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Abstract. While multiagent systems have been extolled as dynamically config-
urable and capable of emergent behavior, these qualities can be a drawback. 
When the system changes so that it no longer achieves its goals, emergent be-
havior is undesirable. Giving agents the autonomy to adapt and then expecting 
them to adapt only in acceptable ways requires rigorous design analyses. In this 
paper, we propose metrics for determining system flexibility at design time. Our 
approach is based on organization-based multiagent systems, which allows mul-
tiagent systems to adapt within a preset structure. We tailored the Bogor model 
checker to efficiently analyze the adaptive behaviors of these systems and to de-
termine their properties such as fault-tolerance and cost-efficiency. We develop 
state-space coverage metrics to allow designers to make informed trade-offs at 
design-time between computational cost and system flexibility. 

1   Introduction 

Distributed systems that can adapt to dynamically changing environments are becom-
ing prevalent. The advent of the Internet and wireless communications has allowed 
users to expect the ability to integrate their local applications with data and computa-
tional capabilities from any location, at any time. Applications for distributed, adap-
tive systems include information systems, communication systems, sensor networks, 
and cooperative robotic teams. The prevailing approach to building these distributed, 
adaptive systems is that of multiagent systems in which locally autonomous agents 
coordinate with each other to provide access to distributed information and services. 
The power in the multiagent approach is that, because of autonomy, the agents can 
adapt to their environment and thus satisfy their assigned goals.  

While multiagent systems have been widely touted as dynamically configurable 
and capable of emergent behavior, this has also been noted as a significant drawback. 
Most designers/users are not comfortable with the idea of pure emergent behavior 
where agents learn or discover and continually modify their behavior. As long as the 
behavior being learned or discovered is consistent with system goals, emergent be-
havior is not a problem. However, when the system functionality changes to where it 
no longer accomplishes its stated goals, emergent behavior becomes undesirable.  
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A key problem faced by the Agent-Oriented Software Engineering (AOSE) com-
munity is ensuring that multiagent systems will actually perform as desired without 
undesirable emergent behavior, which results from individual agent autonomy. Giving 
agents the autonomy to adapt and then expecting them to adapt only in acceptable 
ways requires rigorous analyses when designing and building these systems. In this 
paper, we propose some new design metrics and investigate one in depth for deter-
mining multiagent system flexibility at the design level. Our approach is based on 
previous work on organization-based multiagent systems [7] and model checking [6]. 
We describe how a software model checking framework such as Bogor [15] can be 
customized to efficiently analyze emergent behaviors of multiagent systems.  

The novelties and the main contributions of our work are: (1) efficient state-space 
exploration of multiagent system behaviors at the design level, (2) mining the con-
structed state-spaces to determine their desirable/undesirable properties such as fault-
tolerance and cost-efficiency, (3) proposing several useful design metrics based on 
state-space coverage measures to capture these properties, and (4) validating the pre-
dictions from the proposed metrics by using simulation methods. By using the pro-
posed metrics, we believe system designers are better equipped to make informed 
trade-off between cost and effectiveness of multiagent systems, as well as preventing 
ineffective system designs.  

The paper is organized as follows. Section 2 presents a motivating example used to 
illustrate our approach. Section 3 presents the multiagent organization design meta-
model that we consider. Section 4 presents an efficient state-space exploration tech-
nique implemented using the Bogor framework. Section 5 presents some of our pro-
posed metrics that we validate in Section 6 using simulation methods. Section 7 pre-
sents some related work. Finally, Section 8 concludes and presents some future work. 

2   Motivating Example 

Throughout this paper we use an example from cooperative robotics to demonstrate 
our model of organization-based multiagent systems and the application of our design 
metrics. A simplified cooperative robotics example is used (due to space constraint), 
however it is still interesting enough to illustrate the application of the organization 
metamodel and the effect of the loss of hardware capabilities to the system. 

