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Abstract. In coalition formation with self-interested agents both social
welfare of the multi-agent system and stability of individual coalitions
must be taken into account. However, in large-scale systems with thou-
sands of agents, finding an optimal solution with respect to both metrics
is infeasible.
In this paper we propose an approach for finding coalition structures with
suboptimal social welfare and coalition stability in large-scale multi-agent
systems. Our approach uses multi-agent simulation to model a dynamic
coalition formation process. Agents increase coalition stability by devi-
ating from unstable coalitions. Furthermore we present an approach for
estimating coalition stability, which alleviates exponential complexity of
coalition stability computation. This approach enables us to select a so-
lution with high values of both social welfare and coalition stability.
We experimentally show that our approach causes a major increase in
coalition stability compared to a baseline social welfare-maximizing al-
gorithm, while maintaining a very small decrease in social welfare.

Keywords: coalition formation, coalition stability, multi-agent simula-
tion

1 Introduction

Coalition formation is a process of grouping of agents into coalitions in order
to increase the agents’ cooperation. Examples of coalition formation include
task allocation or collective purchasing. A goal of coalition formation is often
to increase social welfare of the multi-agent system. However, such a goal can
generate unrealistic solutions if the agents prefer their own profit to the global
social welfare. These self-interested agents would deviate from the computed
social welfare-maximizing coalitions. Consider the following example1. Three
agents x, y, and z, can form coalitions with the following distribution of profit:
{x = 2, y = 2, z = 3}, {x = 3, y = 3}, {x = 1, z = 1}, {y = 1, z = 1}, {x =
0}, {y = 0}, and {z = 0}. The first coalition yields the highest total social
welfare of 7. However, agents x and y would jointly deviate from this coalition
and form the second coalition in order to maximize their own profit.

1 In this example we assume that social welfare is equal to sum of coalition values,
which are in turn calculated by summing up agents’ profits.
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In coalition formation with self-interested agents, stability of the coalitions,
which measures the coalition’s ability to de-incentivize any sub-coalition of agents
from leaving the coalition, must be addressed as a concept that along with the
social welfare influences the coalition formation algorithms and solutions. Coali-
tion formation is usually split into three sub-problems [17]: coalition structure
generation, solving the optimization problem in each coalition, and division of
the coalition’s profit among its agents. Coalition stability is relevant to the profit
division sub-problem, and is addressed in literature mainly through the concept
of a core, which is a set of allocations to the agents in a coalition, such that these
allocations cannot be improved upon by allocations to a subset of these agents.
While the core is a strong concept, its computation in a setting where coalition
values are generated by general polynomial-time functions requires an evaluation
of all 2|C| possible sub-coalitions of each coalition C containing |C| agents. In
this setting checking whether a solution is in the core is co-NP-complete [7], and
determining whether the core is non-empty is ∆P

2 − complete [7]. This complex-
ity makes the use of the core in large-scale systems with thousands of agents
infeasible. Therefore instead of the core we approach coalition stability using
multi-agent simulation. Instead of looking for stable distribution of the coali-
tion value to the agents, we specify an allocation scheme beforehand and let the
agents utilize this information to choose more stable coalitions.

Specifically, the contributions of this paper are the following:

1. An algorithm for large-scale coalition formation of thousands of agents that
uses deviations of the agents in order to increase coalition stability. Our
approach uses multi-agent simulation, in which agents make decisions about
joining, leaving, and deviating from coalitions. We show the approach in
Section 3, and we discuss a deviation strategy in Section 3.1. Finally, we
evaluate our algorithm experimentally in Section 4.

2. An approach for selecting sub-optimal solutions based on their social welfare
and coalition stability. We discuss the ways to select a solution out of a
pool of solutions for which stability is unknown and expensive to compute
in Section 3.2.

To the best of our knowledge our approach is the first that uses multi-agent
simulation to find suboptimal coalition structures with respect to social wel-
fare and coalition stability in large-scale multi-agent systems, in which coalition
values are computed using arbitrary polynomial-time functions.

