
Abstract LR-parsing

Kyung-Goo Doh1⋆, Hyunha Kim1⋆, David A. Schmidt2⋆⋆

1 Hanyang University, Ansan, South Korea
2 Kansas State University, Manhattan, Kansas, USA

Abstract. We explain and illustrate abstract parsing, a static-analysis technique based on
abstract interpretation, LR-parsing, and partial evaluation for validating PHP-like scripts
that generate HTML/XML-style documents. A validated script is guaranteed to generate
documents that are well formed with respect to the document language’s LR(k)-grammar. In
this way, abstract parsing resembles compiler data-type checking: a validated script will “not
go wrong” and output a malformed, dynamically generated document.
After presenting abstract parsing for LR(k)-grammars, we handle these important extensions:
(i) String-replacement operations are analyzed by composing the finite-state automaton de-
fined by a string replacement with the finite-state control of the LR(k)-parser. (ii) Conditional-
test expressions are implemented by filter automata, which are also composed with the parser’s
finite-state control. (iii) Dynamically supplied and potentially malicious user input is pre-
dicted by characterizing it with an LR(k)-grammar and analyzing the strings generated by
the grammar. (iv) Synthesized-attribute grammars are employed to calculate the semantics of
the dynamically generated documents.

1 Introduction

Scripting languages use strings as a “universal data structure” to communicate documents, data
structures, and programs. For example, a PHP script might assemble within one long string an entire
HTML page or an XML document or an SQL query. An incorrectly assembled string-document might
later cause failure when it is supplied as input to its intended processor (a web browser or database
engine). Worse still, the string-document might contain textual input supplied by a malicious user
and initiate a cross-site-scripting or injection attack [20].

To prevent such failures and attacks, the well-formedness of dynamically generated string-documents
should be checked with respect to the document’s context-free reference grammar (for HTML or XML
or SQL) before the string-document is supplied to its processor. Better still, the document generator
script itself should be analyzed to validate that all its generated string-documents are well formed
with respect to the reference grammar, much like an application program is type checked in advance
of execution.

In this paper, we marry techniques from LR-parsing theory, abstract interpretation, and partial
evaluation to formulate a static analysis that validates that the string-documents generated by a
script are grammatically well formed with respect to the reference grammar. We call the analysis

⋆ doh@hanyang.ac.kr Supported by R01-2006-000-10926-0, the Basic Research Program of the Korea Sci-
ence and Engineering Foundation and by the Engineering Research Center of Excellence Program of
Korea Ministry of Education, Science and Technology (MEST)/Korea Science and Engineering Founda-
tion(KOSEF) R11-2008-007-01003-0.

⋆⋆ das@ksu.edu Supported by NSF CNS-0939431.

abstract parsing because it is an abstract interpretation of the script conducted simultaneously with
the LR-parsing of the string-documents generated by the script.

The meaning of each potentially generated string-document is not a set of strings or a regular
expression but is (an approximation of) the parse stack that the LR-parser would generate when it
parsed the string-document — the parse stack encodes both the string and its context-free structure,
thus providing greater precision than techniques that approximate the string via regular expressions.

The paper proceeds as follows. After presenting abstract parsing for LR(0) and general LR(k)
grammars, we handle these important extensions:

– String-replacement operations are analyzed by composing the finite-state automaton defined by
a string replacement with the finite-state control of the LR(k)-parser.

– Conditional-test expressions are implemented by filter automata, which are also composed with
the parser’s finite-state control.

– Dynamically supplied, potentially malicious, user input is predicted and processed by character-
izing it by an LR(k)-grammar and analyzing the strings generated from by grammar.

– Attribute grammar technology is added to calculate the semantic properties of dynamically
generated string output.

2 Background example

Say that a script must generate output strings that conform to this grammar,

S → a | [S]

where S is the only nonterminal. (HTML, XML, and SQL are such bracket languages.) The grammar
is LR(0), but it can be difficult to enforce even for simple programs, like the one in Figure 1, left
column. Perhaps the example program should print only well-formed S-phrases — the occurrence of

x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R =]

X1 = X0 ⊔ X2
X2 = [· X1 · R
X3 = X1

(Read . as an infix string-append operation.)

Fig. 1. Sample program and its flow equations

x at “print x” is a “hot spot,” where we must analyze x’s possible values. Three approaches have
been proposed to do this:

1. An analysis based on type checking assigns types (reference-grammar nonterminals) to the pro-
gram’s variables and uses them to validate that the program is well typed. The occurrences of x
should be data-typed as S, but r has no data type that corresponds to a nonterminal.

2. An analysis based on regular expressions [2–6, 14, 15, 19] solves the program-flow equations shown
in Figure 1’s right column in the domain of regular expressions, determining that the hot spot’s
(X3’s) values conform to the regular expression, [∗ ·a·]∗, but this does not validate the assertion.
Improvement in precision can be obtained with parenthesis grammars [13, 17], which generate
good regular-expression approximations of simple bracket grammars but fail to express general
context-free structure.

3. A grammar-based analysis [18] treats the flow equations as a set of grammar rules, and a language-
inclusion check tries to prove that all X3-generated strings are S-generable. A useful instance
of this technique is due to Møller and Schwarz, who check language inclusion with the more
restrictive but useful SGML DTD [9] for HTML documents [16].

Our approach solves the program-flow equations in Figure 1 in the domain of parse stacks —
X3’s meaning is the set of parse stacks of the strings that might be denoted by x. Our technique
simultaneously unfolds and LR-parses the strings defined by X3, computing a parse stack that
expresses both the structure in the flow equations and that of the reference grammar.

The technique is implemented by a partial-evaluation-style specialization of the program’s flow
equations applied to the LR-parser. When the specialized, residual flow equations are “executed”
(solved with a least-fixed semantics), they generate (sets of) parse stacks as their answers.

Of course, a program might generate infinitely many different strings and therefore the analysis
might compute an infinite set of parse stacks. We finitely approximate an infinite set of parse stacks
by exploiting this key feature of LR-parse theory: Each parse stack is exactly a finite path through
the LR-parser’s finite-state control automaton and can be approximated by the smallest subgraph
of the automaton that covers the path. The smallest-subgraph approximation is computed merely
by folding the parse stack on its repeating state(s).

