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Abstract—“Good, fast, or cheap, pick two.” What drives
designers to make decisions on how to architect a system? The
stake-holder has certain abstract qualities in mind: efficiency,
quality, reliability, and so forth. How do we make sure our
system is guided by these qualities? What happens when the
system cannot always provide all the qualities? We describe
a framework for analyzing a design allowing decisions about
what qualities are more important to be made at design-time.
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I. INTRODUCTION

Organization-based multiagent systems engineering has

been proposed as a way to design complex adaptable systems

[4]. Agents interact and can be given tasks depending on

their individual capabilities. The system designer is faced

with the task of designing a system to not only meet func-

tional requirements, but also non-functional requirements.

System designers need tools to help them generate speci-

fication and evaluate design decisions early in the design

process. Conflicts within non-functional requirements should

be uncovered and, if necessary, the stakeholders should be

consulted to help resolve those conflicts. The approach we

are taking is to first generate a set of system traces using the

models generated at design time. Second, we analyze these

system traces, using additional information provided by the

system designer. Third, we generate a set of policies that

will guide the system toward the abstract qualities desired.

And, fourth, we analyze the generated policies for conflicts.

The main contributions of this paper are: (1) a formal

method for generating specifications at design time for

multiagent systems from abstract qualities, (2) a method of

automatically discovering conflicts in abstract qualities given

a system design, and (3) a way to analyze these conflicts.

The remainder of this paper is organized as follows. In

Section II, we give some background on the models used

in our multiagent systems and describe some related work.

In Section III, we present metrics constructed using the

ISO 9126 Software Qualities document. Policy generation

and conflict discovery are given in Sections IV and V

respectively. Conflict analysis is presented in Section VI.

Section VII presents and analyzes experimental results from

the application of our policy generation on a multiagent

system example. Section VIII concludes and presents some

ideas for future work.

II. BACKGROUND
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Figure 1: OMACS Metamodel.

The multiagent systems model that we are using through-

out the paper is the Organization Model for Adaptive

Computational Systems (OMACS) [4]. The basic OMACS

metamodel is given in Figure 1. OMACS defines standard

multiagent system entities and their relationships. Agents

are capable of playing roles. Roles can achieve goals.

Policies constrain the organization. The organization (which

is comprised of agents) assigns agents to play specific roles

in order to achieve specific goals. The organization may

make these assignments through a centralized approach (a

single agent makes the assignments), or through a distributed

approach. The Goal Model for Dynamic Systems (GMoDS)

[9] is used to model our goal structures. GMoDS allows for

such things as AND/OR decomposition of goals, as well

as, precedence between goals and triggering of new goal

instances (i.e. while trying to achieve a particular goal, an

event may cause another goal to become active). Instance

goals (triggered goals) may have parameters that specialize

them for the task at hand. For example, a Search goal may

be parametrized on the coordinates of the area to search.

Organization-based Multiagent System Engineering (O-

MaSE) [5] brings the entities and relationships in OMACS

together into a set of models. These models are supported by

AgentTool III 1, an analysis and design tool for multiagent

systems. The models are the Goal Model, Role Model, and

Agent Model. The Goal Model defines the goals of the

system and their relationships as specified by GMoDS. The

Role Model defines the Roles as well as their relationships

with Goals and Capabilities. The Agent Model defines the

Agents and their relationships with Capabilities.

1http://agenttool.projects.cis.ksu.edu/



Policies (or norms) have been used in multiagent system

engineering for some time. Various languages, frameworks,

enforcement and checking mechanisms have been used [1],

[11], [12]. Taking a model checking perspective (e.g. [13]),

we say that policies restrict the behavior of multiagent

systems. We view the multiagent system design as a set of

states. The states may contain non-domain specific proper-

ties such as goal achievement history or domain specific

properties such as the type of floor an agent currently

occupies. Policies are rules designed to restrict this set

of states. This restriction may happen at design time or

at runtime. Guidance policies restrict the behavior of a

multiagent system without sacrificing flexibility [6]. We use

(guidance) policies as formal rules that are applied to our

system. This is consistent with usage in formalizations such

as KAoS [12].

Guidance policies are a trace-based formalization of poli-

cies ‘that need not always be followed’[6]. They must be fol-

lowed when the system can still progress toward achieving

its goal. If the system cannot continue, the guidance polices

may be temporarily suspended. Guidance policies may be

arranged in a more-important-than relation, creating a set

of lattices. The policies are suspended from least-important

to most-important. Thus it is possible to have conflicting

guidance policies and yet still have a valid and viable (can

still progress toward achieving its goal) system.

