
1

Automatic Verification of Multiagent Conversations♦♦♦♦

Timothy Lacey and Scott A. DeLoach

Air Force Institute of Technology
Graduate School of Engineering and Management

Department of Electrical and Computer Engineering
Wright-Patterson Air Force Base, OH 45433-7765

timothy.lacey@afit.af.mil
scott.deloach@afit.af.mil

♦ The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force,

Department of Defense, or the US Government.

Abstract
As network bandwidth increases, distributed applications
are becoming increasingly prevalent. Systems using these
applications are very complicated to build and must be
dependable. Software agents are ideal for breaking
complicated problems into manageable subtasks. Agent
conversations, a series of messages passed between agents,
are the cornerstone of multiagent systems and must be
deemed correct before being placed into service. This paper
introduces a method to automatically verify that
conversations are valid before employing them. Agent
conversations are created graphically using state transition
diagrams in the agentTool multiagent development
environment. This graphical representation is then
transformed into a formal modeling language called
Promela that is analyzed by the Spin verification tool to
detect errors such as deadlock, non-progress loops, syntax
errors, unused messages, and unused states. Feedback is
provided to the user automatically via text messages and
graphical highlighting of error conditions.

Introduction
As network bandwidth increases, distributed applications
are becoming increasingly prevalent. The systems required
to run these applications are very complicated to build.
Companies have huge investments in their systems, and
depend upon them greatly. Therefore, it’s understandable
these systems must be robust and verifiably correct.

Intelligent software agents are also becoming more
popular. Distributed agents can be used to retrieve, filter,
and summarize information as well as provide intelligent
user interfaces – just to name a few of the many
applications suited to software agents. Because of their
distributed nature, intelligent software agents are an
appropriate mechanism for solving complicated problems.

Software agents operate in various distributed systems.
Open agent systems are those where agents can interact
with each other via autonomous and unstructured
conversations. Agents may have goals and pursue them
with whatever means they have available. Much of the
software agent research is targeted for open systems.
However, not all multiagent systems are open systems.

Closed agent systems are those where agents interact with
each other via structured and predictable conversations.
All players in the system are known and all conversations
follow specific patterns. Military applications and
electronic commerce are just two areas where closed
multiagent systems are used.

Before a multiagent system can be trusted to perform as
expected, the communication methods between the agents
must be formally verified. For example, errors in
conversations can prevent orders from getting through to
subordinates or financial transactions from being
completed. The verification process includes checking for
infinite loops, deadlocks, and other communication pitfalls
that would prevent a multiagent system from completing
its mission. This paper introduces a formal methodology
that automatically verifies that a system of agents will
communicate as expected before a user deploys the system.
Then, and only then, can the user of the multiagent system
have assurance the system will communicate as expected.

Background
The best way for software developers to tackle complex,
large, or unpredictable domains is by breaking the problem
into smaller, more manageable tasks. Software agents can
be used to solve these small tasks while working together
to solve larger problems. Sub-problems force agents to
communicate with each other while working together on
the “big picture.” Sycara has observed that agents must
often operate concurrently in a distributed environment to
accomplish a given task (Sycara, 1998).

agentTool
Agents communicate with each other using patterns of
messages called conversations (Greaves, 1999). In our
methodology, conversations are modeled using state
transition diagrams (Pressman, 1997). Given a set of
conversation state transition diagrams, communication
between agents can be simulated and every possible
message combination exercised. Using this approach,
conversations are deemed valid if the desired message

2

sequence takes place between the communicating agents.
This process of deeming the conversations valid or invalid
is called verifying the agent conversations. Conversations
can be verified manually (by a human analyst) or
automatically (by intelligent software and automated
tools).

We are currently developing a software development
environment, called agentTool, to address the need for a
user friendly, robust tool for building multiagent systems.
The tool is an integrated environment that allows a user to
graphically design a multiagent system, verify the agent
conversations with an automated verification tool, and
automatically generate the source code for the designed
system. The agentTool environment incorporates
DeLoach’s Multiagent System Engineering (MaSE)
methodology (DeLoach, 1999). MaSE is both a
methodology and a language for designing multiagent
systems and includes four levels of design: domain, agent,
component, and system.

During the domain level design, the communications
between agents are specified as conversations using state
transition diagrams. The system uses an automated
verification tool (Spin) and formal modeling language
(Promela) to verify these conversations are valid.
Feedback is provided to the user indicating whether the
conversation design is valid.

