
MTD CBITS: Moving Target Defense for
Cloud-Based IT Systems

Alexandru G. Bardas1?, Sathya Chandran Sundaramurthy2??,
Xinming Ou3, and Scott A. DeLoach4

1 University of Kansas, Lawrence KS, USA
2 DataVisor, Mountain View CA, USA

3 University of South Florida, Tampa FL, USA
4 Kansas State University, Manhattan KS, USA

alexbardas@ku.edu, sathya.chandran@datavisor.com,
xou@usf.edu, sdeloach@ksu.edu

Abstract. The static nature of current IT systems gives attackers the
extremely valuable advantage of time, as adversaries can take their time
and plan attacks at their leisure. Although cloud infrastructures have
increased the automation options for managing IT systems, the intro-
duction of Moving Target Defense (MTD) techniques at the entire IT
system level is still very challenging. The core idea of MTD is to make
a system change proactively as a means to eliminating the asymmetric
advantage the attacker has on time. However, due to the number and
complexity of dependencies between IT system components, it is not
trivial to introduce proactive changes without breaking the system or
severely impacting its performance.
In this paper, we present an MTD platform for Cloud-Based IT Systems
(MTD CBITS), evaluate its practicality, and perform a detailed analysis
of its security benefits. To the best of our knowledge MTD CBITS is the
first MTD platform that leverages the advantages of a cloud-automation
framework (ANCOR) that captures an IT system’s setup parameters
and dependencies using a high-level abstraction. This allows our plat-
form to make automated changes to the IT system, in particular, to
replace running components of the system with fresh new instances. To
evaluate MTD CBITS’ practicality, we present a series of experiments
that show negligible (statistically non-significant) performance impacts.
To evaluate effectiveness, we analyze the costs and security benefits of
MTD CBITS using a practical attack window model and show how a
system managed using MTD CBITS will increase attack difficulty.

1 Introduction
Current IT systems operate in a relatively static configuration and give attack-
ers the extremely important advantage of time. Therefore, a promising new ap-
proach, called Moving Target Defense or MTD [19], has emerged as a potential

? Corresponding author. As of July 2017, Alexandru G. Bardas’s affiliation is The
University of Kansas. This work was conducted when he was a graduate student
and then a visiting assistant professor at Kansas State University.

?? As of June 2017, Sathya C. Sundaramurthy’s affiliation is DataVisor. This work was
conducted when he was a graduate student at University of South Florida.



II

solution. MTD techniques are expected to increase uncertainty and complex-
ity for attackers, reduce their window of opportunity, and raise the costs of
their reconnaissance and attack efforts. There have been a number of MTD-
related research efforts such as randomizing memory layouts [3, 13, 31], IP ad-
dresses [6, 20, 27], executable codes [8, 24, 53], and even machine instruction
sets [9, 29]. These are important steps towards achieving the overall goal of
moving target defense, but they focus on individual aspects of a system — IP
addresses, code for particular applications, and specific architectures. There has
not been much research on how to apply an MTD approach at the entire IT sys-
tem level. We view an IT system as a subset of an enterprise network, a group
of one or more machines (physical or virtual) that work together to fulfill a
goal. The overall goal and the scope of an IT system are determined by the user
(system engineer/administrator) and can range from a one-machine service (e.g.,
FTP server), to more complex deployments with large numbers of machines with
internal dependencies (e.g., multi-host eCommerce setups).

Applying an MTD approach to the entire IT system is important for several
reasons. First, system administrators fight the continual and generally losing
battle of monitoring their IT systems for possible intrusions, patching vulner-
abilities, modifying firewall rules, etc. The complexity of such systems and the
time required to maintain them are major reasons why errors creep into sys-
tem configurations and create security holes. The stagnant nature of IT systems
gives adversaries chances to discover security holes, find opportunities to exploit
them, gain/escalate privileges, and maintain persistent presence over time. For
example, the data released (summer 2016) as a consequence of the Democratic
National Committee (DNC [18]) breach resulted after attackers were present in
the DNC systems for over a year [15]. According to Mandiant’s M-Trends 2016
and 2017 reports [34, 35], the median number of days an organization was com-
promised before discovering the breach was 146 days in 2015 and 99 days in
2016. Even though this constitutes an improvement, it is still way too long. For
instance, Mandiant’s Red Team was able to obtain access to domain adminis-
trator credentials, on average, within three days of gaining initial access to an
environment. On the other hand, Verizon’s DBIR 2016 [49] states that, overall,
the detection deficit is actually getting worse.

Persistence is a trend that turned into a constant [34, 35]. Introducing changes
at the entire IT system level will increase the difficulty for attackers to obtain ini-
tial access and, especially, to maintain persistent presence. Persistent malware is
given an expiration date as running components of the IT system are constantly
being replaced with fresh new instances. This has the potential to change the
current attacker mode of operation from compromise and persist [15, 33, 34, 35]
to the more challenging obligation of repeated compromise.

However, there are several challenges for introducing MTD mechanisms at
the entire IT system level. Due to the number and complexity of dependencies
between IT system components, it is not trivial to carry out proactive changes
without breaking the system or severely impacting its performance. Introducing
changes proactively, if done improperly, may introduce additional complexities.



III

Making a complex system more complex is unlikely to increase its security. Thus
a practical MTD design must simplify system configuration and maintenance,
while enabling the capability of “moving”. For this reason, we have leveraged
ANCOR [47] proposed in our prior work and extended it to an MTD platform.

ANCOR is a framework for creating and managing cloud-based IT systems us-
ing a high-level abstraction (an up-to-date IT system inventory). While ANCOR
was focused on creating and managing IT systems in a reliable and automated
way, this paper analyzes the feasibility and potential security benefits of an MTD
approach based on live instance replacement. A live instance replacement mech-
anism can be the means to deploying various defenses in an automated way while
constantly removing attackers’ persistent access. For verification purposes, we
have re-created the eCommerce scenario, tested it in a new performance testing
setup, and also developed a new scenario that uses a set of operational database
dumps and real traffic traces (MediaWiki [36] with Wikipedia database dumps).
The main contributions of this paper are as follows:

1. We leverage ANCOR [47] for creating and managing IT systems, and extend
it to an MTD platform based on live instance (VM) replacements.

