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Abstract 
As network bandwidth increases, distributed applications 
are becoming increasingly prevalent.  Systems using these 
applications are very complicated to build and must be 
dependable.  Software agents are ideal for breaking 
complicated problems into manageable subtasks.  Agent 
conversations, a series of messages passed between agents, 
are the cornerstone of multiagent systems and must be 
deemed correct before being placed into service.  This paper 
introduces a method to automatically verify that 
conversations are valid before employing them.  Agent 
conversations are created graphically using state transition 
diagrams in the agentTool multiagent development 
environment.  This graphical representation is then 
transformed into a formal modeling language called 
Promela that is analyzed by the Spin verification tool to 
detect errors such as deadlock, non-progress loops, syntax 
errors, unused messages, and unused states.  Feedback is 
provided to the user automatically via text messages and 
graphical highlighting of error conditions. 

Introduction 
As network bandwidth increases, distributed applications 
are becoming increasingly prevalent.  The systems required 
to run these applications are very complicated to build.  
Companies have huge investments in their systems, and 
depend upon them greatly.  Therefore, it’s understandable 
these systems must be robust and verifiably correct.   

Intelligent software agents are also becoming more 
popular.  Distributed agents can be used to retrieve, filter, 
and summarize information as well as provide intelligent 
user interfaces – just to name a few of the many 
applications suited to software agents.  Because of their 
distributed nature, intelligent software agents are an 
appropriate mechanism for solving complicated problems. 

Software agents operate in various distributed systems.  
Open agent systems are those where agents can interact 
with each other via autonomous and unstructured 
conversations.  Agents may have goals and pursue them 
with whatever means they have available.  Much of the 
software agent research is targeted for open systems.  
However, not all multiagent systems are open systems.  

Closed agent systems are those where agents interact with 
each other via structured and predictable conversations.  
All players in the system are known and all conversations 
follow specific patterns.  Military applications and 
electronic commerce are just two areas where closed 
multiagent systems are used.  

Before a multiagent system can be trusted to perform as 
expected, the communication methods between the agents 
must be formally verified.  For example, errors in 
conversations can prevent orders from getting through to 
subordinates or financial transactions from being 
completed.  The verification process includes checking for 
infinite loops, deadlocks, and other communication pitfalls 
that would prevent a multiagent system from completing 
its mission.  This paper introduces a formal methodology 
that automatically verifies that a system of agents will 
communicate as expected before a user deploys the system.  
Then, and only then, can the user of the multiagent system 
have assurance the system will communicate as expected. 

Background 
The best way for software developers to tackle complex, 
large, or unpredictable domains is by breaking the problem 
into smaller, more manageable tasks.  Software agents can 
be used to solve these small tasks while working together 
to solve larger problems.  Sub-problems force agents to 
communicate with each other while working together on 
the “big picture.”  Sycara has observed that agents must 
often operate concurrently in a distributed environment to 
accomplish a given task (Sycara, 1998). 

agentTool 
Agents communicate with each other using patterns of 
messages called conversations (Greaves, 1999).  In our 
methodology, conversations are modeled using state 
transition diagrams (Pressman, 1997).  Given a set of 
conversation state transition diagrams, communication 
between agents can be simulated and every possible 
message combination exercised.  Using this approach, 
conversations are deemed valid if the desired message 
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sequence takes place between the communicating agents.  
This process of deeming the conversations valid or invalid 
is called verifying the agent conversations.  Conversations 
can be verified manually (by a human analyst) or 
automatically (by intelligent software and automated 
tools). 

We are currently developing a software development 
environment, called agentTool, to address the need for a 
user friendly, robust tool for building multiagent systems.  
The tool is an integrated environment that allows a user to 
graphically design a multiagent system, verify the agent 
conversations with an automated verification tool, and 
automatically generate the source code for the designed 
system.  The agentTool environment incorporates 
DeLoach’s Multiagent System Engineering (MaSE) 
methodology (DeLoach, 1999).  MaSE is both a 
methodology and a language for designing multiagent 
systems and includes four levels of design: domain, agent, 
component, and system.    

During the domain level design, the communications 
between agents are specified as conversations using state 
transition diagrams.  The system uses an automated 
verification tool (Spin) and formal modeling language 
(Promela) to verify these conversations are valid.  
Feedback is provided to the user indicating whether the 
conversation design is valid.   

