
Presented at Agent-Oriented Information Systems (AOIS) ’99

- 1 -

Multiagent Systems Engineering: A Methodology And Language for
Designing Agent Systems

Scott A. DeLoach
Department of Electrical & Computer Engineering

Air Force Institute of Technology
2950 P Street, Wright-Patterson AFB, OH 45433-7765

Scott.Deloach@afit.af.mil

1. Introduction

Much of the current research related to intelligent
agents has focused on the capabilities and structure of
individual agents. However, in order to solve complex
problems, these agents must work cooperatively with
other agents in a heterogeneous environment. This is
the domain of Multiagent Systems. In multiagent
systems, we are interested in the coordinated behavior
of a system of individual agents to provide a system-
level behavior. Sycara [13] lists six challenges of
multiagent systems:

1. How to decompose problems and allocate
tasks to individual agents.

2. How to coordinate agent control and
communications.

3. How to make multiple agents act in a coherent
manner.

4. How to make individual agents reason about
other agents and the state of coordination.

5. How to reconcile conflicting goals between
coordinating agents.

6. How to engineer practical multiagent systems.

Our research in Multiagent Systems Engineering
(MaSE) is an attempt to answer the sixth challenge,
how to engineer practical multiagent systems, and to
provide a framework for solving the first five
challenges. It uses the abstraction provided by
multiagent systems for developing intelligent,
distributed software systems. A second goal of this
research is to define a methodology specifically for
formal agent system synthesis. To accomplish the first
goal, MaSE uses two languages to describe agents and
multiagent systems: the Agent Modeling Language
(AgML) and the Agent Definition Language (AgDL).
AgML is a graphically based language that describes
the types of agents in a system and their interfaces to
other agents. AgDL is based on first order predicate
logic and is used to completely describe the internal
behavior of each individual agent. To help achieve the
second goal, both AgML and AgDL will be defined
with a precise, formal semantics. Although the MaSE

methodology has been developed to support formal
system synthesis, it does not restrict the use of MaSE to
formal development. The methodology can also be
successfully applied with traditional software
implementation techniques as well.

In this research, we view MaSE as a further abstraction
of the object-oriented paradigm where agents are at an
even higher level of abstraction than typical objects.
Instead of simple objects, with methods that can be
invoked by other objects agents coordinate their actions
via conversations to accomplish individual and
community goals. Interestingly, this viewpoint
sidesteps the issues regarding what is or is not an
agent. We view agents merely as a convenient
abstraction, which may or may not possess intelligence.
In this way, we handle intelligent and non-intelligent
system components equally within the same
framework.

This paper overviews MaSE and provides a high-level
introduction to one critical component used within
MaSE, the Agent Modeling Language. Details on the
Agent Definition Language and detailed agent design
are left for a future paper.

1.1. Objects to Agents

Agents are typically perceived to have at least four
basic traits. Using traditional definitions [14] agents
are

• Autonomous – they are not controlled directly
by humans or others.

• Cooperative – which implies communication.
• Perceptive – they perceive their environment

and react to it. They can also affect their
environment.

• Pro-active – they exhibit goal-directed
behavior.

While similar to objects, these four traits imply
characteristics that objects generally do not have.
There are two basic differences [10]:

- 2 -

• Objects are passive. They react to external
stimuli, but do not exhibit goal directed
behavior.

• Agents typically use a common messaging
language between all agents whereas object
messages are usually class dependent.

From the four basic characteristics defined above, we
see that, despite their differences, we can model agents
as “active objects”. In other words, we view agents as
an object with goals and a common communication
language. Therefore, to develop our MaSE
methodology, we build upon existing object oriented
analysis and design techniques such as Rumbaugh’s
Object Modeling Technique (OMT) [9] and the Unified
Modeling Language (UML) [8]. While MaSE
diagrams may look similar to OMT or UML diagrams,
we have added additional features and modify
traditional object-oriented semantics to capture notions
of agency and cooperative behavior. Also, the formal
definitions of AgML and AgDL make system synthesis
more straightforward than when using informally
specified object oriented definition languages and
methodologies such as OMT or UML [2].

