
A Unified Graphical Notation for AOSE?

Lin Padgham1, Michael Winikoff1, Scott DeLoach2, and Massimo Cossentino3

1 RMIT University, Australia
{lin.padgham,michael.winikoff}@rmit.edu.au

2 Kansas State University, USA
sdeloach@ksu.edu

3 ICAR-CNR, Italy
cossentino@pa.icar.cnr.it

Abstract. Over the last five years a number of agent system development method-
ologies have been proposed and developed, with a number of them becoming
well established and used beyond the group developing them. They all deal with
similar concepts, but the notations used differ substantially. In this work we de-
velop a standardized graphical notation for four prominent agent development
methodologies, using principles of graphical notation suggested by Rumbaugh.
We briefly illustrate the graphical design views produced in the different method-
ologies, on a conference management system example, using the standardized
notation. We then discuss some of the similarities and differences on the basis
of the design artifacts produced - which are now much more readily comparable
than previously. This is a first step in being able to readily incorporate steps from
different methodologies, depending on the needs of the application. It also helps
to make the material more readily accessible to a wider audience.

1 Introduction

In recent years, it has become accepted that in order to effectively develop agent sys-
tems, it is necessary to have methodologies and notations that deal specifically with
agent concepts and agent design issues. As a result, over the last several years many
Agent Oriented Software Engineering (AOSE) methodologies have been developed or
proposed, with some of the most well known including Gaia [1], O-MaSE (based on
the earlier MaSE) [2], Tropos [3], Prometheus [4] and PASSI [5].

Important aspects of mature methodologies include the particular tools and dia-
grams that are used to develop and capture the analysis and design of the system being
developed [6]. While there are a number of similarities between different methodologies
cited above, each has its own particular strengths and nuances. It is certainly conceiv-
able that a developer would wish to incorporate aspects of different methodologies into

? We acknowledge the input of Paolo Giorgini in discussing and determining the notation pre-
sented, and AgentLink which organized the Technical Forum. Padgham and Winikoff ac-
knowledge the support of The Australian Research Council and the Australian Department of
Education, Science and Training, as well as Agent Oriented Software under grants LP0453486
and CG040014. Scott DeLoach acknowledges the support of the US National Science Foun-
dation under Grant No. 0347545 and by the US Air Force Office of Scientific Research.

a development process. In fact, this is the vision of method engineering [7] where the
goal is to mix and match the activities, tasks and techniques of various methodologies
according to the needs of a particular project. However, it is currently difficult to com-
pare or use the diagrams and techniques from different AOSE methodologies because
each methodology uses its own concepts, notations, and techniques.

The vision of method engineering is generally achievable using mature technolo-
gies such as object orientation where the basic concepts (objects, classes, associations,
inheritance, etc.) and notations (UML) are well understood and generally agreed upon
[8]. As a result of this maturity and agreement in the object oriented community, there
are several well known activities, tasks and techniques that can be applied in a number
of ways on various projects. There are also several commercially available tools that
can be used together or separately to support a variety of approaches to developing ob-
ject oriented systems [9]. Duplicating the success of object orientation requires two key
elements: a common notation and a common metamodel

The goal of this paper is to take a first step toward the level of maturity evidenced
in the object-oriented community. In this first step, the developers of a number of the
most detailed and prominent AOSE methodologies have worked together to produce a
common notation.4 While this first step is modest, we believe that a shared graphical
notation is a first step toward making AOSE methodological work applicable to industry
consumers. This notation will be used in each of our future individual methodological
work and will be integrated into existing and new tools supporting that work.

In progress toward the second key element, there has been work done attempting
to define a common metamodel for multi-agent methods and techniques [11]. Some
efforts have also been spent in the field of standardization within the FIPA organization.
Two different technical committees (Modeling and Methodology) worked on that and
results describing their points of view can be found in [12, 13]. However, while basic
agent-oriented concepts have some commonality, we are far from having community-
wide consensus on the majority of agent and multi-agent concepts. Thus, the common
metamodels tend to be overly complex and of limited practical usefulness. Even though
our goal may be considered more limited, from a practical standpoint, it is at least
equally important and can provide a good first step in reaching such a community-wide
consensus on the most important agent concepts.

