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Abstract 
This paper reports our progress in applying multiagent 
systems analysis and design techniques to autonomous 
robotics applications.  In this paper, we apply the 
Multiagent Systems Engineering (MaSE) methodology to 
design a team of autonomous, heterogeneous search and 
rescue robots.  MaSE provides a top-down approach to 
building multirobotic systems instead of the bottom up 
approach employed in most robotic implementations.  We 
follow the MaSE steps and discuss various approaches and 
their impact on the final system design.   

Introduction   
There have been many advances in agent-oriented software 
engineering recently.  However, many of these advances 
have not been applied to cooperative robotics even though 
earlier attempts at using agent approaches were successful 
(Drogoul and Collinot 1998).  While a number of 
architectures have been developed, there have been few 
attempts at defining high-level approaches to cooperative 
robotics systems design (Parker 1998).  In this paper, we 
attempt to determine the applicability of modern 
multiagent design approaches to cooperative robotics.  We 
believe that using multiagent approaches for cooperative 
robotics may provide some of the missing elements 
evidenced in many cooperative robotic applications, such 
as generality, adaptive organization, and fault tolerance 
(Parker 1996).   
 In this paper, we apply the Multiagent Systems 
Engineering (MaSE) methodology to design a team of 
autonomous, heterogeneous search and rescue robots.  
MaSE provides a top-down approach to building 
multirobotic systems instead of the bottom up approach 
employed in most robotic implementations.  We follow the 
steps of the MaSE methodology and discuss various 
approaches and their impact on the final system design.  
We do assume that the low-level behaviors common to 
mobile robots, such as motion and sensor control, already 
exist in libraries.  Our focus is on designing high-level 
cooperative behaviors for specific applications. 
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Designing Multirobotic Agent Systems 
We chose to use the MaSE methodology (DeLoach, Wood 
and Sparkman 2001) to design our multirobot system 
because it provides a top-down approach and a detailed 
sequence of models for developing multiagent systems.  
The seven-step MaSE process is shown in Figure 1, where 
the rounded rectangles denote the models used in each 
step.  The goal of MaSE is to guide a system developer 
from an initial system specification to system 
implementation.  This is accomplished by directing the 
designer through this set of inter-related system models. 
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Figure 1.  MaSE Methodology 

 Because MaSE was designed to be independent of any 
particular multiagent system architecture, agent 
architecture, programming language, or communication 
framework, it seemed a good fit for cooperative robotic 
design.  The next few paragraphs briefly describe the steps 
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of MaSE as applied to our system.  However, because we 
are focusing on high-level design issues, we do not delve 
into the details of designing the internal agent architecture, 
which is captured in the Assembling Agent Classes step.  
However, MaSE does provide general capabilities for 
modeling various generic agent (robot) architectures, such 
as ALLIANCE (Parker 1996). 

Capturing Goals 
The first step in MaSE is Capturing Goals, which takes the 
initial system specification and transforms it into a 
structured set of system goals as depicted in a Goal 
Hierarchy Diagram (Figure 2).  In MaSE, a goal is a 
system-level objective; agents may be assigned goals to 
achieve, but goals have a system-level context.  
 There are two steps to Capturing Goals: identifying the 
goals and structuring goals.  The analyst identifies goals by 
analyzing whatever requirements are available (e.g., 
detailed technical documents, user stories, or formal 
specifications).  Once the goals have been captured and 
explicitly stated, they are analyzed and structured into a 
Goal Hierarchy Diagram.  In a Goal Hierarchy Diagram, 
goals are organized by importance.  Each level of the 
hierarchy contains goals that are roughly equal in scope 
and sub-goals are necessary to satisfy parent goals.  
Eventually, each goal will be associated with roles and 
agent classes that are responsible for satisfying that goal. 
 Figure 2 shows an initial high-level goal hierarchy for 
the robotic search and rescue domain.  Obviously, this 
could be broken down into more specific goals that each 
agent could use in attaining these goals; however, the 
purpose of the goal hierarchy diagram in MaSE is to 
identify the main system level goals, not individual agent 
goals. 