2 Problem Statement

We study the coalition formation problem, in which agents a1, a2, . . . , an ∈ A
form coalitions Ci such that each agent belongs to exactly one coalition. We as-
sume that the agents have full information about each others’ states. A coalition
structure CS is a set of all coalitions Ci that the agents formed. The task is to
find a coalition structure that maximizes its social welfare as well as its stability.
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In order to measure the social welfare of the formed coalition structure, we
first define v(C) as a value of coalition C, and v(CS) as a value of the coalition
structure as

v(CS) =
∑
C∈CS

v(C), (1)

where v(C) is assigned to the coalition C by a polynomial-time function. The
social welfare is represented by a gain metric, which was defined in [8] as g(CS) =
v(CS)−v(CS0)

n , where CS0 denotes the coalition structure of singleton coalitions.
The gain shows how much on average an agent benefits from coalition formation.
We use gain to measure the social welfare of a coalition structure.

Self-interested agents maximize their own profit, which we define for agent
aj participating in coalition Ci as

pCi
(aj) = v(Ci ∪ {aj})− v(Ci), (2)

where the coalition values v(Ci ∪ {aj}) and v(Ci) are computed right after
and right before the agent entered the coalition respectively. The profit reflects
marginal contributions of agents to the coalitions, [3] describes games that use
this profit sharing scheme as Labor Union games. This definition of profit guar-
antees that the allocation to the agents granted at the point of entry to the
coalition will not change later regardless of further additions of agents to the
coalition. We discuss other profit sharing schemes in Section 5.

In order to measure stability of coalition structure CS we need to determine
stability of all coalitions Ci ∈ CS. Determining the coalition stability is com-
putationally expensive, because it requires evaluation of all 2|C| sub-coalitions.
We therefore introduce stabilityα to approximate the stability of coalition struc-
tures. We say that a coalition C is α−stable if no sub-coalition D with 〈1, α〉
members can be formed in which some agents would benefit more and no agent
would benefit less than in C. Formally,

C is α− stable iff @D ⊂ C, |D| ≤ α :

∃aj ∈ D : pD(aj) > pC(aj) ∧ ∀aj ∈ D : pD(aj) ≥ pC(aj). (3)

We denote Sα as the set of α−stable coalitions in CS, for which it holds that ∀α :
Sα+1 ⊆ Sα. Finally we define stabilityα of a coalition structure in terms of α as

stabilityα(CS) =
|Sα|
|CS|

(4)

where |CS| denotes the number of coalitions in CS. It holds that

lim
α→maxCi∈CS(|Ci|)

stabilityα(CS) = stability(CS), (5)

where stability(CS) is the true stability of CS, which we define as the ratio of
stable coalitions in CS. Since stabilityα is non-increasing with respect to α, it
can serve as an upper estimate of the coalition structure stability.
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Finally, we use the price of stability

PoS(CSsw, CSsa) =
g(CSsw)

g(CSsa)
(6)

to show the ratio between the gain of social welfare maximizing solutions CSsw
and the gain of solutions reached by behavior of self-interested agents CSsa.

3 Methodology

We find solutions to coalition formation using multi-agent simulation. We extend
a multi-agent simulation framework for large-scale coalition formation proposed
in [8], in which the agents maximize the social welfare. In that framework the
agents use strategies to decide about leaving their coalitions and joining new
coalitions. The coalitions are evaluated by a polynomial-time valuation func-
tion f : C → R. This process repeats in an iterative fashion, resulting in an
agent-driven search of the state space of coalition structures. While [8] shows
almost-optimal performance in small-scale scenarios and stable gain in large-
scale scenarios, it does not consider stability of the solutions.

In order to increase stability of coalition structures we extend the algorithm
from [8] by first allowing the agents to create more stable sub-coalitions within
their coalition by the process of deviation, and second by selecting the best
solution out of the pool of solutions generated by the simulation with respect to
both social welfare and stability.

