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Abstract—Coalition formation, a key factor in multi-agent
cooperation, can be solved optimally for at most a few dozen
agents. This paper proposes a general approach to find sub-
optimal solutions for a large-scale coalition formation problem
containing thousands of agents using multi-agent simulation.
We model coalition formation as an iterative process in which
agents join and leave coalitions, and we propose several valua-
tion functions that assign values to the coalitions. We propose
several coalition selection strategies that agents may use to
decide whether or not to leave their current coalition and
which coalition to join. We also show how these valuation
functions and coalition selection strategies represent specific
coalition formation applications. Finally, we show almost-
optimal performance of our algorithms in small-scale scenarios
by comparing our solutions with an optimal solution, and
we show stable performance in a large-scale setting in which
searching for the optimal solution is not feasible.

Index Terms—Large-scale coalition formation, multi-agent sim-
ulation.

1. Introduction

Coalition formation is a process in which multiple au-
tonomous agents create cooperating groups called coalitions
in order to achieve individual or group goals. Agents can
form groups to achieve tasks that require their cooperation,
to optimize their expenses, or to share resources. Since so
many people are connected to the web via their personal
devices, coalition formation can play major role in scenarios
such as collective purchasing or resource sharing.

Coalition formation typically requires formation of a
coalition structure (CS), which is a set of coalitions such
that each agent belongs to a coalition in CS. Each coalition
is assigned a value, and CS with the highest aggregate
value of coalitions, i.e. an optimal CS, is determined. For n
agents there are O(nn) possible CSs [1], and determining
the optimal CS has been proven to be an NP-complete
problem [2]. Algorithms that find the optimal solution can
do so in a reasonable time (in a matter of hours) for only
approximately a few dozen agents. For applications such as
collective purchasing or resource sharing this scale is not
sufficient.

In this paper we address large-scale coalition formation.
We formally define this problem in Section 2. We assume
that the number of agents is in range of thousands. For
such a problem, state-of-the-art algorithms cannot find the
optimal solution in a feasible time, so we propose to find
suboptimal solutions using multi-agent simulation. Multi-
agent simulation allows us to observe the process of forming
coalitions in an iterative manner. While coalition formation
is typically approached as a single-step task that finds a CS,
it is beneficial to model coalition formation as a dynamic
process where coalitions change over time. In such a process
the agents can utilize information about previous and current
values of coalitions to support their decision to leave the
current coalition and join a new coalition. We propose a
general framework that models coalition formation as a
dynamic, iterative process. Our framework can be used to
simulate real world applications of coalition formation.

The approach presented in this paper provides the fol-
lowing contributions:

1) A framework for evaluating coalition formation strate-
gies that uses multi-agent simulation as described in
Section 3. The framework can be used to simulate real-
world scenarios of coalition formation. We show two
examples of such scenarios in Section 3.1 along with
their representation in the framework in Section 3.2.
We discuss the practical meaning of our framework in
Section 5.

2) The capability to evaluate large-scale coalition selec-
tion strategies on scenarios consisting of thousands of
agents. Since the solutions reflect the decision making
of single agents in the dynamic coalition formation
process (see Section 3.3), optimality is not guaranteed.
Thus, we show how to evaluate proposed strategies
by comparing them against optimal solutions for small
numbers of agents (up to 20) and then demonstrating
that those strategies are stable in large-scale scenarios
with up to 10,000 agents (see Section 4). We also show
that in majority of the tested instances our proposed
strategies perform similarly or better than C-Link [3],
a state-of-the-art coalition formation algorithm.



2. Problem Statement

We studied the problem in which large numbers of
agents create coalitions. Specifically we considered the num-
ber of agents ranging from 2 to 10,000. We refer to the
problem as large-scale coalition formation, and we define
it as follows.