2. We evaluate the practicality of this MTD platform through a series of ex-
periments on two realistic IT system scenarios. The experimental results
show that the MTD operations may have negligible impact on the normal
operations of the IT systems.

3. We analyze the security benefits brought by the MTD platform through
an attack window model, and show how to use the model to quantify the
security benefits of a given MTD configuration.

2 Our MTD Approach

Our approach of introducing moving target defense at the entire IT system
level is to create a platform where any running component of an IT system can
be replaced with a pristine version. A component is simply a virtual machine
instance or a cluster of instances. We consider that the MTD approach will be
deployed in a cloud environment. Cloud infrastructures (e.g., OpenStack and
Amazon Web Services – AWS) made it possible and easy to create bare-metal
equivalent virtual machine instances and networks. It appears inevitable that
IT systems of all sizes are moving towards the cloud — be it private, public, or
hybrid (fog and edge computing).

2.1 Threat Model
In-scope threats are the risks our MTD approach intends to mitigate, by in-
creasing the difficulty on the attackers’ side. The risks range from reconnaissance
actions to arbitrary code execution, and side-channel attacks.

Attackers are able to perform various reconnaissance actions (e.g., port scan-
ning) on the public facing instances, as well as internal probing if they gain
access to an instance on the internal network. Furthermore, they may also ex-
ecute arbitrary code on an instance. Applications may be poorly configured,
misconfigured, or have vulnerabilities that allow arbitrary code execution with



IV

administrator/root privileges on an instance which is part of the targeted system,
e.g., buffer overflow, unsanitized input. Moreover, a social engineering attack
(e.g., phishing) may lead to obtaining the privileged user credentials. Arbitrary
code execution can result in an operating system compromise that enables at-
tackers to escalate their privileges and maintain their access through backdoors.
In addition, attackers may attempt to pivot through the internal network.

Attacks on the MTD platform itself are out of scope for this paper; this in-
cludes the MTD controller, the cloud platform (usually controlled by the cloud
provider), and the configuration management tools. Currently, the MTD con-
troller instance is protected using guidelines (e.g., [46]) for securing configuration
management tool master nodes. We leave it for future work to study in-depth
the security of the MTD platform itself.

We evaluated the feasibility of replacing services and small databases. Since
persistent data is stored on different volume types in a cloud (e.g., OpenStack
Cinder, Ceph, etc.), attaching the data volume to new instances proved more
efficient than synchronizing the data on each new instance.

Attackers might be able to store backdoor information in persistent data that
enables them to restore persistent access, making the replacement process less
effective. Various approaches have been proposed for different environments to
ensure the integrity of the stored data, e.g., [17], [48], [28]. For the purpose of
this paper we are relying on existing solutions for ensuring data integrity.

2.2 Background

The advancements in virtualization technologies contributed significantly to the
evolution of cloud computing [7]. The following capabilities are commonly avail-
able on a cloud platform: provisioning instances with various hardware capabil-
ities, utilizing security groups for network access control, and creating storage
volumes. At the same time, configuration management tools (CMTs) have be-
come a well-established solution to managing the applications and services (soft-
ware stack) in an automated fashion. Popular CMT solutions include Puppet [43]
and Chef [12]. Walmart, Wells Fargo, and other companies leverage CMTs to
configure tens of thousands of servers in an automated fashion [44].

A CMT works by installing an agent on the host to be managed, which commu-
nicates with a controller (called the master) to receive configuration directives.
In case the host’s current state (e.g., installed packages, customized configura-
tion files, etc.) is different than the one specified in the directives, the CMT
agent is responsible for issuing the appropriate commands to bring the system
into the specified state.

2.3 MTD CBITS Implementation

MTD CBITS (Figure 1) is based on the ANCOR framework which supports cre-
ating and managing cloud-based IT systems using a high-level abstraction. The
abstraction allows the system administrator to define the high-level structure
of the IT system, without specifying the detailed configuration parameters such
as IP addresses, port numbers, and other application-specific settings for each
instance. The high-level abstraction explicitly specifies the dependency among



V

the various roles — clusters of instances with similar configurations. ANCOR
has a “compilation process” that processes this abstract specification, generates
detailed configuration parameters for each instance, leverages CMT role imple-
mentations, and automatically creates an IT system on a cloud infrastructure.
The current implementation targets OpenStack and uses Puppet; it may also be
changed to AWS and Chef.

CMT (Puppet) OpenStack API Library

Processing Module

MTD System 
Specification

(initial deployment)

 MTD 
Controller

Configuring and Provisioning Module

Operations Model 
(proposed abstraction)

MTD 
System

Cloud Infrastructure
(e.g., OpenStack)

Fig. 1: The MTD platform (MTD CBITS) takes an abstract specification of an IT
system as its input, and creates the corresponding concrete system on a cloud infras-
tructure. In addition to ANCOR, MTD CBITS can perform frequent live instance
replacements throughout the lifetime of the IT system (green arrows).

In this paper we refer to an MTD system as an IT system deployed and managed
using our MTD platform that supports dynamically replacing instances. The
platform takes an MTD system specification (user’s requirements) as its input
and automatically creates and manages the corresponding concrete MTD system
on OpenStack (Figure 1). The configuration parameters are not hard-coded;
they are generated at run-time from the high-level system specification. The
operations model stores the computed parameters and can be viewed as an MTD
system inventory — a layer on top of the CMT (Puppet). This data is passed
to Puppet through Hiera [45], a key/value look-up tool for configuration data.
Whenever a change occurs in the deployed MTD system, it is also recorded in
the operations model. Therefore, the operations model always stores up-to-date
information about the running IT system.

Most of the MTD CBITS components are stored on the MTD controller (see
Figure 1). The MTD controller is, basically, used to deploy and manage the MTD
systems: it can reach the OpenStack API, hosts the Puppet master, and is able
to communicate through the Puppet agents with all instances that are part of
the IT system. The MTD controller cannot be reached from the public network
and communicates with the agents over an internal isolated network. Moreover,
the communication between the Puppet master and the agents is encrypted.

2.4 Instance Replacement Implementation

Using the operations model, MTD CBITS facilitates a variety of adaptation op-
erations (movements) for the managed IT systems, creating a moving target
defense. In our MTD approach, live instance replacement is carried out through
a sequence of adaptations: adding new instances, reconfiguring dependent in-
stances, and removing the old instances.



