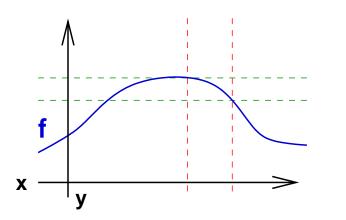
Abstract Interpretation from a Topological Perspective

David Schmidt Kansas State University

www.cis.ksu.edu/~schmidt

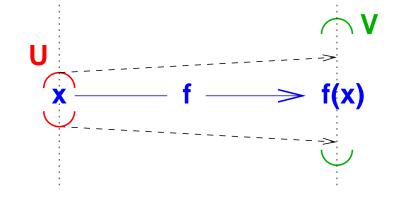
Motivation and overview of results

Topology studies convergent mappings



As argument x converges within smaller and smaller open invervals, so does answer f(x).

In topology, "open interval" (a property of interest) generalizes to open set, "convergent func-tion" generalizes to continuous function:

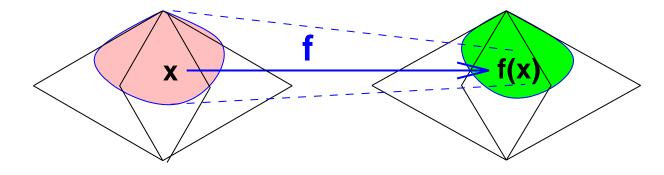


Let \mathcal{O}_{Σ} be the open sets. $f : \Sigma \to \Sigma$ is *(topologically) continuous* iff for all $x \in \Sigma$ and $V \in \mathcal{O}_{\Sigma}$, if $f(x) \in V$, then there exists some $U \in \mathcal{O}_{\Sigma}$ such that $x \in U$ and $f[U] \subseteq V$.

Domain theory uses the Scott topology

For an algebraic lattice, (Σ, \sqsubseteq) , the Scott-open sets are those $U \subseteq \Sigma$ such that U is

- *upwards closed:* if $c \in U, c \sqsubseteq d$, then $d \in U$ also.
- ♦ closed under tails of chains: for every chain $C \subseteq \Sigma$, if $\sqcup C \in U$, then $\exists c \in C$ such that $c \in U$ also.
- (A Scott-open U is like an interval, $(c, +\infty)$, on the real line.)



 $f: \Sigma \to \Delta$ is Scott-topologically continuous iff it is chain continuous (i.e., for every chain $C \subseteq \Sigma$, $f(\sqcup C) = \sqcup \{f(c) \mid c \in C\}$). The Scott topology on algebraic lattice D *defines* D itself.

An application to abstract interpretation: Cousots' U-topology for a.i.

[Cousot²78] defines a Scott-like topology for complete lattices, where the basic open sets are up-closed, closed under tails of chains, and closed under binary □. They show equivalence of chain continuity to topological continuity.

Next, they show that an abstract interpretation on Σ , defined by an upper-closure map, $\rho : \Sigma \to \Sigma$, preserves convergence. That result follows from this key property:

Proposition: The \sqcup -topology on $\rho[\Sigma]$ is exactly the *relative* \sqcup -*topology* on Σ , that is, every $V \in \mathcal{O}_{\rho[\Sigma]}$ equals $U \cap \rho[\Sigma]$, for some $U \in \mathcal{O}_{\Sigma}$.

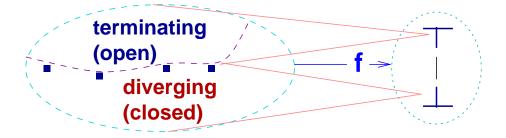


An application: Backwards strictness analysis

 $f: D_{\perp} \rightarrow D_{\perp}$ is *strict*, if $f(\perp) = \perp$. This knowledge can help optimize code for f for lazy functional languages [Mycroft80].

A backwards strictness analysis approximates D_{\perp} by $2_D = \{\top, \bot\}$ and and f by $f^{\sharp} : D_{\perp} \to 2_D$, computing $f^{\sharp-1}\{\top\}$ for termination information.

[Clack&PeytonJones85] showed how to use a finite set of minimal points (a *frontier*) to represent $f^{\ddagger-1}\{\top\}$.



