
R. Cohen and B. Spencer (Eds.): AI 2002, LNAI 2338, pp. 1-15, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Modeling Organizational Rules in
the Multi-agent Systems Engineering Methodology

Scott A. DeLoach

Department of Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506

sdeloach@cis.ksu.edu

Abstract. Recently, two advances in agent-oriented software
engineering have had a significant impact: the identification of
interaction and coordination as the central focus of multi-agent systems
design and the realization that the multi-agent organization is distinct
from the agents that populate the system. This paper presents detailed
guidance on how to integrate organizational rules into existing multi-
agent methodologies. Specifically, we look at the Multi-agent Systems
Engineering models to investigate how to integrate the existing
abstractions of goals, roles, tasks, agents, and conversations with
organizational rules and tasks. We then discuss how designs can be
implemented using advanced as well as traditional coordination models.

1 Introduction

Over the last few years, two conceptual advances in agent-oriented software
engineering have had a significant impact on our approach toward building multi-
agent systems. The first of these was identification of interaction and coordination as
the central focus of multi-agent systems design. That is, interaction and coordination
play a central role in the analysis and design of multi-agent systems and makes the
multi-agent approach significantly different from other approaches towards building
distributed or intelligent systems. This realization lead to several new methodologies
for building multi-agent systems that focused on the interaction between agents as the
critical design aspect. Several agent-oriented methodologies fit this form including
MaSE 3, Gaia 10, and MESSAGE 7.

The second, more recent advancement is the division of the agents populating a
system from the system organization 11. While agents play roles within the
organization, they do not constitute the organization. The organization itself is part of
the agent�s environment and defines the social setting in which the agent must exist.
An organization includes organizational structures as well as organizational rules,
which define the requirements for the creation and operation of the system. These
rules include constraints on agent behavior as well as their interactions. There are
separate responsibilities for agents and organizations; the organization, not the agents,
should be responsible for setting and enforcing the organization rules.

2 Scott A. DeLoach

Organizational design has many advantages over traditional multi-agent systems
design methods. First, it defines a clean separation between the agent and the
organization in which the agent works, which in turn simplifies each design. In
traditional agent-oriented approaches, the rules that govern interaction must be
incorporated into the agents themselves, thus intertwining the organizational design in
various agent designs. Secondly, separating the organization from the agent allows the
developer to build a separate organizational structure that can enforce the
organizational rules. This is especially critical in open systems where we do not know
the intent of the agents working within the system.

While these advances are rather recent, there have been some discussions on how
to incorporate them into existing multi-agent systems methodologies. For instance,
there is a proposal to modify the Gaia multi-agent systems methodology to incorporate
the notion of social laws 12. Other approaches view the organization as a separate
institutional agent 9. However, these proposals have been made at a high level and do
not provide concrete guidance on how to use existing analysis and design abstractions
with advanced coordination models and organizational concepts. Also, the advent of
more powerful coordination models, such as hybrid coordination media, have allowed
us to imagine new ways of implementing organization rules. With these advanced
models, we can now embed organizational rules in the coordination media instead of
implementing them internal to the individual agents 1.

The goal of this paper is to present more detailed guidance on how to integrate
organizational rules into existing multi-agent methodologies. Specifically, we will
look at the Multi-agent Systems Engineering (MaSE) analysis and design models to
investigate how to integrate the existing abstractions of goals, roles, tasks, agents, and
conversations with organizational rules. We will also briefly take a look at how we
can use advanced coordination models to implement multi-agent systems that separate
agents from the organizational rules that govern them. We believe that extending
existing conversation-based multi-agent analysis and design approaches with
organizational rules is a major step toward building coherent, yet adaptive multi-agent
systems in a disciplined fashion. While one might be tempted to simply throw out the
concept of conversations altogether in favor of some of the more powerful models
being proposed, we resist that urge for two basic reasons. First, conversation-based
approaches are widely understood and provide an easily understandable metaphor for
agent-to-agent communication. Second, conversation-based approaches have shown
that they are verifiable and give designers some measure of system coherence 5. Using
the full power of these coordination models without restraint could lead to multi-agent
system designs that are not understandable, verifiable, or coherent.

In Section 2, we discuss how to model organizational rules MaSE. In Section 2.1,
we look at the analysis phase where we add the notion of organizational rules to the
existing MaSE analysis models. In Section 2.1.4 we show how to map the various
analysis artifacts, including organizational rules, into an enhanced design model that
explicitly models the organization through the notion of organizationally based tasks.
Finally, in Section 3 we show how these organizational tasks might be implemented.
We end with a discussion of our results and conclusions in Section 4.