Let us consider a set of agents A = {a1, a2, . . . , an}
where n is the number of agents. The task is to find a
coalition structure CS = {C1, C2, . . . , Cm}, which is a set
of m coalitions Cj , where each agent is contained in a single
coalition. This condition is formally defined as

∀i ∈ 〈1, n〉 ∃! j ∈ 〈1,m〉 : ai ∈ Cj . (1)

In order to measure quality of CS, we further define the
value of CS as

v(CS) =
∑
C∈CS

v(C) (2)

where v(C) is a value assigned to the coalition C by a
valuation function, which will be defined in Section 3.2. In
order to compare solutions of problem instances, we define
a gain of CS as

g(CS) =
v(CS)− v(CS0)

n
(3)

where CS0 denotes a coalition structure containing only
coalitions of size one. The gain shows how much, on
average, each agent in CS benefits from participating in a
coalition. This metric shows the quality of a solution from
the perspective of a single agent.

As defined in [3], we also use a gain ratio

gr(CS) =
g(CS)

gopt
(4)

where gopt denotes the gain of an optimal solution obtained
by a dynamic programming algorithm [4]. Note that gopt and
gr(CS) can only be found in the small-scale scenarios due
to limitations of optimal algorithms. We use the gain and
gain ratio metrics to compare the quality of our solutions.

3. Methodology

We propose a general framework that can model and
solve specific applications of the coalition formation prob-
lem. We modeled coalition formation as an iterative process
in which the agents leave and join coalitions in an itera-
tive fashion. The algorithm for this process is depicted in
Algorithm 1 and works as follows.

First the simulator is initialized. Initialization consists of
following steps. Agents are created, and each agent initially
forms a singleton coalition (line 1). Interest vectors of size
k are then assigned to agents (line 2). Interest vectors are
essential to the simulation because elements of an interest
vector express specific interests of the agent. In various
problem applications these interest vectors may represent the
amount of resources owned or requested by the agent. Next,

a strategy is assigned to each agent (line 3). This strategy
is later used to determine whether or not the agent should
leave a current coalition and which coalition it should join.
A new coalition structure is then created (lines 4 and 5).
This structure holds all agents grouped in current coalitions.
Finally, the evaluation agent and a valuation function are
initialized. The evaluation agent is responsible for evaluating
all coalitions and announcing coalition rankings in each
iteration based on the specified valuation function. The time
complexity of this initialization step (lines 1 to 6) is O(n·k).

Algorithm 1 Multi-agent simulation of coalition formation
Input: number of agents n, number of iterations N , size
of interest vectors k.
Output: CS with highest gain.

1: create n agents
2: assign interest vectors of size k to agents
3: assign strategies to agents
4: initialize new coalition structure CS
5: create a coalition for each agent and add it to CS
6: initialize evaluation agent and valuation function
7: for iteration in 1:N do
8: for all agents in random order do
9: if agent.strategy.leaveCoalition() then

10: leave current coalition, update its value
11: newcoalition ←
12: agent.strategy.pickCoalition()
13: update value of newcoalition
14: end if
15: end for
16: evaluate all coalitions
17: announce the ranking of coalitions
18: store current CS
19: end for
20: return best CS

After the initialization step, the simulation begins with a
first iteration. In every iteration the agents use their strategies
to decide whether to leave their current coalition and, if so,
which coalition to join (lines 9 to 12). Then all remaining
coalitions are evaluated by the evaluation agent, and the
ranking of coalitions is announced (lines 16 and 17). Finally,
the current CS is stored (line 18). Each agent in each
iteration accesses during its decision making at most n other
agents’ interest vectors, regardless of the agents’ grouping
in coalitions. Therefore the worst-case time complexity of
Algorithm 1 is O(N · n2 · k). At the end of the simulation,
the best CS is selected out of all stored CSs, and returned
as the solution (line 20).

3.1. Applications

In this section we discuss two general applications of
large-scale coalition formation. We also discuss the ap-
proach we took to model these applications in our frame-
work. Other applications of coalition formation can be mod-
eled in the framework following our approach.