While this paper does identify common concepts that we all use or wish to include
in our notational set, the precise definitions and ways they are used do differ somewhat
from methodology to methodology. Until there is a community wide agreement on these
concepts, we believe these differences should be allowed to exist.

In the rest of this paper we present the new notation, motivating the choices we have
made, followed by an example of a conference management system where we illustrate
the design diagrams that can be produced by the various methodologies using the new
notation. We finish with a brief discussion of the importance of working together across
research groups to provide an engineering methodology that is accessible to practition-
ers wishing to build complex agent systems.

4 We also worked with Paolo Giorgini, considering the Tropos methodology in the development
of the common notation. We did not use Gaia because it does not make use of graphical models.
We also did not include less prominent AOSE methodologies such as [10] for the time being.

2

scenario

resource

/ data

Activity

capability

event

action

«info»

Service

organization

«info»

actor

agent

«info»

conversation

«info»

message (out)

«info»

Plan

Goal

«info»

percept

«info»

message (in)

«info»

soft goal role

«info»

position

«info»

Fig. 1. Proposed Notation. The shaded symbols (use case and activity) as well as the actor symbol
are existing UML symbols.

2 The Unified Graphical Notation

We begin this section by describing general criteria for developing (graphical) notations
suitable for the analysis and design of complex software systems. The article by Rum-
baugh [14], one of the developers of the widely-used UML notation, gives the following
list of desiderata for developing notations. This list illustrates the trade-offs that must
be made when different desired properties conflict.

1. Clear mapping of concepts to symbols
2. No overloading of symbols
3. Uniform mapping of concepts to symbols
4. Easy to draw by hand
5. Looks good when printed
6. Must fax and copy well using monochrome images
7. Consistent with past practice
8. Self consistent
9. Distinctions not too subtle

10. Users can remember it
11. Common cases appear simple
12. Suppressible details.

In the remainder of this section, we present the notation that we have developed and
explain the rationale for our decisions. As is often the case, there are sometimes trade-
offs, but we believe we have now developed a notation that satisfies desirable properties
for usability, clarity, etc.

Our notation uses a common type of diagram where the entities of interest are de-
picted as nodes and distinctive shapes are used to differentiate different types of nodes.
Figure 1 presents an overview of our proposed notation. Relationships between entities
are depicted by links, which can be decorated with a label giving the link type (e.g.

3

“�precedes�”, “�initiates�”). The decorations are optional and in many cases can
be derived from the types of the entities. For example, in Prometheus an arrow from a
percept to an agent is always a�receives� relationship.

This “graph-based” notation is standard in all types of engineering and is especially
well suited to capturing system structure. However, capturing system behavior may be
best done with non-graph-based models such as AUML sequence diagrams [15]. In
this paper we do not tackle this type of diagram: since the AUML sequence diagram
is well-defined and widely used, it makes little sense to propose a replacement for it.
Other diagrams capturing system behavior, such as the Prometheus process diagrams,
can be drawn with the proposed new notation.

Below we explain each type of node in our proposed notation. For each node we
explain our reason for choosing the depiction given in Figure 1, and relate it to the
concepts it can be used to represent. However, before describing the graphical notation,
we briefly motivate our choice of concepts.

In selecting the concepts to be represented in our notation, we chose concepts that
were required to model agent-based system as indicated by their use in the four method-
ologies participating in the discussion, as well as other agent based methodologies of
which we were aware. In identifying “required” concepts, we related the concepts used
to design and build agent systems to the defining properties of agents [16]5:

– Agents are autonomous – the key concept here is the notion of an agent itself, as
an autonomous entity (distinct from objects).

– Agents are situated – the minimal key design concepts are the interface to the agent
system’s environment, in terms of actions performed by agents that affect the envi-
ronment, and percepts6, that get information from the environment. Clearly, more
sophisticated concepts can be used to characterize the environment.