Modeling Organizational Rules in the Multi-agent Systems Engineering Methodology 3

2 Modeling Organizational Rules In MaSE

In this section we show how we have extended the MaSE analysis and design phases
to take advantage of the concept of organizational rules. In the analysis phase, we add
a new model, the organizational model, to capture the organizational rules themselves,
while in the design phase, we introduce the concept of organizationally-based tasks to
carry out specific tasks that are part of the organization and do not belong to a specific
agent. These tasks are often used to implement and enforce the organizational rules
defined during analysis.

Throughout this paper, we will use the conference management example as defined
in 11. The conference management system is an open multi-agent system supporting
the management of various sized international conferences that require the
coordination of several individuals and groups. There are five distinct phases in which
the system must operate: submission, review, decision, and final paper collection.
During the submission phase, authors should be notified of paper receipt and given a
paper submission number. After the deadline for submissions has passed, the program
committee (PC) has to review the papers by either contacting referees and asking them
to review a number of the papers, or reviewing them themselves. After the reviews are
complete, a decision on accepting or rejecting each paper must be made. After the
decisions are made, authors are notified of the decisions and are asked to produce a
final version of their paper if it was accepted. Finally, all final copies are collected and
printed in the conference proceedings. The conference management system consists of
an organization whose membership changes during each stage of the process (authors,
reviewers, decision makers, review collectors, etc.). Also, since each agent is
associated with a particular person, it is not impossible to imagine that the agents
could be coerced into displaying opportunistic, and somewhat unattractive, behaviors
that would benefit their owner to the detriment of the system as a whole. Such
behaviors could include reviewing ones own paper or unfair allocation of work
between reviewers, etc.

2.1 The Analysis Phase

The purpose of the MaSE analysis phase is to produce a set of roles whose tasks
describe what the system has to do to meet its overall requirements. A role describes
an entity that performs some function within the system. In MaSE, each role is
responsible for achieving, or helping to achieve specific system goals or sub-goals.
Because roles are goal-driven, we also chose to abstract the requirements into a set of
goals that can be assigned to the individual roles. Our approach is similar to the
notions used in the KAOS 6. The overall approach in the MaSE analysis phase is
fairly simple. Define the system goals from a set of functional requirements and then
define the roles necessary to meet those goals. While a direct mapping from goals to
roles is possible, MaSE suggests the use of use cases to help validate the system goals
and derive an initial set of roles. As stated above, the ultimate objective of the analysis
phase is to transform the goals and use cases into roles and their associated tasks since
they are forms more suitable for designing multi-agent systems. Roles form the
foundation for agent classes and represent system goals during the design phase, thus

4 Scott A. DeLoach

the system goals are carried into the system design. To support organizational rules,
the MaSE analysis phase was extended with an explicit organizational model, which is
developed as the last step in the analysis phase and is defined using concepts from the
role and ontology models.

2.1.1 Role Model

Due to space limitations, we will skip the goal and use case analysis for the conference
system example and jump right to the role model. The MaSE role model depicts the
relationships between the roles in the conference management system, as shown in
Fig. 1. In Fig. 1, a box denotes each role while a directed arrow represents a protocol
between roles, with the arrows pointing away from the initiator to the responder.
Notice that while we referred to the PC chair and PC members in the problem
description, we have intentionally abstracted out the roles played by those typical
positions into partitioning, assigning reviews, reviewing papers, collecting reviews,
and making the final decision. As we will see later, this provides significant flexibility
in the design phase. The system starts by having authors submit papers to a paper
database (PaperDB) role, which is responsible for collecting the papers, along with
their abstracts, and providing copies to reviewers when requested. Once the deadline
has past for submissions, the person responsible partitioning the entire set of papers
into groups to be reviewed (the Partitioner role) asks the PaperDB role to provide it
the abstracts of all papers. The Partitioner partitions the papers and assigns them to a
person (the Assigner) who is responsible for finding n reviewers for each paper. Once
assigned a paper to review, a Reviewer requests the actual paper from the PaperDB,
prepares a review, and submits the review to the Collector. Once all (or enough) of the
reviews are complete, the Decision Maker determines which papers should be
accepted and notifies the authors.