There has been work in incorporating abstract qualities

into multiagent systems. Tropos defines the concept of a

soft-goal [2] that describes abstract qualities for the system.

These soft-goals, however, are mainly used to track decisions

in the goal model design for human consideration. Some

work has been done on model checking multiagent systems

[10], [13]. Automated policy generation has been used for

online learning [7]. These methods help the multiagent

system better tune to the environment in which it is de-

ployed. Chiang et al. [3] have automated learning of policies

for mobile ad-hoc networks. Their learning was an offline

approach using simulation to generate specific policies from

general ‘objectives’ and possible configurations.

III. QUALITY METRICS

ISO 9126 [8] defines a set of qualities for the evaluation

of software. This document breaks down software qualities

into six general areas: functionality, reliability, usability, effi-

ciency, maintainability, and portability. These characteristics

are broad and may apply in different ways to different types

of systems. In our research, we identified a group of metrics

that evaluate multiagent system traces in order to illustrate

our concepts. Each metric is formally defined and may be

measured precisely over the current system design.

A. System Traces

The set of traces form a tree. We use this structure to

determine what choices to make at each decision point in

order to maximize (or minimize) some metric. The choice

may be what role or what agent to use in order to achieve

a goal, or even what goal to pursue (in the case of OR

goals). It is important to note that the divergence in the traces

may also happen by changes in goal parameters, which are

normally beyond the control of the system. Thus, the metrics

and policies generated may need to take into account some

aspect of the goal parameters.

We used Bogor [10] to generate the system traces using

the models defined by the OMACS meta-model. Bogor is an

extensible, state of the art model checker. Our customized

Bogor uses an extended GMoDS goal model, a role model,

and an agent model to generate traces of a multiagent sys-

tem. We have extended the GMoDS model with a maximum

and minimum bounds on the triggers relationship in order

to bound the exploration of the trace-space in the model

checker. The traces consist of a sequence of agent goal

assignment achievements. We generate only traces in which

the top-level goal is achieved (system success).

An agent goal assignment is defined as a tuple,

〈Gi(x), Rj , Ak〉, containing a parametrized goal Gi(x), a

role Rj , and an agent Ak. The goal’s parameters x may be

any domain specific specialization of the goal Gi given at

the time the goal is dispatched (triggered) to the system.

B. Efficiency

We are using a trace-length based definition of efficiency.

The shorter the trace the more efficient is the top-level

goal achievement. Our strategy here is to make assignments

such that we minimize the total expected trace length.

This minimization will be dynamic in that it will take into

consideration the current trace progress. Thus we consider

goal achievements the system has made when determining

shortest trace length to pursue. We then convert this logic

statically into a set of policies that when enforced will

exhibit the same behavior as a minimization algorithm, given

current system goal achievements. Given the initial system

state, we prefer to make assignments to achieve the overall

shortest path. Thus, we will be generating directing policies

proscribing assignments (may still present multiple options).

Expected trace length is defined in Formula 1.

ExpLength(ξ) =

n∑

i=1

1

1 − pfi

(1)

ξ represents a single trace, while pfi is the probability of

failure for the assignment achievement i within that trace.

An assignment achievement is the accomplishment of an

assignment by an agent. Thus, an assignment achievement

failure is a failure of the agent to complete its assignment.

The probability of failure for the agent goal assignment

achievement (pfi) is the maximum probability of failure for

all the capabilities required for the role in the assignment:

pfi = max
cx∈capreq(Asi)

Pf(cx, Asi) (2)



It is evident here that some traces will have an infinite

expected length (probability of failure is 100%).
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Figure 2: Goal Choice & Capability Failure Probabilities

We are concentrating on the assignment of goals to agents

in the system. A goal assignment choice is depicted in

Figure 2. G1(x) represents the parametrized goal that needs

to be achieved. R1 and R2 are two different roles that are

able to achieve the goal G1. A1 and A2 are two agents that

posses capabilities required to play R1 and R2 respectively.

The failure probabilities are connected to each capability.

C. Quality of Product

Quality of achieved goals falls under the ISO software

quality of Functionality. Here we define quality as a measure

of the quality of goal achievement. Quality of goal achieve-

ment may depend on the role, agent, and goal (including

parameters). In our analysis, we limit ourselves to these

influences although goal achievement quality may depend

environment, history of the system, and current assignments.