3 Abstract LR(0)-parsing

We present the technique via the example program in Figure 1. For the example grammar, S →
a | [S], Figure 2 gives the LR(0)-parse-controller automaton and a parse of the string, [[a]]. The
parse-controller automaton is presented graphically, and its transitions are coded as shift/reduce
rewriting rules, which we use to parse the string. The current state, [si], of the parse appears as the
top state in the parse stack, s0 :: s1 :: · · · :: [si]. Input symbols, i, are supplied to state, s, in the
format, [i →֒ s]. The parser’s start state is [s0].

Say that we must validate that the program in Figure 1 prints only S-structured phrases. To
analyze the program’s hot spot at X3, we must LRparse(X3, s0), which we portray as a function
call, X3[s0] — we treat the program-flow equations in Figure 1 as functions defined in combinator
notation and we specialize (apply) a flow equation to the state used to parse it.

The flow equation, X3 = X1, generates this call step:

X3[s0] = X1[s0]

which demands a parse of the strings generated at point X1 from parse state s0:

X1[s0] = X0[s0] ∪X2[s0]

The union of the parses of strings at X0 and X2 from s0 must be computed. (Important: this
computes a set of parse stacks. In this example, all the sets are singletons, and we omit the set

[

. S
S .[S]

.aS

s
0 S [.]S

S .[S]
.aS

s
1

.S
s5

S a.
s2

S [S.]
s3

S [S].
s4

[S

S
a

]

a

Shift transitions:
[[→֒ s0] ⇒ s0 :: [s1] [[→֒ s1] ⇒ s1 :: [s1]
[S →֒ s0] ⇒ [s5] [a →֒ s1] ⇒ s1 :: [s2]
[a →֒ s0] ⇒ s0 :: [s2] [S →֒ s1] ⇒ s1 :: [s3]

[] →֒ s3] ⇒ s3 :: [s4]

Reduce transitions:
s :: [s2] ⇒ [S →֒ s]
si :: sj :: sk :: [s4] ⇒ [S →֒ si]

parse stack (top lies at right) input sequence (front lies at left)

[s0] [[a]]

[[→֒ s0] [a]]

s0 :: [s1] [a]]

s0 :: [[→֒ s1] a]]

s0 :: s1 :: [s1] a]]

s0 :: s1 :: [a →֒ s1]]]

s0 :: s1 :: s1 :: [s2]]] (reduce:S → a)
s0 :: s1 :: [S →֒ s1]]]

s0 :: s1 :: s1 :: [s3]]]

s0 :: s1 :: s1 :: [] →֒ s3]]

s0 :: s1 :: s1 :: s3 :: [s4]] (reduce:S → [S])
s0 :: [S →֒ s1]]

s0 :: s1 :: [s3]]

s0 :: s1 :: [] →֒ s3]
s0 :: s1 :: s3 :: [s4] (reduce:S → [S])
[S →֒ s0]
[s5] (finished)

Fig. 2. Parse controller for S → [S] | a and an example parse of [[a]]

braces to reduce notational clutter.) We consider first X0[s0]:

X0[s0] = a[s0] = [a →֒ s0]⇒ s0 :: [s2]⇒ [S →֒ s0]⇒ [s5].

That is, a parse of ’a’ from s0 generates the one-element stack, s5 (actually, {[s5]}) — all strings
denoted by X0 are S-phrases. Next,

X2[s0] = ([·X1 ·R)[s0] = [[→֒ s0]⊕ (X1 ·R)
⇒ (s0 :: [s1])⊕ (X1 ·R)
= s0 :: (X1 ·R)[s1] = s0 :: (X1[s1]⊕ R)

The ⊕ is a “continuation operator”: For parse stack, st, and combinator expression, E, define
st⊕E = tail(st) :: E[head(st)]. That is, stack st’s top state feeds to E. (More generally, for a set
of stacks, S, define S ⊕ E = {tail(st) :: E[head(st)] | st ∈ S}.)

Next, X1[s1] = X0[s1]∪X2[s1] computes to s1 :: [s3] (as explained below, the recursion generated
by X2[s1] is resolved by least-fixed-point iteration), so

X2[s0] = s0 :: (X1[s1]⊕R) = (s0 :: s1 :: [s3])⊕R = s0 :: s1 :: R[s3] = s0 :: s1 :: [] →֒ s3]
⇒ s0 :: s1 :: s3 :: [s4]⇒ [S →֒ s0]⇒ [s5]

That is, X2[s0] built the stack, s0 :: s1 :: s3 :: [s4], denoting a parse of [S], which reduced to S,
giving s5.

Here is the list of residual equations generated from the partial evaluation of the initial call,
X3[s0]:

X3[s0] = X1[s0]
X1[s0] = X0[s0] ∪X2[s0]
X0[s0] = [s5]
X2[s0] = s0 :: (X1[s1]⊕R)
X1[s1] = X0[s1] ∪X2[s1]
X0[s1] = s1 :: [s3]
X2[s1] = s1 :: (X1[s1]⊕R)
R[s3] = s3 :: [s4] (generated while X2[s1] is solved)

Each Xi[sj] = Eij is a first-order equation whose answer is a set of parse stacks.
The equations for X1[s1] and X2[s1] are mutually recursively defined, and their solutions are

computed by least-fixed-point iteration. Here are the solutions:

X1[s1] = X0[s1] ∪X2[s1] = (s1 :: [s3]) ∪ (s1 :: [s3]) = s1 :: [s3]
X2[s1] = s1 :: (X1[s1]⊕R)⇒ s1 :: s1 :: R[s3]⇒ s1 :: [s3]

X2[s0] = s0 :: (X1[s1]⊕R)⇒ s0 :: s1 :: R[s3] = s0 :: s1 :: s3 :: [s4]⇒ [s5]
X1[s0] = X0[s0] ∪X2[s0] = [s5] ∪ [s5] = [s5]

X3[s0] = X1[s1] = [s5] validates that the strings printed at the hot spot must be S-phrases.
(Note again: these answers are really sets, that is, X3[s0] = {[s5]}.) The algorithm that generates
the residual equations and simultaneously solves them is a worklist algorithm like those used for
demand-driven data-flow analyses [1, 8, 10]; it also resembles minimal function-graph semantics [12].

Figure 3 shows the worklist algorithm applied to the example. The algorithm uses three data
structures: the worklist of unresolved calls, Xi[sj]; a Cache (“seen-before list”) that maps each call
to its current (partial) solution (a set of abstract parse stacks); and the graph of call dependencies,
which is dynamically constructed.