Promela/Spin
Agent conversations are specified in Promela (Holzmann,
1997). Promela differs from other formal languages in that
it is a modeling language. As such, it is used to abstractly
model communication protocols. Conversations are
modeled as processes, conversation paths are modeled as
channels, and variables can be visible to the entire
conversation (global) or visible only to a particular portion
of a conversation (local). All statements are either
executable or blocked. Statements are blocked if the
statement is a conditional statement and the condition is
false. In this case, the statement blocks until the condition
becomes true. Statements are also blocked when waiting
to receive messages. This property provides a means of
synchronizing communications between processes by
causing one process (a responder) to wait on a message
sent by another process (the initiator) while in a specific
state. The initiating process may also block while waiting
on a reply from the responding process.

Spin is an automated verification tool from Bell Labs
that operates on the Promela modeling language. Spin will
detect deadlock, livelock, assertion violations, and many
other communication centric errors while efficiently using
computer resources.

Automatic Verification of Conversations
The present method of protocol verification requires a
human to manually model a protocol in a formal language

so the verifier can be used. Most people believe formal
methods are too difficult to understand and use in this
manner (Hinchey, 1999). The challenge then is to
automatically generate the formal representation of a
conversation and then use an automated tool to verify that
this representation is free from undesirable communication
properties such as deadlock, livelock, and infinite loops.
Figure 1 is a top-level view of the overall process.

Figure 1: Top Level View of Methodology

Modeling Agent Conversations
In agentTool, we assume that all agent conversations are
binary and consist of an initiator side and a responder side.
Both sides of the conversation move through various states
in harmony as the conversation develops. Eventually, both
sides of the conversation should end up in their respective
“end” states and the conversation is complete. The state
transition diagram allows us to visualize the various states
that a conversation goes through and the events that cause
the conversation to move from state to state.

Figure 2 illustrates one side of a typical conversation
while Figure 3 illustrates the complimentary side. The two
sides make up one complete conversation, which may be
part of a much larger system (or set) of conversations.

The beginning state in a conversation is the “start” state,
signified by a solid circle. The final state in a conversation
is the “end” state and is signified by a solid circle with a
ring drawn around it. Each intermediary state is drawn as
an unfilled rounded edge rectangle. The state’s name is
inside the rectangle. Arrows between states indicate
transitions between those states and the direction of the
transition. Labels on the arrows indicate the events and
actions that take place to cause a transition from one state
to another and follow Unified Modeling Language (UML)
notation (Rational, 1997) event-name (argument list)
[guard condition] /action-expression ^send-clause.

The label may contain some or all of this information.
Each state may have more than one entry point and exit
point, but all exit points must be deterministic in that at any
given point in time only one exit point is enabled and can
be used. If more than one exit point is enabled at any
given time, unpredictability is the result and the
conversation is no longer valid.

In Figure 2 there are three states: start, wait and end.
The transition from the start state to the wait state sends a
send(information) message. The information is a

Model Conversation

Create Formal
Representation

Verify

Model Conversation

Create Formal
Representation

Verify

3

parameter that is passed with the message. The transition
from the wait state back to itself takes place when a
failure-transmission message is received while in the wait
state. This transition receives a failure-transmission
message then sends a send(information) message before
transitioning back to the wait state. Finally, the transition
from the wait state to the end state takes place when an
acknowledge message is received while in the wait state.

wait ^send(information)

acknowledge

failure-transmission ̂ send(information)
SendInfo : initiator

Figure 2: Initiator Half of Conversation SendInfo

(DeLoach, 1999)

validation
do: validate(information)

send(information)

SendInfo: responder wait

send(information)

[invalid-data]^failure-transmission

[valid-data]^acknowledge

Figure 3: Responder Half of Conversation SendInfo

(DeLoach, 1997)

The responder side of the SendInfo conversation (Figure
3) has four states and the transitions complement the
transitions in the initiator side of the conversation. The
next step in the modeling process is to convert the above
state transition diagrams into its formal representation in
Promela.

Creating a Formal Representation
The first step in translating the state transition diagram to
Promela is to create an intermediary state table. A state
table is a textual representation of a graphical state
transition diagram and has the advantage that it can be
parsed easily. Although not mandatory, it simplifies the
job of creating a formal representation.