2. MaSE Methodology

The MaSE methodology is similar to traditional
software engineering methodologies is but specialized
for use in the distributed agent paradigm. The
methodology follows the basic steps shown in Figure 1.
This methodology is somewhat different in that we
design general components of our system before
actually defining the system itself.

Domain Level
Design

Agent Level
Design

Component
Design

System
Design

Figure 1. MaSE Methodology

2.1. Domain Level Design

The first step in MaSE is domain level design, which
captures the basic types and interactions between
agents in our system. At this level, whether or not an
agent has intelligence, how that intelligence is
captured, or how the agent is defined is not important.

We are concerned with only the high-level definition of
the types of agents, their goals, and their external
interfaces. It is these external interfaces that define
coordination protocols between the agents. We define
how each agent may coordinate with other agents and
which agent types they may need to coordinate with.
We leave the actual numbers, locations, and specific
responsibilities of the actual agents within our system
until system design. The steps in domain-level design
are:

1. Identifying agent types.
2. Identifying the possible interactions between

agent types.
3. Defining coordination protocols for each type

of interaction.

Step 1, identifying agent types, is analogous to object
oriented techniques where we look at the problem
space to determine the types of agents needed to
effectively model the domain. While MaSE does not
currently define a specific technique for agent type
identification, the use of role modeling [5, 15], use
cases, and collaboration diagrams [8] have proven to be
useful. Once we have identified the types of agents,
we identify possible interactions that might occur
between different types of agents. These interactions
become agent conversations that are defined using
coordination protocols. These protocols describe the
possible sequences of messages that may be passed
between agents to achieve coordination. The domain
level design is captured using various AgML diagrams
that are discussed in Section 3 below.

2.2. Agent Level Design

The next step in MaSE is the agent level design. It is at
this level that we define (or reuse) the agent
architectures for each individual agent type. The agent
architecture defines the components within each agent
and how they interact. The agent level is documented
using the AgDL. Specific design steps at the agent
level are:

1. Mapping actions identified in agent
conversations to internal components.

2. Defining data structures identified in agent
conversations. These data structures represent
input or output from the agent.

3. Defining additional data structures, internal to
the agent. These data structures represent data
flows between components in the architecture.

2.3. Component Design

The component design level is the next obvious level of
the MaSE methodology. Once the agent architecture is
defined, the components specified must be designed.

- 3 -

Components being designed from scratch are defined
using AgDL. However, if components exist that can be
re-used, it is our hope that we can define agents in such
a way as to take advantage of existing component
enabling technologies, such as JavaBeans, to allow us
to reuse many components. Obvious agent
components include planners, inference mechanisms,
search algorithms, and learning algorithms.

2.4. System Design

Finally, system design takes place once the design of
the domain, agents, and components are complete. By
defining the domain first, system design becomes an
exercise in picking the number and types of agents
needed as well as defining specified parameters within
the agent definition. Although not technically part of
system design, once a system has been defined we can
verify certain properties of interest such as safety and
liveness. The overall system design is specified using
an AgML deployment diagram. Specific steps in
system design include:

1. Selecting the agent types that are needed.
2. Determining the number of agents required of

each type and defining:
a. The agent’s physical location or address.
b. The types of conversations that agents

will be able to hold.
c. Any other parameters defined in the

domain.

Defining a domain and system requires a set of formal
tools to be able to reuse existing components,
synthesize new components, and analyze various
properties of the system. Both AgML and AgDL
combine to provide a formal definition suitable for
software synthesis or component reuse. We discuss the
specific AgML diagrams and their uses in the next
section.

