768* =
1,152,921, 504, 606, 846,976 combinations without
the policy but only 15* = 50, 625 combinations with
the policy.

Not all assignment policies have such a great ef-
fect on the time complexity. Identifying the types
of assignment policies that can significantly affect
the time complexity could help designers produce
models that are flexible as well as efficient. While
reducing the number of combinations, assignment
policies may add to the time complexity [4]. In
the preliminary analysis, the algorithm was mod-
ifed into two versions that use the policy “agents
can only play one role at a time”. There are two

10.000,000,000

Comparisons (Original, Version1, Version2)

1,000,000,000 ’

100,000,000 I

10,000,000 }
- 1,000,000 r
c A Iz
% J ——0Original
£ 100,000 ——Version1
g // Version2
5 10,000 M "',,r
£ TUA

1,000 :

100

..—-—'—_’_-'_/ A
~ s F?"E-U“;\.\/"\.f“_\"’ WAV

~
Y v

10

o
)

est Cases (Goals, Roles, Agents, Average # Roles /

[

oal, Average # Agents / Role)

Figure 3: Comparisons of Results

locations that policy checking occurs, however, this
particular policy is only applicable to the first check
(line 6). The first version prunes the power set by
removing invalid sets. The second version replaces
the power set function with a custom function that
only generates valid sets. Figure [3| shows the pre-
liminary results comparing the original algorithm
versus the two modified versions.

As expected, first version performs worse than
the original version in small cases because the power
set function is the greatest contributor to the time
complexity and extra time is required to remove
invalid sets. However, when the power set func-
tion stops being the greatest contributor to the time
complexity, the first version begins to perform bet-
ter than the original version because the reduced
power set results in a smaller number of combina-
tions. On the other hand, the second version al-
ways performs better than both the original and
first version because the function that replaces the
power set function only generates the necessary sets
instead of removing unwanted sets.

5 Conclusions

This paper lays the groundwork for further research
into OMACS. To enable more efficient reorganiza-
tion algorithm, one suggestion is to extend OMACS
by exposing the internals of oaf and rcf. Another

approach is to look at how assignment policies can
be integrated more deeply into the design of reor-
ganization algorithms. A third approach is to dis-
tribute the computational work of reorganization
to the agents. In conclusion, general purpose re-
organization algorithms for OMACS can be made
feasible for runtime use if some of the suggestions
given in this paper are followed.

References

[1] Scott A. DeLoach and Walamitien H. Oye-
nan. An organizational model and dynamic
goal model for autonomous, adaptive systems.
Multiagent & Cooperative Robotics Laboratory
Technical Report MACR-TR-2006-01, Kansas
State University, March 2006.

Virginia Dignum. A Model for Organiza-
tional Interaction: Based on Agents, Founded
in Logic. PhD thesis, Utrecht University, 2004.

Virginia Dignum, Javier Vazquez-Salceda, and
Frank Dignum. Omni: Introducing social struc-
ture, norms and ontologies into agent organiza-
tions. In PROMAS, pages 181-198, 2004.

Christopher Zhong. An investigation of reor-
ganization algorithms. Master’s thesis, Kansas
State University, 2006.

	Introduction
	Organization Model for Adaptive Computational Systems
	Reorganization Algorithm
	Reducing Time Complexity
	Conclusions