• Resource sharing - Agents operate with several re-
sources, and they can have either a surplus or a shortage
of each resource. Agents with a surplus try to form
coalitions with agents with a shortage so that the sur-
plus amount can be transferred to (bought by) agents
with shortages. We use interest vectors to store surplus
or shortage of each resource. The value of a coalition
then depends on the amount of resources shared.

• Collective energy purchasing - Electricity can be
bought either at a spot or forward market. A spot
market provides electricity according to the current
amount requested. However, agents can exploit reduced
tariffs at forward markets that sell constant amounts of
electricity for long periods of time. In order to exploit
the forward market, the aggregate energy profile of the
buyers (i.e. the hourly energy requirements for a day)
must be flat. Agents can form coalitions in order to
flatten their aggregate daily energy profile. We model
energy purchasing by storing the agents’ energy profiles
in their interest vectors. A value of a coalition then
depends on the flatness of its aggregate interest vector.

3.2. Valuation functions

A valuation function f : C → IR assigns a value v
to each coalition C. We propose market-based valuation
function to represent resource sharing. We also discuss
collective energy purchasing [5] and normally distributed
coalition structures [6] valuation functions.
• Market-based valuation function is used in the re-

source sharing application. The value of a coalition is
determined by the amount of resources shared (bought
and sold) within the coalition. More specifically,

v(C) =

k∑
l=1

min(b+C [l], b
−
C [l]) + κ(C) (5)

where b+C [l] is the positive balance for resource l,
which is the sum of surpluses of resource l over all
agents in coalition C, and b−C [l] is an absolute value
of the negative balance computed with the shortages,
respectively. κ(C) = −|C|γ was proposed in [3] to
represent the penalty for the coalition size. The penalty
prevents the grand coalition (coalition containing all n
agents) from forming, and it represents the difficulty
associated with a cooperation of a large number of
agents.

• Collective energy-purchasing valuation function was
proposed in [5]. The value of an expected payment
(coalition value) for coalition C is given by

v(C) =

T∑
t=1

qtS(C) · pS + T · qF (C) · pF + κ(C) (6)

where pS and pF represent unit prices at the spot
and forward markets, respectively, qtS(C) represents the
amount of energy to be bought at the spot market at
time t, and T · qF (C) represents the total amount of

energy to be bought at the forward market for time
interval T (in our experiments, T = 24 represents a
length of a daily energy profile). κ(C) = −|C|γ [3]
captures the penalty for the coalition size. Unlike the
market-based valuation function, the collective energy-
purchasing valuation function creates strong interde-
pendence between the elements of interest vectors.

An algorithm given in [5] computes optimal energy
amounts for a coalition given the coalition’s aggregate
energy profile, which we store in the coalition’s aggre-
gate interest vector. Using this algorithm, we obtain
energy amounts qtS(C) and qF (C) that we use to
compute the coalition value v(C).

• Normally Distributed Coalition Structures (NDCS)
is a challenging valuation function benchmark proposed
by [6]. The value of a coalition is drawn from a normal
distribution N(µ, σ) with µ = |C| and σ =

√
|C|.

We include NDCS here for the sake of comparison of
our approach with the C-Link algorithm, which is a
hierarchical clustering approach for coalition formation
proposed in [3].

3.3. Coalition selection strategies

Agents use coalition selection strategies to make two
decisions: whether to leave a coalition and which (if any)
of the existing coalitions to join. We propose mixed and
local search coalition selection strategies. We also discuss
coalition value-based strategy and random strategy. We
assume that the agents have complete information about the
system including other agents’ interest vectors.
• Coalition value-based strategy advises the agent to

join a coalition that maximally benefits from the addi-
tion of the agent. For agent i, the new coalition Cnew
is

Cnew ← arg max
C∈CS

(v(C ∪ i)− v(C)). (7)

An agent leaves a coalition if the coalition is not
the agent’s current choice. This strategy maximizes
marginal contribution of an agent to a coalition. In
game theory literature this strategy is often referred to
as the best response strategy.