3.1 Deviation

Deviation allows agents to leave their current coalition along with other agents
from the same coalition. We allow the agents to deviate from their coalitions in
order to guide the search towards more stable coalition structures. There are two
conditions that a sub-coalition of agents D ⊂ C must satisfy in order to be able
to deviate from a coalition C: 1) ∀aj ∈ D : pD(aj) ≥ pC(aj), and 2) ∃aj ∈ D :
pD(aj) > pC(aj). These conditions are satisfied by sub-coalitions in which no
agent loses profit by deviation and at least one agent gains profit. If an agent finds
a sub-coalition that satisfies these conditions, this sub-coalition will deviate from
their current coalition C and form a new coalition, thus increasing the stability
of the original coalition. Considering all 2|C|−1 possible sub-coalitions that an
agent can be part of is infeasible, therefore agents use a heuristic to guide their
search. Some possible heuristics are adding agents to the sub-coalition in order of
increasing and decreasing profit, and in random order. Our experiments showed
that most stable coalitions were found using the increasing profit heuristic. We
therefore let the agents to form the sub-coalitions by adding other agents in order
of increasing profit. An agent keeps adding other agents to the new sub-coalition
as long as the above-mentioned conditions are met.

Deviation is performed in our model after the agents decide on leaving and
joining coalitions. Each iteration of the simulation therefore consists of two steps:
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social welfare maximization by leaving and joining coalitions, and stability max-
imization by deviation. The agents deviate recursively i.e. they try to deviate
from the new coalition created by their deviation.

3.2 Solution selection

An inherent advantage of using multi-agent simulation for coalition formation
is the fact that it creates a pool of solutions by storing all coalition structures
encountered during the search. At the end of the simulation, [8] selects from this
pool a solution that maximizes the gain. We propose to select a solution based
on both gain and stability metrics. However, computing stability of a coalition
structure is computationally expensive, therefore we use stabilityα to estimate
the true stability of the solutions.

We compute stabilityα in an iterative fashion for increasing α ∈ 〈1, αmax〉.
We only have to determine whether a coalition is α-stable if it is (α− 1)-stable.
We mark a coalition C α-stable if in all permutations of all combinations of α
agents from C some agents lose or no agent gains profit2. We then calculate
stabilityα using Equation 4.

After stabilityα of all coalition structures is computed, a multi-criteria op-
timization is used to select a best coalition structure based on its gain and
stabilityα. Common approaches of multi-criteria optimization are finding Pareto
optimal solutions and designing a fitness function. In our experiments we used
a simple fitness function that allows us to give preference to any of the criteria:

f(CS,α) = wg · gnorm(CS) + ws · stabilityα(CS), (7)

where gnorm(CS) ∈ 〈0, 1〉 is a normalized gain of CS, α ∈ 〈1, n〉 is an input
parameter that represents the trade-off between quality of solution stability es-
timate and computation time, and wg and ws are weights assigned to the two
criteria3. Finally, the best coalition structure is returned, such that

CSbest = argmax
CS

f(CS,α). (8)

Figure 1 shows the effect of deviation and solution selection. A combination
of both of these approaches yields solutions with higher stability while only
sacrificing a small fraction of the gain.

4 Experimental Analysis

We tested our algorithm in two coalition formation scenarios: collective energy
purchasing and resource sharing.

2 All permutations must be considered because the order in which agents join coalitions
determines their profit.

3 Given the values of gnorm(CS) and stabilityα(CS) for each CS, Pareto optimal
solutions can also easily be found.
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Fig. 1: Gain and stabilityα of coalition
structures generated by a single simula-
tion with 100 agents, 15 iterations, and
α = 4. With no deviation and no so-
lution selection, a coalition structure is
selected randomly from A, since only
the gain is maximized. Solution selec-
tion without deviation returns B. Devi-
ation without solution selection returns
C, and deviation used along with solu-
tion selection returns D.

The collective energy purchasing scenario, proposed in [20], models agents as
households that buy electricity based on their requested daily energy profiles.
Electricity can be bought at spot and forward markets. The spot market pro-
vides amounts of energy based on the current demand, while the forward market
provides cheaper electricity which has to be bought ahead of time. Agents form
coalitions in order to make their aggregate energy profiles more predictable so
they could exploit the reduced prices of the forward market. The valuation func-
tion which represents the payment of a coalition was proposed in [20] as

v(C) =

T∑
t=1

qtS(C) · pS + T · qF (C) · pF + κ(C), (9)