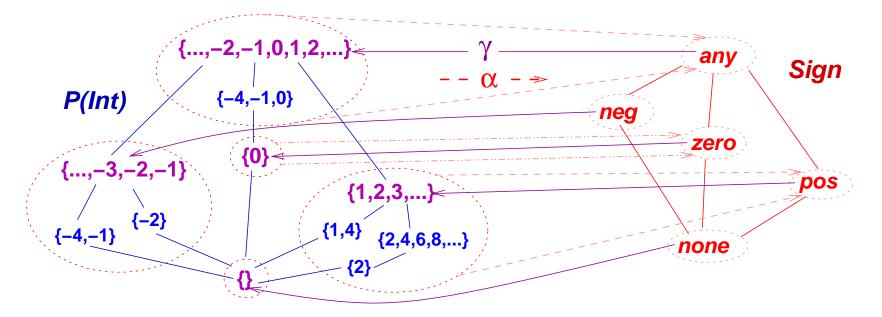
[Hunt89] noted that f^{\sharp} is Scott-continuous, making $f^{\sharp-1}\{\top\}$ a Scott-open set. Hunt defined frontier-based strictness analysis as calculation of open-set inverse images, showing how to lift efficiently to higher types, in the style of [BurnHankinAbramsky86].

An application: abstract interpretation in logical form

[Abramsky91] applied frame theory (the axiomatization of the lattice of open sets) to domain theory, generating Scott domains from sets of atomic elements that act as primitive propositions in a domain logic, closing them under a set of frame axioms.

[Jensen92] observed one can use a *finite subset* of a domain's atomic elements to generate an *abstract domain* that approximates the concrete domain generated from *all* the atomic elements. Jensen called his methodology *abstract interpretation in logical form* and applied it to strictness analysis.

We step back from these applications and ask: *In what naive sense does an abstract domain define a "topology" on the concrete domain that it approximates?* What does it mean for a function to preserve and reflect the "open sets"? Do these notions define forwards and backwards static analyses and do they ensure soundness and completeness of the analyses?



Here, does $\gamma[Sign] = \{\{\}, \{\dots, -2, -1\}, \{0\}, \{1, 2, \dots\}, Int\}$ define a "topology" on Int? For Galois connection, $\mathcal{P}(\Sigma)\langle \alpha, \gamma \rangle A$, for $f : \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$, an abstract function, $f^{\sharp} : A \to A$, is **sound** iff $f \circ \gamma \sqsubseteq \gamma \circ f^{\sharp}$ iff $\alpha \circ f \sqsubseteq f^{\sharp} \circ \alpha$:

 α and γ are semi-homomorphisms; f^{\sharp} is a postcondition transformer on A; $f_{0}^{\sharp} = \alpha \circ f \circ \gamma$ is strongest. Using $\rho = \gamma \circ \alpha$, we can define $f_{0}^{\sharp} = \rho \circ f : \gamma[\Sigma] \rightarrow \gamma[\Sigma]$.

Forwards completeness

[Giacobazzi01] : $f \circ \gamma = \gamma \circ f^{\sharp}$

$$\begin{array}{c} \gamma(a) \xrightarrow{f} f(\gamma(a)) \\ \gamma & \uparrow \\ a \xrightarrow{f^{\#}} f(\gamma(a)) \end{array}$$

Backwards completeness

[Cousot²79,Giacobazzi00]:

 f_0^{\sharp} is forwards complete for f iff $f \circ \rho = \rho \circ f \circ \rho$. f_0^{\sharp} is backwards complete for f iff $\rho \circ f = \rho \circ f \circ \rho$

A key characterization from [GiacobazziQuintarelli01]

The following result is the main result in [14] and it is the basis for a constructive characterization of the complete shell of an abstract domain, viz. the least (most abstract) domain which is \mathcal{B} -complete and includes a given domain. This result constructively characterizes the structure of \mathcal{B} -complete abstract domains for continuous functions. Recall that, if $f: C \to C$ is a unary function, then $f^{-1}(y) = \{ x \mid f(x) = y \}$.

Theorem 1 ([14]). Let $f : C \to C$ be continuous and $\rho \in uco(C)$. Then ρ is B-complete for f iff $\bigcup_{y \in \rho(C)} max(f^{-1}(\downarrow y)) \subseteq \rho(C)$.

This characterization of backwards completeness looks like the inverse-image definition of topological continuity, stated in a kind of frame theory.

Is a.i. completeness the same as topological continuity?

Where the current paper fits into this story...

Topology studies how functions compute on *properties* (open sets). This is exactly what abstract interpretation studies.