The example we use is the Cooperative Robotic Floor Cleaning Company 
(CRFCC). Essentially, we are designing a team of robots whose goal is to clean the 
floors of a building. At initialization, the team is given a map of the building includ-
ing the type of flooring of each area. The floors may be tiled or carpeted and may be 
littered with large debris as well as small dirt particles that must be cleaned. There-
fore, the CRFCC must be able to pick up any large objects and then vacuum or mop 
the floors, based on their type. The team should be able to clean the floors of the 
building even when faced with failures of individual robots or specific capabilities on 
those robots. This implies that the team must be able to (1) assign floor areas based on 
individual team member’s capabilities (i.e. to mop, vacuum, sweep, etc.), (2) recog-
nize when a robot is incapable of carrying out its responsibilities, and (3) reorganize 
the team to allow the team to achieve its goal in spite of individual failures. 
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3   Organizational Metamodel 

To allow teams of agents (or robots) to adapt to their environment by determining 
their own organization at runtime, we developed a metamodel that describes the 
knowledge required to define and reason about an organization [7, 14]. Given this 
knowledge, we have shown that multiagent teams are able to organize (and reorgan-
ize) themselves in an attempt to adapt to dynamic environments.  

Organizations are typically defined as a set of agents who play roles within a struc-
ture that defines the relationships between those roles [3]. In our organization meta-
model shown in Fig. 1 (simplified due to space constraint; we refer the readers to  
[7, 14] for a more complete description), we include these basic concepts of goals (G), 
roles (R), and agents (A), plus agent capabilities (C) and a set of assignments (Φ).  

 

Fig. 1. Organization Metamodel (simplified) 

3.1   Goals 

Every organization is designed with a specific purpose or goal. In our metamodel, 
each organization has a set of goals, G, that it seeks to achieve in support of a top-
level goal go, which we define as a desired end state. G is derived by decomposing go 
into a tree of sub-goals that describe how go can be achieved. Following the KAOS 
goal based requirements modeling approach [18], we allow goals to be decomposed 
into a set of non-cyclic sub-goals using either AND-refinement or OR-refinement. 
Eventually, go is refined into a set of leaf nodes, denoted by GL, that are actually 
achieved by agents in order to achieve go. The active goal set, GA (where GA ⊆ GL), is 
the set of goals that an organization is trying to achieve at the current time. 

In order to provide an ordering for goal achievement, we define a precedence rela-
tion between goals. We say that goal g1 precedes goal g2 if g1 must be achieved before 
g2 can be achieved, which allows the team to work on a subset of the leaf goals, thus 
reducing the size of GA. The initial active goal set, GA0, consists of all leaf goals with-
out predecessor goals. However, GA changes as goals are achieved; achieved goals are 
removed from the active goal set and new goals are inserted. We denote a sequence of 
active goal sets GA’ as GA’ = [GA1, GA2, …, GAn]. 

The goal model for the CRFCC is shown in Fig. 2. Goals are denoted as special-
ized class components using the <<Goal>> notation. Conjunctive sub-goals are con-
nected to their parents by a diamond shaped connector ( ) while disjunctive sub-goals 
are connected to their parent by a triangle shaped connector (∆). Goals can have  
 

◊



 Using Design Metrics for Predicting System Flexibility 187 

 

Fig. 2. Goal Model (simplified) 

parameters. The totalArea parameter refers to the entire area to be cleaned. Since total 
area may include tile and carpeted areas, the team divides it into sub-areas (denoted 
by the area parameters) to be tackled independently. However, to ensure the entire 
task is completed as efficiently as possible, the team must consider the capabilities of 
its team members when partitioning the areas and assigning areas to robots. The mul-
tiplicity n represents the total number of sub-areas while i refers to the number of tiled 
areas. The <<precedes>> notation indicates precedence relation between goals. 

The goal model consists of five leaf goals: Divide Area, Pickup, Sweep, Mop, and 
Vacuum. The precedence relations provide the natural ordering that is required to 
clean the floors. The n sub-areas must be created before work may begin; this results 
in n Pickup goal instances being created as well as i Sweep and Mop goals and n-i 
Vacuum goals. Due to the precedence relation, the individual areas must be picked up 
and any large debris removed before the areas can be swept, mopped, or vacuumed. 
Finally, depending on what type of flooring is present, the areas are either (1) swept 
and then mopped, or (2) vacuumed. 

3.2   Capabilities 

Capabilities are the key to determining exactly which agents can be assigned to what 
roles in the organization. Currently, we view a capability as an atomic entity used to 
define the abilities of agents. Capabilities can capture soft abilities such as the ability 
to access resources, communicate, migrate, or computational algorithms. They also 
capture hard capabilities such as those of hardware agents such as robots, which in-
clude sensors and effectors. In the CRFCC example, the robots must have specific 
capabilities to carry out the cleaning operation. Thus, we assume the capabilities 
shown in Table 1 are available for designing CRFCC robots. 