Promela/Spin 
Agent conversations are specified in Promela (Holzmann, 
1997).  Promela differs from other formal languages in that 
it is a modeling language.  As such, it is used to abstractly 
model communication protocols.  Conversations are 
modeled as processes, conversation paths are modeled as 
channels, and variables can be visible to the entire 
conversation (global) or visible only to a particular portion 
of a conversation (local).  All statements are either 
executable or blocked.  Statements are blocked if the 
statement is a conditional statement and the condition is 
false.  In this case, the statement blocks until the condition 
becomes true.  Statements are also blocked when waiting 
to receive messages.  This property provides a means of 
synchronizing communications between processes by 
causing one process (a responder) to wait on a message 
sent by another process (the initiator) while in a specific 
state.  The initiating process may also block while waiting 
on a reply from the responding process.  

Spin is an automated verification tool from Bell Labs 
that operates on the Promela modeling language.  Spin will 
detect deadlock, livelock, assertion violations, and many 
other communication centric errors while efficiently using 
computer resources.  

Automatic Verification of Conversations 
The present method of protocol verification requires a 
human to manually model a protocol in a formal language 

so the verifier can be used.  Most people believe formal 
methods are too difficult to understand and use in this 
manner (Hinchey, 1999).  The challenge then is to 
automatically generate the formal representation of a 
conversation and then use an automated tool to verify that 
this representation is free from undesirable communication 
properties such as deadlock, livelock, and infinite loops.  
Figure 1 is a top-level view of the overall process. 

Figure 1: Top Level View of Methodology 

Modeling Agent Conversations  
In agentTool, we assume that all agent conversations are 
binary and consist of an initiator side and a responder side.  
Both sides of the conversation move through various states 
in harmony as the conversation develops.  Eventually, both 
sides of the conversation should end up in their respective 
“end” states and the conversation is complete.  The state 
transition diagram allows us to visualize the various states 
that a conversation goes through and the events that cause 
the conversation to move from state to state. 

Figure 2 illustrates one side of a typical conversation 
while Figure 3 illustrates the complimentary side.  The two 
sides make up one complete conversation, which may be 
part of a much larger system (or set) of conversations.   

The beginning state in a conversation is the “start” state, 
signified by a solid circle.  The final state in a conversation 
is the “end” state and is signified by a solid circle with a 
ring drawn around it.  Each intermediary state is drawn as 
an unfilled rounded edge rectangle.  The state’s name is 
inside the rectangle.  Arrows between states indicate 
transitions between those states and the direction of the 
transition.  Labels on the arrows indicate the events and 
actions that take place to cause a transition from one state 
to another and follow Unified Modeling Language (UML) 
notation (Rational, 1997) event-name (argument list) 
[guard condition] /action-expression ^send-clause.   

The label may contain some or all of this information.  
Each state may have more than one entry point and exit 
point, but all exit points must be deterministic in that at any 
given point in time only one exit point is enabled and can 
be used.  If more than one exit point is enabled at any 
given time, unpredictability is the result and the 
conversation is no longer valid.  

In Figure 2 there are three states: start, wait and end.  
The transition from the start state to the wait state sends a 
send(information) message.  The information is a 
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parameter that is passed with the message.  The transition 
from the wait state back to itself takes place when a 
failure-transmission message is received while in the wait 
state.  This transition receives a failure-transmission 
message then sends a send(information) message before 
transitioning back to the wait state.  Finally, the transition 
from the wait state to the end state takes place when an 
acknowledge message is received while in the wait state.   

wait  ^send(information) 

acknowledge 

failure-transmission ̂ send(information) 
SendInfo : initiator 

 
Figure 2: Initiator Half of Conversation SendInfo 

(DeLoach, 1999) 

validation 
do: validate(information) 

send( information ) 

SendInfo: responder wait 

send( information ) 

[invalid-data]^failure-transmission 

[valid-data]^acknowledge 

 
Figure 3: Responder Half of Conversation SendInfo 

(DeLoach, 1997) 

The responder side of the SendInfo conversation (Figure 
3) has four states and the transitions complement the 
transitions in the initiator side of the conversation.  The 
next step in the modeling process is to convert the above 
state transition diagrams into its formal representation in 
Promela.   

Creating a Formal Representation 
The first step in translating the state transition diagram to 
Promela is to create an intermediary state table.  A state 
table is a textual representation of a graphical state 
transition diagram and has the advantage that it can be 
parsed easily.  Although not mandatory, it simplifies the 
job of creating a formal representation. 

