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Topology studies convergent mappings

f

x
y

As argument x converges within

smaller and smaller open invervals,

so does answer f(x).

In topology, “open interval” (a

property of interest) generalizes

to open set; “convergent func-

tion” generalizes to continuous

function:

V

f(x)f
U

x

Let OΣ be the open sets. f : Σ → Σ is (topologically) continuous
iff for all x ∈ Σ and V ∈ OΣ, if f(x) ∈ V , then there exists some
U ∈ OΣ such that x ∈ U and f[U] ⊆ V .
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Domain theory uses the Scott topology

For an algebraic lattice, (Σ,⊑), the Scott-open sets are those U ⊆ Σ

such that U is

� upwards closed: if c ∈ U, c ⊑ d, then d ∈ U also.

� closed under tails of chains: for every chain C ⊆ Σ, if ⊔C ∈ U,
then ∃c ∈ C such that c ∈ U also.

(A Scott-open U is like an interval, (c,+∞], on the real line.)

x
f

f(x)

f : Σ → ∆ is Scott-topologically continuous iff it is chain
continuous (i.e., for every chain C ⊆ Σ, f(⊔C) = ⊔{f(c) | c ∈ C}).

The Scott topology on algebraic lattice D defines D itself.
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An application to abstract interpretation:
Cousots’ ⊔-topology for a.i.

[Cousot278] defines a Scott-like topology for complete lattices, where
the basic open sets are up-closed, closed under tails of chains, and
closed under binary ⊓. They show equivalence of chain continuity to
topological continuity.

Next, they show that an abstract interpretation on Σ, defined by an
upper-closure map, ρ : Σ → Σ, preserves convergence. That result
follows from this key property:

Proposition: The ⊔-topology on ρ[Σ] is exactly the relative
⊔-topology on Σ, that is, every V ∈ Oρ[Σ] equals U ∩ ρ[Σ], for
some U ∈ OΣ.

Σ.

.
..ρ
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An application: Backwards strictness analysis

f : D⊥ → D⊥ is strict, if f(⊥) = ⊥. This knowledge can help optimize

code for f for lazy functional languages [Mycroft80] .

A backwards strictness analysis approximates D⊥ by 2D = {⊤,⊥} and

and f by f♯ : D⊥ → 2D, computing f♯−1{⊤} for termination information.

[Clack&PeytonJones85] showed how to use a finite set of minimal

points (a frontier) to represent f♯−1{⊤}.

.
diverging
(closed)

terminating
(open) f. ..

[Hunt89] noted that f♯ is Scott-continuous, making f♯−1{⊤} a

Scott-open set. Hunt defined frontier-based strictness analysis as

calculation of open-set inverse images, showing how to lift efficiently

to higher types, in the style of [BurnHankinAbramsky86] .
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An application: abstract interpretation
in logical form

[Abramsky91] applied frame theory (the axiomatization of the lattice of

open sets) to domain theory, generating Scott domains from sets of

atomic elements that act as primitive propositions in a domain logic,

closing them under a set of frame axioms.

[Jensen92] observed one can use a finite subset of a domain’s atomic

elements to generate an abstract domain that approximates the

concrete domain generated from all the atomic elements. Jensen

called his methodology abstract interpretation in logical form and

applied it to strictness analysis.
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We step back from these applications and ask: In what naive sense
does an abstract domain define a “topology” on the concrete
domain that it approximates? What does it mean for a function to

preserve and reflect the “open sets”? Do these notions define

forwards and backwards static analyses and do they ensure

soundness and completeness of the analyses?

γ

{2,4,6,8,...}{1,4}

{2}

{1,2,3,...}

{−4,−1}
{−2}

{−4,−1,0}

{0}

{}

{...,−3,−2,−1}

{...,−2,−1,0,1,2,...}

pos

zero

none

any

neg
α

P(Int)
Sign

Here, does γ[Sign] = {{}, {· · · ,−2,−1}, {0}, {1, 2, · · ·}, Int}

define a “topology” on Int?
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For Galois connection, P(Σ)〈α, γ〉A, for f : P(Σ) → P(Σ), an abstract
function, f♯ : A → A, is sound iff f ◦ γ ⊑ γ ◦ f♯ iff α ◦ f ⊑ f♯ ◦ α:

UI( a )

f #
f #(a)

f

γγ
a

γ
α

f #α ( S )

f(S)S
f

α

α and γ are semi-homomorphisms; f♯ is a postcondition transformer
on A; f

♯
0 = α ◦ f ◦ γ is strongest.

Using ρ = γ ◦ α, we can define f
♯
0 = ρ ◦ f : γ[Σ] → γ[Σ].