We proceed from these first principles: For concrete domain, Σ , abstract domain, A, and concretization map, $\gamma : A \to \mathcal{P}(\Sigma)$,

- 1. A defines a *property family*, $\mathcal{F}_{\Sigma} = \gamma[A] \subseteq \mathcal{P}(\Sigma)$.
- if \$\mathcal{F}_{\Sigma}\$ is closed under intersection, it is a *closed family* (call it \$\mathcal{C}_{\Sigma}\$); if \$\mathcal{F}_{\Sigma}\$ is closed under union, it is an *open family* (call it \$\mathcal{O}_{\Sigma}\$).
- 3. For $f: \Sigma \to \Sigma$, we generalize the definition of continuity: f is \mathcal{F}_{Σ} -continuous iff for all $S \subseteq \Sigma$ and $U \in \mathcal{F}_{\Sigma}$, if $f[S] \subseteq U$, then there exists $V \in \mathcal{F}_{\Sigma}$ such that $S \subseteq V$ and $f[V] \subseteq U$.

We gain these results

- 1. Generalized continuity retains fundamental properties. In particular, f is continuous iff $f^{-1}[U] \in \mathcal{F}_{\Sigma}$ whenever $U \in \mathcal{F}_{\Sigma}$.
- 2. Closed families generate forwards abstract interpretations with best (strongest postcondition) precision (e.g., constant propagation), and open families generate backwards abstract interpretations with best (weakest precondition) precision (e.g., strictness analysis).
- 3. [Giacobazzi00 and 01] 's notions of forwards and backwards completeness are characterized as the topologically closed maps and topologically continuous maps upon a closed family. (There are analogous results for an open family).
- [Smyth83] 's upper and lower topologies for powerdomains P(Σ) generate the abstract interpretations based on F_Σ for abstract-model checking of □ and ◇ in branching-time temporal logic.

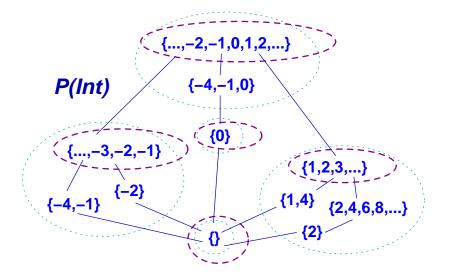
Technical details

Open sets are computable properties [Smyth83]

For an algebraic cpo, D, its Scott-basic-open sets are $\uparrow e$, for each finite element, $e \in D$. *Read* $d \in \uparrow e$ as "d has property $\uparrow e$."

But abstract intepretation is *finite computation on properties*; for an abstract domain, like *Sign*, the computable properties are $\gamma[Sign]$ (or, if you will, $\rho[\mathcal{P}(Sign)]$, where $\rho = \gamma \circ \alpha$).

Alas, $\rho[\mathcal{P}(Sign)]$ is closed under intersections (not necessarily unions). Also, there exist abstract domains A that possess *only* a γ but no α (and no ρ) [Cousot²92].



Let's weaken some definitions

For abstract domain A and $\gamma : A \to \mathcal{P}(\Sigma)$, define Σ 's *property* family as $\mathcal{F}_{\Sigma} = \gamma[A]$.

For each $U \in \mathcal{F}_{\Sigma}$, its complement is $\sim U = \Sigma - U$; for \mathcal{F}_{Σ} , its *complement family*, $\sim \mathcal{F}_{\Sigma}$, is { $\sim U \mid U \in \mathcal{F}_{\Sigma}$ }.

 \mathcal{F}_{Σ} is an *open family* if it is closed under unions; it has an interior operation, $\iota : \mathcal{P}(\Sigma) \to \mathcal{F}_{\Sigma}$. It is a *closed family* if it is closed under intersections; it has a closure operation, $\rho : \mathcal{P}(\Sigma) \to \mathcal{F}_{\Sigma}$. If \mathcal{F}_{Σ} is an open family, then its complement is a closed family (and vice versa).

When γ is the upper adjoint of a Galois connection, then \mathcal{F}_{Σ} is a closed family.

$$\begin{split} & \mathsf{f}^{\sharp}:\mathcal{F}_{\Sigma}\to\mathcal{F}_{\Sigma} \text{ is (overapproximating) sound for } \mathsf{f}:\Sigma\to\Sigma \text{ if for all} \\ & \mathsf{U}\in\mathcal{F}_{\Sigma},\,\mathsf{f}[\mathsf{U}]\subseteq\mathsf{f}^{\sharp}[\mathsf{U}]. \end{split}$$

When \mathcal{F}_{Σ} is a closed family, $\rho \circ f$ is sound for f.