The initialization step places initial call, X0[s0], into the worklist and into the dependency graph
and assigns to the cache the partial solution, Cache[X0[s0]] = ∅. The iteration step repeats the
following until the worklist is empty:

– Extract the front call, X [s], from the worklist, and for its corresponding flow equation, X = E,
compute E[s], a set, using the parser’s shift/reduce rules:
1. While computing E[s], if a call, X ′[s′] is encountered, (i) add the dependency, X ′[s′]→ X [s],

to the dependency graph (if not already present); (ii) if there is no entry for X ′[s′] in the
cache, then assign Cache[X ′[s′]] = ∅ to the cache and add X ′[s′] to the end of the worklist;
(iii) use Cache[X ′[s′]] as the meaning of X ′[s′] in the computation of E[s].

2. When E[s] computes to an answer set, P , and P contains a parse stack not already listed
in Cache[X [s]], then set Cache[X [s]] = Cache[X [s]]∪ P and add to the end of the worklist
all X ′′[s′′] such that X [s]→ X ′′[s′′] appears in the dependency graph.

Worklist,
processed from
top to bottom:

X3[s0]
X1[s0]
X0[s0]
X2[s0]
X1[s0]
X1[s1]
X3[s0]
X0[s1]
X2[s1]
X1[s1]
X2[s0]
X2[s1]
R[s3]
X2[s0]
X2[s1]
X1[s0]
X1[s1]

Cache updates, inserted from top to bottom

X3[s0] = ∅
X1[s0] = ∅
X0[s0] = ∅
X2[s0] = ∅
X0[s0] = {[a →֒ s0]} = {s0 :: [s2]} = {[S →֒ s0]} = {[s5]}
X1[s1] = ∅
X1[s0] = X0[s0] ∪ X2[s0] = {[s5]}
X0[s1] = ∅
X2[s1] = ∅
X3[s0] = X1[s0] = {[s5]}
X0[s1] = {[a →֒ s1]} = {s1 :: [s2]} = {[S →֒ s1]} = {s1 :: [s3]}
X1[s1] = X0[s1] ∪ X2[s1] = {s1 :: [s3]}
R[s3] = ∅
R[s3] = {[] →֒ s3]} = {s3 :: [s4]}
X2[s0] = {([· X1 · R)[s0]} = {s0 :: (X1(s1) ⊕ R)} = {s0 :: ({s1 :: [s3]} ⊕ R)}

= {s0 :: s1 :: R[s3]} = {s0 :: s1 :: {s3 :: [s4]}} = {s0 :: s1 :: s3 :: [s4]}
= {[S →֒ s0]} = {[s5]}

X2[s1] = {([· X1 · R)[s1]} = · · · = {s1 :: [s3]}

Generated dependency graph:

0X3 ()

s
1X2 ()

s
3

()R
s
0X1 ()

s
0X2 ()

s
0X0 ()

s
1X1 ()

s
1X0 ()

s

Fig. 3. Worklist-algorithm calculation of call, X3[s0], in Figure 1

4 Abstract parse stacks

In the previous example, the result for each Xi[sj] was a single stack. In general, a set of parse stacks
can result, e.g., for

x = ’[’

while ...

x = x . ’[’

x = x . ’a’ . ’]’

X0 = [

X1 = X0 ⊔X2
X2 = X1 · [
X3 = X1 · a ·]

at conclusion, x holds zero or more left brackets and an S-phrase, and X3[s0] is the infinite set,
{[s5], s1 :: [s3], s1 :: s1 :: [s3], s1 :: s1 :: s1 :: [s3], · · ·}.

To bound the set, we abstract it by “folding” its stacks so that no state repeats in a stack. A
stack segment like s1 :: s1 :: [s3] is a graph, 1 s1

s3[]s ; the folded stack merges identical

states:
1 s3[]s . Since the set of parse-state names is finite, folding produces a finite set of

finite-sized stacks (that contain cycles). For the previous example, the worklist algorithm calculates
X3[s0] = {[s5], s+

1 :: [s3]}. As noted earlier, each parse stack is a finite path through the LR-parser’s

finite-state controller automaton, and folding the parse stack generates the smallest subgraph of the
automaton that covers the path.

Stack folding can be profitably delayed when straightline code is analyzed, so we fold stacks only
if there is backwards control flow: When calculating a call, Xi[si] = · · ·Xj[sj] · · · , if Xj −→ Xi is
a “back arc” in the program’s control flow (that is, j ≥ i), only then we fold the set of stacks defined
by Xj[sj] to compute Xi[si]. This way, we lose precision exactly when the source program’s control
flow itself loses precision. Again, finite convergence is guaranteed.

5 LR(k) grammars are accommodated the same way

Abstract parsing also applies to LR(k) grammars, for k > 0. Figure 4 presents an LR(1) grammar,
its controller, and an example parse. The parse states have form, [ℓj →֒ · · · →֒ ℓ0 →֒ s], where

Parser for LR(1) grammar, S → aS | a Input and lookahead symbols are saved in the current state:

a!. S
S . Sa

.aS

s
0

.S
s4

S a.S
S .a S

.aS

s
2 S a .S

s3

S a.
s1

S!

la

laS!

a!

Shift transitions:
[ℓ →֒ a →֒ s0] ⇒ s0 :: [ℓ →֒ s2]
[! →֒ a →֒ s0] ⇒ s0 :: [! →֒ s1]
[! →֒ S →֒ s0] ⇒ [s4]
[ℓ →֒ a →֒ s2] ⇒ s2 :: [ℓ →֒ s2]

[! →֒ a →֒ s2] ⇒ s2 :: [! →֒ s1]
[! →֒ S →֒ s2] ⇒ s2 :: [! →֒ s3]
Reduce transitions:
si :: [ℓ →֒ s1] ⇒ [ℓ →֒ S →֒ si]
si :: sj :: [ℓ →֒ s3] ⇒ [ℓ →֒ S →֒ si]

where ! denotes end of input and ℓ denotes any non-! input symbol.

parse stack input sequence

[s0] aa!

[a →֒ s0] a!

[a →֒ a →֒ s0] ! (next, do shift transition)
s0 :: [a →֒ s2] !

s0 :: [! →֒ a →֒ s2] (do shift transition)
s0 :: s2 :: [! →֒ s1] (reduce S → a; pop one state and insert S)
s0 :: [! →֒ S →֒ s2] (do shift transition)
s0 :: s2 :: [! →֒ s3] (reduce S → aS; pop two states and insert S)
[! →֒ S →֒ s0] (do final transition)
[s4] (finished)

Fig. 4. An LR(k) grammar uses a state of form, [ℓk →֒ ℓk−1 →֒ · · · →֒ ℓ0 →֒ s].