Assigner

Partitioner

Reviewer

Collector

PaperDB
retrieve abstracts

make assignments submit review

retrieve paper

review papers

Author
submit paper

Decision
Maker

get reviews

inform authors

Fig. 1. Role Model for Conference Management System

Thus, we have identified seven explicit roles. However, in MaSE, we do not stop at
simply identifying the roles, we also identify the tasks that the roles must perform in
accomplishing their goals. Therefore, a more detailed version of the conference
management system role model is shown in Fig. 2. In MaSE, we have extended the
traditional role model by adding the tasks (shown using ellipses attached to each role).
Generally, each role performs a single task, whose definition is straightforward and
documented in a concurrent task diagram (not discussed here due to space

Modeling Organizational Rules in the Multi-agent Systems Engineering Methodology 5

limitations), which define agent behaviour and interaction via finite state machines.
However, some roles, such as the Paper DB or Reviewer roles have multiple tasks.
For instance, the Paper DB role has three tasks: Collect Papers, Distribute Papers, and
Get Abstracts. While the tasks are related, they are distinct and are thus modelled
separately. The Collect Papers task accepts papers, ensures they are in the right format
and meet all the eligibility requirements. The Get Abstracts task extracts the abstract
from submitted papers and sends them to a Partitioner. The Distribute Papers task
simply distributes accepted papers to the appropriate Reviewers when requested.

Assigner

Partitioner

Reviewer
Collector

PaperDB

retrieve abstracts

make assignments
submit reviews

retrieve paper

review
papers

Author

submit paper

Decision
Maker

get reviews

inform
authors

Collect
Reviews

GetAbstracts
Collect
Papers

Distrib
Papers

WritePaper

SubmitPaper

Select
PapersReview

Paper
Negotiate
Papers

Partition
Papers

Assignto
Reviewers

Fig. 2. Expanded MaSE role model

2.1.2 Ontology Model

The next step in the MaSE analysis phase is to develop an Ontology Model, which
defines the data types and their relationships within the system 4. Fig. 3 shows an
ontology model for the conference review system. The ontology is focused around the
central data type, a paper, each with an associated abstract and a set of reviews. Given
the ontology, we can talk about the reviews a paper has received paperReview(p) or a
paper�s abstract paperAbstract(p), etc. There are also constraints placed on the data
via the ontology. For instance, each abstract must have exactly one paper and each
paper must have exactly one abstract. Also, a review can only exist on a single paper,
while a paper may have any number of reviews on it (including none). Thus several
organizational constraints can be defined in the ontology itself. Using the ontology
model, we can extract a number of functions to describe the data in our system. The
functions and their resulting types for the conference management system are shown
in Table 1. These functions can be used in conjunction with protocol functions to
describe many relationships, as we will see in the next section.

wholePaperpaperAbstract paperReviewreviewedPaper
11 1 0 .. *

Abstract Paper
author : String

Review

Fig. 3. Conference Management Ontology

6 Scott A. DeLoach

Table 1. Functions Derived from Ontology

paperReview(p) {Review}
paperAbstract(p) Abstract
reviewedPaper(r) Paper
wholePaper(a) Paper

2.1.3 Organizational Model

In our previous treatments of MaSE, we would go to the design phase at this point.
However, this is precisely the point at which we can effectively begin to identify
organizational rules. By definition, organizational rules define constraints on agent
behavior and their interactions. At the analysis level, this equates to restrictions on the
roles an agent may play or how an agent may interact with other agents. To state these
rules in a formal manner, we must have a language based on analysis artifacts. This
language is defined by the role model, the ontology model, and a set of meta-
predicates.

We can use the protocols and roles defined in the Role Model to describe how the
system will operate, which will be very useful when defining organizational rules. For
instance, we can refer to an agent playing a particular role. We annotate this using a
data type like notation, for instance, r:Reviewer, which states that agent r is of type
(i.e., plays the role of a) Reviewer. Thus if we wanted to state that the agent making
final decisions cannot be an author of any papers for the conference, we could say

∀ a:Author, d:DecisionMaker d ≠ a

Another way to state the same requirement would be through the use of a meta-
predicate Plays, which states that a particular agent plays a particular role. Therefore,
we could state the same requirement as

∀ a:Agent ¬(Plays(a, Author) ∧ Plays(a, DecisionMaker))

The use of meta-predicates can be useful in stating requirements. For instance, if
we want all agents in the system to be authors, we can simply state, ∀ a: Agent

