

Applying Agent Oriented Software Engineering to Cooperative Robotics

Scott A. DeLoach, Eric T. Matson, Yonghua Li

Department of Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506

(785) 532-6350
sdeloach@cis.ksu.edu

Abstract
This paper reports our progress in applying multiagent
systems analysis and design techniques to autonomous
robotics applications. In this paper, we apply the
Multiagent Systems Engineering (MaSE) methodology to
design a team of autonomous, heterogeneous search and
rescue robots. MaSE provides a top-down approach to
building multirobotic systems instead of the bottom up
approach employed in most robotic implementations. We
follow the MaSE steps and discuss various approaches and
their impact on the final system design.

Introduction
There have been many advances in agent-oriented software
engineering recently. However, many of these advances
have not been applied to cooperative robotics even though
earlier attempts at using agent approaches were successful
(Drogoul and Collinot 1998). While a number of
architectures have been developed, there have been few
attempts at defining high-level approaches to cooperative
robotics systems design (Parker 1998). In this paper, we
attempt to determine the applicability of modern
multiagent design approaches to cooperative robotics. We
believe that using multiagent approaches for cooperative
robotics may provide some of the missing elements
evidenced in many cooperative robotic applications, such
as generality, adaptive organization, and fault tolerance
(Parker 1996).
 In this paper, we apply the Multiagent Systems
Engineering (MaSE) methodology to design a team of
autonomous, heterogeneous search and rescue robots.
MaSE provides a top-down approach to building
multirobotic systems instead of the bottom up approach
employed in most robotic implementations. We follow the
steps of the MaSE methodology and discuss various
approaches and their impact on the final system design.
We do assume that the low-level behaviors common to
mobile robots, such as motion and sensor control, already
exist in libraries. Our focus is on designing high-level
cooperative behaviors for specific applications.

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

Designing Multirobotic Agent Systems
We chose to use the MaSE methodology (DeLoach, Wood
and Sparkman 2001) to design our multirobot system
because it provides a top-down approach and a detailed
sequence of models for developing multiagent systems.
The seven-step MaSE process is shown in Figure 1, where
the rounded rectangles denote the models used in each
step. The goal of MaSE is to guide a system developer
from an initial system specification to system
implementation. This is accomplished by directing the
designer through this set of inter-related system models.

Creating Agent
Classes

Initial System
Context

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing Goals

Refining Roles

Assembling
Agent Classes

System Design

Applying Use
Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

Analysis
D

esign

Figure 1. MaSE Methodology

 Because MaSE was designed to be independent of any
particular multiagent system architecture, agent
architecture, programming language, or communication
framework, it seemed a good fit for cooperative robotic
design. The next few paragraphs briefly describe the steps

sdeloach
Proceedings of the The 15th International FLAIRS Conference (FLAIRS 2002). Pensacola, Florida. May 16-18, 2002.

of MaSE as applied to our system. However, because we
are focusing on high-level design issues, we do not delve
into the details of designing the internal agent architecture,
which is captured in the Assembling Agent Classes step.
However, MaSE does provide general capabilities for
modeling various generic agent (robot) architectures, such
as ALLIANCE (Parker 1996).

Capturing Goals
The first step in MaSE is Capturing Goals, which takes the
initial system specification and transforms it into a
structured set of system goals as depicted in a Goal
Hierarchy Diagram (Figure 2). In MaSE, a goal is a
system-level objective; agents may be assigned goals to
achieve, but goals have a system-level context.
 There are two steps to Capturing Goals: identifying the
goals and structuring goals. The analyst identifies goals by
analyzing whatever requirements are available (e.g.,
detailed technical documents, user stories, or formal
specifications). Once the goals have been captured and
explicitly stated, they are analyzed and structured into a
Goal Hierarchy Diagram. In a Goal Hierarchy Diagram,
goals are organized by importance. Each level of the
hierarchy contains goals that are roughly equal in scope
and sub-goals are necessary to satisfy parent goals.
Eventually, each goal will be associated with roles and
agent classes that are responsible for satisfying that goal.
 Figure 2 shows an initial high-level goal hierarchy for
the robotic search and rescue domain. Obviously, this
could be broken down into more specific goals that each
agent could use in attaining these goals; however, the
purpose of the goal hierarchy diagram in MaSE is to
identify the main system level goals, not individual agent
goals.