Applying Use Cases 
The Applying Uses Cases step is an important step in 
translating goals into roles and associated tasks.  Use cases 
are drawn from the system requirements and are narrative 
descriptions of a sequence of events that define desired 
system behavior.  They are examples of how the system 

should behave in a given case.   
 To help determine the actual communications required 
within a system, the use cases are restructured as Sequence 
Diagrams, as shown in Figure 3.  A Sequence Diagram 
depicts a sequence of events between multiple roles and, as 
a result, defines the minimum communication that must 
take place between roles.  The roles identified in this step 
form the initial set of roles used to fully define the system 
roles in the next step and the events identified are used 
later to help define tasks and conversations. 
 In the example in Figure 3, we assume a team consisting 
of four roles: one searcher, one organizer, and (at least) 
two rescuers.  The sequence diagram shows the events that 
occur when an agent playing the searcher role locates a 
victim.  The searcher informs an organizer, who in turn 
notifies all available rescuers.  Each rescuer returns its cost 
to retrieve the victim (based on location, number of other 
victims to retrieve, etc.) to the organizer who selects the 
most appropriate rescuer.  The organizer notifies the 
rescuers of their assignments for this victim and then 
notifies the original searcher that help is on the way.  
 Note that just because we have identified an organizer 
role in the use case, we do not have to have an organizer 
agent in the final design.  The organizer role can be 
assigned to any agent (robot) in the final design or even the 
environment if we are using an appropriate framework 
with the ability to perform reactive tasks (Murphy, Picco 
and Roman 2001). 
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Figure 3.  Sequence Diagram 
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Figure 2.  Goal Hierarchy Diagram 



   

Refining Roles 
The third step in MaSE is to ensure we have identified all 
the necessary roles and to develop the tasks that define role 
behavior and communication patterns.  Roles are identified 
from the use cases as well as the system goals.  We ensure 
all system goals are accounted for by associating each goal 
with a specific role that is eventually played by at least one 
agent in the final design.  Each goal is usually mapped to a 
single role.  However, there are many situations where it is 
useful to combine multiple goals in a single role for 
convenience or efficiency.  Roles definitions are captured 
in a standard Role Model as shown in Figure 4. 
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Figure 4.  Role Model 

 In our search and rescue system, we have identified 
three roles: searcher, rescuer, and organizer.  The role 
model can be used to explain high-level system operation.  
In Figure 4 we can see that searcher roles negotiate with 
each other to determine the areas each will explore.  After 
the negotiation is complete, the searchers go to their 
assigned areas and attempt to locate victims.  Once victims 
are located, they send the information to the organizer, 
who in turn attempts to find the appropriate rescuer to 
rescue the victims.  The rescuers then carry out the rescue. 
Defining Tasks.  Once roles have been identified, the 
detailed tasks, that define how a role accomplishes its 
goals, are defined and assigned to specific roles.  A set of 
concurrent tasks provide a high-level description of what a 
role must do to satisfy its goals, including how it interacts 
with other roles.  This step is documented in an expanded 
role model as shown in Figure 5.  The ellipses in the 
diagram denote tasks performed by the attached role while 
the arrows between tasks define protocols that specify how 
communication is performed between roles.  In our search 
and rescue system, the Searcher role has two basic tasks: 
(1) to find an area to search, which must be negotiated 
with other Searcher roles, and (2) to locate victims in its 
define search area.  The dotted line protocol between the 
two tasks denotes an internal communication between 
tasks in the same agent whereas the solid lines represent 
communication between different agents. 
 An example of a Concurrent Task Diagram defining the 
Locate Victim task is shown in Figure 6.  The syntax of 
state transitions is trigger(args1) [guard] / 
transmission(args2), which is means that if an event 
trigger is received with a number of arguments args1 and 
the condition guard holds, then the message transmission 
is sent with the set of arguments args2 (all items are 
optional).  Actions within each state are executed 
sequentially and are written as functions.   
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Figure 5.  Role Model with Tasks 

 Locate Victim is a reactive task, which means that it is 
initiated whenever a search(area) message is received 
from the Find Area to Search task.  After the task receives 
a search area, it plans a route to get to the area and then 
goes about executing the route.  If route execution fails, 
the task re-plans the route and updates the map.  When the 
robot gets to its area, it scans the area for victims.  If one is 
found, it notifies an organizer role.  The robot then moves 
to another area and continues searching.  If no victims are 
found, the robot moves to another area and scans there.  
Once it has scanned its area, it sends the Find area to 
search task a complete message and terminates.  Notice 
that concurrent tasks actually define a plan on how to 
locate victims.  The individual functions in the task are 
defined as functions on abstract data types or as low-level 
behaviors defined in the agent (robot) architecture. 