Plays(a, Author), which is simpler than using the data type notation.
We will also need to refer to the relationships between agents (or roles) in the

system. Since the only relationships we have defined in MaSE are via protocols, we
use protocol instances to specify relationships. We refer to a protocol between two
agents as prototocolName(initiator, responder, data), which states that a protocol
exists between two roles, initiator and responder, and concerns a particular piece of
data. The initiator and responder must be capable of playing the appropriate roles and
the data must refer to data passed between roles via the protocol. Thus the expression,
reviewPapers(a, r, p), states that a protocol named reviewPapers exists between the
roles a and r (involving a paper, p), which must be capable of playing the Assigner
and Reviewer roles respectively. Thus if we wanted to state that a Reviewer can only
review papers for one Assigner, we could make the following rule.

∀ a1, a2:Assigner, r:Reviewer, p1, p2:Paper
reviewPapers(a1, r, p1) ∧ reviewPapers(a2, r, p2) ⇒ a1 = a2

Modeling Organizational Rules in the Multi-agent Systems Engineering Methodology 7

Although we can state some requirements using only concepts from the role model,
there are other times where we must relate roles and their relationships based on
particular data in the system. For instance, in the conference management system we
are interested in the relationships between roles based on the papers they submit,
review, or collect. Thus we must be able to talk about the data in the system as well,
which is defined by the ontology model.

In the original paper describing the conference management system in terms of
organizational rules 11, the authors defined seven organizational rules. While the
authors stated the rules using a formal notation, there was no real definition of how the
rules mapped to the artifacts of their analysis and design. Here we will redefine them
using the notation presented above based on the role and ontology models. The rules
as originally presented are shown below using the temporal operators as defined in
Table 2.

∀p : #(reviewer(p)) ≥ 3
∀i, p : Plays(i, reviewer(p)) ⇒ ! " ¬Plays(i, reviewer(p))
∀i, p : Plays(i, author(p)) ⇒ " ¬Plays(i, reviewer(p))
∀i, p : Plays(i, author(p)) ⇒ " ¬Plays(i, collector(p))
∀i, p : participate(i, receivePaper(p))

⇒ " initiate(i, submitReview(p))
∀i, p : participate(i, receivePaper(p))

BBBB initiate(i, submitReview(p))
∀p : [submittedReviews(p) > 2] BBBB initiate(chair, decision(p))

The first rule states that there must be at least three reviewers for each paper (# is
cardinality) while rule two keeps a reviewer from reviewing the same paper more than
once. Rules three and four attempt to limit selfish agent behaviour by ensuring that a
paper author does not review or collect reviews of his or her own paper. The last three
rules describe appropriate system operation. Rule five states that if a paper is received,
it should eventually be reviewed. Rule six requires that a paper must actually be
received before a review can be submitted on it while rule seven requires that there be
at least two reviews before a paper can be accepted or rejected.

Table 2. Temporal Operators

! ϕ ϕ is true next
" ϕ ϕ is always true
 " ϕ ϕ is eventually true
ϕ BBBB φ ϕ is true before φ is true

The first organizational rule states that each paper should have at least three
reviewers. While we might be tempted to use the ontology model to say that each
paper should have three or more reviews, this does not adequately capture the
requirement. What we want to state is that three agents, playing the part of reviewers
should be assigned to each paper, which requires more knowledge than is in the
ontology. It requires that we combine relationships and data definitions from the
ontology with relationships (defined by protocols) defined in the role model. What we

8 Scott A. DeLoach

need to say is that for a given paper, p, there must be at least three reviewers assigned.
Since the review assignment process is accomplished via the reviewPapers protocol
between the Assigner role and the Reviewer role, there must be three instances of that
protocol for paper p. Thus we can state the requirement as

∀ p:Paper, a:Assigner, r:Reviewer #{r | reviewPapers(a,r,p)} ≥ 3

The second rule keeps a reviewer from reviewing the same paper more than once.
While this appears be subsumed by our first rule, in fact it is not. Our first rule states
that we must have three unique reviewers, but it does not stop them from submitting
multiple reviews on the same paper. To accomplish this, we must limit the number of
submitReview protocols that can exist between the Reviewer role and any Collector
roles for a given paper. This is formalized as

∀ r1, r2:Review, r:Reviewer, c1, c2:Collector
submitReview(r,c1,r1) ⇒ ! " (¬submitReview(r,c2,r2)
∨ reviewedPaper(r1) ≠ reviewedPaper(r2))