0 ≤ j ≤ k + 1. When a program is statically parsed with an LR(k) grammar, k > 0, the first-order

residual equations have form,

Xi[ℓj →֒ · · · →֒ ℓ0 →֒ s] = E

for 0 ≤ j ≤ k. (Alas, this means a residual-equation set of order (k + 1)!.) For this program,

x = ’a’

while ...

x = ’a’ . x . ’a’

print x !

X0 = a

X1 = X0 ⊔X2
X2 = a ·X1 · a
X3 = X1 · !

its partial evaluation proceeds as follows:

X3[s0] = (X1 · !)[s0] = X1[s0]⊕ !

X1[s0] = X0[s0] ∪X2[s0]
X0[s0] = a[s0] = {[a →֒ s0]}
X2[s0] = (a ·X1 · a)[s0] = a[s0]⊕ (X1 · a)

= {[a →֒ s0]} ⊕ (X1 · a) = {X1[a →֒ s0]⊕ a}
X1[a →֒ s0] = X0[a →֒ s0] ∪X2[a →֒ s0]
X0[a →֒ s0] = {[a →֒ s0]} = {[a →֒ a →֒ s0]} ⇒ {s0 :: [a →֒ s2]}
X2[a →֒ s0] = (a ·X1 · a)[a →֒ s0] = [a →֒ a →֒ s0]⊕ (X1 · a)

= {s0 :: [a →֒ s2]} ⊕ (X1 · a)} = {s0 :: X1[a →֒ s2]⊕ a}
X1[a →֒ s2] = X0[a →֒ s2] ∪X2[a →֒ s2]
X0[a →֒ s2] = a[a →֒ s2] = {[a →֒ a →֒ s2]} = {s2 :: [a →֒ s2]}
X2[a →֒ s2] = (a ·X1 · a)[a →֒ s2] = [a →֒ a →֒ s0]⊕ (X1 · a)

= {s2 :: [a →֒ s2]} ⊕ (X1 · a) = {s2 :: (X1[a →֒ s2]⊕ a)}
X1[a →֒ s2] = {s2 :: [a →֒ s2]} ∪ {s2 :: (X1[a →֒ s2]⊕ a)}

The residual equations are solved by least-fixed point calculation; X1[a →֒ s2] computes to {si
2 ::

[a →֒ s2] | i ∈ 1, 3, 5, · · ·}, which our analysis approximates by {s+

2 :: [a →֒ s2]}. Using this result, we
obtain

X1[a →֒ s2] = {s+

2 :: [a →֒ s2]}
X2[a →֒ s0] = {s0 :: s+

2 :: [a →֒ s2]}
X1[a →֒ s0] = {s0 :: s∗2 :: [a →֒ s2]}

X2[s0] = {s0 :: s+
2 :: [a →֒ s2]}

X1[s0] = {[a →֒ s0]} ∪ {s0 :: s+

2 :: [a →֒ s2]}
X3[s0] = {[! →֒ a →֒ s0]} ∪ {s0 :: s+

2 :: [! →֒ a →֒ s2]} = {[s4]}

since {[! →֒ a →֒ s0]} = {s0 :: [! →֒ s1]} = {[! →֒ S →֒ s0]} = {[s4]}

and {s0 :: s+

2 :: [! →֒ a →֒ s2]} = {s0 :: s+

2 :: [! →֒ s1]} (s+

2 :: s2 is approximated to s+

2)
= {s0 :: s∗2 :: [! →֒ S →֒ s2]} (reduce S → a)
= {s0 :: s+

2 :: [! →֒ s3]}
= {[! →֒ S →֒ s0], s0 :: s∗2 :: [! →֒ S →֒ s2]} (reduce S → aS)
= {[s4]} (second set element adds nothing to the fixed point)

This proves that all possible string values of x at the end are well-structured S-phrases.

6 Abstract parsing with string-replacement operations

Because of the state explosion that arises with LR(k) grammars, our implementation uses LALR(k)
grammars instead. The reason we introduced the LR(1) example was to generalize the parse state
to hold multiple input symbols, which we now use to process string-update operations.

Scripting languages support string updates of this form,

y = replace ’bb’ by ’a’ in x

where the pattern (here, bb) can be a regular expression. The update operation defines an automaton
(more precisely, a transducer):

α0 α1

’b’ : ’a’

’b’ : ε

l != ’b’ : l

l != ’b’ : ’b’. l

b →֒ α0 → α1 : ǫ

ℓ 6= b →֒ α0 → α0 : ℓ

b →֒ α1 → α0 : a
ℓ 6= b →֒ α1 → α0 : b · ℓ

Both graphical and linear codings are displayed here. We use : e to mean “emit e as output.” When
a replace operation appears in a program that is analyzed, the transducer, α, defined by replace

is composed with the parser automaton — a state configuration now holds two states:

[ℓnew →֒ αm, ℓj →֒ · · · →֒ ℓ0 →֒ s]

Here, αm is the current state of the transducer and s is the current state of the parser. A new input,
ℓnew, submits first to αm, which transits and possibly emits input for s:

[αn, ℓj+1 →֒ ℓj →֒ · · · →֒ ℓ0 →֒ s]

In this way, strings are updated by replace before they are parsed. The assignment,

x = replace S1 by S2 in E

generates the flow equation

X = insertα · E · eraseα

where α0 names the start state of transducer α generated from patterns S1 and S2 and

insertα[· · · s]⇒ [α0, · · · s]
eraseα[αi, · · · s]⇒ [· · · s]

Here is a small example, worked with the above transducer and the parser in Figure 2:

y = ’bb]’

x = ’[’.(replace ’bb’ by ’a’ in y)

Y = b · b ·]
X = [· (insertα · Y · eraseα)

The abstract parse of X [s0] proceeds like this:

X [s0] = [[→֒ s0]⊕ (insertα · Y · eraseα) = s0 :: (insertα · Y · eraseα)[s1] (i)
= s0 :: (Y · eraseα)[α0, s1] = s0 :: (Y [α0, s1]⊕ eraseα)