– Agents are proactive – the corresponding concept is goals.
– Agents are reactive – the corresponding concept is the notion of an event, a “sig-

nificant occurrence”.
– Agents are social – here a wide range of concepts could be used, ranging from the

minimal one of messages, through to a range of organizational models. We choose
to use the concepts of messages, conversations7, roles, positions and organizations,
where positions are placeholders for one or more roles within an organization, and
an organization can include particular forms of organization, such as a team, or an
e-institution.

In addition to these clearly required concepts, we added the following commonly used
concepts:

– Soft-goals: goals that do not have a clear satisfiability definition, used in a number
of methodologies, both agent-oriented and non-agent-oriented, for modelling non-
functional requirements such as security, usability, flexibility. We include soft-goals
since they are clearly useful, and since they fit in very well with agent-based design,
where agents have goals.

5 Sturm et al. [10] proposed a similar set of concepts, based on our earlier work [16].
6 From the Latin perceptum, same root as the word “perceive”.
7 Also known as “protocols” or as “interaction protocols”.

4

– Actor: an external entity, which can be human or software. This concept is useful
in early analysis, and is well established in existing practice.

– Capability: a concept often used in discussing agents and implemented first by the
JACK agent-oriented programming language [17] and subsequently adopted and
extended by Jadex. Capabilities are a modularization construct for agents which
can contain things such as plans, events, data, and sub-capabilities.

– Plan: sometimes termed tasks, plans are a key concept in BDI agent platforms, and
in other plan-based implementation platforms. Hence, it is clearly important for
(detailed) design to support plans.

– Resource/data: like any other software, agents normally need to store data in some
form and/or use existing resources. For notation purposes we a use a single sym-
bol to depict data or resources, without distinguishing between resources (e.g. a
printer) and data, or between different data formats (objects, belief sets, relational
databases).

– Service: the use of services are becoming very popular in information systems de-
sign using what are called service-based multi-agent systems. Although services
are currently only well-defined in PASSI, we believe that this is a growing area and
thus it is important to be able to depict existing services that will be used.

Having identified the concepts used to define agent systems, we now turn to con-
sidering how to graphically depict these concepts (see Figure 1) in order to more easily
model agent system designs. According to the desiderata identified by Rumbaugh [14],
each of the key concepts should be mapped to a distinct symbol satisfying the first
two criteria (“Clear mapping of concepts to symbols” and “No overloading of sym-
bols”). In addition, we strived to select symbols that emphasize similarities between
related concepts (e.g. between outgoing messages and actions) whilst using clearly dis-
tinct symbols for concepts that are clearly dissimilar (“Uniform mapping of concepts to
symbols”). For example, the symbols for a plan and for an agent are completely differ-
ent. The symbols selected are also easily drawn by hand; our notation does not rely on
shading, line thickness, or any other distinctions that are subtle, confusing, or that do
not copy/fax well. The only distinction between symbol shapes that is somewhat subtle,
the use of rounded corners in roles and positions, is reinforced by the use of a modifica-
tion to the stick figure within the symbol. Further, as is discussed below, we have strived
for consistency with past practice, where appropriate. In particular, we have used the
UML notation where it made sense to do so. However, as will be seen in the following
sections, many of the concepts used to engineer agent systems do not exist in UML, and
in this case we believe that it is important to have new and clearly distinct symbols for
concepts that are new and clearly distinct. Finally we describe a notational mechanism
for achieving scalability by suppressing details.

Goal and Softgoal: Perhaps because goals are a new concept in agents, and one of
the differences that clearly distinguish agents from objects, there is no consensus on
how to depict them graphically. For instance, O-MaSE depicts goals as a rectangle
with a number and a name, Tropos uses a fully rounded box (a “pill” or “lozenge”
shape), and Prometheus uses an oval. Since one of our aims is to be compatible with