ScanArea

scannedArea = scan();
found = foundVictim()

area = reduceSize(area)

search(area)

PlanRoute

loc = getCurrentLocation()
route = planRoute(loc, map, area)

ExecuteRouteStep

success = executeRoute(loc, route, map)

[NOT success]

CheckCompletion

loc = updateLocation(loc, route, map)
route = update(loc, route)

[success] [NOT routeComplete(route)]

[routeComplete(route)][NOT found && NOT areaDone(area)]

[NOT found && areaDone(area)]
^ complete(area)

Wait

[found] ^ send(foundVictim(location), organizer)

receive(acknowledge(location), organizer)
[NOT areaDone(area)]

receive(acknowledge(location), organizer)
[areaDone(area)] ^ complete(area)

 

Figure 6.  Locate Victim Task 

 



Creating Agent Classes 
After each task is defined, we are ready for the Design 
phase.  In the first step, Creating Agent Classes, agent 
classes are identified from roles and documented in an 
Agent Class Diagram, as shown in Figure 7.  Agent Class 
Diagrams depict agent classes as boxes and the 
conversations between them as lines connecting the agent 
classes.  As with goals and roles, we may define a one-to-
one mapping between roles and agent classes; however, we 
may combine multiple roles in a single agent class or map 
a single role to multiple agent classes.  Since agents inherit 
the communication paths between roles, any paths between 
two roles become conversations between their respective 
classes.  Thus, as roles are assigned to agent classes, the 
system organization is defined. 
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Figure 7.  Agent Class Diagram for Design 1 

 The system shown in Figure 7 consists of only two types 
of agents: one playing the searching and organizing roles 
and one playing the searching and rescue roles 
(presumably based on the sensor/effector packages on each 
robot).  In this case, since both the Search and Rescue 
agents can play the Searcher role, there are duplicate 
conversation types: victimFound, which is derived from 
the victim located protocol, and negotiate, which is derived 
from the negotiate areas protocol.  The only other 
conversation is the findRescuer conversation, which is 
derived from the rescue auction protocol. 
 A different design, based on the same role model, is 
shown in Figure 8.  In this design, we created a separate 
agent class for the organizer role, which can reside on a 
robot or on a computer connected via a wireless network.   
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Figure 8.  Agent Class Diagram for Design 2 

Constructing Conversations 
Once we have determined how to assign roles to agents, 
we can start Constructing Conversations.  A conversation 
defines a coordination protocol between exactly two agents 

and is modeled using two Communication Class Diagrams, 
one for the initiator and one for the responder.  A 
Communication Class Diagram is a pair of finite state 
machines that define a conversation between two 
participant agent classes.  Figure 9 shows the conversation 
extracted from the Locate Victim task for the Searcher and 
Organizer roles.  Notice that this conversation will exist in 
our final system design regardless of which design we 
choose.  The only difference between the two designs is 
the agents participating in the conversation, which is 
determined by who plays the organizer role. 

Wait FindRescuer

findRescuer(location)

^ foundVictim(location)

acknowledge(location)

foundVictim(location)

 ̂acknowledge(location)

 

Figure 9.  victimFound Conversation 

Deployment Diagrams 
After defining the details of each conversation, the final 
design step is defining the implementation in its intended 
environment using Deployment Diagrams.  In robotic 
applications, deployments define which agents are 
assigned to which robots.  In some cases, only one agent is 
allowed per robot; however, if sufficient processing power 
is available, there is no reason to limit the number of 
agents per robot.  One possible deployment diagram for 
Design 1 is shown in Figure 10.  In this case, there are two 
robots that have a rescue capability while only one has a 
search only capability.  The lines between the agents 
denote communications channels and thus each agent may 
communicate directly with the others based on the 
allowable conversations. 
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Figure 10.  Deployment Diagram for Design 1 

 A second deployment based on Design 2 is shown in 
Figure 11.  In this case, we also have one searcher only 
and two rescuer robots.  In this design, the Chief agent is 
separate from the Search agent.  However, by putting the 
Chief agent on the same platform as the Search agent gives 
us basically the same design as Figure 10.  In the case 
where we can only have one agent per platform, we could 