The state table is built from the transition labels on the
transition arrows of a state transition diagram. The state

table is simply an ordering of all possible transitions in a
state transition diagram. The format of the state table
mirrors that of the transition labels in a state transition
diagram. However, each entry in the state table must also
specify the state the transition is coming from and the state
to which it is going. The different fields of a state table
entry are separated by a semicolon for ease in parsing.
Figure 4 illustrates a state table using the SendInfo
conversation defined in Figures 2 and 3. In this state table,
a name is given to both halves of the conversation and this
name inserted at the beginning of each line. Each entry in
the state table contains a process name (consisting of the
conversation name and the participant’s name), current
state, received message, guard condition, transmitted
message, and next state, and must be unique.
SendInfoResponder;startState;send;

null;null;validationState
SendInfoResponder;validationState;

null;invalidData;
failureTransmission;waitState

SendInfoResponder;validationState;
null;validData;acknowledge; endState

SendInfoResponder;waitState;send;
null;null;validationState

SendInfoResponder;endState;null; null;null;null
SendInfoInitiator;startState;null;

null;send;waitState
SendInfoInitiator;waitState;

failureTransmission;null;send; waitState
SendInfoInitiator;waitState;

acknowledge;null;null;endState
SendInfoInitiator;endState;null; null;null;null

Figure 4: State Table of Conversation SendInfo

Modeling a conversation in Promela is straightforward.
After parsing the state table, the Promela code can be
automatically generated. First, we must define the types of
messages used in the conversation. This is done in
Promela using an mtype declaration that allows a
programmer to declare constants as shown below.

mtype={send,acknowledge};

These values are found by searching through the state
table and creating a vector of messages by examining the
received message, guard condition, and transmit message
fields.

Next, we must define the channel over which the
messages will be sent. The statement

chan bus1 = [0] of {mtype};

states that a variable bus1 is of the type chan, that it does
not have a buffer to hold messages, and that messages of
type mtype can be sent on it. All messages have to be
taken off the channel (received) before another message
can be placed on the channel (transmitted). Synchronous
message passing is a modeling decision that ensures
conversations proceed as intended without extra messages
being transmitted. The number of channel declarations is
determined by the number of conversations defined in the

4

state table. If only one conversation is in the state table (as
in this example), then only one channel declaration must be
made.

The next step is to define processes to emulate each side
of the conversation. Promela has a construct called a
proctype that models each half of a conversation. Each
process will contain the states of one half of the
conversation. The idea is to begin the process in the
startState and end in the endState, while moving from
states only if explicitly directed to do so. Figure 5 shows
the proctype declaration for the responder side of the
SendInfo conversation, while Figure 6 shows the initiator
side of the same conversation.
proctype SendInfoResponder()
{
 startState:
 do
 :: bus1?send -> goto validationState
 od;
 validationState:
 do
 :: invalidData ->
 bus!failureTransmission; goto waitState
 :: validData -> bus1!acknowledge; goto

endState
 od;
 waitState:
 do
 :: bus1?send -> goto validationState
 od;
 endState:
 do
 :: break
 od;
}

Figure 5: Process SendInfoResponder

The keyword proctype declares a process. The States
begin with a label followed by a colon. The do..od loops
trap the flow of control inside their respective states. You
can only exit a do..od loop with a goto statement or a break
statement. The goto transfers control to another state while
the break just exits the loop and falls through into the next
state. For obvious reasons, it is unacceptable to fall into
another state unless explicitly directed to do so. An
exclamation point (!) after the channel variable bus1
signifies the message send has been placed on the channel.
A question mark (?) after the channel variable bus1
signifies the message following the question mark is taken
off the channel via a receive action if it has been placed on
the channel. The arrow (->) is a statement separator and
serves as an implication symbol. If the statement before
the arrow is executed then the statement after the arrow is
also executed. The semicolon (;) is also a statement
separator but carries no implications.

proctype SendInfoInitiator()
{
 startState:
 do
 :: bus1!send -> goto waitState
 od;
 waitState:
 do
 :: bus1?failureTransmission -> bus!send; goto

waitState
 :: bus1?acknowledge -> goto endState
 od;
 endState:
 do
 :: break
 od;
}

Figure 6: Process SendInfoInitiator

For example, looking at the validationState in Figure 5,
once the conversation has entered this state it will stay
there via the do..od loop. While in this state, if the guard
condition invalidData becomes true then a
failureTransmission message is sent and the conversation
goes to the waitState.