• Random strategy, proposed in [7], makes decisions to
leave and join coalitions randomly. Despite its trivial
reasoning, this strategy can be used for a fast search of
the state-space.

• Mixed strategy utilizes decision making of at least
two strategies. The deciding strategy is chosen using
a roulette wheel algorithm, which picks a strategy
randomly based on given probabilities of the strategies.

• Local search strategy performs local optimization
with random jumps when a local optimum is reached.
This strategy combines the coalition value-based and
random strategies as follows. The coalition value-based
strategy is used by all agents as long as the resulting
coalition structure continues to change. If an iteration
yields the same coalition structure as the previous



iteration, the random strategy is used once by all agents
in order to escape the local optimum.

4. Experimental Analysis

We evaluated our coalition selection strategies and val-
uation functions experimentally using the gain and gain
ratio metrics (Equations 3 and 4). However, the gain ratio
metric can only be applied to instances with small numbers
of agents (here up to 20) because an optimal solution is
used as a baseline. For the baseline, we used an optimized
implementation of a dynamic programming algorithm1 from
[4].

We used the following parameter settings for the ex-
periments. In order to achieve reasonable run-times of our
algorithm in instances with various numbers of agents n,
we used the following numbers of iterations N . We set the
number of iterations to N = 500 for small-scale instances
with n ≤ 20, N = 10 for instances with n ∈ (20, 5000〉 and
N = 3 for instances with n > 5000. Because our algorithms
are any-time, a solution can be returned at any point during
the simulation.

For the energy purchasing scenario the interest vectors
of length k = 24 stored real-world daily energy profiles
of households in Portugal [8] (one value for each hour, T
was therefore set to 24). The hourly values were averaged
for each agent over all days in January 2014 into a single
average January day.

For the resource sharing scenario we used an interna-
tional trade dataset provided by the World Trade Organiza-
tion [9]. The dataset stores import and export amounts in
US dollars between 167 countries in 17 commodity types,
therefore we set k = 17. The amount of each resource
of each agent was computed as the difference between
export and import amounts of the given country in the year
2014. Positive and negative values of the resulting resource
amounts denote surplus and shortage respectively.

The parameter γ representing coalition size penalty was
set to 1.1 following [3] for the energy purchasing scenario
and to 2 for the resource sharing scenario. The higher
value of γ was used in the resource sharing scenario to
prevent the grand coalition, which is the trivial solution,
from being the optimal solution. As suggested in [5] and
[3], we fixed the prices for the energy purchasing scenario
at pS = −80 and pF = −70. Negative values are used
because the coalition value is maximized. Due to numeric
limitations of the baseline dynamic programming imple-
mentation2 we used randomly generated data for the small
scale experiments. Specifically, elements of interest vectors
were drawn from a uniform distribution U{0, 10} for the
collective energy purchasing scenario and U{−10, 10} for
the resource sharing scenario.

1. For the dynamic programming algorithm, evaluations of all possible
coalitions were generated using the given valuation functions.

2. The baseline dynamic programming algorithm is implemented in C
using integer and long types, which creates a risk of integer overflow for
large coalition values.

We ran our Java implementation of the proposed al-
gorithms on 2.7 GHz Intel Xeon E5 CPU with 2 GB of
memory3. All results were generated by averaging over 10
random runs of our algorithms.

4.1. Small-scale problem instances

For problem instances containing up to 20 agents, we
compared the performance of our coalition selection strate-
gies with optimal solutions. Table 1 shows an average gain
ratio achieved by the strategies. The table also shows results
achieved by a state-of-the-art hierarchical agglomerative
clustering algorithm C-Link [3].

The best average gain ratio was achieved by strategies
that combine local search and random approaches, as shown
in the first and third highest ranking strategies in Table 1.
The highest ranking mixed strategy utilized random search
more often than the local search strategy, it was therefore
able to search larger portion of the search space and conse-
quently find better solutions.