VI

Reconfiguring Instances. In-place reconfigurations (updated CMT directives)
may include internal service changes such as changing service parameters (e.g.,
credentials), applying service and OS patches, etc., or changes that involve de-
pendent roles. These changes will be accompanied by infrastructure updates
(e.g., security group changes).

Adding or Removing Instances. The MTD platform enables the addition and
removal of running instances. Both adaptations also involve reconfiguring de-
pendent instances. This happens through a sequence of tasks and in both cases,
the affected dependent services will be notified using a set of updated CMT
directives. When adding a new instance, the updated configuration directions
are sent to the dependent instances (push configuration to dependent instances)
after the new instance is ready-to-use (provisioned and configured). In this way,
if failures affect the new instances the MTD system’s functionality will not be af-
fected during the change process. On the other hand, when removing an instance,
first, the dependent instances are notified before the actual deletion happens.

The instance replacement process merges the adding of new instances and re-
moving the old instances: one-instance or a cluster of instances may be replaced
at once. Creating security groups, provisioning new instances, and configuring
them are tasks that can be performed in parallel. Once all these tasks finish, the
MTD controller computes the updated CMT directives for all the dependent in-
stances. Dependent instances will receive only one set of directives that contains
all the updates. Therefore, replacing one instance, or replacing all instances be-
longing to a role, will take roughly the same amount of time. The new instances
may use compatible implementations with different IPs, ports, operating sys-
tems or application versions. The roles that instances fulfill in an MTD system
can be implemented in numerous ways.

3 Feasibility Analysis

This section summarizes our conclusions after evaluating the impact of instance
replacements on real-world IT systems deployed and managed using our MTD
CBITS platform. Regardless of potential security benefits, an unreasonable per-
formance overhead would make the approach infeasible. We focused our efforts
on the applications, while persistent data (database content) was stored on cloud
volumes and reattached to new instances.

Our hypothesis was that the performance overhead of instance replacements
can be negligible (statistically non-significant) when using MTD CBITS.
The experiments were carried out on a cloud testbed consisting of 14 nodes (1
controller and 13 compute nodes) running OpenStack (Icehouse). We focused on
two IT system setups: eCommerce deployment and MediaWiki with Wikipedia
database dumps. More scenarios are available on our project’s webpage.

To test the performance, we used http-perf [2] for the eCommerce system and
WikiBench [51] for the MediaWiki deployment. http-perf launches HTTP re-
quests against a server while capturing several metrics, including response times
while WikiBench replays real traffic traces against a MediaWiki site. To estab-
lish a baseline (i.e., the control group), we ran the benchmarking tools with-



VII

out MTD enabled (no instance replacements). Next, we ran the benchmarking
tools while replacing various instances. During the replacement process, sav-
ing and restoring the active sessions was handled at the application level (e.g.,
eCommerce webapp) or by a dedicated component in the system (i.e., memcached
in the MediaWiki/Wikipedia scenario). We observed that depending on the com-
ponent that is being replaced all or the vast majority of the active sessions were
successfully restored. In all setups, caching features were disabled and config-
urations were reloaded without restarting the services. For this reason, we did
not focus on the performance measurement values per se but on the difference
(∆) between the baseline and the replacement measurements. With caching en-
abled, requests are answered from the cache and not from the system component
under test (e.g., webapp) [47]. Thus, there is little or no impact of component
replacement. Using MTD CBITS to manage the above-mentioned scenarios, we
were able to show that our hypothesis holds.

Internal 
Network

External
Networkweblb

db_master db_slave

msg_queue

webapp

bg_worker

Fig. 2: Scalable and highly available eCommerce website blueprint. db master,

msg queue are single instances while weblb, webapp, bg worker, db slave are im-
plemented by a homogeneous cluster of instances.

3.1 eCommerce Deployment

Let us consider a scalable and highly available architecture of an eCommerce
website with various clusters of services as shown in Figure 2: web load balancers
(Nginx or Varnish), web application (Ruby on Rails with Unicorn), database
(MySQL), messaging queue (Redis), and worker app (Sidekiq). A cluster can
be implemented by one or more homogeneous instances. Arrows indicate depen-
dency between clusters of instances. Each cluster consists of multiple instances
implementing the same services.

The website implements the basic operations (i.e., read and write from and
to the database, or submit a worker task) needed in an eCommerce setup. The
baseline performance (Table 1) was determined by performing read operations on
the eCommerce website. Similar to Unruh et al. (our previous work), we focused
our efforts on the web application and database clusters, but tested them using a
different benchmarking tool (http-perf) and an increased load on the database.

As it can be observed in Table 1, under baseline conditions the eCommerce
deployment was able to handle 150,000 requests originating from 70 connections
without any errors. Each request was reading 50 entries from the database. Re-
placing database or web application instances can be performed in a comparable



VIII

Aggregated results from 20 experiment runs
Each experiment run: 150,000 requests sent using 70 concurrent connections

Response time
Total time

Server Processing HTTP Error
(sec) Rate (req/sec) Responses

Avg. stdev Avg. stdev Avg. stdev Avg. stdev

Baseline 0.408 0.069 14min 48sec 160 sec 175.352 36.924 0 0

Replacing
0.425 0.050 15min 17sec 119 sec 166.340 22.236 1.50 4.66

one webapp

Replacing
0.424 0.047 15min 16sec 110 sec 166.032 18.887 42.60 37.57

webapp cluster

Replacing
0.426 0.040 15min 31sec 91 sec 162.675 16.481 588.10 62.84

one db slave

Replacing
0.439 0.035 15min 55sec 73 sec 158.051 12.320 913.75 113.57

db slave cluster

Table 1: eCommerce website – average performance overhead of carrying out one
replacement operation: replacing one instance and replacing the whole cluster.

amount of time (within approximately a minute of the baseline measurements).
Next, we tried to assess the overall impact of the instance replacement pro-
cess under the same high load used in the baseline. We performed one-instance
and whole-cluster instance replacement on the web application cluster, and then
on the database cluster (specifically database slaves). The differences between
replacement and the baseline measurements are, in general, statistically non-
significant and the performance loss is insignificant during the replacement pro-
cess (see Table 1). When replacing the webapp, there were very few HTTP error
responses. On the other hand, when replacing the database slaves, as shown
in Table 1, the performance is slightly impacted by this change and on aver-
age 913.75 out of 150,000 requests failed, amounting to 0.61% of total number
of requests. We observed that requests are dropped when dependent instances
are establishing connections with the new (fresh) instances due to the received
configuration updates, while still processing incoming requests.