where pS and pF represent unit prices at the spot and forward markets, respec-
tively, qtS(C) represents the amount of energy to be bought at the spot market
at time t, and T · qF (C) represents the total amount of energy to be bought at
the forward market for time interval T (in our experiments, T = 24 represents a
length of a daily energy profile). κ(C) = −|C|γ was proposed in [6] to represent
the penalty for the coalition size. An algorithm given in [20] computes optimal
energy amounts for a coalition given the coalition’s aggregate energy profile. Us-
ing this algorithm, we obtain energy amounts qtS(C) and qF (C) that we use to
compute the coalition value v(C). For this scenario we used a dataset of daily
energy profiles of households in Portugal [11]. For each household we averaged
daily energy profiles of all days in January 2014 into a single average daily en-
ergy profile. The unit prices were set to pS = −80 and pF = −70, as suggested
in [20]. We use negative values because the coalition value v(C) is maximized.
Following [6] we set γ = 1.1.

The resource sharing scenario, proposed in [8], models a market in which
cooperation is rewarded. Agents operate with resources, each agent can either
have a surplus or shortage of each resource. Agents within coalitions are able to
transfer their resource surpluses to agents with shortages. The coalition value
depends on the amount of resources transferred. The valuation function was
proposed in [8] for k resources as

v(C) =

k∑
l=1

min(b+C [l], b−C [l]) + κ(C), (10)
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where b+C [l] is the positive balance for resource l, which is the sum of surpluses
of resource l over all agents in coalition C, and b−C [l] is an absolute value of
the negative balance computed with the shortages, respectively. κ(C) = −|C|γ
[6] captures the penalty for the coalition size. We used an international trade
dataset provided by the World Trade Organization [12], which stores import and
export amounts in US dollars between 167 countries in 17 commodity types. The
amount of each resource of each agent was computed as the difference between
export and import amounts of the given country in the year 2014. Positive and
negative values of the resulting resource amounts denote surplus and shortage
respectively. Similarly as in [8], we set γ = 2 for the resource sharing scenario to
prevent the grand coalition from being the trivial gain-maximizing solution.

Because the use of κ as a coalition size penalty causes agents to form small
coalitions, we instead define κ as κ = min(−|C|+µ, 0)γ , which effectively allowed
us to increase the average coalition size and thus make the problem harder to
compute due to its exponential complexity. In our experiments we set µ = 10.

Several agent strategies were studied in [8]. In our experiments we use the
local search strategy [8], in which the agents perform a best response move to new
coalitions i.e. the agents select coalitions which grant them maximal marginal
profit. If the search reaches a local optimum for all agents, a random jump is
applied by all agents in order to escape this optimum.

We used two values of α for evaluation of stabilityα. For the solution selection
algorithm, we set αss = 3 to allow the algorithm to quickly compute stabilityα of
multiple solutions, and for the final stability verification we set α = 4 to obtain
a better final stability estimate. In order to give equal preference to both gain
and stability we set the weights wg = ws = 1.

In order to achieve reasonable run-times of our algorithm, we used the fol-
lowing number of iterations N in our experiments. For instances with number of
agents n < 100 we set N = 100 and for instances with n > 100 we set N = 10.

We ran our Java implementation of the proposed algorithms on 2.7 GHz Intel
Xeon E5 CPU with 2 GB of memory. We averaged our results over 10 random
runs 4.

4.1 Experiment Results

We compared results of our algorithms with the baseline multi-agent simulation
algorithm for coalition formation [8] using the stabilityα and price of stability
metrics. Average values of stabilityα and price of stability are shown in Table 1.
The first row of Table 1 shows results of the baseline algorithm. The following
rows show how the average stabilityα increases when we plug in the proposed
stability-increasing methods. As expected, the average price of stability is in-
creasing with the increase in stabilityα, but the increase in price of stability is
very low compared to the significant improvement in stabilityα. Table 1 there-
fore shows that our algorithms find solutions with much higher stability while
only sacrificing a fraction of the social welfare.