There are the obvious dual notions for *underapproximating soundness*.

If C_{Σ} is a closed family, its closure operator, ρ , defines a strongest-postcondition analysis:

For $f: \Sigma \to \Sigma$, define $f^{\sharp}: \mathcal{C}_{\Sigma} \to \mathcal{C}_{\Sigma}$ as $f^{\sharp} = \rho \circ f$. We have $\{\varphi\}f\{f^{\sharp}(\varphi)\}$

holds true (where $\{\phi\}f\{\psi\}$ asserts $f[\phi] \subseteq \psi$, for $\phi, \psi \in \mathcal{C}_{\Sigma}$).

 $f^{\sharp}(\phi) = \rho(f[\phi])$ defines the strongest postcondition of f and ϕ expressible in C_{Σ} .

If we desire preconditions from a closed family, then we must close it under unions, that is, perform a *disjunctive completion* of the abstract domain — *We use the closed family as a base for a topology* on Σ , namely, { $\cup T \mid T \subseteq C_{\Sigma}$ }, which is both an open *and* a closed family. If we are truly interested in preconditions, we start with an *open* family of properties (one closed under unions), $\mathcal{O}_{\Sigma} \subseteq \mathcal{P}(\Sigma)$, so we have an interior operation, $\iota : \mathcal{P}(\Sigma) \to \mathcal{O}_{\Sigma}$.

We underapproximate the inverses of transition functions: For $f: \Sigma \to \Sigma$, define $f^{-o}: \mathcal{O}_{\Sigma} \to \mathcal{O}_{\Sigma}$ as $f^{-o} = \iota \circ f^{-1}$. This implies $\{f^{-o}(\psi)\}f\{\psi\}$

holds true and $f^{-o}(\psi)$ is the *weakest precondition of* f and ψ *expressible in* \mathcal{O}_{Σ} .

 $\begin{array}{l} \text{Proposition: For closed family } \mathcal{C}_{\Sigma} \text{ and } \mathcal{O}_{\Sigma} = \sim \mathcal{C}_{\Sigma}, \\ \widetilde{(f^{-1})^{\sharp}}(U) = f^{-o}(U), \text{ for all } U \in \mathcal{O}_{\Sigma}. \quad (\text{Note: } \widetilde{(f^{-1})^{\sharp}} = \sim \circ (f^{-1})^{\sharp} \circ \sim.) \end{array}$

That is, by using C_{Σ} 's closure operator to define the overapproximating $(f^{-1})^{\sharp}$, we can compute an *underapproximating*, weakest-precondition analysis on $\mathcal{O}_{\Sigma} = \sim \mathcal{C}_{\Sigma}$ defined as $(f^{-1})^{\sharp}$.

Property preservation by functions

For $f: \Sigma \to \Sigma$, define $f: \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ as $f[S] = \{f(s) \mid s \in S\}$, and define $f^{-1}: \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ as $f^{-1}(T) = \{s \in \Sigma \mid f(s) \in T\}$, as usual.

f is \mathcal{F}_{Σ} -preserving iff for all $U \in \mathcal{F}_{\Sigma}$, $f[U] \in \mathcal{F}_{\Sigma}$. In such a case, $f : \mathcal{F}_{\Sigma} \to \mathcal{F}_{\Sigma}$ is well defined.

This generalizes the notions of topologically open and closed maps.

Let \mathcal{F}_{Σ} be a closed family, and let $\rho : \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ be the associated closure operator.

For $f: \Sigma \to \Sigma$, define $f_0^{\sharp} : \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ as $f_0^{\sharp} = \rho \circ f$, as usual.

Theorem: f_0^{\sharp} is forwards complete for f iff f is \mathcal{F}_{Σ} -preserving, that is, iff f is a topologically closed map.