The org capability is a reasoning ability that allows a robot to divide the current 
search area up into n areas based on the type of flooring (as well as other possible 
factors such as size, wall placement, etc.). The search capability allows robots to 
move about an area and identify items that need to be picked up before cleaning can 
begin. This capability is actually a combination of low-level capabilities such as 
movement and sensing as well as reasoning abilities to identify target items based on 
shape, size, color, etc. The move capability refers to the ability of a robot to pickup an 
item and to move it out of the way for cleaning. This capability could be representa- 
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Table 1. CRFCC Capabilities 

Name Description 
org Ability to logically divide the area between team members 
search Ability to search an area for large debris 
move Ability to move large debris 
sweep Ability to sweep a tiled area 
mop Ability to mop a tiled area 
Vacuum Ability to vacuum a carpeted area 

 

Table 2. RM0 Roles 

Name Required Capabilities  Leaf Goals Achieved 
Organizer org 1. Divide Area 
Pickuper search, move 2. Pickup 
TileCleaner sweep, mop 3.1.1. Sweep & 3.1.2. Mop 
Vacuummer vacuum 3.2. Vacuum 

 
tive of robotic arms or gripper devices. The last three capabilities, sweep, mop and 
vacuum are straightforward capabilities that also require integration of low-level ca-
pabilities. These capabilities provide the ability to clean tile and carpeted floors. 

3.3   Roles 

Each organization has a set of roles R that it can use to achieve its goals. A role de-
fines the capabilities required for an entity to achieve a goal (or set of goals) in the 
organization. The achieves function (R × GL →  [0,1]) tells how good a role is for 
realizing a specific goal (0 = no ability to achieve the goal, 1 = excellent ability to 
achieve the goal); if agent A is better at attaining goal G than agent B, we would 
expect that achieves(A,G) > achieves (B,G). However, to be assigned to play a role, 
agents must have a sufficient set of capabilities to play that role. Thus, agents possess 
capabilities while roles require a certain set of capabilities. The set of capabilities 
required by a role is captured using the requires relation (R × C). 

For the CRFCC example, we developed two sets of roles, or role models, that the 
individual robots can play in order to accomplish the overall CRFCC goal. In the first 
role model (RM0), we attempted to combine basic capabilities to carry out specific 
goals. For RM0 we came up with four roles as shown in Table 2. In this case, we 
would need a robot with the org capability to be assigned to the Organizer role in 
order to achieve the initial goal, Divide Area. Once the area was divided into sub-
areas, the robots with the search and move capabilities would be assigned to play the 
Pickuper role to achieve all the Pickup goals generated for each sub-area. Once this 
goal was achieved, robots with sweep and mop capabilities would be assigned to the 
TileCleaner role to achieve goals Sweep and Mop for each tiled sub-area while robots 
with the vacuum capability would be assigned to play the Vacuummer role to achieve 
the Vacuum goal for each carpeted area. 

In a second version of the role model, Role Model 1 (RM1) as shown in Table 3, 
we took a slightly different approach to defining the roles for the CRFCC. Instead of 
defining roles to carry out basic functions in the application, we defined a role for 
each leaf goal. Essentially, we divided the TileCleaner role into Sweeper and Mopper. 
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Table 3. RM1 Roles 

Name Required Capabilities  Leaf Goals Achieved 
Organizer org 1. Divide Area 
Pickuper search, move 2. Pickup 
Sweeper sweep 3.1.1. Sweep 
Mopper mop 3.1.2. Mop 
Vacuummer vacuum 3.2. Vacuum 

3.4   Agents 

The organization metamodel also includes a set of heterogeneous agents, A. For our 
purposes, agents are computational system instances that inhabit a complex dynamic 
environment, sense, and act autonomously in this environment, and by doing so real-
ize a set of goals. Agents are assigned specific roles in order to achieve organizational 
goals. The current set of possible assignments of agents to a role is captured by the 
potential function (GL × R × A →  [0,1]). The range of the potential function indicates 
how well an agent can play a role and how well that role can achieve the goal, based 
on the achieves and the capable scores. 