4 Random runs are necessary because agents make decisions in random order.
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(a) Stabilityα in collective energy pur-
chasing scenario with 100 to 5000
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(b) Effect of αss on stabilityα and gain
in collective energy purchasing scenario
with 1000 agents and α = 5
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(c) Stabilityα in resource sharing sce-
nario with 100 to 5000 agents
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(d) Effect of number of iterations N on
stabilityα and gain in resource sharing
scenario with 1000 agents
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Fig. 2: 2a, 2c) Stability achieved by our algorithms and the baseline algorithm [8]
in the collective energy purchasing and resource sharing scenarios: combination
of deviation and solution selection algorithms yields highest stability. 2b) Effect
of αss on stabilityα and gain: higher αss yields better stability estimate and
therefore increases stability of the selected solution. 2d) Effect of number of iter-
ations N on stabilityα and gain: higher N yields higher gain because the agents
have more opportunity to form coalitions, which naturally leads to a decrease in
stability. Decrease in stabilityα achieved by our algorithms is significantly lower
than the decrease achieved by the baseline algorithm. Error bars show standard
deviation of aggregated variables.
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Table 1: Trade-off between average stability and average price of stability
achieved by our algorithms with α = 4 and n = 〈20, 5000〉.

Algorithm Results

Deviation Solution
selection

Average
stabilityα

Average
PoS

No No 0.3914 -
Yes No 0.6299 1.0308
No Yes 0.6665 1.0210
Yes Yes 0.8185 1.0629

Stability of our solutions is depicted in Figure 2a in collective energy pur-
chasing scenario and in Figure 2c in resource sharing scenario. The use of solu-
tion selection algorithm never decreases the stability of the solutions, therefore
the solutions generated by the solution selection algorithm always dominate the
baseline algorithm with respect to stability. This dominance is not guaranteed
by the deviation algorithm. However, in most instances the deviation algorithm
achieves higher stabilityα than the baseline algorithm. Finally, the highest in-
crease in stabilityα is achieved in majority of instances when the deviation and
the solution selection algorithms are used together. As shown in Table 1, the av-
erage stabilityα increases from 39% achieved by the baseline algorithm to 82%
achieved by the combination of deviation and solution selection algorithms.
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Fig. 3: Run-time of our algorithms and
the baseline algorithm [8] in collective
energy purchasing scenario with num-
ber of iterations N = 10.

The solution selection algorithm evaluates stabilityα of all coalition struc-
tures for given αss. Figure 2b shows stabilityα and gain for varying values of
αss, where α = 5. As expected, the stabilityα of the selected solution is increas-
ing with increasing αss, since higher αss provides a better stability estimate.
However, due to the inherent trade-off between coalition stability and social
welfare, the gain decreases with increasing αss. Figure 2b only shows algorithms
that include solution selection and are therefore affected by changing αss.

The number of iterations N affects the quality of the resulting coalition
structure. We show stabilityα and gain of our algorithm for varying numbers of
iterations N in Figure 2d. With the increasing number of iterations the agents
have more opportunity to cooperate by creating coalitions, which leads to an



10

increase in gain. However, higher social welfare might result in lower stability of
the coalitions. This effect is most obvious in the results of the baseline algorithm,
in which due to the increase in gain the stabilityα drops significantly. However,
when we plug in the stability-increasing approaches proposed in this paper, the
decrease in stabilityα is much slower.

In practice the run-time of an algorithm is an important factor. Figure 3
shows the run-time of our algorithm for increasing numbers of agents. Interest-
ingly, the run-time does not change significantly when we plug in the proposed
stability-increasing algorithms. Deviation of the agents has a higher impact on
run-time than solution selection, because it is executed by all agents in each
iteration. Run-time of our algorithm can be decreased by decreasing the number
of iterations N , however such an approach might yield solutions of lower quality,
as shown in Figure 2d.

We also experimented with the state-of-the-art algorithm for coalition for-
mation C-Link [6] in order to determine its ability to create stable coalitions.
C-Link, like our approach, can also be used with arbitrary valuation functions,
and social welfare of its solutions is comparable with results of the baseline al-
gorithm [8]. Even though C-Link was not designed for use with self-interested
agents, the algorithm might still inherently create stable coalitions. However,
our experiments showed that the only stable coalitions in solutions generated by
C-Link in the collective energy purchasing and resource sharing scenarios are sin-
gleton coalitions, which by definition in Equation 3 are always stable. This result
shows that multi-agent simulation, especially along with the stability-increasing
methods proposed in this paper, is better suited for coalition formation of self-
interested agents than other state-of-the-art coalition formation algorithms.