3.2 MediaWiki with Wikipedia DB Dumps

Unlike the eCommerce scenario that utilized synthetic workloads, WikiBench is
a web hosting benchmark that leverages actual Wikipedia database dumps and
generates real traffic by replaying traces of traffic addressed to wikipedia.org.

Similar to Moon et al. [37] we utilized the traces from September 2007 and
the corresponding Wikipedia database dumps [52]. Our setup consists of a load-
balancer (Nginx), three MediaWiki backends, a database hosting the Wikipedia
dumps, and a Memcached instance for sharing sessions (the state) among the
backends (Figure 3).

weblb

database

External 
Network

Internal Network

memcached

mediawiki_webapp

Fig. 3: MediaWiki with Wikipedia database dumps.

wikipedia.org


IX

Aggregated results from 10 experiment runs
Each run: around 4150 requests, 50 threats, 1 worker, max. timeout 200 ms

Response time
Total time

Server Processing HTTP Error
(sec) Rate (req/sec) Responses

Avg. stdev Avg. stdev Avg. stdev
Avg.

stdev
Diff.

Baseline 0.054 0.001 10min 1sec 0.0003 sec 6.914 0.004 N/A 1.26

Replacing
0.053 0.001 10min 1sec 0.001 sec 6.910 0.006 0 1.12

one webapp

Replacing
0.053 0.001 10min 1sec 0.001 sec 6.910 0.005 +3 1.77

webapp cluster

Table 2: WikiBench (WikiBench (MediaWiki with Wikipedia database dumps) – av-
erage performance overhead of carrying out one replacement operation: replacing one
mediawiki webapp instance and replacing the whole mediawiki webapp cluster.

In establishing the baseline, we ran WikiBench (replayed real traces) on our de-
ployment. MTD CBITS did not interfere in an any way when performing the
baseline measurements. Next, we replayed the same traces while replacing one
mediawiki webapp instance and then the whole cluster. We recorded the av-
erages and standard deviations over ten different runs (see Table 2). We did
not focus on the overall errors per se, however, we directed our attention on
the difference in the number of errors between the baseline and the replacement
actions. We noticed that the difference between the replacement operations aver-
ages and the baseline is very small, statistically non-significant. However, in case
of the one-instance replacement, we recorded an outlier that displayed a much
lower number of HTTP 200 responses than the rest of the experiment runs: 608
compared to 855, which was the average over nine experiment runs. Including
the outlier we would still have only 27 errors with a stdev of 90.55 errors.

4 Security Analysis

In general, quantifying the security of an IT system is a challenging task [26].
Quantifying the benefits of constantly changing a system is even more demand-
ing [23]. While there have been numerous attempts [16, 22, 26, 41], the proposed
security metrics are usually at a higher abstraction level that enables them to
capture a wider range of IT systems. Thus, most of the time, it is hard to validate
them in an objective manner on a concrete (production-like) IT system.

We propose to measure the effectiveness of an MTD system in terms of the
meaningful interruptions it creates for attackers and the cost associated with
those interruptions. In a nutshell, this section is focused on determining when
instance replacements should happen (strategy), how many replacements in a
given time period (cost) and what this means in terms of attack windows,
persistence, and pivoting options.

4.1 Attack Windows and Attack Surface
An attack window is a continuous time interval an attacker may leverage without
being interrupted by system changes. System changes refer to reconfigurations



X

that would not happen on a regular basis (every few minutes, hours, or days) in
a static system, e.g., changing internal IPs, ports, applications, or credentials.

A system’s attack surface can be viewed as the subset of the IT system’s
resources that an attacker can use to attack the system. This subset of resources
is composed of methods, channels, and untrusted data items [32]. Methods refer
to the codebase entry and exit points of the IT system’s software applications,
channels are used to connect and invoke a system’s methods, while untrusted
data items are used to send or receive data into or from the target system.
Strategies to harden the system and reduce the attack surface include reducing
the amount of running code (methods), eliminating unneeded services, running
updated applications, and reducing the channels available to untrusted users [32].

Reconnaissance and Pivoting Options. MTD CBITS manages an IT sys-
tem’s internal communication channels by leveraging OpenStack’s security groups
as a per-instance fine-grained firewall. A security group is automatically config-
ured to allow only ingress and egress traffic from and to the dependee and de-
pendent instances. Moreover, traffic will be allowed only to and from the ports
(TCP and/or UDP) stored in MTD CBITS’s operations model (including re-
lated connections). Specifically, MTD CBITS reduces the attack surface of the
deployment through reducing the entry points available to untrusted users and
limiting the number of channels to the predetermined ones. Instances can initiate
connections to dependent instances only on specific port numbers (stored in the
operations model, Figure 1).

The limited pivoting options constitute an important security benefit if an
attacker is able to compromise one or more instances in the deployment. For
example in the eCommerce deployment (Figure 2), if the weblb instances were
compromised, an attacker would be able to reach only the three webapp instances
through the internal network and not all the instances belonging to the other
nodes. A node represents a role in the IT system – a single unit of configuration
that corresponds to one instance or a high-availability cluster of instances. (Here,
a role as presented in Section 2.3 corresponds to a node in the security analysis.)
Without the possibility of creating new communication channels, attackers are
forced into using existing channels in order to advance or to exfiltrate data
(specifically, only over related connections).

Attacker’s Presence – Persistent Access. Attackers usually exploit some-
what unpredictable occurrences on the targeted IT systems e.g., software bugs,
misconfigurations, or user actions. Exploits and other actions may not have the
same outcome every time they are executed. Although reducing the attack sur-
face in a non-MTD-CBITS environment helps to prevent security failures, it
does not mitigate the amount of damage an attacker could inflict once a vul-
nerability is found. In an MTD CBITS environment, even if the same flawed
node/role implementation (with the same vulnerabilities) is used on a new in-
stance, configuration parameters (e.g., IP, ports, credentials, cryptographic keys)
will be updated forcing attackers to adjust their attack in order to potentially
re-compromise the instance. Installed malware is not really “persistent” anymore
and needs to be re-installed on new instances. This process can be noisy since it
needs to be performed repeatedly in order to maintain access.