Y [α0, s1] = (b · b ·])[α0, s1] = [b →֒ α0, s1]⊕ (b ·]) = [α1, s1]⊕ (b ·]) (ii)
= [b →֒ α1, s1]⊕] = [α0, a →֒ s1]⊕] (iii)
= s1 :: ([α0, s2]⊕]) (iv)
= [α0, S →֒ s1]⊕] = s1 :: [α0, s3]⊕] = s1 :: [] →֒ α0, s3]
= s1 :: [α0,] →֒ s3] = s1 :: s3 :: [α0, s4]

So,
X [s0] = s0 :: (Y [α0, s1]⊕ eraseα) = s0 :: (s1 :: s3 :: [α0, s4]⊕ eraseα)

= s0 :: (s1 :: s3 :: eraseα[α0, s4]) (v)
= s0 :: (s1 :: s3 :: [s4]) = [S →֒ s0] = [s5]

At point (i), input symbol [is supplied directly to the parser. The transducer’s start state is
then added to the state configuration, and the string generated by Y is supplied to the transducer
before Y ’s string is parsed — see (ii). At point (iii), the sequence bb causes the transducer state
to emit a, which is supplied to the parser state. Once the parser reduces a to nonterminal S, the
transducer state is carried along in the state configuration; see (iv). At (v), the string transducer
has finished its effects and is erased.

The composition of transducer with parser in our demand-driven, backwards, precondition-style
analysis means there is no backtracking and reparsing because of string updates — there is only the
one parse of the appropriately altered string.

There is a last, important, technical point: a string-replacement transducer must finish its work
in a final state, e.g., for

y = replace ’bb’ by ’a’ in ’bbb’

where transducer α has α0 as its final state, the processing of ’bbb’ causes α to finish in state α1,
implicitly holding ’b’ in its state. The ’b’ must be ”flushed”, so we add this last transition to α:

eos →֒ α1 → α0 : b

Where eos denotes “end of string.” This transition is enacted by the eraseα operation.
The embedding of the transducer state in the parse configuration does not affect the least-fixed

point machinery for computing the solutions to the residual equations. (But a state explosion can
result.) In addition, the residual-equation-least-fixed-point-calculation allows string replacements
within loop bodies, avoiding difficulties encountered in related techniques [4, 5, 14].

7 Other applications of string transducers

Transducers have other applications in abstract parsing; here are two.

Composing a scanner with the parser The basic abstract-parsing algorithm does “scannerless
parsing” — the characters of a string are input one at a time to the parser state, which must parse
characters into words and words into phrases. We have found the technique acceptable in practice
for HTML grammars, but for theoretical or practical reasons, one might wish to scan characters into
tokens before parsing them.

A scanner defined as a transducer, σ, can be added to the state configuration so that abstract
parsing is undertaken with configurations of the form, [σi, ℓj →֒ · · · →֒ ℓ0 →֒ sj], where σi is the state
of the scanner, ℓi are the generated tokens, and sj is the state of the parser. There is no resulting
state explosion, since a scannerless parser must hold the same scanner-state information within its
parse state, anyway, and there is the advantage that scanning and parsing can be defined separately.

String filtering through conditional commands A technique needed for taint analysis [20, 21,
19] is filter functions that model the tests of conditional commands. For example, a script might
contain a conditional command that filters untrusted user input:

read x

if isAllDigits(x) :

then · · · assert here that x holds all digits · · ·

The test expression, isAllDigits(x), is defined as a transducer that reads string x and emits
failure (⊥) if a character is a nondigit. A failure means that x’s value is filtered from entering the
conditional’s then-arm. The filter transducer for isAllDigits(x) appears:

βfail

l ε’0’..’9’ : l

β0

l ε’0’..’9’ :/ fail
l ε’0’..’9’ :/ fail

: faileos

: faill

β1
l ε’0’..’9’ : l

The transducer emits fail when its input fails the boolean test. The complement automaton, ¬β,
merely swaps the outputs, ℓ and fail.

Our approach to analyzing conditional statements goes as follows:

For the conditional,
if B(x):
then · · · x · · ·
else · · · x · · ·

generate these flow equations:
XB = insertβ ·X · eraseβ

· · ·XB · · ·
X¬B = insert¬β ·X · erase¬β

· · ·X¬B · · ·

where β is the transducer that implements test B and ¬β implements ¬B.
The fail character is special — when processed as an input, it causes the parse to denote ⊥

(empty set in the powerset lattice): [· · · , fail , · · ·] = ⊥. For example,

x = ’a’

if isAllDigits(x):

print x

X0 = a

X1 = insertβ ·X0 · eraseβ

X2 = X1 · !

and
X2[s0] = X1[s0]
X1[s0] = X0[β0, s0]⊕ eraseβ

X0[β0, s0] = a[β0, s0] = [a →֒ β0, s0] = [β0, fail →֒ s0] = ⊥

Hence,
X1[s0] = eraseβ⊥ = ⊥ = X2[s0]

The analysis correctly predicts that nothing prints within the body of the conditional.

8 Modelling global variables and user input by nonterminals

An abstract parser can process a grammar’s nonterminal symbols as input just like terminal symbols:
the symbol is supplied to the parse state, which shifts it. Say that a module uses a string-valued
global variable that is initialized outside of the module. If we can assume the global variable’s value
has the structure named by a nonterminal, then the global variable can be used in an abstract parse.
For example, assume global variable g holds an S-structured string:

x = ’[’.g .’]’

print x

G = S

X = [·G ·]

We readily compute the abstract parse for X [s0], using Figure 2:

X [s0] = ([·G · ’]’)[s0] = [[→֒ s0]⊕ (G · ’]’) = s0 :: (G[s1]⊕]) = s0 :: ([S →֒ s1]⊕])
= s0 :: (s1 ::][s3]) = s0 :: s1 :: [] →֒ s3] = s0 :: s1 :: s3 :: [s4] = · · · = [s5]

In a similar way, user input can be assumed to have structure named by a nonterminal, and
abstract parsing can be undertaken:

g = readS()
x = ’[’.g. ’]’

print x

G = S

X = [·G ·]

Of course, we must supply a script that parses the input at runtime, to ensure that the input
assumption is not violated.