5

existing standards, and since GRL8 appears to be in the process of being standardized9

we choose to use a pill/lozenge shape for goals.10 For softgoals the standard is to use
a cloud shape. Although this is not always easy to draw using tools, we cannot justify
inventing a new symbol when a widely used symbol already exists for the concept.
Scenario: Scenarios are closely related to use cases, and hence we want a symbol that
is close to the existing UML symbol for a use case (an oval). However, we also want to
avoid overloading symbols, thus we have elected to use a double-lined oval.
Entities: Actors, Agents, Roles: Actors are a well-established concept with a well-
established notation (the stick figure) which we adopt. For agents it is important to
have a symbol that is distinct from the UML class symbol. However, despite the impor-
tance of the agent concept to AOSE, there is no consensus on its depiction: Prometheus
uses a rectangle containing a stick figure, whereas Tropos uses a circle. For our no-
tation, we propose that the Prometheus notation of the stick figure in a rectangle be
adopted. Including the stick figure suggests a relationship with actors, and reinforces
that, like humans, agents are active autonomous entities. Roles are an abstraction of
agents and, in fact, are used in two ways within the AOSE community: as a social no-
tion and as a component. In the social approach, agents are assigned play roles within
some organization. In the component approach, which has been used in both O-MaSE
and Prometheus, agents are designed by grouping roles. To help define the role symbol,
we adopted a general notational principle that states that when there are two concepts
and one is an abstraction of the other, we use the same symbol for the abstracted con-
cept, but with rounded corners. Thus, our proposed symbol for a role is the same as an
agent but with rounded corners. To further emphasize that roles are abstract and are not
complete agents, we embed a “half stick figure” instead of the full actor symbol used in
the agent symbol.
Intra-Agent: Plan/Task, Capability/Module: Plans (sometimes called tasks, e.g. in
MESSAGE and Tropos) are depicted by a range of symbols. Using a similar reasoning
to goals, we adopt the GRL/Tropos/i* symbol: a hexagon. For capabilities we adopt
UML’s package symbol, since capabilities are conceptually package-like: they contain
other entities.
Events and Messages: In Prometheus events and messages are both depicted as en-
velopes, which are memorable, easy to recognize, and easy to draw by hand. However
this notation has three problems: firstly it is confusing to draw intra-agent events as
messages, secondly it is not clear from the symbol whether the message is incoming or
outgoing, and thirdly, the envelope symbol is not consistent with related UML notation.
Thus, we propose to adopt the UML notation for send signal actions and accept event
actions to depict sending and receiving messages respectively. This notation allows us
to distinguish incoming and outgoing messages and provides consistency with standard
practice. For events, we use a new symbol (a diamond). Events can be used to represent
either inter- or intra-agent events.

8 http://www.cs.toronto.edu/km/GRL/
9 By the international telecommunications union (ITU). The proposed standardization brings

together Use Case Maps (UCMs) and the Goal-Oriented Requirement Language (GRL) under
the name User Requirements Notation (URN).

10 GRL and Tropos use the same notation, due to their common ancestry, i*.

6

Environment: Percepts, Actions, Resource: Because we assume agents are situated
in their environment, it can be argued that sending and receiving messages are actu-
ally special instances of the general notions of performing actions on the environment
and receiving percepts from the environment. Therefore, we choose to use symbols for
actions and percepts that are variants of the message symbols described above. The
addition of a vertical bar as the distinguishing characteristic is somewhat arbitrary, but
was chosen to be an obvious difference that is easy to draw. Resources are represented
as simple rectangles in Tropos. Due to its simplicity and clarity, it makes sense to use
this notation in the general sense as well. In addition, the rectangle symbol is similar to
UML classes, which are also rectangular in shape. Therefore, the resource symbol can
be seen as a generalization of the UML class.
Social concepts: Conversation, Organization, Position: Due to its mnemonic value,
the Prometheus symbol for a protocol (a large double headed arrow, denoting bi-directional
communication), is proposed for our notation. However, to clarify the concept it rep-
resents, we term the concept a “conversation” rather than a “protocol”. Because an
organization is generally associated with a group of agents, it seemed natural to modify
the agent symbol to represent this grouping. Thus, the agent symbol (a box with a single
stick figure) is modified by replacing the single stick figure with multiple stick figures
to represent an organization. When we decided on the symbol for a position, which is an
organization’s place holder for a role (one or more), we used the organisation symbol,
modified in the same way as the role symbol was modified from the agent symbol: a
round-cornered rectangle with half stick figures.
Service: Since there is no accepted symbol for a service we propose a new symbol. In
addition, since the concept of a service is not closely related to any of the other agent
concepts discussed so far, we wanted a distinct symbol that is simple to draw. Thus,
we propose using a simple circle to represent services. While the choice is somewhat
arbitrary, it can be argued that a service is similar to a UML interface as it describes
how to interact with the agent providing the service.
Links: Although some notations, such as Tropos and i*, use a wide range of different
link/arrow types, we do not believe this to be a good idea because they can be hard
to draw by hand, are quite subtly different, and can be difficult for users to remember.
Instead, we propose a single arrow type which is (optionally) enriched with textual an-
notations where desired to indicate different link types. We have identified a variety
of useful links; however, this (partial) list can be easily extended as long as the mean-
ing of the link is defined. Annotations include: a role �achieves� a goal, an event
�occurs� during the pursuit of a goal, an event �triggers� the creation of a new
goal, and a goal�precedes� another goal.
Scalability: Collapsing Links: For a design notation to be practical and usable for the
design of large systems it must scale to large designs. There are a number of abstraction
and packaging concepts in the notation that support this (such as organisation, protocol
and capability). In addition we propose the use of “collapsible” links. As is shown
below, many of the symbols have an information section, which can be used to indicate
links with other entities such as an agent that�plays� a role. These collapsable links
can be used to replace links to symbols. For example, below the left part of the figure,
showing an agent with a link to a role symbol, is equivalent to the right side of the figure