The state table is built from the transition labels on the 
transition arrows of a state transition diagram.  The state 

table is simply an ordering of all possible transitions in a 
state transition diagram.  The format of the state table 
mirrors that of the transition labels in a state transition 
diagram.  However, each entry in the state table must also 
specify the state the transition is coming from and the state 
to which it is going.  The different fields of a state table 
entry are separated by a semicolon for ease in parsing.  
Figure 4 illustrates a state table using the SendInfo 
conversation defined in Figures 2 and 3.  In this state table, 
a name is given to both halves of the conversation and this 
name inserted at the beginning of each line.  Each entry in 
the state table contains a process name (consisting of the 
conversation name and the participant’s name), current 
state, received message, guard condition, transmitted 
message, and next state, and must be unique. 
SendInfoResponder;startState;send; 

null;null;validationState 
SendInfoResponder;validationState; 

null;invalidData; 
failureTransmission;waitState 

SendInfoResponder;validationState; 
null;validData;acknowledge; endState 

SendInfoResponder;waitState;send; 
null;null;validationState 

SendInfoResponder;endState;null; null;null;null 
SendInfoInitiator;startState;null; 

null;send;waitState 
SendInfoInitiator;waitState; 

failureTransmission;null;send; waitState 
SendInfoInitiator;waitState; 

acknowledge;null;null;endState 
SendInfoInitiator;endState;null; null;null;null 

Figure 4: State Table of Conversation SendInfo 

Modeling a conversation in Promela is straightforward.  
After parsing the state table, the Promela code can be 
automatically generated.  First, we must define the types of 
messages used in the conversation.  This is done in 
Promela using an mtype declaration that allows a 
programmer to declare constants as shown below. 

mtype={send,acknowledge}; 

These values are found by searching through the state 
table and creating a vector of messages by examining the 
received message, guard condition, and transmit message 
fields. 

Next, we must define the channel over which the 
messages will be sent.  The statement 

chan bus1 = [0] of {mtype}; 

states that a variable bus1 is of the type chan, that it does 
not have a buffer to hold messages, and that messages of 
type mtype can be sent on it.  All messages have to be 
taken off the channel (received) before another message 
can be placed on the channel (transmitted).  Synchronous 
message passing is a modeling decision that ensures 
conversations proceed as intended without extra messages 
being transmitted.  The number of channel declarations is 
determined by the number of conversations defined in the 
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state table.  If only one conversation is in the state table (as 
in this example), then only one channel declaration must be 
made.    

The next step is to define processes to emulate each side 
of the conversation.  Promela has a construct called a 
proctype that models each half of a conversation.  Each 
process will contain the states of one half of the 
conversation.  The idea is to begin the process in the 
startState and end in the endState, while moving from 
states only if explicitly directed to do so.  Figure 5 shows 
the proctype declaration for the responder side of the 
SendInfo conversation, while Figure 6 shows the initiator 
side of the same conversation. 
proctype SendInfoResponder() 
{ 
  startState: 
    do 
    :: bus1?send -> goto validationState 
    od; 
  validationState: 
    do 
    :: invalidData ->        
     bus!failureTransmission; goto waitState 
    :: validData -> bus1!acknowledge; goto 

endState 
    od; 
  waitState: 
    do 
    :: bus1?send -> goto validationState 
    od; 
  endState: 
    do 
    :: break 
    od; 
} 

Figure 5: Process SendInfoResponder 

The keyword proctype declares a process.  The States 
begin with a label followed by a colon.  The do..od loops 
trap the flow of control inside their respective states.  You 
can only exit a do..od loop with a goto statement or a break 
statement.  The goto transfers control to another state while 
the break just exits the loop and falls through into the next 
state.  For obvious reasons, it is unacceptable to fall into 
another state unless explicitly directed to do so.  An 
exclamation point (!) after the channel variable bus1 
signifies the message send has been placed on the channel.  
A question mark (?) after the channel variable bus1 
signifies the message following the question mark is taken 
off the channel via a receive action if it has been placed on 
the channel.  The arrow (->) is a statement separator and 
serves as an implication symbol.  If the statement before 
the arrow is executed then the statement after the arrow is 
also executed.  The semicolon (;) is also a statement 
separator but carries no implications.   

proctype SendInfoInitiator() 
{ 
  startState: 
    do 
    :: bus1!send -> goto waitState 
    od; 
  waitState: 
    do 
    :: bus1?failureTransmission -> bus!send; goto 

waitState 
    :: bus1?acknowledge -> goto endState 
    od; 
  endState: 
    do 
    :: break 
    od; 
} 

Figure 6: Process SendInfoInitiator 

For example, looking at the validationState in Figure 5, 
once the conversation has entered this state it will stay 
there via the do..od loop.  While in this state, if the guard 
condition invalidData becomes true then a 
failureTransmission message is sent and the conversation 
goes to the waitState.   