Applying Use Cases
The Applying Uses Cases step is an important step in
translating goals into roles and associated tasks. Use cases
are drawn from the system requirements and are narrative
descriptions of a sequence of events that define desired
system behavior. They are examples of how the system

should behave in a given case.
 To help determine the actual communications required
within a system, the use cases are restructured as Sequence
Diagrams, as shown in Figure 3. A Sequence Diagram
depicts a sequence of events between multiple roles and, as
a result, defines the minimum communication that must
take place between roles. The roles identified in this step
form the initial set of roles used to fully define the system
roles in the next step and the events identified are used
later to help define tasks and conversations.
 In the example in Figure 3, we assume a team consisting
of four roles: one searcher, one organizer, and (at least)
two rescuers. The sequence diagram shows the events that
occur when an agent playing the searcher role locates a
victim. The searcher informs an organizer, who in turn
notifies all available rescuers. Each rescuer returns its cost
to retrieve the victim (based on location, number of other
victims to retrieve, etc.) to the organizer who selects the
most appropriate rescuer. The organizer notifies the
rescuers of their assignments for this victim and then
notifies the original searcher that help is on the way.
 Note that just because we have identified an organizer
role in the use case, we do not have to have an organizer
agent in the final design. The organizer role can be
assigned to any agent (robot) in the final design or even the
environment if we are using an appropriate framework
with the ability to perform reactive tasks (Murphy, Picco
and Roman 2001).

victim location

Searcher

victim location

cost to rescue

cost to rescue

locate victim

ignore victim

Organizer Rescuer Rescuer

victim location

rescuer identified

Figure 3. Sequence Diagram

1. Rescue victims

1.3.3 Carry
victims home

1.1.1 Search
area

1.1.2 Identify
victims

1.1.3 Report
vicitims

1.3.1 Locate
victims

1.3.2 Pickup
victims

1.1 Find victims 1.3 Get victims to
safety

1.2 Organize
rescue of found

victims

Figure 2. Goal Hierarchy Diagram

Refining Roles
The third step in MaSE is to ensure we have identified all
the necessary roles and to develop the tasks that define role
behavior and communication patterns. Roles are identified
from the use cases as well as the system goals. We ensure
all system goals are accounted for by associating each goal
with a specific role that is eventually played by at least one
agent in the final design. Each goal is usually mapped to a
single role. However, there are many situations where it is
useful to combine multiple goals in a single role for
convenience or efficiency. Roles definitions are captured
in a standard Role Model as shown in Figure 4.

Searcher

1.1, 1.1.1,
1.1.2, 1.1.3

Rescuer

1.3, 1.3.1,
1.3.2, 1.3.3

Organizer

1.2

negotiate areas

victim
located

rescue
auction

Figure 4. Role Model

 In our search and rescue system, we have identified
three roles: searcher, rescuer, and organizer. The role
model can be used to explain high-level system operation.
In Figure 4 we can see that searcher roles negotiate with
each other to determine the areas each will explore. After
the negotiation is complete, the searchers go to their
assigned areas and attempt to locate victims. Once victims
are located, they send the information to the organizer,
who in turn attempts to find the appropriate rescuer to
rescue the victims. The rescuers then carry out the rescue.
Defining Tasks. Once roles have been identified, the
detailed tasks, that define how a role accomplishes its
goals, are defined and assigned to specific roles. A set of
concurrent tasks provide a high-level description of what a
role must do to satisfy its goals, including how it interacts
with other roles. This step is documented in an expanded
role model as shown in Figure 5. The ellipses in the
diagram denote tasks performed by the attached role while
the arrows between tasks define protocols that specify how
communication is performed between roles. In our search
and rescue system, the Searcher role has two basic tasks:
(1) to find an area to search, which must be negotiated
with other Searcher roles, and (2) to locate victims in its
define search area. The dotted line protocol between the
two tasks denotes an internal communication between
tasks in the same agent whereas the solid lines represent
communication between different agents.
 An example of a Concurrent Task Diagram defining the
Locate Victim task is shown in Figure 6. The syntax of
state transitions is trigger(args1) [guard] /
transmission(args2), which is means that if an event
trigger is received with a number of arguments args1 and
the condition guard holds, then the message transmission
is sent with the set of arguments args2 (all items are
optional). Actions within each state are executed
sequentially and are written as functions.