The locally optimizing coalition value-based strategy
achieved a worse gain ratio because it cannot escape local
optimums and therefore it wastes the remaining iterations
after a local optimum is found. The random strategy, which
performs an uninformed search of the state-space, ranked
last.

Figure 1c shows gain ratio of our strategies and C-Link
in the challenging NDCS scenario. In this scenario the
local search strategy ranks first, outperforming both the
mixed strategy and C-Link, thus showing the usability of
the local search strategy in challenging small-scale problem
instances.

The results showed that the multi-agent simulation ap-
proach for coalition formation yields solutions with gain
on average up to 94% of the gain of optimal solutions in
problem instances where optimal solutions can be obtained
using a state-of-the-art optimal algorithm. The results also
showed that local search and mixed strategies find solutions
of similar or higher quality than the state-of-the-art algo-
rithm C-Link.

TABLE 1. AVERAGE GAIN RATIO IN THE SMALL-SCALE PROBLEM
INSTANCES, with number of iterations N = 500. Combination of local
and random searches yields results closest to the optimum. Results are

averaged over all small-scale experiments with resource sharing,
collective energy purchasing and NDCS scenarios.

Coalition selection strategy avg(gr(CS))
Mixed: coalition value-based, random 0.9399
C-link: Gain Linkage 0.9289
Local search 0.9203
Coalition value-based 0.8700
Random 0.8097

3. The 2 GB limit provides sufficient memory for our algorithms used
in experiments with up to 10,000 agents.
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(a) Gain in resource sharing sce-
nario
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(b) Gain in collective energy pur-
chasing scenario
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(c) Gain ratio in NDCS scenario
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(d) Run-time in resource sharing
scenario
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(e) Run-time in collective energy
purchasing scenario
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(f) Effect of the number of itera-
tions N on gain

LocalSearchStrategy

MixedStrategy.CoalitionValueBasedStrategy.0.5RandomStrategy.0.5
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C−Link GainLinkage

Figure 1. 1a, 1b) Gain achieved by our algorithm and C-Link for given coalition selection strategies and valuation functions, for number of iterations
N = 10 for n ≤ 5000 and N = 3 for n > 5000. Gain reflects how much on average each agent benefits from coalition formation. We cannot compare
gain values across scenarios because each valuation function yields a different magnitude of the gain. 1c) Gain ratio achieved by our algorithm and C-Link
in the normally distributed coalition structures scenario with number of iterations N = 500: Local search strategy dominates the hierarchical clustering
approach C-Link. 1d, 1e) Run-time of our algorithm and C-Link in seconds. Our algorithm is faster than C-Link in large instances. 1f) Effect of the
number of iterations N on gain in the resource sharing scenario with 1000 agents. Local search and coalition value based strategies dominated C-Link
after two iterations.
The mixed strategy is encoded as “MixedStrategy.StrategyA.probability-of-AStrategyB.probability-of-B.” Error bars show standard deviation of aggregated
variables.

4.2. Large-scale problem instances

Given the promising results of the small-scale exper-
iments, we experimented with higher numbers of agents
(up to 10,000) in order to measure the performance of
our algorithms in a large-scale setting in which optimal
algorithms cannot be applied. Figures 1a and 1b compare
our strategies and C-Link based on the achieved gain. Note
that the gain loss between iterations with number of agents
n = 5000 and n = 5500 is caused by the decreased number

of iterations N for n > 5000. We decreased the number
of iterations N in order to achieve reasonable run-time of
our algorithm. Further experiments showed that increasing
the number of iterations yields results with both gain and
run-time comparable to C-Link.