Conversely, if the guard condition validData becomes 
true, an acknowledge message is sent and the conversation 
goes to the endState where the conversation terminates.  
Since the guard conditions are declared as mtype variables, 
Spin treats them as messages that are not transmitted on a 
channel.  If more than one guard condition exists in a given 
state, Spin will arbitrarily choose one of the statements to 
execute and block the others simulating the changing of 
guard conditions. 

Once the two halves of the conversation have been 
modeled, we create a process to start the conversation 
processes called an init process.  Figure 7 shows the init 
process for the SendInfo conversation. 

init 
{  atomic 
  {  run SendInfoResponder(); 
     run SendInfoInitiator() } 
} 

Figure 7: Init Process for SendInfo Conversation 

The keyword atomic mandates all statements enclosed 
within its brackets will be executed without interruption by 
external processes.  The keyword run starts the processes 
running in parallel.   

Verifying Message Sequences.  Sequence diagrams 
(Rational, 1997) are beneficial for real-time specifications 
and for complex scenarios.  They show the explicit 
sequence of messages between agents and can exist in a 
generic form (all the possible sequences of messages) or an 
instance form (one actual sequence consistent with the 
generic form).  Sequence diagrams show us the big picture 
in the grand scheme of agent conversations. 

A message sequence is created by listing desired 
messages between conversations in a specified order.  
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Sequence diagrams represent interactions among agents 
within a system to achieve a desired operation or result.  A 
graphical representation of a message sequence is called a 
message sequence chart (Rational, 1997).  Figure 8 shows 
a valid message sequence chart encompassing two 
conversations (SendInfo and CollectData) between three 
agents (Commander, Mission Cntrl, and Data Collection).  
Not all of the messages that could be sent in these 
conversations need be included in the message sequence 
chart. 

  

Figure 8: Message Sequence Chart 

Message sequences are converted to a table similar to a 
state table as shown in Figure 9.  The format of the 
message sequence table is Conversation Name; 
Conversation From Participant; Conversation To 
Participant; Message.  When checking for a message 
sequence the sequence is defined in a Promela never claim 
and checked for its existence.  A never claim is a special 
type of process that is optional and if exists is used to 
detect undesirable behavior.  If a message sequence 
defined in a never claim is found, Spin will generate an 
error.  Of course, this is not really an error because we 
want to verify the sequence exists and the error condition 
has confirmed the sequence does indeed exist.  Figure 10 is 
the never claim for the message sequence table of Figure 9. 

SendInfo;Responder;Initiator;send 
CollectData;Initiator;Responder;collectData 
CollectData;Responder;Initiator;return 
SendInfo;Initiator;Responder;send 

Figure 9: Message Sequence Table 

A key difference in the modeling of a message sequence 
and a conversation is the way message events are detected.  
In a conversation, the channel that messages are 
transmitted on is constantly monitored and messages must 
be placed on the channel and taken off the channel in a 
predetermined order.  In a message sequence, the channel 
is monitored but only messages that we are looking for are 
detected.   

Many messages may be placed on the channel and taken 
off the channel before the desired message is detected as 
part of a particular sequence.  Modeling sequences in this 
fashion provides great flexibility in detecting message 
sequences that span multiple conversations. 

never 
{ 
   State0: 
      do 
      :: SendInfo?[send] -> goto State1 
      :: skip 
      od; 
   State1: 
      do 
      :: CollectData?[collectData] -> goto State2 
      :: skip 
      od; 
   State2: 
      do 
      :: CollectData?[return] -> goto State3 
      :: skip 
      od; 
   State3: 
      do 
      :: SendRawIntel?[send] -> goto State4 
      :: skip 
      od; 
   State4: 
      do 
      :: SendInfo?[send] -> goto accept 
      :: skip 
      od; 
   accept: 
      skip 
} 

Figure 10: Message Sequence Verification 

After generating the Promela source code, it is used as 
input to the verification tool Spin as discussed in the next 
section. 