Conversely, if the guard condition validData becomes
true, an acknowledge message is sent and the conversation
goes to the endState where the conversation terminates.
Since the guard conditions are declared as mtype variables,
Spin treats them as messages that are not transmitted on a
channel. If more than one guard condition exists in a given
state, Spin will arbitrarily choose one of the statements to
execute and block the others simulating the changing of
guard conditions.

Once the two halves of the conversation have been
modeled, we create a process to start the conversation
processes called an init process. Figure 7 shows the init
process for the SendInfo conversation.

init
{ atomic
 { run SendInfoResponder();
 run SendInfoInitiator() }
}

Figure 7: Init Process for SendInfo Conversation

The keyword atomic mandates all statements enclosed
within its brackets will be executed without interruption by
external processes. The keyword run starts the processes
running in parallel.

Verifying Message Sequences. Sequence diagrams
(Rational, 1997) are beneficial for real-time specifications
and for complex scenarios. They show the explicit
sequence of messages between agents and can exist in a
generic form (all the possible sequences of messages) or an
instance form (one actual sequence consistent with the
generic form). Sequence diagrams show us the big picture
in the grand scheme of agent conversations.

A message sequence is created by listing desired
messages between conversations in a specified order.

5

Sequence diagrams represent interactions among agents
within a system to achieve a desired operation or result. A
graphical representation of a message sequence is called a
message sequence chart (Rational, 1997). Figure 8 shows
a valid message sequence chart encompassing two
conversations (SendInfo and CollectData) between three
agents (Commander, Mission Cntrl, and Data Collection).
Not all of the messages that could be sent in these
conversations need be included in the message sequence
chart.

Figure 8: Message Sequence Chart

Message sequences are converted to a table similar to a
state table as shown in Figure 9. The format of the
message sequence table is Conversation Name;
Conversation From Participant; Conversation To
Participant; Message. When checking for a message
sequence the sequence is defined in a Promela never claim
and checked for its existence. A never claim is a special
type of process that is optional and if exists is used to
detect undesirable behavior. If a message sequence
defined in a never claim is found, Spin will generate an
error. Of course, this is not really an error because we
want to verify the sequence exists and the error condition
has confirmed the sequence does indeed exist. Figure 10 is
the never claim for the message sequence table of Figure 9.

SendInfo;Responder;Initiator;send
CollectData;Initiator;Responder;collectData
CollectData;Responder;Initiator;return
SendInfo;Initiator;Responder;send

Figure 9: Message Sequence Table

A key difference in the modeling of a message sequence
and a conversation is the way message events are detected.
In a conversation, the channel that messages are
transmitted on is constantly monitored and messages must
be placed on the channel and taken off the channel in a
predetermined order. In a message sequence, the channel
is monitored but only messages that we are looking for are
detected.

Many messages may be placed on the channel and taken
off the channel before the desired message is detected as
part of a particular sequence. Modeling sequences in this
fashion provides great flexibility in detecting message
sequences that span multiple conversations.

never
{
 State0:
 do
 :: SendInfo?[send] -> goto State1
 :: skip
 od;
 State1:
 do
 :: CollectData?[collectData] -> goto State2
 :: skip
 od;
 State2:
 do
 :: CollectData?[return] -> goto State3
 :: skip
 od;
 State3:
 do
 :: SendRawIntel?[send] -> goto State4
 :: skip
 od;
 State4:
 do
 :: SendInfo?[send] -> goto accept
 :: skip
 od;
 accept:
 skip
}

Figure 10: Message Sequence Verification

After generating the Promela source code, it is used as
input to the verification tool Spin as discussed in the next
section.

Verification
We can now use Spin to check for conversation errors.
The first type of error we detect is deadlock. Spin will
create an analyzer to search the entire state space of the
conversation, simulating every possible combination of
messages in the conversation until either a deadlock
condition occurs or the state space is exhausted.
Conversations are considered deadlocked if they terminate
in any state other than the end state. If a deadlock
condition is detected, the analyzer writes a trace file that
can be used to create a message sequence trace pinpointing
the series of message events that led to the deadlock.

The next type of error detected is non-progress loops.
We mark all states in the conversation with the keyword
progress, which Spin uses to check that all states are
entered during at least one execution path. If a state is not
entered into then a non-progress error is generated. Many
things can cause a non-progress error to include livelock,
infinite overtaking, deadlock, unused states and unused
transitions.