However, the potential function does not indicate the actual assignment of agent a 
to role r to achieve goal g, it simply defines possible assignments. To capture the 
actual assignments, we define an assignment set Φ, which consists of goal-role-agent 
tuples, <g,r,a>. If <g,r,a> ∈ Φ, then agent a has been assigned by the organization to 
play role r in order to achieve goal g. As discussed above, however, only agents with 
the right set of capabilities may be assigned to a role. To capture a given agent’s ca-
pabilities, we define a possesses function (A × C →  [0,1]), whose dynamic value 
ranges from no (0) capability to an excellent (1) capability. Using a role’s required 
capabilities and the capabilities possessed by an agent, we compute the ability of an 
agent to play a given role, which we capture in the capable function (A x R → [0,1]). 

4   Using Bogor to Explore Behaviors of Multiagent Organization 

Bogor [4, 15] is a model checking framework designed for extensibility to enable 
more effective incorporation of domain knowledge into verification models and 
model checking algorithms. In contrast to most existing model checkers, Bogor's 
modeling language (BIR) provides constructs commonly found in modern program-
ming languages including dynamic object and thread creation, garbage collection, 
virtual method calls and exception handling. This rich modeling language has enabled 
us to model check relatively large concurrent Java programs. In addition, BIR can be 
extended with new primitive types, expressions, and commands associated with a 
particular domain (e.g., multi-agent systems, avionics, security protocols, etc.) and a 
particular level of abstraction (e.g., design metamodels, design models, source code, 
byte code, etc.) to enable efficient modeling and state-space representation. Further-
more, Bogor's well-organized module facility allows new algorithms (e.g., for state-
space exploration, state storage, etc) and new optimizations (e.g., heuristic search 
strategies, domain-specific scheduling, etc.) to be easily swapped in to replace Bo-
gor's default model checking algorithms. To support effective BIR software model 
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system OrganizationMetamodel { 
  extension Set for SetModule { 
    typedef type<'a>; 
    expdef Set.type<'a> create<'a>('a ...); 
    actiondef add<'a>(Set.type<'a>, 'a); 
  } … 
extension AOM for AOMModule { 
    typedef Agent; typedef Goal; typedef Role; 
    expdef boolean isTopGoalAchieved(Set.type<Goal> goals); 
    expdef Goal chooseGoal(Set.type<Goal>); 
    expdef Role chooseRole(Goal goal); 
    expdef Agent chooseAgent(Role role); 
  } 
  active thread Search() { 
    Goal g; Role r; Agent a; 
    Set.type<Goal> achievedGoals; 
    Set.type<Triple.type<Goal, Role, Agent>> assignments;      
    achievedGoals := Set.create<Goal>(); 
    assignments := Set.create< Triple.type<Goal, Role, Agent>>(); 
    while (!AOM.isTopGoalAchieved(achievedGoals)) do 
      g := AOM.chooseGoal(achievedGoals); 
      r := AOM.chooseRole(g); 
      a := AOM.chooseAgent(r); 
      Set.add(achievedGoals, g); 
      Set.add(assignments, Triple.create(g, r, a)); 
    end 
  } 
} 

Fig. 3. Organization Metamodel and Search Algorithm in BIR (excerpts) 

checking, we have extended well-known optimization/reduction strategies [8, 16] 
such as collapse compression [11], data [12] and thread [5] symmetry, partial-order 
reduction [6] strategies that leverage static/dynamic escape and locking analyses. 

We leverage BIR’s extensibility to represent the organization metamodel presented 
in the previous section, as shown in Fig. 3. Each entity in the metamodel (e.g., agents) 
is modeled as a (native) first-class type in BIR (e.g., Agent). Similarly, we define 
auxiliary structures such as tuple and set and their corresponding abstract operations 
to enable more concise model. Moreover, by modeling organization entities and data 
structures as first-class type in BIR, we can instruct Bogor to use customized state 
representations better suited to the analysis' level of abstraction. For example, we 
leverage symmetric property of set to efficiently store set instances in the state-space 
representation (e.g., {Agent1, Agent2} = {Agent2, Agent1}). Accordingly, first-class 
abstract operations are implemented as an extension of the model checker instead of 
being a part of the model itself, thus, they are interpreted in the model checker's space 
instead of the model's space. This is analogous to adding new native types and in-
structions in a processor. That is, we can use the new types and instructions to better 
represent and more efficiently execute programs instead of representing them using a 
limited set of types and instructions. ([15] describes how to implement Bogor exten-
sions.) The extension module AOM requires an organization instance as a Bogor 
configuration that contains information such as the goal structure, functions, and rela-
tions described in the previous section for that particular instance. Given the configu-
ration, Bogor exhaustively explores the state-space of the BIR model in Fig. 3 for the 
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specified organization instance. That is, the BIR model is reusable for any model 
instance of the organization metamodel specified in Fig. 1.   
     We now describe the extensions used in Fig. 3: (1) isTopGoalAchieved: given a 
set of achieved goals, the extension determines whether the goal set can satisfy the 
requirement of achieving the top goal of an organization by looking at its goal struc-
ture, (2) chooseGoal: given a set of achieved goals, the extension non-
deterministically chooses the next goal to be achieved. The extension leverages the 
precedes relation such that it does not choose goals whose preceding goals are not in 
the achieved goal set, which reduces the number of paths during the state-space ex-
plorations. In other words, chooseGoal non-deterministically chooses a goal from 
the active goal set GA. The user can also specify to optimize paths on disjunctive goals 
as an option, i.e., by preventing to choose a goal whose disjunctive sibling goals are 
already achieved, (3) chooseRole: given a goal, the extension non-deterministically 
chooses the role that can achieve the goal based on the organization achieves function 
(i.e., when achieves gives a non-zero value), and (4) chooseAgent: given a role, the 
extension non-deterministically chooses the agent that can assume that role based on 
the organization capable function. 