XI

Attack Window Terminology. We have defined the following terminology to
describe the proposed model. An attack attempt is an effort to gain unauthorized
privileges and data on a system. An attack path may include several nodes that
are part of the targeted IT system. These nodes can be:

1. Transparent nodes. Replacing the instances of such a node will most proba-
bly not influence an ongoing attack. Load balancers (weblbs) are transparent
nodes if they simply relay requests to webapp instances without altering them
regardless of the weblb implementation (e.g., Varnish or Nginx). Replacing a
transparent node on the attack path will not influence an ongoing attack, e.g.,
replacing a load balancer should have the same effect on all requests (benign or
malicious) to be passed to the webapps in the eCommerce website (Figures 2).
We note that under different attack assumptions, weblb could be attacked di-
rectly and in this case it will not be a transparent node.

2. Stepping-stone nodes. Different outcomes for benign and malicious requests.
For example, in the eCommerce website (Figure 2), an attack on db master to
possibly succeed, usually, requires a vulnerable or misconfigured webapp. Chang-
ing webapp to a different implementation will most likely disrupt the ongoing
attack on db master. Thus replacing a stepping-stone node on the attack path
will impact an ongoing attack. There are two types of stepping-stone nodes:
a) Compromised. Attackers have root/admin privileges.
b) Misconfigured. Attackers don’t have complete control over the node. One or

more vulnerabilities and misconfigurations allow attackers to perform an attack
on a node down the way, e.g., a misconfiguration on the webapp instances allows
unsanitized user input that results in a SQL injection which leads to compro-
mising the database node, db master (see Figure 2).

An adaptation point is the moment when new (fresh) instances start being
used in the deployment. New instances use a compatible implementation with
different IP addresses, passwords, and port numbers. Due to these configuration
changes, attacks are generally interrupted at adaptation points of stepping-stone
or target nodes and the attacker must restart the attack attempt.
A few definitions are needed to determine the length of attack windows.

Definition 1 We define Tp(X) to be the period of time taken into consideration
i.e., extent of time when attacks might be launched against node X.

Definition 2 Tr(X) is the interval between adaptation points on node X.

We have Tr(X) = ch(X) + d(X) + a(X), where

ch(X) - time interval to bring a new instance that implements X in a
ready-to-use state, e.g., provision and configure the new instance(s);

d(X) - duration to change to the ready-to-use new instance(s), d(X) > 0
e.g., pushing configuration to dependent nodes; and

a(X) - delay specifically introduced by the user, a(X) ≥ 0.

Definition 3 Ta(X) is the duration of an attack attempt on node X.

Provisioning and configuring new instances can be performed in parallel by MTD
CBITS. However, changing to the new instances belonging to dependent nodes



XII

(parameter d for each node) must be completed sequentially in order not to dis-
rupt the communication between the dependent services. Therefore, the adapta-
tion points (Tr’s) of two dependent nodes cannot be fully aligned (coincide) as
such. There will always be a very short delay between the two adaptation points.
However, because the duration of d was usually around 1 second in our testing
scenarios, we consider this type of alignment as efficient as a full alignment.

One adaptation point does not necessarily create one meaningful interruption
for an attacker. If there are several adaptation points that are aligned, we con-
sider this as only one meaningful interruption from an attacker’s perspective.
A meaningful interruption is a disruption that forces attackers to restart an at-
tack attempt (redo a significant number of the steps that are part of the attack
attempt). We consider that one adaptation point creates a meaningful interrup-
tion if it is at least one time measurement unit away (1 minute in our case) from
other adaptation points. Also, we view an adaptation moment as one adaptation
point or several aligned adaptation points that create a meaningful interruption.

4.2 Adaptation Points Placement

Assuming X is the targeted node and Y1 ... Yl−1 are the stepping-stone nodes on
the path to X, our goal is to determine the lengths of potential attack windows.
For this reason, it is vital to determine the moments when adaptation points are
aligned. First, the individual replacement-process starting time for each node
must be taken into consideration. Thus, the earliest starting time can be con-
sidered moment 0, while the placement of the other starting times captures the
difference related to moment 0. Let us state the following:

tmin = min(start timeTr(X), start timeTr(Y1), ...),
while tX = start timeTr(X) − tmin, tY1

= start timeTr(Y1) − tmin, ... 5

Now, the problem can be defined and solved using the Chinese Remainder The-
orem. Using this theorem one can determine integer m that, when divided by
some given divisors, leaves given remainders. In our scenario the given divisors
are Tr(X), Tr(Y1) ...Tr(Yl−1), the given remainders are tX , tY1

, ..., tYl−1
, and m

represents the moment when the adaptation points are aligned. We can derive
the following cases:

Case 1
If Tr(X), Tr(Y1), ..., Tr(Yl−1) are pairwise coprime then:
• Integer m exists and can be calculated
• All solutions for m are congruent lcm(Tr(X), Tr(Y1), ..., Tr(Yl−1)) 6

Case 2
If Tr(X),Tr(Y1), ..., Tr(Yl−1) not pairwise coprime then:

If ∀i, j ∈ {X,Y1, ..., Yl−1}, ti ≡ tj mod gcd(Tr(i), T (j)) is TRUE, then:
• Integer m exists and can be calculated

Else:
• Integer m does not exist

5 min is the minimum
6 lcm stands for “least common multiple” and gcd is the “greatest common divisor”



XIII

Internal 
Network

External
NetworkA

E F

C

B

D

Fig. 4: Possible IT system architecture. Arrows indicate dependencies between nodes.

Case 3
If Tr(X), Tr(Y1), ..., Tr(Yl−1) are not pairwise coprime
AND ∀i, j ∈ {X,Y1, ..., Yl−1}, ti ≡ tj mod gcd(Tr(i), T (j)) is FALSE, then:

• No pair of adaptation points will be aligned
• Integer m does not exist

Case 4
If Tr(X), Tr(Y1), ..., Tr(Yl−1) not pairwise coprime AND ∃i, j, a, b ∈ {X,Y1, ..., Yl−1},

ti ≡ tj mod gcd(Tr(i), T (j)) is FALSE,
ta ≡ tb mod gcd(Tr(a), T (b)) is TRUE, then:
• Some of the adaptation points will be aligned
• Integer m does not exist

4.3 Attack Windows Example

To briefly illustrate the options a user has when managing their deployment
using MTD CBITS, let us consider a possible IT system architecture as pictured
in Figure 4. Replacing one or all instances belonging to a node takes roughly the
same amount of time (see Section 2.4). The architecture pictured in Figure 4
can serve as a concrete eCommerce website (as shown Figure 2).