7

where the role symbol has been removed and the relationship indicated in the agent’s
information section.

agent role agent
«plays»

role=

The design notation can also be used to develop models which capture different aspects
of the system, partitioning or abstracting to obtain scalability. For example a system
overview diagram shows no agent internals, whereas agent overview diagrams can par-
tition the system into a set of separate diagrams, one for each agent type.

3 Using the Notation

To illustrate the use of the unified notation across the different methodologies, we
present examples of various diagrams taken from our methodologies based on a com-
mon exemplar system. Space limitations preclude us from presenting a wide range of
diagrams from each methodology and we hope that the diagrams included are sufficient
to give some of the flavour of how the proposed notation would be used.

The example we use in this paper is the popular multiagent conference management
system, which was first proposed by [18] in 1998. It has since been widely used as it
is suitable for illustrating a wide variety of aspects of multi-agent system analysis and
design. The version of the system we are following is based on the version used in [19].

The conference management system is a multiagent system that supports the man-
agement of conferences that require the coordination of several individuals and groups
to handle the paper selection process. This process includes paper submission, paper re-
views, paper selection, author notification, final paper collection, and the printing of the
proceedings. Authors may submit papers to the system up until the submission deadline.
Once the submission deadline has passed, members of the program committee (PC) re-
view the papers by either contacting referees and asking them to review a number of
the papers, or by reviewing them themselves. Once all the reviews are complete, a final
decision is made on whether to accept or reject each paper. Each author is notified of
this decision and authors with accepted papers are asked to produce a final version that
must be submitted to the system. All final copies are collected and sent to the printer
for publication in the conference proceedings.

In the remainder of this section, we present several of the models used in our
methodologies to capture various aspects of the conference management system analy-
sis and design. However, each of the models uses the unified notation to illustrate how
the different models might possibly be used together even though they are from different
methodologies.

The O-MaSE Goal Model shown in Figure 2 has a top level goal of Manage Con-
ference Submissions, which is broken down into five conjunctive sub-goals. The “pre-
cedes” relation between the Collect Papers and Distribute Papers goals indicates that
the Collect Papers goal must be achieved before work may begin towards the achieve-
ment of Distribute Papers. The “occurs” and “triggers” relation between the Partition
Papers and Assign Reviewers goals and the created(set) event indicates that the cre-
ated(set) event may occur during achievement of the Partition Papers goal and when it

8

1.1 Collect papers 1.2 Distribute
papers

2.1 Partition
papers

2.2 Assign reviewers

set : PaperSet

4.1 Collect
reviews

4.2 Select papers

4.3 Inform author

p : Paper

«triggers» «triggers»

«triggers»

created(set)

«occurs»

assign(p,r)