 

 

Fig. 4. Goal Achievement State-space (G) for CRFCC Example in Fig. 2 

 
The Search thread explores all possible assignment sets that satisfy an organiza-

tion’s top goal. For optimization, we only store states in the beginning of each itera-
tion of the Search‘s loop. Fig. 4 presents the model’s goal achievement state-space 
of the organization in Fig. 2 (without disjunctive goal optimization). The graph is 
generated based only on the goal structure (without considering roles and agents); 
Bogor can generate several state-spaces, for example, on goal (G), goal-role (GR), and 
goal-role-agent (GRA). Each node in the figure represents a set of goals that has been 
achieved, and each edge represents an achievement of a goal. Note that each node in 
G implicitly represents the active goal set GA, i.e., the set of goal achievements repre-
sented by the outgoing edges; thus, each path captures the sequence of active goal set 
GA’. For goals that may be achieved at the same time, we follow the usual concur-
rency interleaving model that represents two transitions t1 and t2 that are executed at 
the same time as two paths t1 → t2 and t2 → t1. In the case where an organization 
cannot achieve the top goal, Bogor can give an empty (or a partial) state-space.  

The CRFCC organization’s goal diagram in Fig. 2 has a parameter n, which is the 
number of area that the agents have to clean up. Based on several experiments that we 
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have on varying n, we concluded that for the kinds of analyses that we perform, we do 
not actually need to have the actual concrete numbers of area; it is enough to focus on 
the characteristic of each area, i.e., whether it is tiled or carpeted. The reason is that 
we cannot actually distinguish between the areas at the design level; thus, for exam-
ple, one carpeted area is the same as another carpeted area, i.e., one goal achievement 
sequence of one carpeted area would be similar to the other carpeted area’s. There-
fore, we only divide the area into two logical categories: carpeted (C) or tiled (T). 
This approach is akin to symmetry reduction [12] techniques usually used in model 
checking (e.g., the symmetric set mentioned previously), i.e., using one representative 
to reason about a set of entities that share the same properties. Section 8 describes 
extrapolation methods to recover the actual achievement sequences. 

The key property of our analysis is that the state-space represents all possible ways 
to achieve the top goal even in the presence of agent failures/retries and malfunc-
tions/recoveries. That is, an agent may retry several times before actually achieving a 
goal, or an agent malfunctions completely at some point in time, hence, the rest of the 
goals must be achieved by some other agents. In the end, if we take an actual system 
trace that achieves the organization top goal (with failures/retries and malfunctions), 
and if we project a sequence of the actual goal achievements for that trace, that se-
quence is in the state-space constructed by our analysis. For instance, let us consider 
the edge {}→{1}. This edge actually represents any system trace prefix that eventu-
ally achieves 1. For example, an agent A can be assigned to achieve 1 and then it 
somehow malfunctions without completing it, the system then reorganizes and assigns 
a different agent B to the goal. After several attempts, that B finally achieves 1. In a 
goal-agent state-space, this trace is represented by a path with prefix {}→{<1, B>} 
(and without A contributing to goal achievements in the path’s suffix). 