Based on an improved version (with faster replacements) of the concrete eCom-
merce scenario, the replacement times for the nodes in Figure 4 are Tr(B) = 10
minutes, Tr(F ) = Tr(E) = 11 minutes, Tr(A) = Tr(C) = Tr(D) = 3 minutes
and d(B) = d(F ) = d(E) = d(A) = d(C) = d(D) = 1 second. Tr values are at
their lowest bound for the current environment. In other words, ch’s and d’s are
at their minimum and a’s are equal to 0.

There are two possibilities to reach node E: A, B, F, E or A, B, E (Fig. 4).
For the purpose of this example we will focus on the first path, A, B, F, E. Node
A is transparent (e.g., weblb in the eCommerce scenario), and therefore Tr(A)
will not be taken into consideration.

Assuming the replacements start at the same time, the maximum attack win-
dow available to an attacker is min(Tr(E), Tr(B), Tr(F )) = min(10, 11, 11) = 10
minutes. For example, over a period of one day, the MTD system will keep the
maximum attack window for the instances belonging to node E to 10 minutes
while in a static system an attack window can be as long as the entire day.

Figure 5 illustrates three possible attack windows distributions over one day
(24 hours). To generate these distributions 407 adaptation points are needed
in each case. As observed in Figure 5, for the same cost, the outcome may



XIV

0
20
40
60
80
100
120
140
160

1 2 3 4 5 6 7 8 9 10

N
um

be
r	o

f	t
im
e	
w
in
do
w
s

Time	window	size	(min)

Option1->262 Option2->380 Option3->381 

Tr(B)	=	10	min
Tr(E)	=	11	min
Tr(F)	=	11	min

Option->Number	of	interruptions:

Fig. 5: Attack windows distribution over one day. The cost is 407 adaptation moments
in all three cases: Option1 – 262 interruptions with starting times (tB , tE , tF ) = (0, 0, 0),
Option2 – 380 interruptions with (tB , tE , tF ) = (0, 0, 1), and Option3 – 381 interrup-
tions with (tB , tE , tF ) = (0, 1, 6).

0
40
80
120
160
200
240
280

1 2 3 4 5 6 7 8 9 10 11

N
um

be
r	o

f	t
im
e	
w
in
do
w
s

Time	window	size	(min)

Option4->393 Option5->393 Option6->393 
Option->Number	of	interruptions:

Tr(B)	=	10	min
Tr(E)	=	11	min
Tr(F)	=	11	min

Fig. 6: Attack windows distribution over one day when no two adaptation points coin-
cide. The cost is 393 adaptation moments for 393 interruptions in all three cases: Op-
tion4 with starting times (tB , tE , tF ) = (0, 4, 7), Option5 with (tB , tE , tF ) = (0, 4, 9),
Option6 with (tB , tE , tF ) = (0, 2, 9).

be very different. For instance, Option1 – 262 interruptions and 26 ten-minute
attack windows when starting at (0,0,0) might not be the best option; a user
can get 380 interruptions and fewer ten-minute windows for the same number
of adaptation moments (cost).

In order to increase the number of interruptions while maintaining a compara-
ble cost (number of adaptations), adaptation points should not pairwise coincide.
For this reason, we can opt for a set of parameters that fall under Case 3 in Sec-
tion 4.2. By setting a(B) to 1 minute we have Tr(E) = Tr(B) = Tr(F ) = 11
minutes. Next, we chose different starting times that fulfill the requirements in
Case 3. Figure 6 illustrates three different such starting time options that result
in the same number of interruptions, 393, for the same cost. Furthermore, we
have more attack windows with the same length while the length of the maxi-
mum window is also shorter compared to Figure 5. What if attackers learn the
parameters over time? A user may use multiple parameter sets for Tp. Moreover,
Tp can also be changed.

In case of a successful attack, the maximum time an attacker may spend on
an instance belonging to E, is equal to the difference between the maximum
attack window and the duration of the successful attack attempt, Ta(E). Thus,
in the worst case scenario an attacker may spend between 4 and 10 minutes
on an instance belonging to node E depending on the parameter choice (e.g.,
Figures 5, 6). While there are numerous options for starting times and other



XV

parameters (e.g., parameter a), a user will always be able to calculate the cost
and predict the outcome in terms of number of adaptation moments.

The cost of an adaptation point is quantified in terms of the needed resources
and the performance overhead (degradation) the environment can accept. The
resources may include the cost for the hardware, electricity, and everything else
needed to reach the desired values for the ch and d parameters. On the other
hand, a (delay introduced by the user) is the parameter that can be easily
changed. While increasing a has no upper bound, once a = 0, decreasing Tr
values involves changing ch and/or d.

5 Discussion and Limitations

Numerous organizations embraced the DevOps adventure in an effort to auto-
mate their systems. An integral part of DevOps is focused on a CMT [43]. Even
though MTD CBITS is not a “blanket”-like solution that simply covers existing
running IT systems, adopting it is well within reach.

CMT-driven automation is the key, but it is not enough. Without an integrated
inventory, instance replacements are heavily dependent on manual intervention.
Using its operations model, MTD CBITS maintains an up-to-date inventory of
the entire IT system and leverages it to reliably automate the instance replace-
ments throughout the lifetime of the IT system.

On cloud infrastructures, the replacements may also constitute an efficient,
user-controlled defense against various side-channel attacks. Instead of relying
only on the cloud provider, the user controls the replacement operations and can
regularly trigger physical host location “refreshes”. The physical host where a
new instance is placed depends on the cloud provider’s scheduler. While public
cloud scheduler rules may differ, we used the OpenStack Filter Scheduler with the
default settings on our infrastructure. Although we had only thirteen compute
nodes, instances “move” between nodes every replacement operation. We have
deployed the eCommerce scenario (Figure 2) with 20 web applications, webapps.
We noticed that between the initial deployment and the first whole webapp-
cluster replacement only 3 out of 13 hosts were assigned the same number of
instances, while between the first and the second replacement only 2 out of 13.