Certain roles may obtain a better result when achieving

certain goals, likewise certain agents may play certain roles

better than other agents. These properties can be known

at design time. Usually this intuition is known by the

implementers and they may manually design an agent goal

assignment algorithm to favor these assignments.

In our analysis and experiments, we mapped assignments

to scores. The higher the score, the higher the quality

of product. The scores can be specified over the entire

assignment, or just portions. For example, role R1 may

achieve goal G1 better than role R2 when the parameters

of G1 is of class x. Agents who produce higher quality

products could also be part of the score determination.

The trace score is the average quality of product. We

realize some products may be more important than others,

however, we use a average as given in Formula 3. Let ξi be

the ith agent goal assignment in trace ξ of length n.

Qual(ξ) =
n∑

i=1

score(ξi)

n
(3)

D. Reliability

Sometimes failure should be avoided at all costs, thus,

even if there is a probabilistically shorter trace, it could

be the case that we choose the longer trace because we

want to minimize the chance of any failure. Formally, we

want to minimize goal assignment failures. We do this by

minimizing the probability of capability failure. Our strategy

here is to pick the minimal failure trace given the current

completed goals in the system.

We can use the capability failure matrix defined for

Efficiency. The score we are minimizing is defined as:

Fail(ξ) =

n∑

i=1

pfi (4)

Where pfi is defined as in the Efficiency metric (the prob-

ability of failure of assignment i within trace ξ).

It is important here to see the distinction between Reliabil-

ity and Efficiency. Efficiency is concerned with minimizing

the expected trace length, while Reliability is concerned with

minimizing the total number of failures. Thus, if we are

pursuing Efficiency, we may choose a path in which there

may be some failures, even through there is a path with no

failures, because the expected trace length is shorter in the

path with failures. Reliability will always choose a path with

less expected failures, even if the path is longer than another.

IV. POLICY GENERATION

To construct our policies, we first generate a set of traces

using our OMACS models as input to our customized Bogor

model checker. We then run a metric over each trace, giving

it a score. The aim here is to create policies to guide the

system to select the highest (or lowest) scoring trace, given

any subtrace prefix. Thus, we create a set of assignments that

will guide the system toward the maximum scoring traces.

There may be many traces with the same maximum score, in

this case we have a set of options. This selection is illustrated

in Figure 3. We generate policies that, when followed, guide

the system to traces that look like the highest scoring traces.

Thus, for the figure, we proscribe that from state S1, you

must make goal agent assignments that are in the highest

scoring traces (S2, S′

2, etc). For every subtrace, we generate

a set of agent goal assignment options. This may lead to

many policies, for this reason, after we generate the initial

set of policies, we prune and generalize them. Policies will

be of the form:

[guard] → α1 ∨ α2 ∨ . . . (5)

where αi is a generalized agent goal assignment and [guard]
is a conditional on the state of the system. The guard is also

specified in terms of the achieved agent goal assignments.
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Figure 3: System Traces to Prefer

We use two methods to reduce the size of the policy sets

generated. One method is to prune useless policies. Since



we produce a policy for every prefix trace, we may end up

proscribing actions when the system did not initially even

have a choice in the matter (the system was already forced

to take that choice). We find these policies by checking the

traces matched by the policies’ left-hand side (the guard). If

a policy only matches one trace, we can prune that policy

as it had no effect on the system.

The second method combines multiple policies through

generalization. If two or more policies offer the same

choices for assignments (meaning their right hand sides

are the same), the common pieces of the left hand side

are computed. If the new left hand construct (the common

pieces of the two policies) matches a non-empty intersection

of traces with the current policies and the right-hand side

of the new policy is not a subset of the right-hand side

of each of the matching policies, the potential policy is

discarded. Otherwise we remove the two policies that we

have combined and add the new combined policy. We repeat

this procedure until we do not combine any more policies.

V. CONFLICT DISCOVERY

Now that we are automatically generating policies for

different abstract qualities, we may generate conflicting

policies. After discovering these conflicts, we may use a

partial ordering of policies to overcome them or decide to

rework our initial system design.