But there is a rub — the program might contain string-replacement operations, which cannot
process nonterminals. We solve this problem by unfolding the nonterminal, supplying the generated
strings to the string-replacement transducer (recall that S → a | [S]):

g = readS()
y = replace ’[’ by ’[[’ in g

print y

S = a ⊔ [· S ·]
G = S

Y = insertγ ·G · eraseγ

where transducer γ is the obvious one-state transducer. The analysis proceeds like this:

Y [s0] = G[γ0, s0]⊕ eraseγ

G[γ0, s0] = S[γ0, s0]
S[γ0, s0] = (a[γ0, s0]) ∪ ([· S ·][γ0, s0])

The last residual equation, for S[γ0, s0], shows how nonterminal S is unfolded and its symbols fed
to γ. There is a tedious but finitely computable solution:

S[γ0, s0] = (a[γ0, s0] ∪ ([· S ·][γ0, s0])
= {[γ0, s5]} ∪ {s0 :: s1 :: S[γ0, s1]⊕]

The partial evaluation of S[γ0, s1] unfolds almost identically, producing

S[γ0, s1] = (a[γ0, s1] ∪ ([· S ·][γ0, s1])
= {s1 :: [γ0, s3]} ∪ ([· S ·][γ0, s1])
= {s1 :: [γ0, s3]} ∪ {s1 :: s1 :: [γ0, s1]⊕ (S ·])}
= {s1 :: [γ0, s3]} ∪ {s

+

1 :: (S[γ0, s1] ·])}

The least fixed-point solution of S[γ0, s1] is {s+
1 :: [γ0, s3]}, which gives Y [s0] = {[s5], s

+
1 :: [s3]}.

With the technique just illustrated, we can show the correctness of input-validation codings. For
example, a script that goes

x = readS()

if isAllDigits(x):

then · · ·

can be analyzed with respect to the automaton defined by isAllDigits and this reference grammar:

S ::= C | CS

C ::= D |N
D ::= 0 · · · 9
N ::= all characters not in D

9 Abstract parsing with semantic processing

Since we can predict the syntax of dynamically generated strings, we should be able to predict the
semantics as well by adapting attribute-grammar techniques. Here is a simple but useful example.
Binary numerals are generated by this LR(1) grammar,

B → D B |D
D → 0 | 1

where B stands for the set of binary numerals and D stands for the set of binary digits. The
semantics of binary numerals can be specified with attributes associated with the grammar symbols
and semantics rules associated with the productions. Suppose we want to know whether or not a
binary numeral is even-valued. The semantic rules associated with the productions below specify
how to calculate the answer:

production semantic rule
→ B ! answer = B.even

B → D B1 B.even = B1.even

B → D B.even = D.even

D→ 0 D.even = true

D→ 1 D.even = false

Here, each nonterminal, B and D, has a synthesized attribute, even, which has value true if the
binary numeral generated by the nonterminal is an even number, false otherwise.

Since the grammar is LR(1) and only associated with synthesized attributes, the semantic rules
can be computed during LR-parsing, as seen in Figure 5. When a reduce transition occurs, its cor-
responding semantic rule is computed. The computed result is annotated to its corresponding state,
shown as a superscript in our notation. In the example in Figure 5, the computed attribute values
are annotated only to the states, s0 and s3. For the example binary numeral, 101, the computed
result is false, as expected. For this program,

x = ’0’

while ...

x = readD() · x
print x · !

X0 = 0

X1 = X0 ⊔X2
X2 = D ·X1
X3 = X1 · !

.0D

.D 1
B . BD
B .D

.0D

.1D

. BDB

DB B .
s4B . BD

B .D
.0D
.1D

. B

B D .
B .s6

s
0 l0

l1

!D
s5

s
2

s1

lD

s3
l0

l1

!D

!B

lD

!B

Shift transitions:
[ℓ →֒ 0 →֒ s0] ⇒ s0 :: [ℓ →֒ s1]
[ℓ →֒ 1 →֒ s0] ⇒ s0 :: [ℓ →֒ s2]
[ℓ →֒ D →֒ s0] ⇒ s0 :: [ℓ →֒ s3]
[! →֒ D →֒ s0] ⇒ s0 :: [! →֒ s5]
[! →֒ B →֒ sb

0] ⇒ [sb
6]

[ℓ →֒ 0 →֒ s3] ⇒ s3 :: [ℓ →֒ s1]
[ℓ →֒ 1 →֒ s3] ⇒ s3 :: [ℓ →֒ s2]
[ℓ →֒ D →֒ s3] ⇒ s3 :: [ℓ →֒ s3]
[! →֒ D →֒ s3] ⇒ s3 :: [! →֒ s5]
[! →֒ B →֒ s3] ⇒ s3 :: [! →֒ s4]

Reduce transitions:
s :: [ℓ →֒ s1] ⇒ [ℓ →֒ D →֒ strue]

s :: [ℓ →֒ s2] ⇒ [ℓ →֒ D →֒ sfalse]
si :: sb

j :: [ℓ →֒ s4] ⇒ [ℓ →֒ B →֒ sb
i]

sb
i :: [ℓ →֒ s5] ⇒ [ℓ →֒ B →֒ sb

i]

where ! denotes end of input and ℓ denotes any non-! input symbol.

parse stack (top lies at right) input sequence

[s0] 101!

[1 →֒ s0] 01!

[0 →֒ 1 →֒ s0] 1! (shift)
s0 :: [0 →֒ s2] 1! (reduce D → 1)

s0 :: [D →֒ s
false
0

] 1! (shift)

s
false
0

:: [0 →֒ s3] 1!

s
false
0

:: [1 →֒ 0 →֒ s3] ! (shift)

s
false
0

:: s3 :: [1 →֒ s1] ! (reduce D → 0)

s
false
0

:: [1 →֒ D →֒ strue
3] ! (shift)

s
false
0

:: strue
3 :: [1 →֒ s3] !

s
false
0

:: strue
3 :: [! →֒ 1 →֒ s3] (shift)

s
false
0

:: strue
3 :: s3 :: [! →֒ s2] (reduce D → 1)

s
false
0

:: strue
3 :: [! →֒ D →֒ s

false
3

] (shift)

s
false
0

:: strue
3 :: s

false
3

:: [! →֒ s5] (reduce B → D)

s
false
0

:: strue
3 :: [! →֒ B →֒ s

false
3

] (shift)

s
false
0

:: strue
3 :: s

false
3

:: [! →֒ s4] (reduce B → D B)

s
false
0

:: [! →֒ B →֒ s
false
3

] (shift)

s
false
0

:: s
false
3

:: [! →֒ s4] (reduce B → D B)

[! →֒ B →֒ s
false
0

] (shift)

[sfalse
6

] (finished)

Fig. 5. Syntax-directed semantic processing for LR(1) grammar, B → DB | D, D → 0 | 1

its abstract parsing with synthesized-attribute computing proceeds as follows:

X3[s0] = (X1 · !)[s0] = X1[s0]⊕ !