Finally we test for valid message sequences by defining
the message sequence in a never claim and checking to see
if the sequence exists. If the sequence exists, Spin
generates a never claim violation error. However, this is
not really an error since we want the sequence to exist. If
Spin does not report a never claim violation, the message

 Commander Commander Mission Cntrl Mission Cntrl Data Collection Data Collection

send send
collectData collectData

return return

send send

6

sequence could not be found and even though the
conversations as defined may be valid, the required
message sequence is not contained therein.

The SendInfo conversation does not contain any errors.
However, to demonstrate the types of error messages Spin
would generate, we create a deadlock condition by
changing the transmitted message acknowledge from the
validation state in Figure 3 to a received message. Figure
11 shows the error messages generated after analyzing the
flawed conversation.
pan: invalid endstate (at depth 5)
pan: wrote verify.trail
(Spin Version 3.2.4 -- 10 January 1999)
Warning: Search not completed
 + Partial Order Reduction
Full statespace search for:
 never-claim - (none specified)
 assertion violations +
 cycle checks - (disabled by -DSAFETY)
 invalid endstates +
State-vector 24 byte, depth reached 8, errors: 1
 6 states, stored
 1 states, matched
 7 transitions (= stored+matched)
 1 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)
1.493 memory usage (Mbyte)

Figure 11: Spin Output of Flawed SendInfo
Conversation

The first line of the error message tells us the
conversation ended in an invalid endstate, meaning the
conversation terminated in one of the states other than the
end state. The other messages provide extraneous
information that does not help us actually find the error.
However, the second line of the messages tells us a file,
verify.trail was written. This file can be analyzed by Spin
and a message sequence trace created pinpointing the exact
location of the deadlock condition. Figure 12 portrays the
messages agentTool provides the system user.
DEADLOCK CONDITION EXISTS IN THE FOLLOWING

CONVERSATION:
 Conversation Name = SendInfo
 Participant Name = Responder
 Current State = validation
 State Transition = null
DEADLOCK CONDITION EXISTS IN THE FOLLOWING

CONVERSATION:
 Conversation Name = SendInfo
 Participant Name = Initiator
 Current State = wait
 State Transition = failureTransmission

Figure 12: agentTool Error Messages

All errors detected by agentTool are displayed
graphically by highlighting the state and/or transition that
caused the error. Figure 13 is the responder side of the
SendInfo conversation with the end state highlighted.
Though not shown here, the initiator side of the
conversation’s end state is also highlighted. The end states

are highlighted because they were never entered into. The
failureTransmission transition on the initiator side of the
SendInfo conversation is also highlighted as indicated in
Figure 12 because it is the source of the deadlock.

Figure 13: Error Highlighting in SendInfo
Conversation

Analysis of Types of Errors Handled. Spin can check
for many types of errors (Holzmann, 1997).
Unfortunately, agentTool does not currently provide the
capability to enter the required data to check for all of
them. However, agentTool does allow the checking of a
few classic conversation centric errors.

Detectable Errors. Deadlocks are detected with complete
certainty. This is accomplished by performing an
exhaustive state space search for deadlock conditions. If a
deadlock exists in a single conversation, agentTool and
Spin will detect it.

Non-progress loops are detected. This can also be called
livelock or infinite overtaking because the error condition
that results is the same for all three cases. The error
condition that results from any of these three conditions is
that at least one state in the conversation is not entered.
Therefore, that state is labeled a non-progress state and an
error is generated.

Unused states are detected by checking for non-progress
loops. If a state is not used, it is not entered into and a
non-progress error is generated.

Unused messages are detected when they are not taken
off the message channel, thereby leaving messages on the
buffer. Since messages placed on the channel must be
matched by a receiving process that takes them off the
buffer, any unused messages will generate deadlock errors.
This might not be a deadlock condition, but the error raised
will generate enough information for the user to identify
the source of the problem.

Mislabeled transitions are detected when Spin is first
run. If the syntax is incorrect, Spin cannot compile the
Promela code into the executable analyzer. Feedback is
provided via a message window when a syntax error
occurs. Mislabeled transitions can also be syntactically
correct but create deadlocks or non-progress loops.
Though the indication is not of a syntactical error, the error

7

is still caught and enough information provided to the user
to determine the cause of the error.

Inability to create required sequences is detected using
never claims. The desired message sequence is modeled
using a never claim, and if Spin does not generate a never
claim violation, the message sequence does not exist.

Undetectable Errors. There are some communication
errors that agentTool and Spin cannot currently detect.
These errors would be difficult for any automated system
to detect; however, they are mentioned here to make the
user aware of this limitation.