Recall the policy structure in Formula 5, since we have

this policy structure and we are generating policies for

different qualities, we may have different types of conflicts

between policies generated for different qualities. These

conflicts may be discovered by examining the guard of each

policy and checking if there is an non-empty intersection

of traces where both guards are active. If the intersection is

non-empty and if the assignment choices are not equal, there

is a possibility of conflict. Now, it may be the case that the

right hand side of both AND’d together are satisfiable with

the OMACS constraints, for instance, that only one agent

may play a particular instance goal at once (Formula 6).

Sat((αx ∨ αy ∨ αz) ∧ (αa ∨ αb ∨ αc) ∧ β) (6)

Even if the formula is satisfiable, there may still be a need

for partial ordering between the policies. Since there may be

agent failure, we want to know what policies to relax first.

We can partition the conflicts into two sets: definitely con-

flicts and possibly conflicts. The definitely conflicts elements

will always conflict given the system design. The possibly

conflicts will only conflict if the configuration of the system

changes, i.e., in the case where there is capability or agent

loss. If we have statistics on capability failure, we can even

compute a probability of conflict. This probability could help

the designer determine if the possibility of conflict is likely

enough to spend more resources on overcoming it. Some

conflicts may be inherent in the design, due to constraints

on agents and capabilities or because of a sub-optimal

configuration. Being able to see these conflicts as early in

the design process (and especially before implementation)

will greatly help as it is much cheaper to change the design

earlier rather than later.

If policies generated from different abstract qualities defi-

nitely conflict, then this is an indicator to the system designer

that with the current constraints (agents, roles, and goals),

it is not possible to satisfy all of the stake-holder’s abstract

requirements. The designer and/or stake holder must modify

the models by adding agents, changing goals, or by relaxing

or redefining the abstract requirement.

We can choose to resolve the conflicts by specifying

which quality we prefer in each conflicting case. The de-

signer may prefer efficiency over quality in certain cases

and quality over efficiency in other cases. This choice will

be a conscious decision by the designer (perhaps after

consulting the stake-holders), and thus, a more engineered

approach than the ad-hoc and unclear decisions that might

be inadvertently made by implementers.

VI. CONFLICT ANALYSIS

Once we generate policies using the design models and

the abstract qualities desired, we can analyze any potential

conflicts between the abstract qualities by analyzing the

conflicts between the generated policies. We could simply

take each policy from a set of policies generated for a

particular quality and determine if it conflicts with any

policy generated for a different quality. This makes our

potential conflict space large and unmanageable. If we are

only analyzing conflicts between two qualities, the potential

conflict space is P1 × P2. Where P1 and P2 are the sets of

policies generated to support quality Q1 and Q2 respectively.

To make the conflict analysis more tractable for the

designer, we make an analysis of the parts of the policies that

are the point of conflict. These points of conflict tend to be

repeated. Thus, by looking at only the points of conflict we

are able to summarize the conflict information in a format

to allow a system designer to more easily make decisions

concerning the conflicts.

VII. EVALUATION

We took the Conference Management System (CMS)

example described in [6] and extended it with additional

choices for achieving goals by modifying the goal, role,

and agent models. The CMS example models the workings

of a scientific conference, authors submit papers, reviewers

review the submitted papers, and certain papers are selected

for the conference and printed in the proceedings. Goals of

the system are identified and decomposed into subgoals.

The top-level goal, Manage submissions, is decomposed

into several “and” subgoals, which means that in order

to achieve the top goal, the system must achieve all of

its subgoals. Leaf goals are goals that have no subgoals.

The leaf goals in this example consist of Collect papers,



Cap./Assign. 〈∗, ∗, PR〉 〈Thr, ∗, SR〉 〈App, ∗, SR〉 〈∗, Part, NPC〉 〈∗, Part, RPC〉 〈∗, Part, BPC〉
ReviewerInterface 0 0.5 0
PCMemInterface 0.1 0 0.5

Figure 4: Capability Failure Probabilities

Distribute papers, Partition papers, Review papers, Collect

reviews, Make decision, Inform accepted, Inform declined,

Collect finals, Master CD, and Print Proceedings. For each

leaf goals to be achieved, agents must play specific roles.