5   Design Metrics 

Based on the analysis results presented in the previous sections, we have developed a 
set of metrics that can be used at design time to measure system performance. Spe-
cifically, in this paper we focus on a set of metrics based on path coverage in an at-
tempt to measure the flexibility of the system. We define system flexibility as the 
ability of the system to reorganize to overcome individual agent failures. Ideally, such 
a metric would be unambiguous, simple to compute, and produce a small set of values 
that allows the designer to directly compare a set of possible system designs. 

There are several pieces of coverage information that can be mined from the differ-
ent state-spaces generated by Bogor. To measure system flexibility, we compare the 
state spaces of G and GRA for particular organization designs. Based on this approach, 
we have proposed the following metrics:  

• Covering Percentage: For each path in G, we determine whether there exists a 
path in the GRA. For covering, we compute the percentage of paths in G that are 
covered in GRA (higher is better).  

• Coarse Redundancy: For each path in G, we determine the number of paths in 
GRA (or GR) that cover it and give a coarse redundancy rate (paths in GRA di-
vided by paths in G; higher is better).  
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There are other statistics that can be mined from the state-spaces (Section 7 describes 
more metrics). For example, given two GRAs (or GRs) of two different organization 
instances with the same goal diagram (hence, the same G), we are able to compare 
coverage differences of the two with respect to G. These coverage metrics allow de-
signers to explore different role models and agent models for a given goal structure. 

6   Metric Validation 

We created four predefined robot teams to validate the metric set proposed in the 
previous section; we designed four different robot teams implementing RM0 and 
RM1 as defined in Section 3 for the goal model of Fig. 2. The robot teams were de-
signed to provide a wide range of capabilities while keeping the same number of 
robots on each team at five. Each agent was given the capabilities to carry out exactly 
one of the application’s leaf goals. The specific capabilities given to each robot are 
shown in Table 4. We want to predict and to compare the flexibility of each system. 

Table 4. Agent System Designs 

Name AS0 AS1 AS2 AS3 
A1 org, search, move, 

vacuum, sweep, mop 
org, search, move, 
vacuum 

org, search, move org 

A2 org, search, move, 
vacuum, sweep, mop 

search, move, 
vacuum, sweep 

search, move, 
vacuum 

search, move 

A3 org, search, move, 
vacuum, sweep, mop 

vacuum, sweep, 
mop 

vacuum, sweep vacuum 

A4 org, search, move, 
vacuum, sweep, mop 

org, sweep, mop sweep, mop sweep 

A5 org, search, move, 
vacuum, sweep, mop 

org, search, move, 
mop 

org, mop mop 

Table 5. Bogor Coverage Results 

Organization Coarse Redundancy (G-GRA) Rate 
(# paths in G = 10) RM0 RM1 

AS0 15625 15625 
AS1 324 729 
AS2 16 64 
AS3 .3 1 

 
We applied our analysis to the agent system designs; Table 5 presents Bogor analy-

sis results for AS0-3 with RM0-1. For the experiments, we used an Opteron 248 
workstation, Linux OS, and Java 5.0 (64-bit) with maximum heap of 256 MB; all the 
state-space analyses for G and GRA finished under 15 seconds (combined). All sys-
tems achieve 100% covering of G as there are agents that can achieve each goals (if a 
goal model has disjunctive sub-goals, it is possible to create organizations that can 
achieve the overall goal without agents that can achieve all disjunctive sub-goals). 
Based on the numbers, Bogor predicts that RM1 is more flexible than RM0, AS0 is 
the most flexible system, AS3 is the least flexible, and AS1 is more flexible than AS2. 

To empirically evaluate the flexibility of designs AS0 – AS3 on the role models 
RM0 and RM1, we developed a simulation that stepped through the CRFCC applica-
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tion. To measure the flexibility, we simulated capability failure. At each step in the 
simulation, a randomly selected assigned goal was achieved. Then, one robots capa-
bility was randomly selected and then tested to see whether or not it had failed. Based 
on a predefined capability failure rate (0 – 100%), we determined whether or not the 
selected capability had failed. For simplicity of presentation we used a single failure 
rate; however, the model could easily be extended to handle different failure rates. In 
addition, in contrast to the coarse redundancy metric that takes into account the possi-
bility of agents to recover from a failure, we assumed once failed, a capability re-
mained failed for the life of the system. Then, reorganization was performed to assign 
available robots to available goals and to de-assign robots if their capability had 
failed, and they were no longer able to play their assigned role. 
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Fig. 5. Comparison of Role Model 0 vs. Role Model 1 for Agent Sets AS0 - AS3 