3. Agent Modeling Language

The AgML uses four diagrams to define high-level
features of multiagent systems. The first three
diagrams define the domain model used to develop the
system. This domain model describes how various
agent types are related and how the agents can be
combined to form multiagent systems. First, an Agent
Diagram is used to define the types of agents in the
system and the possible communications paths, defined
as conversations, between agents in the system. The
Communication Hierarchy Diagram defines the
relationship of the various classes of conversations
within the system. Many conversation types are the
same, or slight variants of each other. The
Communication Class Diagram is a state machine

based representation used to define conversations
between two or more agents. Conversations define the
legal sequences of messages that can be sent between
two agents involved in a conversation. These
conversations also tie the messages and their data to
internal components of the agent. Finally, Deployment
Diagrams are used to define the actual system being
developed. Deployment Diagrams define the actual
number, location, and types of agents in the system.

3.1. Agent Diagrams

The classes of agents in a particular domain are
described using Agent Diagrams, which are very
similar in look and use to many object diagrams. The
major differences between agent diagrams and object
diagrams are (1) the interfaces to the agents and (2) the
semantics of the relationships between agents.
Basically agent interfaces are defined by the set of
services they can provide while the relationships
between agents define conversations that can be held
between agents. Thus an Agent Diagram defines the
existence of agent classes and their relationships in the
logical view of the system. An example of an agent
class definition is shown in Figure 2.

Class-name

Services

Goals

Figure 2. Agent Class

Each class of agents belongs to an agent class that is
much like an object-oriented class. The difference lies
in the interface to the agent. In object-oriented classes,
each class has attributes and methods. External objects
may, if allowed, look at the object’s attribute values
and invoke its methods. In the agent abstraction, each
agent has a goal and may or may not provide services
to other agents. For instance, an information agent
may monitor a particular web page waiting for it to
change. When the web page changes, it may analyze
the change and send updates to those registered agents
who might be affected by the change. Such an agent
might be defined as shown in Figure 3.

Info-Source

Update registered
users

Register
Unregister
Provide Updates

Figure 3. Information Agent Class

In order to provide services, an agent must interact
with other agents in the system. In AgML, interactions
between agents take place when agents have
conversations. Barbuceanu and Fox [1] use
conversations to define coordination protocols between

- 4 -

agents. These conversations define a shared
convention about message exchanges that the agents
use to coordinate their actions and are defined using
communication class diagrams. Often one agent is
requesting an advertised service of another agent. In
order for the agents to communicate appropriately,
coordination protocol must be established between
them. In object-orientation, relationships between
object classes are described abstractly using
associations. In an agent diagram, these associations
are more concrete – they are conversations. Thus, for
the agent described above, the conversations that might
be required are shown in Figure 4.

Info-User

Perform data
analysis

Info-Source

Update registered
users

Register
Unregister
Provide Updates

Register
source user

Provide-Update
source user

Register
source user

Figure 4. Conversations

The labeled lines between the two agents denote
conversations. The name of the conversation is above
and centered between the two agent classes. The labels
below and next to each agent class are the names of the
roles the agents play in the conversation. It is possible
for two or more agent classes to be involved in the
same conversation classes and thus the role name
defines which part which agent class plays in the
conversation.

DataCollection

MissionControlElement

controller

collector

CollectData

Commander

sender

receiver

SendStatus

receiver

sender

SendTasking

IntelligenceProcessing

collector

processor

SendRawIntell

receiversender

SendIntelligence

Figure 5. Agent Diagram

For instance, in the agent diagram of Figure 5, the
SendRawIntell, SendIntelligence, SendStatus, and
SendTasking conversations are all based on the same
conversation type, SendInfo. They were renamed to
provide a clearer context, but could have been all been
labeled the same as shown in Figure 6.