5 Discussion

We will now discuss some design choices that have to be made when designing
a multi-agent system for coalition formation of self-interested agents. We will
discuss various profit sharing schemes, definitions of stability, and behaviors of
self-interested agents. Then we will analyze time complexity and convergence of
our algorithms. Finally we will discuss practical usefulness of our approach.

Several profit sharing schemes have been proposed in the literature. Equal
sharing [14] divides the coalition value equally among all its agents, fair value
sharing [3] defines agents’ payoff as marginal contribution to the coalition, labor
union sharing [3], which we use in our experiments, defines agents’ payoff as
agents’ marginal contribution to the coalition at the time of entry, and Shapley
sharing [3] assigns payoffs based on agents’ Shapley values. Among these sharing
schemes, labor union is the only one in which consequent additions to the coali-
tion do not affect agent’s payoff assigned at the time of coalition entry. It is the
only sharing scheme that models marginal contribution and at the same time is
reasonably computationally efficient, which is why we used it in our experiments.

Several concepts have been used to describe coalition stability. Nash equilib-
rium describes a state in which no agent has an incentive to unilaterally deviate.
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A stronger concept is a core, which is a set of profit assignments to agents, such
that no subset of agents in a coalition has an incentive to jointly deviate from
the coalition. Our definition of stability in Equation 3 is following the concept of
the core. One might also consider a stricter version of the definition, in which all
deviating agents must benefit by the deviation, i.e. ∀aj ∈ D : pD(aj) > pC(aj).
However, this strict definition of stability yields high stability values for arbitrary
coalitions, and therefore renders the problem less interesting.

Our algorithm searches the state space of coalition structures using three
actions of the agents: leave a coalition, join a coalition, and deviate from a
coalition. We designed these actions in order to search for coalition structures
with high values of both social welfare and coalition stability. However, the
space of possible agents’ actions is not limited to actions used in this paper.
For example, agents from multiple coalitions could jointly deviate, agents could
decide whether to allow other agents to enter their coalition, agents could force
other agents in their coalition to leave, etc. Adding new actions to the agents’
action space will lead to new behavior of the multi-agent system. When designing
agents’ actions we must take into account the specific problem that is being
solved, the effect of the actions on agents’ behavior, and the computational
complexity of the designed actions.

Searching the exponential state space of coalition structures can lead to expo-
nential worst-case time complexity of the search algorithms. However, we show a
polynomial time complexity of both deviation and solution selection algorithms
with respect to number of agents n and a constant αss bound. Deviation of
a single agent requires sorting the agents in the coalition by marginal profit.
The agents can deviate recursively, therefore the complexity of deviation of a
single agent is O(

∑n
i=1(i · log(i))), for which an upper bound is O(n2log(n)).

Solution selection searches through all permutations of all combinations of size
〈1, αss〉 of agents in a coalition. Evaluating a single coalition therefore requires
O(
∑αss

i=1(i! ·
(
n
i

)
)) steps. For αss << n it holds that

αss∑
i=1

(
i! ·
(
n

i

))
≤ αss · αss! ·

(
n

αss

)
≤ αss · nαss , (11)

therefore the worst time complexity of finding stabilityα for a single coalition
with α = αss is O(nαss). The worst-case time complexity of the solution selection
algorithm is therefore O(N · nαss+1), given the input of N coalition structures,
each containing at most n coalitions. Worst-case time complexity of the baseline
coalition formation algorithm is O(N · n2), as was shown in [8].

Building on the complexity analysis above, Table 2 shows worst-case time
complexity of our algorithms. Since we treat αss as a small constant, we get a
polynomial complexity for all proposed algorithms. The analysis in Table 2 is
very conservative, since we assume that each coalition structure contains n coali-
tions, each coalition is composed of n agents, and each sub-coalition deviating
from coalition C is of size |C| − 1. The analysis does not include complexity of
the valuation functions, as these are given as an input to the simulation. How-
ever, both collective energy purchasing and resource sharing valuation functions
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require constant time with respect to the number of agents n, and therefore do
not affect the complexity analysis. Our algorithm is centralized, therefore we do
not assume any additional cost of communication between agents, as would be
the case with algorithms that distribute the computation among the agents.