Property reflection (function continuity)

Let U_c (respectively, U_S) denote a member of \mathcal{F}_{Σ} such that $c \in U_c$ (respectively, $S \subseteq U_S$):

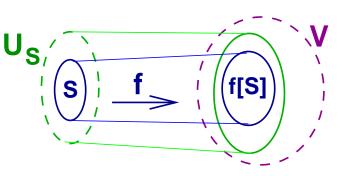
- For $c \in \Sigma$, $f : \Sigma \to \Sigma$ is *continuous at* c iff for all $V_{f(c)} \in \mathcal{F}_{\Sigma}$, there exists some $U_c \in \mathcal{F}_{\Sigma}$ such that $f[U_c] \subseteq V_{f(c)}$.
- For $S \subseteq \Sigma$, f is *continuous at* S iff for all $V_{f[S]} \in \mathcal{F}_{\Sigma}$, there exists some $U_S \in \mathcal{F}_{\Sigma}$ such that $f[U_S] \subseteq V_{f[S]}$.
- f is *F_Σ*-reflecting iff for all V ∈ *F_Σ*, f⁻¹(V) ∈ *F_Σ*, that is, f⁻¹ is
 F_Σ-preserving.

The second item is needed because \mathcal{F}_{Σ} might not be an open family.

If \mathcal{F}_{Σ} is a topology, then all three notions are equivalent.

reflection, cont.

f is continuous at $S \subseteq \Sigma$:



If $f[S] \subseteq V \in \mathcal{F}_{\Sigma}$, then there exists $U_S \in \mathcal{F}_{\Sigma}$ such that $f[U_S] \subseteq V$. **Proposition:**

- 1. f is \mathcal{F}_{Σ} -reflecting iff f is continuous at S, for all $S \subseteq \Sigma$.
- 2. If \mathcal{F}_{Σ} is an open family, then f is \mathcal{F}_{Σ} -reflecting iff f is continuous at c, for all $c \in \Sigma$.
- 3. $f: \Sigma \to \Sigma$ is $\sim \mathcal{F}_{\Sigma}$ -reflecting iff f is \mathcal{F}_{Σ} -reflecting.

reflection, concl.

For $S, S' \subseteq \Sigma$, write $S \leq_{\mathcal{F}_{\Sigma}} S'$ iff for all $K \in \mathcal{F}_{\Sigma}, S \subseteq K$ implies $S' \subseteq K$. Write $S \equiv_{\mathcal{F}_{\Sigma}} S'$ iff $S \leq_{\mathcal{F}_{\Sigma}} S'$ and $S' \leq_{\mathcal{F}_{\Sigma}} S$. That is, S and S' share the same properties.

Definition: $f: \Sigma \to \Sigma$ is *backwards*- \mathcal{F}_{Σ} -complete iff for all $S, S' \subseteq \Sigma$, $S \equiv_{\mathcal{F}_{\Sigma}} S'$ implies $f[S] \equiv_{\mathcal{F}_{C}} f[S']$ cf. Slide 12.

Proposition: If f is \mathcal{F}_{Σ} -reflecting, then it is backwards- \mathcal{F}_{Σ} -complete.

Lemma: If \mathcal{F}_{Σ} is a closed family, then TFAE: (*i*) f is backwards- \mathcal{F}_{Σ} -complete; (*ii*) for all $S \subseteq \Sigma$, $f[S] \equiv_{\mathcal{F}_{\Sigma}} f[\rho(S)]$; (*iii*) $\rho \circ f = \rho \circ f \circ \rho$

Theorem: For closed family, \mathcal{F}_{Σ} , f is backwards- \mathcal{F}_{Σ} -complete iff it is \mathcal{F}_{Σ} -reflecting.

So, abstract-interpretation backwards completeness is topological continuity.

What about open families?

Let \mathcal{F}_{Σ} be open (closed under unions) and $\iota : \mathcal{P}(\Sigma) \to \mathcal{F}_{\Sigma}$ be its interior map.

We use an open family to perform an underapproximating precondition analysis: for $f : \Sigma \to \Sigma$, define $f^{-1} : \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ as $f^{-1}(S) = \{s \in \Sigma \mid f(s) \in S\}$, as usual.

The strongest (*weakest precondition*) abstract function for f^{-1} is $\iota \circ f^{-1} : \mathcal{F}_{\Sigma} \to \mathcal{F}_{\Sigma}$.

forwards- \mathcal{F}_{Σ} -completeness: $f^{-1} \circ \iota = \iota \circ f^{-1} \circ \iota$ Define backwards- \mathcal{F}_{Σ} -completeness: $\iota \circ f^{-1} = \iota \circ f^{-1} \circ \iota$

f⁻¹ is \mathcal{F}_{Σ} -preserving iff f⁻¹ is forwards- \mathcal{F}_{Σ} -complete iff f is $\sim \mathcal{F}_{\Sigma}$ -reflecting iff f is \mathcal{F}_{Σ} -reflecting.