We highlight the following three observations. First,
in collective energy purchasing scenario the gain achieved
by local search and coalition value-based strategies is the
same as the gain achieved by C-Link, and in instances of
resource sharing scenario with N = 10 the gain of these



two strategies is greater than the gain of C-Link. Decreasing
number of iterations to N = 3 causes the gain of our
strategies in resource sharing scenario to become slightly
lower than the gain of C-Link. However, in these instances
the run-time of our strategies is over one order of magnitude
lower than the run-time of C-Link, as shown in Figure 1d.

Second, the gain achieved by local search and coalition
value-based strategies for n ≥ 20 is greater than the gain at
n = 20, demonstrating that our algorithms provide stable
average gain for the agents with increasing scale of the
problem. Therefore agents in large-scale scenarios benefit
from coalition formation more than agents in small-scale
scenarios in which the solutions are very close to the opti-
mum.

Third, the local search and the coalition value-based
strategies outperformed other strategies in all scenarios be-
cause each agent in each iteration locally optimizes the
overall gain. Although in small-scale problem instances
this approach is outperformed by quicker strategies that
randomly search larger part of the state-space within the
given number of iterations, this advantage is no longer as
important in large-scale problem instances because the state-
space grows exponentially and therefore these quicker strate-
gies can only search its fraction. Therefore slow, locally
optimizing strategies yield solutions with higher gain.

Since the input to Algorithm 1 is the number of iterations
N , it is important to study the effect of choosing N .
Figure 1f shows the gain achieved by our strategies after
N = 〈1; 10〉 iterations in the resource sharing scenario.
The gain of the highest ranking local search and coalition
value based strategies dominated the gain achieved by C-
Link after two iterations, and it became stable around fifth
iteration. This result shows that the number of iterations used
in the resource sharing scenario can be very low. Similar
results were achieved in the collective energy purchasing
scenario.

Another factor in choosing the number of iterations is
the convergence of our algorithm. Since the local search,
random, and mixed strategies are random-based and there-
fore do not converge, we only study the convergence of
the coalition value-based strategy. Figure 2 shows the num-
ber of iterations until convergence in resource sharing and
collective energy purchasing scenarios. The results vary be-
tween the two scenarios, indicating that the resource sharing
scenario is harder to solve. Interestingly, the number of itera-
tions until convergence does not increase significantly with
increasing number of agents in the collective energy pur-
chasing scenario. Overall, the number of iterations needed
to reach convergence is relatively small.

Finally, in practice the run-time of the algorithm can be
a constraint, it is therefore also a deciding factor in choosing
the number of iterations N . Figures 1d and 1e show run-
time of our algorithm. Note again that the sudden decrease
in run-time between n = 5000 and n = 6000 is caused by
decrease in the number of iterations from N = 10 to N = 3.
Coalition value-based and local search strategies are slower
than the other strategies because they more often perform
expensive search for a coalition maximizing the marginal
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Figure 2. Number of iterations it takes the coalition value-based strategy
to converge to a local optimum in both scenarios.

contribution. However, in instances with n > 5000, in which
N = 3, these strategies are faster than C-Link. Particularly
in the resource sharing scenario with high numbers of agents
our algorithm is faster by one order of magnitude. Together
Figures 1f, 1d, and 1e show the trade-off between run-time
and solution quality. Unlike C-Link, our approach allows for
tuning of this trade-off using the number of iterations N .

5. Discussion

We designed a framework that simulates coalition forma-
tion. While the simulator part of the framework is fixed, the
valuation functions and agents’ strategies are configurable,
which gives a user extensive flexibility in modeling vari-
ous coalition formation scenarios. We showed the usability
of the framework by designing and implementing various
types of agents’ behavior along with specific applications of
coalition formation. Our design approach can be followed
to model other applications by designing and implementing
new valuation functions. New agents’ behavior can also be
modeled with the use of new coalition selection strategies
following our approach.