   

redesign the Agent Class Diagram and combine the 
appropriate roles into a single agent class. 
 A third alternative, also based on Design 2, is shown in 
Figure 12.  In this deployment, all three robots have rescue 
agents.  This shows how Design 2 is more adaptable to 
various configurations than Design 1 due to the separation 
of the searcher and organizer roles.  Using Design 2, we 
are forced to have at least one Search only agent. 
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Figure 11.  Deployment Diagram for Design 2 
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Figure 12.  Deployment Diagram for Design 2 

 In each design, team adaptivity is limited by our 
assignment of the Chief agent to a single robot, which 
means that only that robot can play the Organizer role.  If 
that robot is lost or malfunctions, the team has lost its 
ability to function effectively.  However, since the 
Organizer role is purely computational, there is no reason 
we cannot assign the Organizer role to each robot, thus 
providing redundancy.  Deciding which role each robot 
should play then becomes a team decision.  Reasoning 
about which roles to play is an area of future research. 

Implementation 
Our original intention was to implement this design using a 
set of three Pioneer robots using the Colbert programming 
language under the Saphira interpreter (ActivMedia 1997) 
as shown in Figure 13.  However, limitations of Colbert 
and Saphira required us to rethink our approach.  Although 
MaSE tasks and conversations mapped nicely to Colbert 
activities, which run as separate threads, Colbert did not 
provide the required data types and data passing 
mechanisms required for an efficient implementation.  
Relying on Colbert and Saphira also limited our 
implementation to Pioneer robots instead of a 
heterogeneous mix of robots. 

 Therefore, we modified our initial approach and decided 
to use a heterogeneous set of robots.  The platform for our 
search and rescue system was a group of two Nomad Scout 
and three Pioneer 2 robots (ActivMedia 1999).  The 
resulting architecture of our system is shown in Figure 14, 
with an object model depiction of the same architecture 
shown in Figure 15.  While we changed the underlying 
platform for the research, the analysis and design of the 
system did not change.  The MaSE models developed for 
the original implementation were used almost without 
modification for the final system. 
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Figure 13.  Implementation with Saphira/Colbert 
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Figure 14.  Search and Rescue Robot Architecture 

  In our approach, tasks identified in the role model are 
implemented as objects under control of the overall agent 
object.  Conversations are implemented as Java objects and 
are associated with specific tasks.  Since tasks are assumed 
to execute concurrently in MaSE, we use separate Java 
threads for each task.  Conversations run in the same 
thread as their task to ensure the semantics of the MaSE 
task diagrams are preserved in the implementation. 
  To communicate with other robots, we developed a 
Java-based message-oriented middleware (MOM) that 
allows robots to send receive messages over designated 
sockets via wireless TCP/IP connections.  The MOM 
package receives conversation requests and relays them to 
the agent via the Message Handler method in the agent, 
whose job it is to start new conversations and task 
activities.  After a conversation is started, each task or 



conversation can send or receive messages directly through 
MOM function calls.  All the software used to control the 
robots resides on laptops attached to each robot.  We used 
two types of robots, those with rescue capability and those 
without.  Figure 16 shows a Pioneer robot equipped with 
gripper capable of performing the rescuer role.  (Here the 
victim is represented by a long cylindrical potato chip 
canister.) 
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Figure 15.  Object View of Architecture 

Conclusions 
From our initial investigation, it appears that MaSE has the 
features required to design cooperative robot applications.  
Specifically, the concurrent tasks used during the analysis 
phase map nicely to the typical behaviors in robot 
architectures.   MaSE also provides the high-level, top-
down approach missing in many cooperative robot 
applications.  While we only addressed high-level design 
here (we skipped the Assembling Agent Classes step), 
MaSE uses a component-based approach to designing the 
internal agent architectures, which is applicable in most 
any application.  We also showed our proposed 
implementation architecture. 
 Our future research plans include looking at fault 
tolerance and dynamic team reconfiguration based on the 
roles each robot is playing, or can play in the system.  We 
also plan to provide a more detailed approach to mapping 
the high-level behaviors to low-level behaviors as defined 
in standard robotic architectures. 

 

Figure 16.  Pioneer Rescuing Victim 
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