The performance loss on a cloud infrastructure can be compared in a way
to Netflix’s approach to test the resiliency of their IT systems. They deployed
a service (called Chaos Monkey [1]) that seeks out high-availability clusters of
services and randomly terminates instances within the cluster. MTD CBITS on
the other hand, replaces instances proactively in an organized way for security
purposes in virtualized environments (IaaS clouds). Nevertheless, physical hosts
may also be managed similar to VMs by using offerings such as MaaS [10].

6 Related Work

Most MTD-related work focuses on specific aspects of system configuration, such
as IP addresses [6, 20, 27], memory layouts [3, 13, 31], instruction sets [9, 29],
html keywords [14, 50], SQL queries [9], or database table keywords [14]. Software
diversity has also been investigated in several efforts [8, 24, 53] as a way to



XVI

support multiple configurations. Although more comprehensive frameworks [30,
42] for various environments [5, 11] have been proposed, most are still conceptual,
and require significant theoretical and practical development. In an attempt to
provide a more efficient experimentation support for various pro-active defenses,
researchers have proposed VINE [21]. Unlike MTD CBITS which captures the
overall IT system and manages it throughout its lifetime, VINE enables users
to create an emulated setting of an existing network on OpenStack for training
and experimentation purposes.

Narain et al. used high-level specifications for network infrastructure config-
uration management in the ConfigAssure [39] and DADC [38] projects. Similar
concepts have been proposed by Al-Shaer in MUTE [4], which uses binary de-
cision diagrams to achieve dynamic network configurations. On the other hand,
SCIT [25] has been used to achieve intrusion tolerance by restoring VM instances
to their original state [40]. Our approach achieves the same intrusion tolerance
as SCIT and adopts formal models similar to Narain to ensure that instance
replacement(s) will not disrupt normal operations.

In terms of metrics, Okhravi et al. [41] quantitatively studied dynamic plat-
forms as a defensive mechanism, while Cybenko and Hughes [16] introduced a
quantitative framework to model diversity and showed how it can defend the
three core goals of cyber security: confidentiality, integrity, and availability. Our
ability to quantify cost while controlling the lengths of attack windows provides
a new perspective on measuring security benefits, which may be an important
component of the proposed higher-level metrics.

7 Conclusions

We propose and evaluate an MTD platform that captures service dependencies
at the entire IT system level, and performs live instance replacements in a reliable
way with negligible performance overhead on a cloud infrastructure. We recorded
statistically non-significant differences between the baseline measurements (no
MTD operations – static system) and the MTD replacement operations.

On the security side, we are able to quantify the outcome (lengths of potential
attack windows) in terms of the cost (number of adaptations), and demonstrate
that MTD systems managed and deployed using MTD CBITS will achieve the
goal of increasing attack difficulty (e.g., restricted reconnaissance and pivoting
options, limited persistent access).

MTD CBITS and ANCOR implementations, all scenarios, and auxiliary ma-
terials (e.g., supporting proofs for Cases 3 and 4 from Section 4.2, a Python
implementation for an “attack windows calculator”, more comprehensive bene-
fits descriptions, etc.) are available at https://github.com/arguslab/ancor.

Acknowledgements. We would like to thank the reviewers for their valuable
feedback and everyone involved in this research over the years, especially Rui
Zhuang, Ali Ali, Simon Novelly, Ian Unruh, and Brian Cain. This work was
supported by the Air Force Office of Scientific Research (FA9550-12-1-0106).
Opinions, findings, conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the agencies’ views.

https://github.com/arguslab/ancor


References

[1] Chaos Monkey – accessed 4/2017. https://github.com/netflix/chaosmonkey.

[2] http-perf – accessed 4/2017. https://www.npmjs.com/package/http-perf.

[3] PaX ASLR – accessed 4/2017. https://pax.grsecurity.net/docs/aslr.txt.

[4] E. Al-Shaer. Toward Network Configuration Randomization for Moving Target
Def. In Moving Target Defense. Springer, 2011.

[5] M. Albanese, A. De Benedictis, S. Jajodia, and K. Sun. A Moving Target Defense
Mechanism for MANETs based on Identity Virtualization. In IEEE CNS, 2013.

[6] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis. Defending
against Hitlist Worms using Network Addr. Space Rand. In ACM WORM, 2005.

[7] M. Armbust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A View of Cloud Computing.
In ACM CACM, 2010.

[8] K. Bauer, V. Dedhia, R. Skowyra, W. Streilein, and H. Okhravi. Multi-Variant
Execution to Protect Unpatched Software. In RWS, 2015.

[9] S. W. Boyd, G. S. Kc, M. E. Locasto, A. D. Keromytis, and V. Prevelakis. On the
General Applicability of Instruction-set Randomization. In IEEE TDSC, 7/2010.

[10] Canonical, Metal as a Service (MAAS) – accessed 4/2017. https://maas.io/.

[11] V. Casola, A. D. Benedictis, and M. Albanese. A Moving Target Defense Approach
for Protecting Resource-constrained Distributed Devices. In IEEE IRI, 2013.

[12] Chef – accessed 3/2017. https://www.chef.io/chef/.

[13] P. Chen, J. Xu, Z. Lin, D. Xu, B. Mao, and P. Liu. A Practical Approach for
Adaptive Data Structure Layout Randomization. Springer International Publish-
ing, Computer Security – ESORICS, 2015.

[14] M. Christodorescu, M. Fredrikson, S. Jha, and J. Giffin. End-to-End Software
Diversification of Internet Services. In Moving Target Defense. Springer, 2011.

[15] Crowdstrike, Bears in the Midst – accessed 4/2017. https://goo.gl/djML8Q.

[16] G. Cybenko and J. Hughes. No Free Lunch in Cyber Security. In MTD, 2014.

[17] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.
Efficient Integrity Checks for Join Queries in the Cloud. In IOS JCS, 2016.

[18] Democratic National Committee – accessed 4/2017. https://goo.gl/nxemkK.

[19] DHS, Moving Target Defense – accessed 4/2017. https://goo.gl/5qXtoH.