Find
rescuer

Locate
victims

Find area
to search

Searcher

1.1, 1.1.1,
1.1.2, 1.1.3

Rescuer

1.3, 1.3.1,
1.3.2, 1.3.3

Organizer

1.2

Acquire
new victims

Rescue
Victims

negotiate
areas

search area
victim

located
rescue
auction

rescue victim

Figure 5. Role Model with Tasks

 Locate Victim is a reactive task, which means that it is
initiated whenever a search(area) message is received
from the Find Area to Search task. After the task receives
a search area, it plans a route to get to the area and then
goes about executing the route. If route execution fails,
the task re-plans the route and updates the map. When the
robot gets to its area, it scans the area for victims. If one is
found, it notifies an organizer role. The robot then moves
to another area and continues searching. If no victims are
found, the robot moves to another area and scans there.
Once it has scanned its area, it sends the Find area to
search task a complete message and terminates. Notice
that concurrent tasks actually define a plan on how to
locate victims. The individual functions in the task are
defined as functions on abstract data types or as low-level
behaviors defined in the agent (robot) architecture.

ScanArea

scannedArea = scan();
found = foundVictim()

area = reduceSize(area)

search(area)

PlanRoute

loc = getCurrentLocation()
route = planRoute(loc, map, area)

ExecuteRouteStep

success = executeRoute(loc, route, map)

[NOT success]

CheckCompletion

loc = updateLocation(loc, route, map)
route = update(loc, route)

[success] [NOT routeComplete(route)]

[routeComplete(route)][NOT found && NOT areaDone(area)]

[NOT found && areaDone(area)]
^ complete(area)

Wait

[found] ^ send(foundVictim(location), organizer)

receive(acknowledge(location), organizer)
[NOT areaDone(area)]

receive(acknowledge(location), organizer)
[areaDone(area)] ^ complete(area)

Figure 6. Locate Victim Task

Creating Agent Classes
After each task is defined, we are ready for the Design
phase. In the first step, Creating Agent Classes, agent
classes are identified from roles and documented in an
Agent Class Diagram, as shown in Figure 7. Agent Class
Diagrams depict agent classes as boxes and the
conversations between them as lines connecting the agent
classes. As with goals and roles, we may define a one-to-
one mapping between roles and agent classes; however, we
may combine multiple roles in a single agent class or map
a single role to multiple agent classes. Since agents inherit
the communication paths between roles, any paths between
two roles become conversations between their respective
classes. Thus, as roles are assigned to agent classes, the
system organization is defined.

Rescue

Searcher
Rescuer

Search

Searcher
Organizer

negotiate

victimFound

findRescuer

victimFound

negotiate

Figure 7. Agent Class Diagram for Design 1

 The system shown in Figure 7 consists of only two types
of agents: one playing the searching and organizing roles
and one playing the searching and rescue roles
(presumably based on the sensor/effector packages on each
robot). In this case, since both the Search and Rescue
agents can play the Searcher role, there are duplicate
conversation types: victimFound, which is derived from
the victim located protocol, and negotiate, which is derived
from the negotiate areas protocol. The only other
conversation is the findRescuer conversation, which is
derived from the rescue auction protocol.
 A different design, based on the same role model, is
shown in Figure 8. In this design, we created a separate
agent class for the organizer role, which can reside on a
robot or on a computer connected via a wireless network.