DataCollection

MissionControlElement

controller

collector
1..*

CollectData

Commander

sender
1..*

receiver

SendInfo

receiver

sender

SendInfo

IntelligenceProcessing

sender
1..*

receiver
1..*

SendInfo

receiversender
1..*

SendInfo

Figure 6. Agent Diagram with Reused
Conversations

Each conversation defined in the Agent Diagram has a
corresponding class in the Communication Hierarchy
Diagram and Communication Class Diagram, which
are discussed in depth below. Each side of a
conversation also has a notation describing the
multiplicity of the relationships between agents. For
instance, in Figure 6, the collector side of the
CollectData conversation is annotated with the
multiplicity 1..* while the controller side of the
conversation has no annotation. This basically means
that each controller (MissionControlElement agent)
may have conversations with one or more collectors
(DataCollection agents) but that each collector may
only converse with a single controller. In general,
multiplicities may be specified by a sequence of integer
intervals in the format

lower-bound .. upper-bound

with each interval separated by commas. In addition,
the asterisk (*) may be used to indicate and unlimited
upper bound. The default interval is equivalent to 1..1,
which denotes exactly one as in the case of the
MissionControlElement agent.

3.2. Communication Hierarchy Diagrams

Communication Hierarchy Diagrams define the
relationships between the various conversations within
a system. For instance, as described above, the Send
conversations of Figure 5 are all specializations of the
SendInfo conversation as shown in Figure 7. There are
basically two types of conversation protocols within
the system: CollectData and SendInfo. The
SendRawIntell, SendIntelligence, SendStatus, and
SendTasking conversations are all subtypes of the basic
SendInfo conversation. The Communication Hierarchy
Diagram simply defines the relationships between

- 5 -

conversations; the conversations themselves are
described using Communication Class Diagrams.
Some specializations that seem appropriate include
simple renaming, modifying data types, and adding
additional states and messages that do not violate the
generalized conversation definition. The usefulness of
the last specialization is under investigation.

SendRawIntell

SendInfo

SendTasking

C onve rsat ion

C ollect Data

SendStatus SendIntelligence

Figure 7. Communication Hierarchy Diagram

3.3. Communication Class Diagrams

Communication Class Diagrams are a set of finite state
machine (FSM) diagrams that define the conversation
states that each agent may be in as defined by the
agent’s role in the conversation. Each side of a
conversation is defined by a separate FSM, although
two FSM diagrams are needed to completely define a
Communication Class Diagram for a binary
conversation. For instance, Figure 8 defines the FSM
for the receiver side of the SendInfo conversation. The
labeling on the arcs follows conventional UML
notation shown below.

rec-mess(args1)[cond] ^ trans-mess(args2)

This notation states that if the message, rec-mess, is
received with arguments, args1, and the condition,
cond, holds, then the message, trans-mess, is
transmitted with arguments args2. The conversation
then transitions from the starting state to the state
pointed at by the associated translation arrow. If the
conversation in Figure 9 is in the wait state and a
failure-transmission message is received, the agent
sends a send message with information as an argument.
In this particular case, the conversation transitions back
to the wait state since the transition arc is a loop.

Conversations start when one agent sends a message to
another agent. If the message does not match an
existing conversation and there is a transition from the
start state, �, matching the message, a new
conversation is started. The label on the transition
from the start state defines the affect of the transition
as defined above. Once in a non-start state, the

conversation waits until a transition occurs that takes it
to a new state. For instance, in Figure 9, if the
conversation is in the Wait, receipt of an acknowledge
or failure-transmission message will cause the
conversation to transition to the end state or back to the
wait state respectively. Once the conversation
transitions to the end state, the conversation is
completed.

validation

do: validate(information)

send(information)

SendInfo : receiver

wait

[valid-data] ^acknowledge

[invalid-date] f̂ailure-transmission

send(information)

Figure 8. SendInfo Conversation -- Receiver Role

wait ^send(information)

failure-transmission ^send(information)

acknowledge

Sen dInfo : sender

Figure 9. SendInfo Conversation -- Sender Role

While in the validation state in Figure 8, the do:
construct specifies that the agent is doing the action
validate(information). This is how we link the
conversations defined in Communications Diagrams to
processes within the agent. The fact that the only two
transitions out of the validation state are null
transitions (there is no incoming message that forces
the transition) specifies that the conversation remains
in this state until the validation procedure is completed.
Then, based on whether a valid-data or invalid-data is
output from the validation procedure, the conversation
transitions to the end state or remains in the validation
state.