Forwards completeness
[Giacobazzi01] : f ◦ γ = γ ◦ f♯

γ
#

γ ( a )

f #(a)

γ ( a )( )f
f

a

γ
f

Backwards completeness
[Cousot279,Giacobazzi00] :

α ◦ f = f♯ ◦ α

α
#α ( S ) f # S )α (( )

f(S)S
f

α
f

f
♯
0 is forwards complete for f iff f ◦ ρ = ρ ◦ f ◦ ρ.

f
♯
0 is backwards complete for f iff ρ ◦ f = ρ ◦ f ◦ ρ
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A key characterization from [GiacobazziQuintarelli01]

This characterization of backwards completeness looks like the
inverse-image definition of topological continuity, stated in a
kind of frame theory.

Is a.i. completeness the same as topological continuity?
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Where the current paper fits into this story...

Topology studies how functions compute on properties (open sets).

This is exactly what abstract interpretation studies.

We proceed from these first principles: For concrete domain, Σ,
abstract domain, A, and concretization map, γ : A → P(Σ),

1. A defines a property family, FΣ = γ[A] ⊆ P(Σ).

2. if FΣ is closed under intersection, it is a closed family (call it
CΣ); if FΣ is closed under union, it is an open family (call it
OΣ).

3. For f : Σ → Σ, we generalize the definition of continuity: f is
FΣ-continuous iff for all S ⊆ Σ and U ∈ FΣ,

if f[S] ⊆ U, then there exists V ∈ FΣ such that
S ⊆ V and f[V ] ⊆ U.
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We gain these results

1. Generalized continuity retains fundamental properties. In
particular, f is continuous iff f−1[U] ∈ FΣ whenever U ∈ FΣ.

2. Closed families generate forwards abstract interpretations with
best (strongest postcondition) precision (e.g., constant propagation),
and open families generate backwards abstract interpretations
with best (weakest precondition) precision (e.g., strictness analysis).

3. [Giacobazzi00 and 01] ’s notions of forwards and backwards
completeness are characterized as the topologically closed maps
and topologically continuous maps upon a closed family. (There are

analogous results for an open family).

4. [Smyth83] ’s upper and lower topologies for powerdomains P(Σ)

generate the abstract interpretations based on FΣ for
abstract-model checking of 2 and 3 in branching-time temporal
logic.
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Technical details
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Open sets are computable properties [Smyth83]

For an algebraic cpo, D, its Scott-basic-open sets are ↑e, for each

finite element, e ∈ D. Read d ∈ ↑e as “d has property ↑e.”

But abstract intepretation is finite computation on properties; for
an abstract domain, like Sign, the computable properties are
γ[Sign] (or, if you will, ρ[P(Sign)], where ρ = γ ◦ α).

Alas, ρ[P(Sign)] is closed un-

der intersections (not necessarily

unions). Also, there exist abstract

domains A that possess only a γ

but no α (and no ρ) [Cousot292] .

{0}

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

P(Int)

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}
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Let’s weaken some definitions

For abstract domain A and γ : A → P(Σ), define Σ’s property
family as FΣ = γ[A].

For each U ∈ FΣ, its complement is ∼U = Σ−U; for FΣ, its
complement family, ∼FΣ, is {∼U | U ∈ FΣ}.

FΣ is an open family if it is closed under unions; it has an interior

operation, ι : P(Σ) → FΣ. It is a closed family if it is closed under
intersections; it has a closure operation, ρ : P(Σ) → FΣ. If FΣ is an
open family, then its complement is a closed family (and vice versa).

When γ is the upper adjoint of a Galois connection, then FΣ is a closed family.

f♯ : FΣ → FΣ is (overapproximating) sound for f : Σ → Σ if for all
U ∈ FΣ, f[U] ⊆ f♯[U].

When FΣ is a closed family, ρ ◦ f is sound for f.

There are the obvious dual notions for underapproximating soundness.
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If CΣ is a closed family, its closure operator, ρ, defines a

strongest-postcondition analysis:

For f : Σ → Σ, define f♯ : CΣ → CΣ as f♯ = ρ ◦ f. We have

{φ}f{f♯(φ)}

holds true (where {φ}f{ψ} asserts f[φ] ⊆ ψ, for φ,ψ ∈ CΣ).

f♯(φ) = ρ(f[φ]) defines the strongest postcondition of f and φ
expressible in CΣ.

If we desire preconditions from a closed family, then we must
close it under unions, that is, perform a disjunctive completion
of the abstract domain — We use the closed family as a base
for a topology on Σ, namely, {∪T | T ⊆ CΣ}, which is both an
open and a closed family.
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If we are truly interested in preconditions, we start with an open family
of properties (one closed under unions), OΣ ⊆ P(Σ), so we have an
interior operation, ι : P(Σ) → OΣ.