The next two rules (three and four) limit selfish agent behavior by ensuring that a
paper author does not review or collect reviews of his or her own paper. The first of
these rules states that an author may not review his or her own paper while the second
does not let the author acts as a collector of the reviews on his or her paper. There two
approaches to modeling an author. As defined in 11, we could assume that the author
is the one who submits the paper and identify the author as the role that submits the
paper to the PaperDB role via the submitPaper protocol. The second approach would
be to use the author attribute of the paper object and compare it to the reviewer. This
would require the ability to identify the name of the Reviewer role, which would
require an extension to the MaSE role model. Therefore, we will use the first approach
and define the third rule as

∀ a:Author, d:PaperDB, p:Paper, s:Assigner, r:Reviewer, c:Collector,
r1:Review submitPaper(a,d,p) ⇒
¬(submitReview(r,c,r1) ∧ a = r ∧ r1 = paperReview(p))

Likewise, the fourth rule ensures the author does not participate as a collector.

∀ a:Author, d:PaperDB, p:Paper, r:Reviewer, c:Collector, r1:Review
submitPaper(a,d,p) ⇒ ¬(submitReview(r,c,r1)
∧ a = c ∧ r1 = paperReview(p))

Finally, the last three rules define the way in which the system should operate. Rule
five simply requires that if a paper is submitted via the sumbitPaper protocol, a review
should eventually be submitted to a collector by via the submitReview protocol. This
rule is state straightforwardly using the appropriate temporal operator.

∀ a:Author, d:PaperDB, p:Paper, r:Reviewer, c:Collector, r1:Review
submitPaper(a,d,p)
⇒ " submitReview(r,c,r1) ∧ r1 = paperReview(p))

Rule six, requiring the paper be submitted before it can be reviewed can be defined
as

Modeling Organizational Rules in the Multi-agent Systems Engineering Methodology 9

∀ a:Author, d:PaperDB, p:Paper, r:Reviewer, c:Collector, r1:Review

submitPaper(a,d,p) BBBB (submitReview(r,c,r1) ∧ r1 = paperReview(p))

Finally, the last rule requiring at least two submitted reviews per paper before a
decision can be rendered can be encoded as

∀ r: Reviewer, c:Collector, r1:Review, m:DecisionMaker, a:Author,
p:Paper #{r1 | submitReview(r,c,r1) ∧ r1 = paperReview(p)} ≥ 2

BBBB (informAuthor(m,a,p))

During the analysis phase, these organizational rules are collected and defined in
terms of the ontology and role model; however, they are integrated into the overall
system design in the next stage. It is at this point that the designer must decide how to
monitor or enforce these rules. As we will see, the rules can be assigned to a particular
agent in the design or they can be implemented via conversational, monitoring, or
enforcement tasks as organizational tasks.

2.1.4 The Design Phase

The initial step in the MaSE design phase is to define agents from the roles defined in
the analysis phase. The product of this phase is an Agent Class Diagram, as shown in
Fig. 4, which depicts the overall agent system organization defined by agent classes
and conversations between them. An agent class is a template for a type of agent in the
system and is analogous to an object class in object-orientation while an agent is an
instance of an agent class. During this step, agent classes are defined in terms of the
roles they will play and the conversations in which they must participate. In the
diagram, boxes denote agent types (with the roles it plays listed under its name) while
directed arrows represent conversations between agent types with a similar semantics
to role model protocols.

Business

Seller

Consumer

Buyer

auctionProduct

Fig. 4. Agent Class Diagram

In this paper we extend the Agent Class Diagram with organizationally based tasks,
which is a new concept that allow us to model aspects of the organization
independently of the agents. Organizationally based tasks are tasks that are assigned to
the organization (as opposed to a particular agent) and can be used to implement
social tasks, monitor system and individual agent behavior, and enforce organizational
and security rules. An example of an organizationally based task is shown in Fig. 5.
The Seller and Buyer boxes are agents while the rounded rectangle denotes the
organization. The ellipse in the organization box is an organizationally based task,
Auction, which was derived from a task belonging to a role in the role model. In the
initial step of the design phase, the designer determines the roles each agent type will
play as well as which roles (and tasks) will be relegated to the organization. The
designer may also create new organizationally based tasks to implement and enforce
the organizational rules defined during the analysis phase.