This is the classic pre-post-condition duality of predicate transformers.

Powerdomains

[Smyth83] showed, for algebraic Scott-domain D, that the lower powerdomain, $\mathcal{P}_{L}(D)$, and the upper powerdomain, $\mathcal{P}_{U}(D)$, are generated from D's Scott-topology, \mathcal{O}_{D} , as follows:

- ♦ *lower topology*, $\mathcal{O}_{\mathcal{O}_D}^L$: generated from the base $\mathcal{B}_{\mathcal{O}_D}^L = \{\exists U \mid U \in \mathcal{O}_D\}$, where $\exists U = \{S \subseteq D \mid S \cap U \neq \emptyset\}$ ("all sets that meet U")
- upper topology, $\mathcal{O}_{\mathcal{O}_D}^{U}$: generated from the base $\mathcal{B}_{\mathcal{O}_D}^{U} = \{ \forall U \mid U \in \mathcal{O}_D \}$, where $\forall U = \{ S \subseteq D \mid S \subseteq U \}$ ("all sets covered by U")

We can show that when Σ is abstractly interpreted by closed family, C_{Σ} , the abstract interpretation for ACTL checking that proves the most C_{Σ} -properties is generated from the (co)base $\mathcal{B}_{C_{\Sigma}}^{U}$.

Similarly, the best abstract interpretation for ECTL checking is generated from the (co)base $\mathcal{B}_{\mathcal{C}_{\Sigma}}^{L}$.

For $f: \Sigma \to \mathcal{P}(\Sigma)$, there are two preimage maps:

- 1. $\widetilde{pre}_{f}(S) = \{c \in \Sigma \mid f(c) \subseteq S\}$
- **2.** $pre_{f}(S) = \{c \in \Sigma \mid f(c) \cap S \neq \emptyset\}$

Abstract model checking [CleavelandlyerYankelevich95, DamsGerthGrumberg97] starts from C_{Σ} to generate an a.i. for $\mathcal{P}(\Sigma)$:

Let $\mathcal{C}_{\mathcal{C}_{\mathcal{T}}}^{\mathsf{U}}$ be the closed family generated from $\mathcal{B}_{\mathcal{C}_{\mathcal{T}}}^{\mathsf{U}}$:

Theorem: For $C_{C_{\Sigma}}^{u}$, \widetilde{pre}_{f} is a C_{Σ} -preserving map iff f is $C_{\Sigma}C_{C_{\Sigma}}^{u}$ -reflecting.

That is, [f] can be precisely model checked exactly when f is $C_{\Sigma}C_{C_{\Sigma}}^{U}$ -continuous.

Let $\mathcal{C}_{\mathcal{C}_{\nabla}}^{L}$ be the closed family generated from $\mathcal{B}_{\mathcal{C}_{\nabla}}^{L}$:

Theorem: For $C_{C_{\Sigma}}^{L}$, pre_{f} is a C_{Σ} -preserving map iff f is $C_{\Sigma}C_{C_{\Sigma}}^{L}$ -reflecting.

That is, $\langle f \rangle$ can be precisely model checked exactly when f is $C_{\Sigma}C_{C_{\Sigma}}^{L}$ -continuous. This is the origin of Dams's mixed Kripke structures.

Conclusion

...many key notions and theorems from abstract interpretation theory appear as definitions and corollaries of "naive topology"...

References This talk: www.cis.ksu.edu/~schmidt/papers

- 1. S. Abramsky. Domain theory in logical form. Ann.Pure Appl.Logic (51) 1991.
- P. Cousot and R. Cousot. Static determination of dynamic properties of recursive procedures. In *Formal Description of Programming Concepts*, North-Holland 1978.
- 3. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. *J. ACM* (47) 2000.
- 4. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and refinements in abstract model checking. Proc. SAS'01, LNCS 2126, 2001.
- 5. S. Hunt. Frontiers and open sets in abstract intepretation. Proc. ACM Conf. Functional Prog. and Comp. Architecture, 1989.
- 6. T. Jensen. Abstract Interpretation in Logical Form. PhD Thesis, Imperial College, 1992.
- 7. M.B. Smyth. Powerdomains and predicate transformers: a topological view. Proc. ICALP'83, LNCS 154, 1983.