Using a floor with 10 separate areas, we simulated each system (AS0 – AS3) on 
each role model (RM0 and RM1). For each role model, system combination was 
simulated for failure rates ranging from 0 to 100% for 1000 system executions. To 
compare the effectiveness of the role models using the four agent system designs, we 
looked at the results using each of the agent systems above. The results in Fig. 5 show 
that Role Model 1 provides more flexibility than Role Model 0. Furthermore, the 
simulation results confirm that AS0 is the most flexible while AS3 is the least one, 
and AS1 is more flexible than AS2. Note that the curve for (RM0, AS3) does not start 
at 100% since AS3 does not have an agent capable of playing the TileCleaner role. 

The Bogor predictions and the simulation results make sense because: (1) in con-
trast to RM1, not all agents can assume the TileCleaner role in RM0, (e.g., A4 and A5 
in AS3), (2) AS0 is the most flexible because each agent in AS0 can achieve any goal, 
(3) AS3 is the least flexible because each of its agents can assume at most one role, 
and (4) AS1 is more flexible than AS2 because AS1 agents have more capabilities. 

6.1   Tradeoff Analysis 

To demonstrate the usefulness of our metric in making design decisions, consider the 
following situation. Assume we have already developed a system based on RM1 and 
AS2, but now want to upgrade our system with a fixed budget. Our engineers deter-
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mined that we could either (1) buy a single additional robot with three capabilities, or 
(2) buy five additional capabilities and integrate them onto our current robots. Essen-
tially, option 2 equates to upgrading from AS2 to AS1 while option 1 would produce, 
for example, AS5 (option 1a) or AS6 (option 1b) as shown in Table 6.  

Bogor’s analysis results indicate that option 2 is better with a coarse redundancy 
rate of 729. The coarse redundancy rates for both option 1a and 1b are 216 while the 
original system (AS2) had a coarse redundancy rate of 64. Thus, using the coarse 
redundancy metric, we would choose option 2. 
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Fig. 6. Comparison of Possible System Updates 

Table 6. Additional Agent System Designs Based on Agent Capabilities 

Name AS5  AS6  
A1 org, search, move org, search, move 
A2 search, move, vacuum search, move, vacuum 
A3 vacuum, sweep vacuum, sweep 
A4 sweep, mop sweep, mop 
A5 org, mop org, mop 
A6 search, move, sweep search, move, vacuum 

 
To validate the metric results, we extended our simulation to include the definition 

of AS5 and AS6. The results of the four different options are shown in Fig. 6 where it 
is obvious that option 2 provides the best results followed by option 1a and 1b, which 
are very close. However, all three options are significantly better than the original 
system, which are consistent with the metric results that we obtained from Bogor. 

7   Related Work 

Software metrics as a subject area has been around for over 30 years. A number of 
metrics have been developed to predict or measure various parameters of software 
systems for different stages of software development lifecycle. For example, metrics 
to predict software performance were studied in [19, 20], software scalability in [20, 
21], software adaptability in [17]. However, metrics and measures for intelligent 
software systems are as yet vaguely defined and sometimes controversial [2] and are 
not used extensively in software engineering [10]. There is also little work done in 
designing and applying metrics at the design level to predict adaptive systems per-
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formance. We are proposing new design metrics and examine in details one such 
metric for distributed, adaptive systems in this paper. 

Fault Tree Analysis (FTA) has been studied and used extensively [198]; it provides 
a top-down approach to systematically describe the combinations of possible occur-
rences in a system that results in undesirable outcomes such as failures or a malfunc-
tions. Our approach complements FTA, since our technique automatically predicts the 
system flexibility for a given system configuration i.e., it generates traces of system 
behaviors. If failure patterns are exposed in the traces (e.g., an agent is not used after 
a certain time), then FTA can analyze the possible set of failure points.  

8   Conclusions and Future Work 

While the work presented in this paper is a starting point (i.e., there are many addi-
tional metrics that must be considered for providing a thorough design evaluation), 
there are several conclusions that can be made. Likewise, there are several assertions 
we can make about future work in the areas of performance prediction, additional 
metrics, scalability, and the integration of metric computations into a model design 
tool. 