10 Scott A. DeLoach

In the remainder of this section, we take our analysis of the conference management
system, including the organizational rules, and show how it can be developed into a
number of different designs using organizationally-based tasks in conjunction with
conventional MaSE Agent Class Diagrams. The goal here is to show a number of
different options that are available with the notion of organizationally based tasks, not
to advocate a particular approach as being necessarily better in all instances.

Business

Seller

Consumer

Buyer

Auction
Organization

sellProduct buyProduct

Fig. 5. Organizationally-Based Task

2.1.5 Design 1 - Traditional

Traditional multi-agent design approaches, as advocated in 3, might result in the
design shown in Fig. 6. In this design, various roles are combined into agents. For
instance, the PC Chair agent plays the Partitioner, Collector, and Decision Maker
roles while the PC Member agent plays both the assigner and reviewer roles. Outside
of author agents, the only other agent is the DB agent, which provides an interface to
the database containing the papers, abstracts, and author information, etc.

PCMember

Assigner
Reviewer

PCChair

Partitioner
Collector

Decison Maker

DB

PaperDB

retrieve
abstracts

make assignments

collect reviews

retrieve
paper

Author

Author

submit paper

inform
authors

Fig. 6. Traditional design

Unfortunately, the traditional multi-agent design described above does not provide
the separation of agent tasks from social, or organizational, tasks, which is desirable
for extensible, open multi-agent systems 2. To ensure the organizational rules are
enforced, we must interweave the organizational rules into the individual agents
themselves. For example, the only place we can check to ensure that at least two
reviews were completed before the decision to accept or reject a paper was made (rule
7) is in the PC Chair agent itself. This forces us to rely on self-policing agents, which,
if we assume the possibility of self-interested agents, is a less than desirable approach
to ensuring the enforcement of organizational rules.

Modeling Organizational Rules in the Multi-agent Systems Engineering Methodology 11

2.1.6 Design 2 � Assigning Tasks to the Organization

As advocated by some 2, the appropriate place to monitor and enforce organizational
rules is in the organization itself. Thus, using the same analysis, we have created a
new design that uses organization-based tasks to implement the PaperDB and
Collector roles. Fig. 7 shows the details of this new design. Notice that the tasks of the
PaperDB and the Collector roles have been assigned to the organization. In effect,
their tasks become part of the organization as organizationally based tasks.

PCMember

Assigner

PCChair

Partitioner
DecisionMaker

Reviewer

Reviewer
retrieve
abstracts

make assignments

collect
reviewsretrieve paper

review papers Author

Author

submit
paper

get reviews

inform
authors

CollectReviewsGetAbstracts CollectPapersDistribPapers
Organization

Fig. 7. Design with explicit tasks

By being part of the organization, the Get Abstracts, Distribute Papers, Collect
Papers, and Collect Reviews tasks can more easily support the conference
management organizational rules. This is because the information collected and used
by these tasks can easily be shared through a common database. For instance, The
Distribute Papers task can enforce rule 3 (an author cannot review his or her own
paper) by simply checking the reviewer against the paper author. Likewise, the Collect
Reviews task can monitor rule 5 (if a reviewer receives a paper, he or she must
eventually submit a review) and send warnings if reviews are not submitted in a timely
fashion. The same task can also enforce rule 6 (the paper must be received by a
reviewer before the review is submitted) by not accepting reviews until the paper has
actually been requested, as well as rule 7 (there must be at least two reviews before the
chair can make a decision) by only sending reviews once there are at least two of
them. This design approach also allows the organizational rules to be updated without
necessarily affecting the individual agent designs.

2.1.7 Design 3 � Designing New Organizational Roles

A third design that does not assign tasks from the role model to the organization is
shown in Fig. 8. However, we still use organizationally based tasks to monitor and
enforce the organizational rules presented above. We do this by creating new tasks in
the design to implement the organizational rules. For instance, in Fig. 8, there are
three organizational tasks (Monitor Num Reviews, Monitor Decisions, and Monitor
Reviewers) that did not exist in the role model, but were added by the designer to
monitor/enforce organizational rules 2, 3, and 7. The dashed line between the tasks

12 Scott A. DeLoach

and the conversations denote that the tasks monitor those conversations by executing
when the conversations are started. These tasks may simply monitor the
communication between agents and either display or log the information of interest.
For instance, the Monitor Decision task might monitor the inform author
conversations and log only those decisions that are made without the required number
of reviews being made. Note that the Monitor Decision task would have access to this
information via tuples shared by the Monitor Num Reviews task.