The framework can be used to simulate scenarios with
thousands of agents. In these large-scale scenarios we do
not guarantee finding an optimal solution. However, the
framework can be used to generate a step-by-step evolu-
tion of the multi-agent system based on specific behavior
of the agents, which better reflects the real world where
global optimum is seldom an achievable goal. We show
performance of the framework in simulations of the coalition
formation applications. Using a combination of local and
random searches, the framework is able to find solutions
very close to the optimum in small-scale instances of the
problem. With the scale of the problem increasing to 10,000
agents, the single agents achieve higher gain than in small-
scale instances. For new user-defined coalition formation
applications and agents’ strategies it might not be obvious
which strategy will yield the best solutions. Our framework



can be used to test different strategies of the agents in given
applications and determine the performance of the strategies,
similarly as we did in Figure 1.

As mentioned in Section 3, the worst-case time com-
plexity of our algorithm is O(N · n2 · k), which is lower
than the O(n3) complexity of the C-Link algorithm [3]. An
element that could affect the time complexity as well as
the behavior of our algorithm is a cost of communication
between agents. The communication cost would have to be
included if the approach was distributed among multiple
computational units. However, since Algorithm 1 is cen-
tralized, we do not include the communication cost in our
calculations for the cause of simplicity and to be able to
compare our results with results of C-Link, which also does
not take communication cost into account.

In order to reuse our framework, several steps have to
be taken and several design decisions must be made. First
Algorithm 1 has to be implemented. Then a decision has
to be made about strategies that the agents will use. For
example, a self-interested agent might utilize a different
strategy than a selfless agent. A valuation function has to be
then designed to represent the specific problem application
that is being examined. Finally, a decision has to be made
about which CS should be selected as the solution, since
one CS is created in every iteration. In our experiments we
selected CS with the highest gain, but other options include
selecting the last CS or CS containing coalition with the
highest value.

6. Related Work

This section discusses related work in coalition forma-
tion, including multi-agent simulation used for coalition
formation. Coalition formation is usually solved by one
of the following approaches: dynamic programming (DP),
graph-based algorithms, heuristic algorithms, or hierarchical
clustering. The first two approaches are exact and guaranteed
to find optimal solutions. Although the last two approaches
do not provide guarantees on solution quality, they are
able to solve large problem instances. Our approach of
using multi-agent simulation can be classified as a heuristic
algorithm because the simulation performs a greedy search
in the state-space of CSs.

DP was initially used to solve the coalition formation
problem with the first algorithm proposed by Yeh [10].
Rahwan and Jennings [1] proposed an algorithm called
Improved Dynamic Programming (IDP), an improvement
of standard DP that performs fewer operations and uses
less memory. Recently, Cruz-Mencı́a et al. [4] proposed an
optimized implementation of DP and IDP algorithms.

Graph-based algorithms utilize synergy graphs, which
are graphs that encode agents’ abilities to cooperate peer
to peer. The DyCE algorithm [11] improves upon IDP by
recognizing and ignoring infeasible coalitions using the syn-
ergy graph. Bistaffa et al. [12] proposed a branch and bound
algorithm CFSS that searches the state-space by contracting
edges of the synergy graph. This state-of-the-art algorithm
is able to solve instances of the problem containing up to

approximately 50 agents. Also, Sless et al. [13] have recently
proposed a centralized graph-based algorithm in which a
central organizer suggests new cooperation by adding edges
to the graph.

An increasing number of agents causes the search for
optimal CS to become infeasible. Suboptimal solutions can
then be found using heuristic algorithms. Shehory and Kraus
[14] first proposed a greedy algorithm that restricts the
allowed size of coalitions to solve task allocation in a multi-
agent system. Other approaches were later used to tackle
coalition formation in larger scale setting, such as use of a
genetic algorithm [15], simulated annealing [16], and greedy
adaptive search [17]. Despite promising results, particularly
for the greedy adaptive search, these algorithms focus on
instances of the coalition formation problem that contain
less than hundred agents.