X1[s0] = X0[s0] ∪X2[s0]
X0[s0] = 0[s0] = {[0 →֒ s0]}
X2[s0] = (D ·X1)[s0] = [D →֒ s0]⊕X1 = X1[D →֒ s0]

= X0[D →֒ s0] ∪X2[D →֒ s0]
X0[D →֒ s0] = {[0 →֒ D →֒ s0]} ⇒ {s0 :: [0 →֒ s3]}
X2[D →֒ s0] = (D ·X1)[D →֒ s0] = [D →֒ D →֒ s0]⊕X1

⇒ {s0 :: [D →֒ s3]} ⊕X1 = {s0 :: X1[D →֒ s3]}
X1[D →֒ s3] = X0[D →֒ s3] ∪X2[D →֒ s3]
X0[D →֒ s3] = {[0 →֒ D →֒ s3]} ⇒ {s3 :: [0 →֒ s3]}
X2[D →֒ s3] = (D ·X1)[D →֒ s3] = [D →֒ D →֒ s3]⊕X1

⇒ {s3 :: [D →֒ s3]} ⊕X1 = {s3 :: X1[D →֒ s3]}

Now we have a recursive equation to solve:

X1[D →֒ s3] = {s3 :: [0 →֒ s3]} ∪ {s3 :: X1[D →֒ s3]}
= {s+

3 :: [0 →֒ s3]}

Using this result, we obtain:

X2[D →֒ s0] = {s0 :: s+
3 :: [0 →֒ s3]}

X2[s0] = {s0 :: [0 →֒ s3], s0 :: s+

3 :: [0 →֒ s3]}
X1[s0] = {[0 →֒ s0], s0 :: [0 →֒ s3], s0 :: s+

3 :: [0 →֒ s3]}
X3[s0] = {[! →֒ 0 →֒ s0], s0 :: [! →֒ 0 →֒ s3], s0 :: s+

3 :: [! →֒ 0 →֒ s3]}
= {[strue

6]}

since {[! →֒ 0 →֒ s0]} ⇒ {s0 :: [! →֒ s1]} ⇒ {[! →֒ D →֒ strue
0]}

⇒ {strue
0 :: [! →֒ s5]} ⇒ {[! →֒ B →֒ strue

0]} ⇒ {[strue
6]}

and {s0 :: [! →֒ 0 →֒ s3]} ⇒ {s0 :: s3 :: [! →֒ s1]} ⇒ {s0 :: [! →֒ D →֒ strue
3]}

⇒ {s0 :: strue
3 :: [! →֒ s5]} ⇒ {s0 :: [! →֒ B →֒ strue

3]}
⇒ {s0 :: strue

3 :: [! →֒ s4]} ⇒ {[! →֒ B →֒ strue
0]} ⇒ {[strue

6]}

and {s0 :: s+

3 :: [! →֒ 0 →֒ s3]} ⇒ {s0 :: s+

3 :: s3 :: [! →֒ s1]}
⇒ {s0 :: s+

3 :: [! →֒ D →֒ strue
3]} ⇒ {s0 :: s+

3 :: strue
3 :: [! →֒ s5]}

⇒ {s0 :: s+

3 :: [! →֒ B →֒ strue
3]} ⇒ {s0 :: s+

3 :: strue
3 :: [! →֒ s4]}

⇒ {s0 :: [! →֒ B →֒ strue
3], s0 :: s+

3 :: [! →֒ B →֒ strue
3]}

(second set element adds nothing to fixed point)
⇒ {s0 :: strue

3 :: [! →֒ s4]} ⇒ {[! →֒ B →֒ strue
0]} ⇒ {[strue

6]}

This proves that all possible string values of x at the end are well-structured B-phrases and even-
valued. The approach is well suited to “type checking” XML-like documents; this application is
currently under investigation.

10 Conclusion

The worklist algorithm for abstract parsing discussed in this paper has been implemented for PHP
applications that dynamically generate HTML documents. A scannerless LALR(1) parsing table for

an HTML grammar written up to character level is automatically generated by a parser generater,
and a set of flow equations are generated from the PHP application to be analyzed. Our abstract
parser then takes the flow equations, the parsing table, and a hot spot and parses the set of all
documents dynamically generated at the given hot spot. In addition, our abstract parser builds a set
of abstract syntax trees of the documents for the use of further analyses. The current implementation
has been applied to a suite of PHP applications publicly available and has successfully identified
multiple parse erorrs in a reasonable execution time with a few predictable false positives [7].

The extensions proposed in this paper, such as dealing with destructive string operators, com-
posing scanner with the parser, modular abstract parsing with the existence of unknown string
variables, string filtering through conditionals, and semantic processing such as type checking and
taint analysis, are currently being implemented or are planned for implementation in the near future.
The extensions are expected to remove false positives observed from our initial implementation and
to make abstract parsing more practical and useful.

Acknowledgements: We thank Carolyn Talcott for her decades of leadership in programming-languages
research and dedicate this paper to her on the occasion of her 60th birthday.

Conversations with Anders Møller, Se-won Kim, and Kwangkuen Yi and his group at Seoul National

University have been helpful. We thank GTOne’s Soo-Yong Lee for his inspiration and support.

References

1. G. Agrawal. Simultaneous demand-driven data-flow and call graph analysis. In Proc. Int’l. Conf.
Software Maintenance, Oxford, 1999.

2. C. Brabrand, A. Møller, and M.I. Schwartzbach. The <bigwig> project. ACM Trans. Internet Technology,
2, 2002.

3. T.-H. Choi, O. Lee, H. Kim, and K.-G. Doh. A practical string analyzer by the widening approach. In
Proc. Asian Symp. Prog. Lang. and Systems, pages 374–388. Springer LNCS 4279, 2006.

4. A.S. Christensen, A. Møller, and M.I. Schwartzbach. Static analysis for dynamic XML. In Proc. PLAN-
X-02, 2002.

5. A.S. Christensen, A. Møller, and M.I. Schwartzbach. Extending Java for high-level web service con-
struction. ACM TOPLAS, 25, 2003.

6. A.S. Christensen, A. Møller, and M.I. Schwartzbach. Precise analysis of string expressions. In Proc.
SAS’03, 2003.

7. K.-G. Doh, H. Kim, and D.A. Schmidt. Abstract parsing: static analysis of dynamically generated string
output using lr-parsing technology. In Proc. Static Analysis Symposium. Springer LNCS 5673, 2009.