Rescue

Searcher
Rescuer

Search

Searcher

negotiate

victimFound

findRescuer

victimFound

negotiate

Chief

Organizer

Figure 8. Agent Class Diagram for Design 2

Constructing Conversations
Once we have determined how to assign roles to agents,
we can start Constructing Conversations. A conversation
defines a coordination protocol between exactly two agents

and is modeled using two Communication Class Diagrams,
one for the initiator and one for the responder. A
Communication Class Diagram is a pair of finite state
machines that define a conversation between two
participant agent classes. Figure 9 shows the conversation
extracted from the Locate Victim task for the Searcher and
Organizer roles. Notice that this conversation will exist in
our final system design regardless of which design we
choose. The only difference between the two designs is
the agents participating in the conversation, which is
determined by who plays the organizer role.

Wait FindRescuer

findRescuer(location)

^ foundVictim(location)

acknowledge(location)

foundVictim(location)

 ̂acknowledge(location)

Figure 9. victimFound Conversation

Deployment Diagrams
After defining the details of each conversation, the final
design step is defining the implementation in its intended
environment using Deployment Diagrams. In robotic
applications, deployments define which agents are
assigned to which robots. In some cases, only one agent is
allowed per robot; however, if sufficient processing power
is available, there is no reason to limit the number of
agents per robot. One possible deployment diagram for
Design 1 is shown in Figure 10. In this case, there are two
robots that have a rescue capability while only one has a
search only capability. The lines between the agents
denote communications channels and thus each agent may
communicate directly with the others based on the
allowable conversations.

S1: Search R2:
Rescue

R1:
Rescue

Figure 10. Deployment Diagram for Design 1

 A second deployment based on Design 2 is shown in
Figure 11. In this case, we also have one searcher only
and two rescuer robots. In this design, the Chief agent is
separate from the Search agent. However, by putting the
Chief agent on the same platform as the Search agent gives
us basically the same design as Figure 10. In the case
where we can only have one agent per platform, we could

redesign the Agent Class Diagram and combine the
appropriate roles into a single agent class.
 A third alternative, also based on Design 2, is shown in
Figure 12. In this deployment, all three robots have rescue
agents. This shows how Design 2 is more adaptable to
various configurations than Design 1 due to the separation
of the searcher and organizer roles. Using Design 2, we
are forced to have at least one Search only agent.

S1: Search R2:
Rescue

R1:
Rescue

O1: Chief

Figure 11. Deployment Diagram for Design 2

R1:
Rescue

R2:
Rescue

R3:
Rescue

O1: Chief

Figure 12. Deployment Diagram for Design 2

 In each design, team adaptivity is limited by our
assignment of the Chief agent to a single robot, which
means that only that robot can play the Organizer role. If
that robot is lost or malfunctions, the team has lost its
ability to function effectively. However, since the
Organizer role is purely computational, there is no reason
we cannot assign the Organizer role to each robot, thus
providing redundancy. Deciding which role each robot
should play then becomes a team decision. Reasoning
about which roles to play is an area of future research.

Implementation
Our original intention was to implement this design using a
set of three Pioneer robots using the Colbert programming
language under the Saphira interpreter (ActivMedia 1997)
as shown in Figure 13. However, limitations of Colbert
and Saphira required us to rethink our approach. Although
MaSE tasks and conversations mapped nicely to Colbert
activities, which run as separate threads, Colbert did not
provide the required data types and data passing
mechanisms required for an efficient implementation.
Relying on Colbert and Saphira also limited our
implementation to Pioneer robots instead of a
heterogeneous mix of robots.

 Therefore, we modified our initial approach and decided
to use a heterogeneous set of robots. The platform for our
search and rescue system was a group of two Nomad Scout
and three Pioneer 2 robots (ActivMedia 1999). The
resulting architecture of our system is shown in Figure 14,
with an object model depiction of the same architecture
shown in Figure 15. While we changed the underlying
platform for the research, the analysis and design of the
system did not change. The MaSE models developed for
the original implementation were used almost without
modification for the final system.