Farinelli et al. recently proposed C-Link [3], which is a
hierarchical clustering algorithm that addresses large-scale
coalition formation. C-Link finds a suboptimal solution for
2732 agents in 4 minutes. Although C-Link addresses a
similar problem to the problem we address, we focus on
the simulation aspect by studying how strategies of single
agents affect overall behavior of the system. Unlike C-Link,
our framework models systems that change and adapt and
it computes the evolution of the CS over time.

Multi-agent simulation studies coalition formation from
several viewpoints. In [7], agents randomly choose coali-
tions in a coalition game in order to perform tasks. After
each round, depending on their simple strategies, the agents
can decide to leave the coalition or to stay. We take this
simulation approach further by proposing more complex
heuristic strategies and applications. An iterative approach
for finding core-stable coalitions was proposed in [18].
While the approach in [18] is similar to ours, it can only
be used in small scale scenarios due to its high complexity,
as was shown in [19], where the algorithm from [18] was
improved and empirically tested. In [20], game theoretical
perspective is taken in which agents are defined by attraction
for gain, stability, and strength of character. Even though the
authors of [20] provide strong game theoretical background,
they only experiment with four agents. A physics-motivated
algorithm is proposed in [21] to solve the coalition formation
problem for large-scale electronic markets. Coalition forma-
tion is solved in [21] using a macroscopic model, in which
agents encounter coalitions randomly. The decisions about
leaving coalitions are also made randomly based on some
probability. Our framework does not use the macroscopic
point of view and can therefore model behavior of single
agents. Our agents also utilize more complex strategies. A
recent approach has been proposed in [22] to dynamically
assemble teams of workers to perform crowdsourcing tasks.

Coalition formation can also be solved using auctions,
[23] presented an auction-based system for buyer coalition
formation in large-scale e-markets.

To conclude the summary of related work in the field of
coalition formation, we refer the reader to a comprehensive
survey on CS generation in [24].



7. Conclusion

In this work we proposed a general framework for find-
ing suboptimal solutions for a large-scale coalition forma-
tion problem containing thousands of agents using a multi-
agent simulation. We modeled coalition formation as an
iterative process in which agents leave and join coalitions
based on the information from the current and previous
iterations. We presented example applications of coalition
formation: resource sharing and collective energy purchas-
ing, along with valuation functions that model them by
assigning values to the coalitions. We discussed coalition
selection strategies that the agents can use in their decision
making to leave and join coalitions. Finally, we analyzed
our algorithms experimentally by comparing performances
of the strategies in various problem settings using synthetic
and real-world data.

We showed that our algorithms perform almost optimally
in small-scale problem instances in which our best strategies
performed similarly or better than the state-of-the-art algo-
rithm for coalition formation C-Link. We also showed that
the performance of our algorithms is stable in large-scale
instances in which comparison with an optimal solution
is infeasible. In these large-scale instances the quality of
solutions found by our algorithm is greater or equal to
the quality of solutions found by C-Link in majority of
instances, and in remaining instances our algorithm yields
run-time lower than run-time of C-Link by one order of
magnitude, while still keeping solution quality similar to
the quality of solutions found by C-Link.

We found that the best performance is achieved by
strategies that combine local search with random jumps. Our
strategies found solutions with values, on the average, up to
94% of the optimum in small-scale problem instances and
maintained a steady gain per agent in large-scale problem
instances.

In future work we plan to investigate the relationship
between the local and random search. We will also shift
our focus towards adaptive systems in which factors outside
and inside the multi-agent system can change coalition
values. This problem includes scenarios with self-interested
agents in which each agent evaluates coalitions individually
based on the agent’s preferences. Finally, we will investigate
how our algorithm can be designed in a distributed way,
thus further increasing the scale of the coalition formation
problems that our approach can solve.

References

[1] T. Rahwan and N. Jennings, “An improved dynamic programming
algorithm for coalition structure generation,” 7th International Con-
ference on Autonomous Agents and Multiagent Systems, 2008.

[2] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé,
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