Verification 
We can now use Spin to check for conversation errors.  
The first type of error we detect is deadlock.  Spin will 
create an analyzer to search the entire state space of the 
conversation, simulating every possible combination of 
messages in the conversation until either a deadlock 
condition occurs or the state space is exhausted.  
Conversations are considered deadlocked if they terminate 
in any state other than the end state.  If a deadlock 
condition is detected, the analyzer writes a trace file that 
can be used to create a message sequence trace pinpointing 
the series of message events that led to the deadlock. 

The next type of error detected is non-progress loops.  
We mark all states in the conversation with the keyword 
progress, which Spin uses to check that all states are 
entered during at least one execution path.  If a state is not 
entered into then a non-progress error is generated.  Many 
things can cause a non-progress error to include livelock, 
infinite overtaking, deadlock, unused states and unused 
transitions. 

Finally we test for valid message sequences by defining 
the message sequence in a never claim and checking to see 
if the sequence exists.  If the sequence exists, Spin 
generates a never claim violation error.  However, this is 
not really an error since we want the sequence to exist.  If 
Spin does not report a never claim violation, the message 

 Commander Commander Mission  Cntrl Mission  Cntrl Data Collection Data Collection 

send send 
collectData collectData 

return return 

send send 
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sequence could not be found and even though the 
conversations as defined may be valid, the required 
message sequence is not contained therein. 

The SendInfo conversation does not contain any errors.  
However, to demonstrate the types of error messages Spin 
would generate, we create a deadlock condition by 
changing the transmitted message acknowledge from the 
validation state in Figure 3 to a received message.  Figure 
11 shows the error messages generated after analyzing the 
flawed conversation. 
pan: invalid endstate (at depth 5) 
pan: wrote verify.trail 
(Spin Version 3.2.4 -- 10 January 1999) 
Warning: Search not completed 
   + Partial Order Reduction 
Full statespace search for: 
   never-claim          - (none specified) 
   assertion violations + 
   cycle checks         - (disabled by -DSAFETY) 
   invalid endstates + 
State-vector 24 byte, depth reached 8, errors: 1 
       6 states, stored 
       1 states, matched 
       7 transitions (= stored+matched) 
       1 atomic steps 
hash conflicts: 0 (resolved) 
(max size 2^18 states) 
1.493    memory usage (Mbyte) 

Figure 11: Spin Output of Flawed SendInfo 
Conversation 

The first line of the error message tells us the 
conversation ended in an invalid endstate, meaning the 
conversation terminated in one of the states other than the 
end state.  The other messages provide extraneous 
information that does not help us actually find the error.  
However, the second line of the messages tells us a file, 
verify.trail was written.  This file can be analyzed by Spin 
and a message sequence trace created pinpointing the exact 
location of the deadlock condition.  Figure 12 portrays the 
messages agentTool provides the system user.  
DEADLOCK CONDITION EXISTS IN THE FOLLOWING 

CONVERSATION:  
  Conversation Name = SendInfo 
  Participant Name = Responder 
  Current State = validation 
  State Transition = null 
DEADLOCK CONDITION EXISTS IN THE FOLLOWING 

CONVERSATION:  
  Conversation Name = SendInfo 
  Participant Name = Initiator 
  Current State = wait 
  State Transition = failureTransmission 

Figure 12: agentTool Error Messages 

All errors detected by agentTool are displayed 
graphically by highlighting the state and/or transition that 
caused the error.  Figure 13 is the responder side of the 
SendInfo conversation with the end state highlighted.  
Though not shown here, the initiator side of the 
conversation’s end state is also highlighted.  The end states 

are highlighted because they were never entered into.  The 
failureTransmission transition on the initiator side of the 
SendInfo conversation is also highlighted as indicated in 
Figure 12 because it is the source of the deadlock. 

Figure 13: Error Highlighting in SendInfo 
Conversation 

Analysis of Types of Errors Handled.  Spin can check 
for many types of errors (Holzmann, 1997).  
Unfortunately, agentTool does not currently provide the 
capability to enter the required data to check for all of 
them.  However, agentTool does allow the checking of a 
few classic conversation centric errors.   

Detectable Errors.  Deadlocks are detected with complete 
certainty.  This is accomplished by performing an 
exhaustive state space search for deadlock conditions.  If a 
deadlock exists in a single conversation, agentTool and 
Spin will detect it. 

Non-progress loops are detected.  This can also be called 
livelock or infinite overtaking because the error condition 
that results is the same for all three cases.  The error 
condition that results from any of these three conditions is 
that at least one state in the conversation is not entered.  
Therefore, that state is labeled a non-progress state and an 
error is generated. 