8. E. Duesterwald, R. Gupta, and M.L. Soffa. A practical framework for demand-driven interprocedural
data flow analysis. ACM TOPLAS, 19:992–1030, 1997.

9. C.F. Goldfarb. The SGML Handbook. Oxford Univ. Press, 1991.
10. S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis. In Proc. 3rd ACM

SIGSOFT Symp. Foundations of Software Engg., 1995.
11. N. Jones and F. Nielson. Abstract interpretation: a semantics-based tool for program analysis. In

S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Science, Vol. 4,
pages 527–636. Oxford Univ. Press, 1995.

12. N.D. Jones and A. Mycroft. Data flow analysis of applicative programs using minimal function graphs.
In Proc. 13th Symp. POPL, pages 296–306. ACM Press, 1986.

13. C. Kirkegaard and A. Møller. Static analysis for Java Servlets and JSP. In Proc. International Symp.
Static Analysis, pages 336–352. Springer LNCS 4134, 2006.

14. Y. Minamide. Static approximation of dynamically generated web pages. In Proc. 14th ACM Int’l Conf.
on the World Wide Web, pages 432–441, 2005.

15. Y. Minimide and A. Tozawa. XML validation for context-free grammars. In Proc. Asian Symp. Prog.
Lang. and Systems, pages 357–373. Springer LNCS 4279, 2006.

16. A. Møller and M. Schwarz. HTML validation of context-free languages. Technical report, Computer
Science Dept., Aarhus University, 2010.

17. T. Nishiyama and Y. Minimide. A translation from the HTML DTD into a regular hedge grammar. In
Proc. 13th Int. Conf. on Implementation and Applications of Automata, pages 122–131. Springer LNCS
5148, 2008.

18. P. Thiemann. Grammar-based analysis of string expressions. In Proc. ACM workshop Types in languages
design and implementation, pages 59–70, 2005.

19. G. Wassermann, C. Gould, Z. Su, and P. Devanbu. Static checking of dymanically generated queries in
database applications. ACM Trans. Software Engineering and Methodology, 16(4):14:1–27, 2007.

20. G. Wassermann and Z. Su. The essence of command injection attacks in web applications. In Proc. 33d
ACM Symp. POPL, pages 372–382, 2006.

21. G. Wassermann and Z. Su. Sound and precise analysis of web applications for injection vulnerabilities.
In Proc. ACM PLDI, pages 32–41, 2007.

Appendix: Concrete, collecting, and abstract semantics

A source program computes an output store that maps variables to strings. The concrete collecting
semantics [11] defines a set of stores for each program point (command line); the collecting semantics
is then abstracted in the usual fashion so that it computes, for each program point, a single store
that maps each variable to a set of strings. For the example in Figure 1, we have

p0 == x 7→ {’a’}
pr == x 7→ {’a’}, r 7→ {’]’}
p1 == x 7→ {’[’i’a’’]’i | i ≥ 0}, r 7→ {’]’}
p2 == p1 == p3

The collecting semantics is overapproximated by the data-flow semantics, which uses flow equations
to define the set of strings denoted by each variable at each program point. In Figure 1, the listed
data-flow equations are a shorthand for this fuller form:

X0 = a

Rr =] Xr = X0
X1 = Xr ⊔X2 R1 = Rr

X2 = [·X1 ·] R2 = R1
X3 = X1 R3 = R1

The least-fixed-point solution is computed in the domain of sets of strings. Since the example ignores
the loop test, the data-flow semantics computes the same sets as the collecting semantics.

Let Σ name the states in the LR(k)-parser’s controller. A parse stack has form, s1 :: s2 :: · · · ::
sj :: [c], j ≥ 0, where each si ∈ Σ, and the top, current parse state, [c] ∈ Configuration, has the
form, [ℓj →֒ · · · →֒ ℓ0 →֒ s], 0 < j < k, where the ℓis are input symbols and s ∈ Σ.

Function γ : ParseStack → (Σ × P(String)) concretizes a parse stack into the start state and
the string(s) that generate the stack:

γ(st) = (s0, T) such that LRparse(t, s0) = st and t ∈ T

The function, γ∗ : P(ParseStack)→ P(Σ × String), is the induced lift.
The abstract-parse interpretation, X , computes the set of parse stacks denoted by each vari-

able at each program point: For flow equation, Xi = Ei, the function, Xi : Configuration →
P(ParseStack), is defined Xi[s] = [[Ei]][c], where

[[a]][c] = {rewrite[a →֒ c]}, where a is a terminal symbol

[[E1 ⊔ E2]][c] = [[E1]][c] ∪ [[E2]][c]

[[Xj]][c] = [[Ej]][c], where Xj = Ej is the flow equation for Xj

[[E1 · E2]][c] = {rewrite(p′) | p′ ∈ ([[E1]][c]⊕ [[E2]])},

where S ⊕ g = {tail(p) :: g(head(p)) | p ∈ S}, S ∈ P(ParseStack)

where rewrite(st) repeatedly applies the shift/reduce rules,⇒, to st until a normal form is achieved.
Using γ, we can prove the abstract-parse interpretation sound with respect to the concrete

collecting semantics.
The abstract-parse interpretation is made finitely convergent by abstracting the domain, P(ParseStack),

into the domain of sets of subgraphs of the LR(k)-parser automaton: Represent a stack, st = s1 ::
s2 :: · · · :: sj :: [c], as the linked path, pathst = ← s1 ← s2 ← · · · ← sj ← [c] ←. Define
fold : ParseStack → ParserSubgraph as fold(pathst) = ←1 G ←j [c] ←, where G is the
smallest subgraph in the parser automaton that covers the path from s1 to sj ; ←1 is an out-arc
from node s1; and←j is an in-arc into node sj. The answer graph is computed by folding repeating
states in the argument path and preserving all arcs.

fold ’s definition is easily generalized from folding paths to folding graphs — merge repeating
nodes and retain the arcs.

The finitely convergent abstract-parse interpretation is defined in terms of fold ; we modify the
semantics of this one clause of the abstract-parse interpretation:

[[Xj]][c] = fold∗([[Ej]][c]), where Xj = Ej is the flow equation for Xj
and fold ∗(T) = {fold(t) | t ∈ T }

A set of subgraphs might be further abstracted into a single graph by unioning the graphs in the
set into one graph — merge the graphs’ like-named nodes and preserve the edges.