The semantics of the information argument in Figure 9
is dependent on the agents involved and the purpose of
the conversation. That is why we often specialize basic
conversations to meet the specific needs of two

- 6 -

interacting agents and to clarify the actual purpose of
the conversations. Figure 10 and Figure 11 show the
SendRawIntell conversation, which is a specialization
of the SendInfo conversation.

SendRawIntell : collector

wait

failure-transmiss ion ^send(RawIntell)

 ^send(RawIntell)

acknowledge

Figure 10. SendRawIntell -- Sender Role

In this case, the only real specialization is the renaming
of information to RawIntell. Obviously, RawIntell is
information, but we have specialized it to make the
semantics clearer. Also, since the Mission Control
Element is involved with two separate types of
SendInfo conversations, specialization makes it clear
that SendRawIntell conversations are held with
IntelligenceProcessing agents while SendStatus
conversations are held with COMMANDER agents.
Figure 11 shows the receiver side of the conversation.
This shows that both sides of the conversation have to
be specialized so that they can both work together.

SendRawIntell : processor

validation

do: validate(RawIntell)

send(RawIntell)

wait

[valid-data] ^acknowledge

[invalid-data] ^failure-transmission

send(RawIntell)

Figure 11. SendRawIntell -- Receiver Role

Figure 12 and Figure 13 show both sides of the
CollectData conversation between the controller
(MissionControlElement agents) and the collector
(DataCollection agents).

The controller starts this conversation by sending a
collect-data message with sensor and location
arguments. Upon receiving the message, the collector
moves to the collecting state. The actions specified
within the state represent processing required by the

agent. In this case, upon entry into the collecting state,
the agent performs the move-to(location) process.
When that process is complete, the agent performs
collect-data process with the argument sensor. When
this process is complete, one of its three outputs
determines the next state: collection-complete, sensor-
failure, or movement-failure. The three transitions that
occur on these outputs are null transitions, that is, they
do not require an incoming event to cause the
transition.

validate-data

do: val idate -dat a(d ata)

Collec t Data: Con troller

Log-Failure

entry : log-failure(reason)

waiting

 ^collec t-data(sensor, location)

return(data)

collec tion-failure(reason)

acknowledge

[valid-data] ^acknowledge

[invlalid-data] ^failure-transm iss ion

Figure 12. Collect Data Conversation Diagram for
Controller

collect ion-complete

failure-transmission ^return(data)

acknowledge

CollectData: Collector

Collecting

entry: move-to (location)
do: collect-data (sensor)

wait

acknowledge

collect-data(sensor, location)

[collec tion-complete] ^ret urn(data)

[sensor-failure] ^collection-failure(sensor)

[movement-failure] ^collection-failure(reason)

Figure 13. Collect Data Conversation Diagram for
Collector

It is worth noting that the move-to(location) action
could take a considerable amount of time to complete.
Thus, conversations must be able to be completed over
long periods. This also emphasizes the need for agents
to be able to be involved with more than one
conversation at a time. If the controller had to wait for
hours for one of its collectors to move to the
appropriate location to collect data, it would be unable
to control its other collectors. It would be possible for

- 7 -

the collector to incorporate sending a status message
every few minutes to keep its controller informed of its
current progress and condition.

3.4. Deployment Diagrams

Deployment Diagrams are used to define a system
based on agents defined in the Domain Level, Agent
Level, and Component Level design steps.
Deployment Diagrams define system parameters such
as the actual number, types, and locations of the agents
in the system. Figure 14 shows an example
deployment diagram for the domain defined in Figure
5.