Table 2: Worst-case time complexity of our algorithms and the baseline [8] as a
function of number of iterations N , number of agents n, and a small constant
αss. In our experiments we set αss = 3.

Algorithm
Worst-case time complexity

Deviation
Solution
selection

No No O(N · n2)
Yes No O(N · n3 · log(n))

No Yes O(N · nmax(αss+1,2))

Yes Yes O(N · nmax(αss+1,3) · log(n))

An important aspect of an algorithm is its convergence behavior. The baseline
algorithm converges if the random jump is not used [8]. Similarly, if the agents
were only allowed to deviate, the simulation would converge from any initial
state because each deviation splits coalitions and decreases the average coalition
size. Therefore separate maximization of social welfare, as well as separate max-
imization of coalition stability, is guaranteed to converge. However, combining
these steps in order to maximize both metrics does not guarantee convergence,
because social welfare and coalition stability are somewhat contradictory goals.

Our algorithm can be used in real-world scenarios where coalition stability
has to be considered. Solutions with high stability are more realistic, because
they reflect decision making of self-interested agents. Such decision making might
lower the social welfare of the solution, but as we showed in Table 1, the price of
stability of our solutions only slightly increases with major increase in stability.
Furthermore, the weights wg and ws in Equation 7 can be adjusted to give
preference to either the social welfare or stability.

6 Related Work

Many algorithms have been proposed that search for a coalition structure with
optimal or sub-optimal social welfare without considering coalition stability.
Among them we highlight dynamic programming approaches [22, 15, 5], hi-
erarchical clustering for large numbers of agents [6], and aproaches that use
multi-agent simulation [8, 10, 13]. We refer the reader to a recent comprehensive
survey on coalition structure generation in [16].

Theoretical properties of stability in coalition formation have been studied ex-
tensively. [18] provides an overview of social-welfare and stability in the coalition
formation setting. [14] studies the existence of core stable coalition structures
with respect to profit sharing rules and agents’ preferences over coalitions.
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Algorithms have been proposed to find stable coalitions in coalition formation
games. [3] proposes algorithms to find Nash equilibria for various profit sharing
schemes. Unlike [3], which assumes deviations of single agents only, we look
for coalitions that are stable with respect to deviations of groups of agents. [1]
computes profit sharing between agents that grants stability of the solutions
for subadditive games only. Again, we do not require such restrictions on the
valuation functions. An iterative approach for finding core-stable coalitions was
proposed in [2]. While the approach in [2] is similar to ours, it can only be
used in small scale scenarios due to its high complexity, as was shown in [4],
where the algorithm from [2] was improved and empirically tested. An auction-
based algorithm for creation of stable coalitions in large scale e-marketplaces is
proposed in [21]. Coalition stability in a request for proposal domain is studied
in [9], in which a negotiation protocol for coalition formation is introduced.
There stability is demonstrated by showing that allowing agents to deviate from
pure strategy profiles is not beneficial. It is unclear whether algorithms proposed
in [21] and [9] can be modified for use with general polynomial-time valuation
functions. Finally, [19] proposed algorithms that maximize social welfare and
find stable payoff division among agents. However, the algorithms restrict the
allowed size of coalitions, which renders the algorithms unusable in large-scale
problem instances where large coalitions might occur.

7 Conclusion

Algorithms that find stable coalition structures are often proposed for settings
that restrict the properties of the valuation functions. Practical aspects of the
high complexity of finding stable coalitions for large-scale multi-agent systems
are often not considered.

In this work we proposed an approach for increasing coalition stability in
large-scale coalition formation with self-interested agents and arbitrary valuation
functions. We modeled agent behavior using multi-agent simulation, in which we
let agents to choose profitable coalitions and deviate from unstable coalitions.
At the end of the simulation, we selected a solution out of a pool of generated
coalition structures based on its social welfare and stability. We experimentally
showed that our approach is able to increase the stability of the solutions in two
real-world scenarios. We also showed that the necessary price for this increase
in stability that our algorithm incurs to the social welfare is very low.

Some open questions and areas of further research, which we plan to investi-
gate, include coalition formation of agents with limited information, distributed
asynchronous simulation of coalition formation, and coalition formation with
dynamically changing valuation functions.
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