We augmented our models with a capability failure matrix

and a partial ordering. In our assignments ‘∗’ represents the

wild card element. Agent type abbreviations are given as:

Abbr. Agent Type

SR Specialized Reviewer

PR Plain Reviewer

NPC Normal Program Chair

RPC Rookie Program Chair

BPC Busy Program Chair

Figure 4 gives an abbreviated capability failure matrix for

our system. ReviewerInterface and PCMemInterface are

capabilities defined in the CMS role model. The assignment

is represented by a tuple containing parameters, goal, and

agent. ‘Thr’ and ‘App’ represent theory and application

paper parameters respectively, while ‘Part’ represents the

Partition goal. Thus, the ReviewerInterface fails with a 50%
probability when being used by the Specialized Reviewer on

goals parametrized by theory papers. Our quality of product

ordering is depicted in Figure 5. Nodes represent agent goal

assignments, while a directed edge from node N1 to N2

indicates that the assignment in N1 produces a higher quality

of product than the assignment in N2.

<*, *, PR>

<*, *, SR>

(a) Review Assignments

<*, Part, BPC>

<*, Part, NPC>

<*, Part, RPC>

(b) Partition Assignments

Figure 5: Quality of Product Ordering

We ran our customized Bogor on the goal, role, and agent

models to generate traces for our system. This produced

2592 unique system traces. Using this information along

with our failure matrix and quality orderings, we then

produced policies to guide the system toward the abstract

qualities desired by the system designer.

We loaded our policies into a simulation engine, which

ran the Conference Management System to test the effects

of having the generated policies. The simulator picks a

random role and agent who is capable of achieving a goal

without violating any policies (or, if necessary for progress,

violating guidance policies) and achieves an active goal. This

is repeated until either the top-level goal is achieved or we

cannot make an more progress (system failure). We varied

the number of papers submitted to the system from 1 to 100
and took an average of 1000 runs for each number of papers.
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Figure 6: CMS Results (Lower is Better)

Figure 6a shows the results of the policies generated using

the efficiency metric on the number of assignments used to

achieve the top-level goal. The top line is without policies

while the lower line is with the generated policies enabled.

The policies are clearly having an effect on the system

assignments (and thus efficiency).

To evaluate the impact of our reliability policies, we

measure the number of agent assignment failures. That is,

we counted the number of times an agent failed to achieve

an assigned goal. For the runs using the generated policies, it

is not surprising that we did not have a single agent failure.

The runs without employing the policies, however had many

agent failures as depicted in Figure 6b (note line on the x-

axis).

To evaluate the quality policies, we measured how many

times the system produced a lower quality result when it

could have produced a higher one. Figure 6c (note line on

the x-axis) shows that without the generated policies, our

system produced much lower quality products than with the

generated policies. We have also run similar experiments

with other multiagent system design models such as those

described in [7] and obtained similar results.



VIII. CONCLUSIONS AND FUTURE WORK

We have provided a framework for stating, measuring,

and evaluating abstract quality requirements against poten-

tial multiagent system designs. We do this by generating

policies that can be used either as a formal specification,

or dynamically within a given multiagent system to guide

the system toward the maximization (or minimization) of

the abstract quality constraints. These policies are generated

offline, using model checking and automated trace analysis.

Our method allows the system designer to see potential

conflicts between abstract qualities that can occur in their

system. This allows them to resolve these conflicts early

in the system design process. The conflicts can be resolved

using an ordering of the qualities which can be parametrized

on domain specific information in the goals. They could also

cause a system designer to decide to change their design to

better achieve the quality requirements. This is easier, since

we are in the system design and not in the implementation.

These policies can be seen to guide the system toward the

abstract qualities as defined in the metrics. Our experiments

showed significant performance, quality, and reliability in-

creases over a system using the same models, but without

the automated policy generation.

We are further evaluating the effect of applying multiple

qualities within the same multiagent system. We expect that

with conflict resolution, the designer will be able to prioritize

the different qualities in different situations. One approach is

to use an unsatisfiable-core to determine the smallest points

of conflict in order to suggest the easiest way to resolve the

conflict. Another approach involves the use of a minimizing

satisfaction algorithm to suggest the best way to resolve the

conflict while minimizing costs (economical, temporal, etc).

Automated abstraction of the goal parameters using clas-

sification is an area that needs to be explored. If we had

a more precise notion of the goal parameters, we would

better be able to generate policies targeting attributes of

the goal parameters. Another area that can be explored is

splitting policies to target conflicts more precisely. This of

course needs to be balanced with generality (we would not

want one policy for each possible scenario). More metrics

over the multiagent system traces should be developed.

For example, Security also falls under the ISO software

quality of Functionality. Focusing on information flow, we

could generate a set of policies to minimize information

dissemination (maximizing privacy).
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