UAV1: Data
Collection

UAV2: Data
Collection

UAV4: Data
Collection

MCE1: Mission
ControlElement

MCE2:Mission
ControlElement

UAV3: Data
Collection

Commander

UAV5: Data
Collection

Intelligence
Processing

Figure 14. Deployment Diagram

4. Discussion

4.1. Formal Semantics

Although not discussed in depth in this paper, both
AgML and AgDL semantics are based of multi-sorted
algebras. Algebraic approaches have the advantage
that there has been a great deal of work in
automatically synthesizing code from algebraic
specifications [12, 6]. Other formal specification
languages such as Z and VDM, while providing a
formal semantics, do not provide the same strong
notion of refinement from specification to code.

An example of our formalization is shown in Figure 15
and Figure 16. These specifications formalize each
side of the conversations defined graphically in Figure
8 and Figure 9. Our formalization uses algebraic
specifications to define abstract data types that define
the effect of incoming messages on a specific
conversation. These specifications can be combined,
using category theoretic approaches, and used as the
basis for proving theorems about the specific
conversation as well as the system as a whole. Also,

given the formal semantics and a special purpose
reasoning system, we can verify general properties of
interest such as safety and liveness. For example, we
will want to know under what conditions a particular
conversation will actually terminate. In the example of
Figure 15 and Figure 16, analysis reveals that if at
some point, validate(i) = valid-data, then the
conversation will end successfully.

spec sendinfo-sender
 sorts

conversation, state, info
 operations

new : → conversation
 % attributes

state : conversation → state
 % messages

failure-transmission : conversation → boolean
acknowledge : conversation → boolean
send : conversation , info → boolean

 % states
start : → state
end : → state
wait : → state

 axioms
new() = c ⇒ state(c) = start
state(c) = start ⇒ state(c) = wait ^ send(c, i)
state(c) = wait ^ failure-transmission(c) ⇒ send(c, i)
state(c) = wait ^ acknowledge(c) ⇒ state(c) = end

end spec

Figure 15. SendInfo - Sender Specification

4.2. Practical Benefits

The similarity of MaSE to existing object-oriented
methodologies provides other benefits. Although
MaSE and AgML support formal multiagent system
synthesis, the graphical nature of the AgML makes it
easier to learn, use, and understand than other textually
based formal representations. Also, the look and feel
of AgML is similar to many object-oriented
methodologies making it more natural for persons with
object-oriented experience. In effect, our work with
MaSE is an attempt to build formally based multiagent
systems without the designer realizing that he or she is
really using formal methods.

MaSE and AgML together provide many advantages
over traditional software engineering techniques.
These advantages include:

1. A higher level of abstraction than traditional
systems engineering techniques. In particular,
agents are a higher level abstraction of objects
from object-oriented software engineering.
Because of this abstraction, MaSE can capture
traditional object-oriented systems as well as
agent-based systems for which traditional
techniques are inappropriate.

- 8 -

2. A more concise representation than object-oriented
techniques. For instance, a formal definition of
traditional object oriented associations is generally
not possible because the use of associations is not
standardized. This lack of precise and formal
usage in traditional, informal techniques makes
them difficult to use for software synthesis.

3. A formal syntax and semantics. This advantage
supports automated software synthesis and
component reuse and allows properties of interest
to be more easily proved.

spec sendinfo-receiver
 sorts

conversation, state, info, result
 operations

new : → conversation
 % attributes

state : conversation → state
 % messages

failure-transmission : conversation → boolean
acknowledge : conversation → boolean
send : conversation, info → boolean

 % agent operations
validate : info → result

 % states
start : → state
end : → state
wait : → state
validation : → state

 axioms
new() = c ⇒ state(c) = start
state(c) = start ^ send(c, i) ⇒ state(c) = validation
state(c) = validation ^ validate(i) = invalid-data

⇒ state(c) = wait ^ failure-transmission(c)
state(c) = wait ^ send(c, i) ⇒ state(c) = validation
state(c) = validation ^ validate(i) = valid-data

⇒ state(c) = end ^ acknowledge(c)
end spec

Figure 16. SendInfo - Receiver Specification

4.3. Related Work

Our work is similar in many respects to the agent
methodologies based on object-oriented concepts [15,
4]. However, few of these have a formal basis. Some
work in formalization of agent systems has been
performed in Z [7, 3] but has focused on formal
modeling and not automated code synthesis.