Task

Saphira

Task Task

Global Data

Conversation

Message
Handler

Conversation

"Standard"
MOM

Colbert

Domain Specific
ADTs

G
enerated C

 C
ode

G
enerated C

olbert C
ode

Conversation

Figure 13. Implementation with Saphira/Colbert

Task

Robot API

Task

Task

Conversation

Java

Existing/D
eveloped C

ode
G

enerated Java C
ode

Conversation

Agent
(with message

handler)

Java/C Interface

MOM

Figure 14. Search and Rescue Robot Architecture

 In our approach, tasks identified in the role model are
implemented as objects under control of the overall agent
object. Conversations are implemented as Java objects and
are associated with specific tasks. Since tasks are assumed
to execute concurrently in MaSE, we use separate Java
threads for each task. Conversations run in the same
thread as their task to ensure the semantics of the MaSE
task diagrams are preserved in the implementation.
 To communicate with other robots, we developed a
Java-based message-oriented middleware (MOM) that
allows robots to send receive messages over designated
sockets via wireless TCP/IP connections. The MOM
package receives conversation requests and relays them to
the agent via the Message Handler method in the agent,
whose job it is to start new conversations and task
activities. After a conversation is started, each task or

conversation can send or receive messages directly through
MOM function calls. All the software used to control the
robots resides on laptops attached to each robot. We used
two types of robots, those with rescue capability and those
without. Figure 16 shows a Pioneer robot equipped with
gripper capable of performing the rescuer role. (Here the
victim is represented by a long cylindrical potato chip
canister.)

Task

Conversation

1
-conversations*

«interface»
Interface1

Mom«utility»
ARIA

«uses»

«uses»«refines»

Pioneer
Robot

Wireless
Network

«utility»
ScoutInterface

Scout
Robot

«refines»

+messageHandler()

Agent

1

-components*
Java

C

Figure 15. Object View of Architecture

Conclusions
From our initial investigation, it appears that MaSE has the
features required to design cooperative robot applications.
Specifically, the concurrent tasks used during the analysis
phase map nicely to the typical behaviors in robot
architectures. MaSE also provides the high-level, top-
down approach missing in many cooperative robot
applications. While we only addressed high-level design
here (we skipped the Assembling Agent Classes step),
MaSE uses a component-based approach to designing the
internal agent architectures, which is applicable in most
any application. We also showed our proposed
implementation architecture.
 Our future research plans include looking at fault
tolerance and dynamic team reconfiguration based on the
roles each robot is playing, or can play in the system. We
also plan to provide a more detailed approach to mapping
the high-level behaviors to low-level behaviors as defined
in standard robotic architectures.

Figure 16. Pioneer Rescuing Victim

References
ActivMedia. 1997. Saphira Software Manual Version 6.1.
ActivMedia Incorporated.

ActivMedia. 1999. Pioneer 2 Operating System Servers
Operations Manual. ActivMedia Incorporated.
DeLoach, S. A., Wood, M. F., and Sparkman, C. H. 2001.
Multiagent Systems Engineering, The International
Journal of Software Engineering and Knowledge
Engineering 11(3):231-258.

Drogoul, A., and Collinot A. 1998. Applying an Agent-
Oriented Methodology to the Design of Artificial
Organisations: a case study in robotic soccer. Autonomous
Agents and Multi-Agent Systems, 1(1): 113-129.

Murphy, A. L., Pietro Picco, G., and Roman, G. C. 2001.
LIME: A Middleware for Physical and Logical Mobility.
In Proceedings of the 21st International Conference on
Distributed Computing Systems (ICDCS-21). 524-233.

Parker, L. E. 1996. On the Design of Behavior-Based
Multi-Robot Teams. Advanced Robotics, 10(6):547-578.

Parker, L. E. 1998. Toward the Automated Synthesis of
Cooperative Mobile Robot Teams, Proceedings of SPIE
Mobile Robots XIII, Volume 3525:82-93.

Zambonelli, F., Jennings, N. R., and Wooldridge, M. J.
Organisational Rules as an Abstraction for the Analysis
and Design of Multi-Agent Systems. International Journal
of Software Engineering and Knowledge Engineering.
11(3): 303-328.