Timing errors caused by system properties cannot be
detected by Spin. The conversations may be valid, but if a
system property causes a conversation to pause
indefinitely, the complementary conversation is
deadlocked until the system property allows the
conversation to continue. In this scenario, the
conversations are valid and have been verified.
Nevertheless, the overall system will not perform correctly.

Hardware failures that cause infinite conversation loops
cannot be detected by agentTool and Spin. The
conversations are valid and have been verified, but if a
sensor or other piece of hardware continues to send the
same message in the context of a valid conversation, the
conversation can become livelocked and the conversation
cannot progress.

Guard conditions specified incorrectly cannot be
detected by agentTool and Spin. If a guard condition is
specified as part of a conversation, agentTool uses a
figurative representation of the guard condition to verify
the conversation. If the guard condition consists of an
algebraic formula that is incorrectly written, or an
incorrectly written logical formula, Spin and agentTool
will never know.

Interacting conversations deadlocked when both are
contending for a common resource. Even though the
conversations are valid, they can deadlock waiting for the
same resource.

We plan to implement a syntax checker in agentTool
that will detect many of these errors such as state transition
diagrams and guard conditions that are incorrectly
specified.

Agent Communication Languages
An agent communication language (ACL) enables similar
software agents to communicate with each other via
predefined performatives. A performative specifies the
format of any given message and dictates how an agent
should respond to messages. Two popular communication
languages are the Knowledge Query and Markup
Language (KQML) (Bradshaw, 1995) and the Foundation
for Intelligent Physical Agents Agent Communication
Language (FIPA, 1997).

The choice of an ACL does not impact the automatic
verification of conversations. After the conversations in an

agent system have been verified, the system may be
deployed. Before deploying the system, the desired ACL
is chosen and messages between agents are formatted
accordingly. For example, if the KQML ACL were chosen,
the SendInfo conversation would be converted into a set of
KQML messages as shown in Figure 14.

(send()
 :sender agent1
 :content ()
 :receiver agent2)
(failureTransmission()
 :sender agent2
 :content ()
 :receiver agent1)
(acknowledge()
 :sender agent2
 :content ()
 :receiver agent1)

Figure 14: KQML Implementation
Parameters associated with the message are included in

the performative field. Data associated with the message is
included in the content field. This implementation of
KQML is not a standard one. However, KQML allows
flexibility in its implementation. Since this is a closed
agent system, only the participating agents need to know
how to interpret the format of the KQML messages.

Summary
This paper describes the methodology used to
automatically verify agent conversations in a multiagent
system. The process begins by modeling the conversations
with state transition diagrams in agentTool using the MaSE
methodology. State transition diagrams are then converted
into Promela code that is analyzed by Spin for deadlock
and non-progress errors. We also show how Promela and
Spin can be used to verify message sequences by declaring
a never claim and checking for its existence. Finally, we
analyze the types of errors that can and cannot be detected
using this methodology. Feedback on errors is provided to
agentTool users through text messages and graphical
highlighting.

Acknowledgements
This research was supported by the Air Force Office of
Scientific Research. We thank Captain Alex Kilpatrick for
his financial support and latitude provided in this endeavor.
We also thank Tom Hartrum for his support and advice.

References
Bradshaw, Jeff. Software Agents. Cambridge: MIT Press,
1995.

DeLoach, Scott A. Multiagent Systems Engineering: A
Methodology and Language for Designing Agent Systems,
Proceedings of a Workshop on Agent-Oriented Information
Systems (AOIS ’99). 45-57. Seattle, WA. May 1, 1999.

8

Foundation for Intelligent Physical Agents (FIPA). Agent
Communication Language. FIPA 97 Specification, Version
2.0. Geneva, Switzerland, 1997.

Greaves, M. and others. Agent Conversation Policies,
Handbook of Agent Technology. Cambridge: AAAI Press/
MIT Press, 1999.

Holzmann, Gerard J. The Model Checker Spin, IEEE
Transactions On Software Engineering, Volume 23,
Number 5: 279-295 (May 1997).

Pressman, Roger S. Software Engineering: A
Practitioner’s Approach. New York: McGraw-Hill, 1997.

Rational Software Corporation. Unified Modeling
Language Notation Guide. Version 1.1, 1 September 1997.

Sycara, Katia P. Multiagent Systems, AI Magazine: 79-92,
(Summer 1998).