4.4. Future Work

This paper represents our initial attempts to define a
methodology and system modeling language for
multiagent systems. Our goal is to integrate this
methodology and language into an automated
multiagent system synthesis system called agentTool,
which will formally verify and generate multiagent
systems that are correct by construction. agentTool
will provide a graphical user interface based on AgML

to design and verify multiagent systems. Ongoing
work includes formal definition of AgML semantics as
well as a complete description of AgDL that is
seamlessly integrated with AgML in agentTool. We
are also investigating appropriate methods for verifying
interesting properties of multiagent systems. This
research requires formal definition of the underlying
communications frameworks that implement the
conversations defined in AgML as well as the
conversation protocols themselves. Future work
includes the definition and use of predefined
components within agentTool.

5. Acknowledgements

This research was sponsored by a grant from the Air
Force Office of Scientific Research.

Bibliography

1. Barbuceanu, M. and Fox M. 1995. COOL: A
Language for Describing Coordination in Multi
Agent Systems. Proceedings of the First
International Conference on Multi-Agent Systems,
AAA Press/The MIT Press, June 1995, 17-25.

2. DeLoach, S. A. and Hartrum, T. C. 1999. A
Theory-Based Representation for Object-Oriented
Domain Models. Accepted for publication in
IEEE Transactions on Software Engineering.

3. d’Inverno, M., Kinny, D., Luck, M. &
Wooldridge M. 1997. A Formal Specification of
dMARS. In Intelligent Agents IV (LNAI Vol
1365): 155-176. Springer-Verlag, Berlin.

4. Iglesias, C.A., Garijo, M., & Gonzalez, J.C. 1999.
A Survey of Agent-Oriented Methodologies. In
Intelligent Agents V – Proceedings of the Fifth
International Workshop on Agent Theories,
Architectures, and Languages (ATAL-98), Lecture
Notes in Artificial Intelligence. Springer-Verlag,
Heidelberg.

5. Kendall E. A. 1998. Agent Roles and Role
Models. Intelligent Agents for Information and
Process Management (AIP’98).

6. Kestrel Institute 1994. Specware User manual:
Specware Version Core4. October 1994.

7. Kinny, D., Georgeff, M., & Rao, A. 1996. A
Methodology and Modelling Technique for
Systems of BDI agents. In Agents Breaking Away:
Proceedings of the Seventh European Workshop
on Modelling Autonomous Agents in a Multi-Agent

- 9 -

World, (LNAI Vol 1038): 56-71. Springer-Verlag,
Berlin.

8. Muller, P. 1997. Instant UML. Wrox Press,
Birmingham, UK.

9. Nwana, H. S. 1996. Software Agents: An
Overview. Knowledge Engineering Review 11(3):
205-244.

10. Pont, M. J., and Moreale, E. 1996. Towards a
Practical Methodology for Agent-Oriented
Software Engineering with C++ and Java.
Technical Report, TR 96-33, Department of
Engineering, Leicester University.

11. Rumbaugh, J. et. al. 1991. Object-Oriented
Modeling and Design. Prentice-Hall, Inc.
Englewood Cliffs, New Jersey.

12. Smith, D. R. 1990, KIDS – A Semi-automatic
Program Development System. IEEE
Transactions on Software Engineering 16(9):
1024-1043.

13. Sycara, K. P. 1998, Multiagent Systems. AI
Magazine 19(2): 79-92.

14. Wooldridge, M., & Jennings, N. 1995. Intelligent
Agents: Theory and Practice. Knowledge
Engineering Review, 10(2): 115-152.

15. Wooldridge, M., Jennings, N., & Kinny, D. 1999.
A Methodology for Agent-Oriented Analysis and
Design. to be presented at Agents’99, Seattle WA,
May 1999.