«occurs»

«triggers»

accepted(p)

declined(p)

«occurs»

«occurs»

«precedes»

«precedes»

«precedes»

5.1 Collect finals

p : Paper
5.2 Send to

printer

«triggers»

«and»

0. Manage
submissions

«and»

5. Print
proceedings

«and»

1. Get papers

«and»

2. Assign papers

«and»

4. Select papers
3. Review paper

p : Paper
r : Reviewer

«precedes»

«precedes»

Fig. 2. O-MaSE Goal Model

does, it triggers the creation of a new Assign Reviewers goal that is parameterized based
on some set of papers to be assigned to reviewers.

The O-MaSE role model is derived from the goal model and depicts the relation-
ships between the roles in the conference management system, as shown in Figure 3.
In Figure 3, the goal(s) that each role may achieve are annotated via an embedded
�achieves� relation in the body of each role symbol. Thus, the Assigner role is used
to achieve the Assigns Reviewers goal. We also use a directed arrow to represent a con-
versation between roles with the arrows pointing from the initiator to the responder.
The details of these conversations are defined using the commonly accepted AUML in-
teraction diagrams [15]. Interactions with the external environment are represented as
conversations with external actors.

make assignments

review papers
submit review

retrieve abstracts

get reviews

inform authors

submit paper

Reviewer

<<achieves>> review
paper

PaperDB
<<achieves>> collect papers
<<achieves>> distribute papers
<<achieves>> collect finals

retrieve paper

Assigner

<<achieves>> assigns
reviewers

Partitioner

<<achieves>> partition
papers

Review Collector

<<achieves>> collect
reviews

Decision Maker

<<achieves>> select papers
<<achieves>> inform authors

Author

submit final

Finals Collector

<<achieves>> send to
printer

Printer

print proceedings

retrieve finals

Fig. 3. O-MaSE Role Model

9

The Prometheus System Overview Diagram captures the architecture of the system,
showing agent types, the conversations between them, and the interface to the environ-
ment in the form of percepts and actions. The System Overview diagram is generated
automatically by the design tool (though layout must be done manually), based on the
protocol specifications, and on the role specifications which form the agent.

Fig. 4. Prometheus System Overview Diagram

The PASSI Communication Ontology Description diagram (Figure 5) is essentially
composed of communications and agents. For each communication, the designer can
introduce three parameters: the ontological elements exchanged in message contents
(represented by the Ontology parameter), the agent interaction protocol (represented
by the Protocol parameter), and the content language (represented by the Language
parameter).

The Prometheus System Overview, the O-MaSE Agent Model (not shown) and the
PASSI Communication Ontology Description diagrams all show conversations between
agent types. The difference lies in how they represent interaction with the environment.
The Prometheus models show an explicit representation of individual actions/percepts
while the O-MaSE and PASSI models represent interactions via conversations with
external actors.

4 Discussion and Future Work

We can see that once the gratuitous incompatibility of notation is removed, it becomes
much easier to see both the similarities and the differences, and to consider extending
one methodology with aspects of another. It is clear from the example and associated
diagrams that O-MaSE and Prometheus are quite close, at least at the level of system
specification and architectural design, whereas PASSI is more dissimilar:

10

Fig. 5. PASSI Communication Ontology Description Diagram

– Both O-MaSE and Prometheus capture goals in a goal overview diagram. The
Prometheus notation is simpler whereas the O-MaSE notation captures additional
relationships, such as one goal triggering another.

– O-MaSE, Prometheus and PASSI all have a diagram that captures the roles in the
system and in the case of Prometheus and O-MaSE these both indicate the assign-
ment of goals to roles.

– The System Overview Diagram of Prometheus and the Agent Model of O-MaSE
are virtually identical apart from O-MaSE showing actors, whereas Prometheus
shows actions and percepts. PASSI on the other hand has a simpler Agent Structure
diagram with a separate diagram for the communication ontology.

Although there is still some way to go before portions of the methodologies would
be fully interchangeable, the unified notation does allow us to more readily see possi-
bilities for borrowing from each other. Most importantly, the unified notation has the
potential to allow users and developers to more readily understand the various method-
ologies and associated diagrams, as they do not need to learn a new ‘language’ for each
approach.