[20] M. Dunlop, S. Groat, W. Urbanski, R. Marchany, and J. Tront. MT6D: A Moving
Target IPv6 Def. In IEEE MILCOM, 2011.

[21] T. C. Eskridge, M. M. Carvalho, E. Stoner, T. Toggweiler, and A. Granados.
VINE: A Cyber Emulation Env. for MTD Experimentation. In ACM MTD, 2015.

[22] D. Evans, A. Nguyen-Tuong, and J. Knight. Effectiveness of Moving Target De-
fenses. Springer New York, 2011.

[23] T. Hobson, H. Okhravi, D. Bigelow, R. Rudd, and W. Streilein. On the Challenges
of Effective Movement. In ACM MTD, 2014.

[24] A. Homescu, T. Jackson, S. Crane, S. Brunthaler, P. Larsen, and M. Franz. Large-
scale Automated Software Diversity–Prog. Evol. Redux. In IEEE TDSC, 2015.

[25] Y. Huang, D. Arsenault, and A. Sood. Closing Cluster Attack Windows through
Server Redundancy and Rotations. In Workshop on Cluster Security, 2006.

https://github.com/netflix/chaosmonkey
https://www.npmjs.com/package/http-perf
https://pax.grsecurity.net/docs/aslr.txt
https://maas.io/
https://www.chef.io/chef/
https://goo.gl/djML8Q
https://goo.gl/nxemkK
https://goo.gl/5qXtoH


XVIII

[26] J. Hughes and G. Cybenko. Quantitative Metrics and Risk Assessment: The Three
Tenets Model of Cybersecurity. In Tech. Innovation Management Review, 2013.

[27] J. H. Jafarian, E. Al-Shaer, and Q. Duan. An Effective Address Mutation Ap-
proach for Disrupting Reconnaissance Attacks. In IEEE Transactions on Info.
Forensics and Security, 2015.

[28] N. Karapanos, A. Filios, R. A. Popa, and S. Capkun. Verena: End-to-End Integrity
Protection for Web Applications. In IEEE S&P, 2016.

[29] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering Code-Injection Attacks
With Instruction-Set Randomization. In ACM CCS, 2003.

[30] A. D. Keromytis, R. Geambasu, S. Sethumadhavan, S. J. Stolfo, J. Yang, A. Be-
nameur, M. Dacier, M. Elder, D. Kienzle, and A. Stavrou. The MEERKATS
Cloud Security Architecture. In IEEE DCS, 2012.

[31] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address Space Layout Permutation
(ASLP): Towards Fine-grained Rand. of Commodity Soft. In IEEE ACSAC, 2006.

[32] P. K. Manadhata and J. M. Wing. An Attack Surface Metric. IEEE TSE, 2010.

[33] Mandiant, APT1 Report – accessed 3/2017. https://goo.gl/Cx3wz2.

[34] Mandiant, M-Trends 2016 Report – accessed 4/2017. https://goo.gl/PmJdEZ.

[35] Mandiant, M-Trends 2017 Report – accessed 4/2017. https://goo.gl/ISs8tX.

[36] MediaWiki – accessed 4/2017. https://www.mediawiki.org.

[37] S.-J. Moon, V. Sekar, and M. K. Reiter. Nomad: Mitigating Arbitrary Cloud Side
Channels via Provider-Assisted Migration. In ACM CCS, 2015.

[38] S. Narain, D. C. Coan, B. Falchuk, S. Gordon, J. Kang, J. Kirsch, A. Naidu,
K. Sinkar, S. Tsang, S. Malik, S. Zhang, V. Rajabian-Schwart, and W. Tirenin.
A Science of Network Configuration. In Journal of CSIAC-CSIS, 4/2016.

[39] S. Narain, S. Malik, and E. Al-Shaer. Towards Eliminating Config. Errors in Cyber
Infrastructure. In IEEE SafeConfig, 2011.

[40] Q. Nguyen and A. Sood. Designing SCIT Architecture Pattern in a Cloud-based
Env. In DSN-W, 2011.

[41] H. Okhravi, J. Riordan, and K. Carter. Quantitative Evaluation of Dynamic
Platform Techniques as a Defensive Mechanism. In Research in Attacks, Intrusions
and Defenses. Springer, 2014.

[42] G. Portokalidis and A. D. Keromytis. Global ISR: Toward a Comprehensive De-
fense Against Unauthorized Code Exec. In Moving Target Defense. Springer, 2011.

[43] Puppet – accessed 4/2017. https://puppet.com/ and https://goo.gl/r1WcKm.

[44] Puppet Blog – acc. 4/2017. https://goo.gl/TSRTS0 and https://goo.gl/9Z1YhK.

[45] Puppet Hiera – accessed 4/2017. http://docs.puppetlabs.com/hiera/1/.

[46] Puppet, os hardening – accessed 4/2017. https://goo.gl/vjkCgZ.

[47] I. Unruh, A. G. Bardas, R. Zhuang, X. Ou, and S. A. DeLoach. Compiling Abstract
Spec. into Concrete Sys. - Bringing Order to the Cloud. In USENIX LISA, 2014.

[48] US Patent US6917930 – accessed 4/2017. https://goo.gl/KYMT9a.

[49] Verizon, 2016 DBIR – accessed 4/2017. http://goo.gl/E0OSr7.

[50] S. Vikram, C. Yang, and G. Gu. NOMAD: Towards Non-intrusive MTD Against
Web Bots. In IEEE CNS, 2013.

[51] Wikibench – accessed 4/2017. http://www.wikibench.eu/.

[52] Wikipedia DB dumps – accessed 4/2017. https://goo.gl/8jfhkk.

[53] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C. Knight, and A. Nguyen-
Tuong. Security through Diversity: Leveraging VM Tech. In IEEE S&P, 7/2009.

https://goo.gl/Cx3wz2
https://goo.gl/PmJdEZ
https://goo.gl/ISs8tX
https://www.mediawiki.org
https://puppet.com/
https://goo.gl/r1WcKm
https://goo.gl/TSRTS0
https://goo.gl/9Z1YhK
http://docs.puppetlabs.com/hiera/1/
https://goo.gl/vjkCgZ
https://goo.gl/KYMT9a
http://goo.gl/E0OSr7
http://www.wikibench.eu/
https://goo.gl/8jfhkk