Unused states are detected by checking for non-progress 
loops.  If a state is not used, it is not entered into and a 
non-progress error is generated. 

Unused messages are detected when they are not taken 
off the message channel, thereby leaving messages on the 
buffer.  Since messages placed on the channel must be 
matched by a receiving process that takes them off the 
buffer, any unused messages will generate deadlock errors.  
This might not be a deadlock condition, but the error raised 
will generate enough information for the user to identify 
the source of the problem. 

Mislabeled transitions are detected when Spin is first 
run.  If the syntax is incorrect, Spin cannot compile the 
Promela code into the executable analyzer.  Feedback is 
provided via a message window when a syntax error 
occurs.  Mislabeled transitions can also be syntactically 
correct but create deadlocks or non-progress loops.  
Though the indication is not of a syntactical error, the error 
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is still caught and enough information provided to the user 
to determine the cause of the error. 

Inability to create required sequences is detected using 
never claims.  The desired message sequence is modeled 
using a never claim, and if Spin does not generate a never 
claim violation, the message sequence does not exist.   

Undetectable Errors.  There are some communication 
errors that agentTool and Spin cannot currently detect.  
These errors would be difficult for any automated system 
to detect; however, they are mentioned here to make the 
user aware of this limitation. 

Timing errors caused by system properties cannot be 
detected by Spin.  The conversations may be valid, but if a 
system property causes a conversation to pause 
indefinitely, the complementary conversation is 
deadlocked until the system property allows the 
conversation to continue.  In this scenario, the 
conversations are valid and have been verified.  
Nevertheless, the overall system will not perform correctly. 

Hardware failures that cause infinite conversation loops 
cannot be detected by agentTool and Spin.  The 
conversations are valid and have been verified, but if a 
sensor or other piece of hardware continues to send the 
same message in the context of a valid conversation, the 
conversation can become livelocked and the conversation 
cannot progress. 

Guard conditions specified incorrectly cannot be 
detected by agentTool and Spin.  If a guard condition is 
specified as part of a conversation, agentTool uses a 
figurative representation of the guard condition to verify 
the conversation.  If the guard condition consists of an 
algebraic formula that is incorrectly written, or an 
incorrectly written logical formula, Spin and agentTool 
will never know.  

Interacting conversations deadlocked when both are 
contending for a common resource.  Even though the 
conversations are valid, they can deadlock waiting for the 
same resource. 

We plan to implement a syntax checker in agentTool 
that will detect many of these errors such as state transition 
diagrams and guard conditions that are incorrectly 
specified. 

Agent Communication Languages 
An agent communication language (ACL) enables similar 
software agents to communicate with each other via 
predefined performatives.  A performative specifies the 
format of any given message and dictates how an agent 
should respond to messages.  Two popular communication 
languages are the Knowledge Query and Markup 
Language (KQML) (Bradshaw, 1995) and the Foundation 
for Intelligent Physical Agents Agent Communication 
Language (FIPA, 1997). 

The choice of an ACL does not impact the automatic 
verification of conversations.  After the conversations in an 

agent system have been verified, the system may be 
deployed.  Before deploying the system, the desired ACL 
is chosen and messages between agents are formatted 
accordingly. For example, if the KQML ACL were chosen, 
the SendInfo conversation would be converted into a set of 
KQML messages as shown in Figure 14. 

(send() 
 :sender agent1 
 :content () 
 :receiver agent2) 
(failureTransmission() 
 :sender agent2 
 :content () 
 :receiver agent1) 
(acknowledge() 
 :sender agent2 
 :content () 
 :receiver agent1) 

Figure 14: KQML Implementation 
Parameters associated with the message are included in 

the performative field.  Data associated with the message is 
included in the content field.  This implementation of 
KQML is not a standard one.  However, KQML allows 
flexibility in its implementation.  Since this is a closed 
agent system, only the participating agents need to know 
how to interpret the format of the KQML messages. 

Summary 
This paper describes the methodology used to 
automatically verify agent conversations in a multiagent 
system.  The process begins by modeling the conversations 
with state transition diagrams in agentTool using the MaSE 
methodology.  State transition diagrams are then converted 
into Promela code that is analyzed by Spin for deadlock 
and non-progress errors.  We also show how Promela and 
Spin can be used to verify message sequences by declaring 
a never claim and checking for its existence.  Finally, we 
analyze the types of errors that can and cannot be detected 
using this methodology.  Feedback on errors is provided to 
agentTool users through text messages and graphical 
highlighting. 
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