In order to move towards this new unified notation, the authors are committed to
using this notation, and to moving our respective CASE tools towards using this nota-
tion. Indeed, there already is a version of the Prometheus Design Tool that uses the new
notation, and this was used to generate Figure 4.

In future work we hope to specify XML representations for certain diagrams, that
will facilitate sufficient mapping between underlying models to allow some sharing
of tools. We also hope that further collaboration and exploration can lead to further
integration of our approaches to the benefit of industry developers wishing to use these
technologies.

11

References

1. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the Gaia
methodology. ACM Transactions on Software Engineering and Methodology 12(3) (July
2003) 317–370

2. DeLoach, S.A.: Engineering organization-based multiagent systems. In Garcia, A.F.,
Choren, R., de Lucena, C.J.P., Giorgini, P., Holvoet, T., Romanovsky, A.B., eds.: SELMAS.
Volume 3914 of Lecture Notes in Computer Science., Springer (2005) 109–125

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An agent-
oriented software development methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8 (May 2004) 203–236

4. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. John
Wiley and Sons, Chichester, UK (2004) ISBN 0-470-86120-7.

5. Cossentino, M.: From requirements to code with the PASSI methodology. In Henderson-
Sellers, B., Giorgini, P., eds.: Agent-Oriented Methodologies. Idea Group Inc. (2005) 79–106

6. Sturm, A., Shehory, O.: A framework for evaluating agent-oriented methodologies. In
Giorgini, P., Winikoff, M., eds.: Proceedings of the Fifth International Bi-Conference Work-
shop on Agent-Oriented Information Systems, Melbourne, Australia (July 2003) 60–67

7. Henderson-Sellers, B.: Method engineering for OO systems development. Commun. ACM
46(10) (2003) 73–78

8. Bernon, C., Cossentino, M., Gleizes, M., Turci, P., Zambonelli, F.: A study of some multi-
agent metamodels. In: Agent Oriented Software Engineering (AOSE’04). (2004)

9. Object Management Group: UML Resource Page. http://www.uml.org/ (2006)
10. Sturm, A., Dori, D., Shehory, O.: Single-model method for specifying multi-agent systems.

In: AAMAS. (2003) 121–128 http://doi.acm.org/10.1145/860575.860595.
11. Bernon, C., Cossentino, M., Pavón, J.: Agent-oriented software engineering. Knowl. Eng.

Rev. 20(2) (2005) 99–116
12. Odell, J., Nodine, M., Levy, R.: A metamodel for agents, roles, and groups. In: Agent-

Oriented Software Engineering Workshop, Springer-Verlag New York, Inc. (2005)
13. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent design

methodologies: from standardization to research. International Journal on Agent Oriented
Software Engineering 1(1) (2007)

14. Rumbaugh, J.: Notation notes: Principles for choosing notation. Journal of Object Oriented
Programming 9(2) (May 1996) 11–14

15. Huget, M.P., Odell, J.: Representing agent interaction protocols with agent UML. In: Fifth
International Workshop on Agent Oriented Software Engineering (AOSE). (2004)

16. Winikoff, M., Padgham, L., Harland, J.: Simplifying the development of intelligent agents.
In: AI2001: Advances in Artificial Intelligence. 14th Australian Joint Conference on Artifi-
cial Intelligence, Springer, LNAI 2256 (December 2001) 555–568

17. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring BDI agents in functional
clusters. In: Agent Theories, Architectures, and Languages, Springer-Verlag (2000) 277–289

18. Ciancarini, P., Niestrasz, O., Tolksdorf, R.: A case study in coordination: Conference Man-
agement on the Internet. ftp://cs.unibo.it/pub/cianca/coordina.ps.gz
(1998)

19. DeLoach, S.: Modeling organizational rules in the multi-agent systems engineering method-
ology. In: AI ’02: Proceedings of the 15th Conference of the Canadian Society for Computa-
tional Studies of Intelligence on Advances in Artificial Intelligence, London, UK, Springer-
Verlag (2002) 1–15

12