PCMember

Assigner

PCChair

Partitioner
Collector

Decison Maker

DB

PaperDB

retrieve
abstracts

make
assignments

collect reviews

retrieve
paper

Author

Author

submit
paper

inform authors

Reviewer

Reviewerreview papers

Monitor
Reviewers

(2, 3)

Monitor Num
Reviews (7)

Monitor
Decision (7)Organization

Fig. 8. Design with monitoring/conversational tasks

A task that simply monitors a conversation is shown in Fig. 9. In modelling
monitoring tasks, we assume that the task receives a message before the agent on the
other end of the conversation and must forward the message before the intended
recipient can receive it. In Fig. 9a this is shown by the receive event that initiates the
transition from the start state. Once the message is received, the Monitor Decision task
validates it (in this case, that it has had at least two reviews) and, if valid, passes the
message along to the intended recipient.

We can use the same basic design as shown in Fig. 8 but use tasks that do more
than just monitor the conversations; they may actually interrupt the conversation or
modify the data being passed between agents, thus providing correction either directly
or indirectly with the offending agents. For example, Fig. 9b defines a task that
intercepts the notice message being sent to an author; if the correct number of reviews
has not been accomplished, the task sends the PC Chair a message stating that the
decision was invalid instead of forwarding the notice message on to the author.

Of course, a task that communicates directly with agents in a conversation forces
the agents involved to be able to handle additional communication. Thus, the original
inform authors conversation (from the viewpoint of the PC Chair) must be modified to
work with this type of task. Specifically, the PC Chair�s side of the conversation must
be able to handle an invalidDecision message from the organization. Thus, in Fig. 10,
we have modified the conversation to accept the invalidDecision after sending the
original notice. This is an example of the strength of using a conversation based
design approach. Using conversations, it is possible to trace the sequence of possible

Modeling Organizational Rules in the Multi-agent Systems Engineering Methodology 13

messages through the system and thus automatically verify that all conversations and
tasks are consistent and do not cause unwanted side effects such as deadlock.

validateDecison

valid = validReviews(paper)

receive(notice(accept, paper), pcchair, author)

[NOT valid]

validateDecison

valid = validReviews(paper)

receive(notice(accept, paper), pcchair, author)

send(notice(accept, paper), pcchar, author)

[valid]
send(notice(accept, paper), pcchair, author) [valid]

send(notice(accept, paper), pcchair, author)

[NOT valid]
 ̂send(invalidDecision(paper), null, pcchair)

logDecison

logDecision(paper, pcchair)

(a) Monitoring Only (b) Conversational

Fig. 9. Monitor Decision Task

 ̂notice(accept, paper)

acknowledge()

wait

 ̂notice(accept, paper),

acknowledge()

wait invalidDecisoin(paper)

checkDecision

checkD(paper)

Fig. 10. Inform Authors conversation (original & modified)

3 Implementation

Ideally, organization based tasks would be implemented using a coordination model
that has equivalent structures, such as hybrid coordination media. Hybrid coordination
models are data-centered coordination models that include (1) a logically centralize
repository where the agents read and write data and (2) a set of reactions that are
functions that react to, and can read and modify data in the data store 1 8. In a hybrid
coordination media, the media itself has the ability to see the communication between
agents and perform tasks in reaction to those communications. Thus we could easily
model organizationally based tasks as reactions in hybrid coordination media. For role
model tasks that are assigned to the organization, the hybrid model is ideal since the
reaction is not under control of an individual agent, but is part of the organization
itself and thus is started at system initialisation. Such tasks may include controlling the
introduction of new agents in the system. Tasks that intercept messages and
forwarding them on if they are valid, as well as those that just monitor messages are
also easily implemented in hybrid models. The ability of reactions to read all data in

14 Scott A. DeLoach

the data store allows them to monitor messages and take action when necessary. For
example, if authors are required to submit papers in PDF format, we could enforce this
rule via a reaction that would automatically convert non-PDF formats to PDF; the
reaction would simply extract any non-conforming papers and replace them with the
appropriate PDF version.

While useful, such an advanced coordination models are not required to take
advantage of an organizational design approach. While it might be less efficient, these
designs could also be implemented using a more traditional message oriented
middleware component. One approach would be to build an �organization� agent (or
agents) that would handle all the organization tasks that would normally be assigned
to reactions in a hybrid coordination media. Using this approach, all critical
communications can be routed through organizationally based tasks to ensure the
organizational rules are adhered to. Whether using a hybrid coordination media or
organizational agents, the advantages based on separating organizational tasks rules
from the agents would remain.