Performance Prediction: From the results presented in the previous section, it seems 
clear that the coarse redundancy rate does predict the flexibility of the robot systems. 
Unfortunately, system design is seldom as simple as maximizing one metric or pa-
rameter. Increased flexibility increases the number of possible assignments that can 
be made and thus increases the computation burden of generating near optimal as-
signments at run time. Obviously, a tradeoff exists. In future work, we hope to define 
additional predictive metrics that a designer can use to help tune the system at design 
time by performing tradeoff analysis. Our research will not eliminate this predica-
ment, but give the designer predictive numbers to use in making those tradeoffs with-
out developing expensive prototypes/simulations. 

Additional Metrics and Query Environment: Based on the state-space analysis in 
Section 4, we believe the following metrics are helpful; however, we are still working 
on simulation methods to validate them: 

• Relative Cost Efficiency (RCE): Using the potential function described in Section 3, 
we can determine path potentials in a goal-role-agent achievement state-space 
(GRA). This would be useful in defining a relative measure of the most/least effi-
cient assignments and giving designers a feel for the organization’s best/worst per-
formance. (The actual best/worst performance of the system is not necessarily in-
teresting as either all the agents may fail or the organization’s goal may be achieved 
by changes in the environment.) Thus, the RCE metric would give reasonable feed-
back about organization instances. If the potential function always returns a con-
stant value, thus, it reduces the metric to the shortest/longest achievement paths. 

• Relatively Optimistic Time Efficiency (ROTE): This metric gives us the most opti-
mistic best/worst time (logical ticks) to achieve the top goal. Consider the path 
A:{}→ B:{1}→ C:{1, 2(C)}→ D:{1, 2(T), 2(C)}→ E:{1, 2(T), 2(C), 3.1.1(T)}→ 
F:{1, 2(T), 2(C), 3.1.1(T), 3.2(C)}→ G:{1, 2(T), 2(C), 3.1.1(T), 3.1.2(T), 3.2(C)}. 
Note that optimistically, 2(C) and 2(T) can be achieved at the same time because 
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there are no precedence relation among them; similarly with 3.1.1(T) and 3.2 (C). 
Thus, if we group goal achievements that can happen at the same time, we have the 
sequence: {A}→{B}→{C, D}→{E, F}→{G}, i.e., 5 logical time ticks. This sub-
path grouping approach is akin to partial order reduction techniques in model 
checking [6] where independent transitions can occur at the same time, thus, one 
ordering representative of the sub-path is enough. In our case, goal dependences are 
determined based on the precedence relation. Note that this grouping can also be 
done in the goal-role-agent achievement paths. If an agent cannot achieve goals si-
multaneously, the algorithm does not group goal achievements by the same agent in 
one group. Thus, system designers can evaluate different goal structures, role mod-
els, and agent systems for time efficiency. We plan to investigate using these de-
pendence relations for partial order reduction in the near future. 

We believe that there are more metrics that can be mined from the state-spaces of 
system designs. In addition, we also believe that work on query languages (e.g., [13]) 
can be used to ease system designers when evaluating multiagent system designs. 

Extrapolation Methods for Scalability: Note that we do not actually need to use all 
five agents of the same type (i.e., agents with like capabilities) when exploring the 
state-space, for example, for AS0; it is sufficient to use one agent for each type (i.e., 
symmetry reduction [12]), and then extrapolate the actual number of paths based on 
the paths using representative agents. For example, if we use only one agent for AS0, 
the number of paths in GRA is 10. For each path, there are six goals achievements, 
thus, if we extrapolate each path when using five actual agents, we will have 
10×56=156250 actual paths (which is the one we have from Bogor when directly us-
ing 5 agents). Thus, we believe that we can apply symmetry reduction on agent in-
stances based on their type (i.e., they are indistinguishable at the design level) along 
with the partial order reduction technique hinted above, and use extrapolation meth-
ods to recover the actual paths for further analysis. 

Integration of Metric Computations in a Model Design Environment: While we 
manually generated the Bogor configurations for this paper, it would be straightfor-
ward to automate such analysis by integrating Bogor into a multiagent design tool. 
We are currently developing agentTool III (aT3), an advanced version of the agent-
Tool system for developing organization-based multiagent systems [1]. aT3 is being 
developed as an Eclipse plug-in and Bogor already works within the Eclipse plug-in 
environment. In the integrated system, designers will graphically create system goal, 
role, and agent models in aT3 and will simply “click” on a button to popup an inter-
face to select various analysis options; aT3 will then automatically generate the appro-
priate configuration and invoke Bogor to explore its state-space and to predict its 
flexibility. 
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