4 Results and Conclusions

The goal of this paper was to present our approach toward integrating organizational
rules within the MaSE methodology. To accomplish our goal, we extended the MaSE
analysis phase with an explicit organizational model, which defines organizational
constraints based on concepts defined in the role and ontology models. In the design
phase, we extended the MaSE Agent Class Diagram with an explicit organization
artifact, which contains its own organizationally based tasks. We also showed various
approaches toward integrating the organizational rules defined in the analysis model.
We also discussed various approaches to implementing organizational tasks including
both hybrid coordination media as well as traditional message passing media.

While we originally developed MaSE to design closed multi-agent systems, the
incorporation of organizational rules moves it toward being useful for the analysis and
design of open systems as well. While MaSE still requires specific coordination
protocols, designers no longer have to rely on incorporating organizational rules into
the agents themselves. The concept of organizational tasks provides a mechanism to
allow agents to enter the system, monitor their behavior, and ensure compliance with
organizational rules and protocols.

References

1. Cabri, G., Leonardi, L., and Zambonelli, F. Implementing Agent Auctions using
MARS. Technical Report MOSAICO/MO/98/001.

2. Ciancarini, P., Omicini, A., and Zambonelli, F. Multi-agent System Engineering:
the Coordination Viewpoint. Intelligent Agents VI. Agent Theories,
Architectures, and Languages, 6th International Workshop (ATAL'99), Orlando
(FL), May 1999, Proceedings. LNAI 1757, Springer-Verlag, 2000.

Modeling Organizational Rules in the Multi-agent Systems Engineering Methodology 15

3. DeLoach, S.A., Wood, M.F., and Sparkman, C.H. Multi-agent Systems
Engineering, The International Journal of Software Engineering and Knowledge
Engineering, Volume 11 no. 3, June 2001.

4. Dileo, J.M. Ontological Engineering and Mapping in Multi-agent Systems
Development. MS thesis, AFIT/GCS/ENG/02M-03. School of Engineering, Air
Force Institute of Technology, Wright Patterson Air Force Base, OH, 2002.

5. Lacey, T.H., and DeLoach, S.A. Automatic Verification of Multi-agent
Conversations. in Proceedings of the Eleventh Annual Midwest Artificial
Intelligence and Cognitive Science Conference, pp. 93-100, AAAI Press,
Fayetteville, Arkansas, April 2000.

6. Letier, E. Reasoning about Agents in Goal-Oriented Requirements Engineering,
Phd Thesis, Université Catholique de Louvain, Dépt. Ingénierie Informatique,
Louvain-la-Neuve, Belgium, May 2001.

7. MESSAGE: Methodology for Engineering Systems of Software Agents.
Deliverable 1. Initial Methodology. July 2000. EURESCOM Project P907-GI.

8. Omicini, A., Denti, E. From Tuple Spaces to Tuple Centres. Science of Computer
Programming 41(3). Elsevier Science B. V., November 2001.

9. Wagner, G. Agent-Oriented Analysis and Design of Organizational Information
Systems. Proceedings of the 4th IEEE International Baltic Workshop on
Databases and Information Systems, Vilnius, Lithuania, May 2000.

10. Wooldridge, M., Jennings, N.R., and Kinny, D. The Gaia Methodology for
Agent-Oriented Analysis and Design. Journal of Autonomous Agents and Multi-
Agent Systems. Volume 3(3), 2000.

11. Zambonelli, F., Jennings, N.R., and Wooldridge, M.J. Organisational Rules as an
Abstraction for the Analysis and Design of Multi-Agent Systems. International
Journal of Software Engineering and Knowledge Engineering. Volume 11,
Number 3, June 2001. Pages 303-328

12. Zambonelli, F., Jennings, N.R., Omicini, A., and Wooldridge M.J. Agent-
Oriented Software Engineering for Internet Applications. Coordination of Internet
Agents: Models, Technologies, and Applications, Chapter 13. Springer-Verlag,
March 2001.

	Introduction
	Modeling Organizational Rules In MaSE
	The Analysis Phase
	Role Model
	Ontology Model
	Organizational Model
	The Design Phase
	Design 1 - Traditional
	Design 2 – Assigning Tasks to the Organization
	Design 3 – Designing New Organizational Roles

	Implementation
	Results and Conclusions
	References