We underapproximate the inverses of transition functions: For
f : Σ → Σ, define f−o : OΣ → OΣ as f−o = ι ◦ f−1. This implies

{f−o(ψ)}f{ψ}

holds true and f−o(ψ) is the weakest precondition of f and ψ
expressible in OΣ.

Proposition: For closed family CΣ and OΣ = ∼CΣ,

(̃f−1)♯(U) = f−o(U), for all U ∈ OΣ. (Note: (̃f−1)♯ = ∼ ◦(f−1)♯◦ ∼.)

That is, by using CΣ’s closure operator to define the overapproximating
(f−1)♯, we can compute an underapproximating, weakest-precondition

analysis on OΣ = ∼CΣ defined as (̃f−1)♯.
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Property preservation by functions

For f : Σ → Σ, define f : P(Σ) → P(Σ) as f[S] = {f(s) | s ∈ S}, and

define f−1 : P(Σ) → P(Σ) as f−1(T) = {s ∈ Σ | f(s) ∈ T }, as usual.

f is FΣ-preserving iff for all U ∈ FΣ, f[U] ∈ FΣ. In such a case,
f : FΣ → FΣ is well defined.

This generalizes the notions of topologically open and closed maps.

Let FΣ be a closed family, and let ρ : P(Σ) → P(Σ) be the
associated closure operator.

For f : Σ → Σ, define f♯0 : P(Σ) → P(Σ) as f♯0 = ρ ◦ f, as usual.

Theorem: f♯0 is forwards complete for f iff f is FΣ-preserving,
that is, iff f is a topologically closed map.
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Property reflection (function continuity)

Let Uc (respectively, US) denote a member of FΣ such that c ∈ Uc

(respectively, S ⊆ US):

� For c ∈ Σ, f : Σ → Σ is continuous at c iff for all Vf(c) ∈ FΣ,
there exists some Uc ∈ FΣ such that f[Uc] ⊆ Vf(c).

� For S ⊆ Σ, f is continuous at S iff for all Vf[S] ∈ FΣ, there
exists some US ∈ FΣ such that f[US] ⊆ Vf[S].

� f is FΣ-reflecting iff for all V ∈ FΣ, f−1(V) ∈ FΣ, that is, f−1 is
FΣ-preserving.

The second item is needed because FΣ might not be an open family.

If FΣ is a topology, then all three notions are equivalent.
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reflection, cont.

f is continuous at S ⊆ Σ:
V

f[S]S

US
f

If f[S] ⊆ V ∈ FΣ, then there exists US ∈ FΣ such that f[US] ⊆ V .

Proposition:

1. f is FΣ-reflecting iff f is continuous at S, for all S ⊆ Σ.

2. If FΣ is an open family, then f is FΣ-reflecting iff f is
continuous at c, for all c ∈ Σ.

3. f : Σ → Σ is ∼FΣ-reflecting iff f is FΣ-reflecting.
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reflection, concl.

For S, S ′ ⊆ Σ, write S ≤FΣ
S ′ iff for all K ∈ FΣ, S ⊆ K implies S ′ ⊆ K.

Write S ≡FΣ
S ′ iff S ≤FΣ

S ′ and S ′ ≤FΣ
S. That is, S and S ′ share the same

properties.

Definition: f : Σ → Σ is backwards-FΣ-complete iff for all S, S ′ ⊆ Σ,

S ≡FΣ
S ′ implies f[S] ≡FC

f[S ′] cf. Slide 12.

Proposition: If f is FΣ-reflecting, then it is backwards-FΣ-complete.

Lemma: If FΣ is a closed family, then TFAE:

(i) f is backwards-FΣ-complete;

(ii) for all S ⊆ Σ, f[S] ≡FΣ
f[ρ(S)];

(iii) ρ ◦ f = ρ ◦ f ◦ ρ

Theorem: For closed family, FΣ, f is backwards-FΣ-complete iff
it is FΣ-reflecting.

So, abstract-interpretation backwards completeness is topological continuity.
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What about open families?

Let FΣ be open (closed under unions) and ι : P(Σ) → FΣ be its

interior map.

We use an open family to perform an underapproximating

precondition analysis: for f : Σ → Σ, define f−1 : P(Σ) → P(Σ) as

f−1(S) = {s ∈ Σ | f(s) ∈ S}, as usual.

The strongest (weakest precondition) abstract function for f−1 is

ι ◦ f−1 : FΣ → FΣ.

Define
forwards-FΣ-completeness: f−1 ◦ ι = ι ◦ f−1 ◦ ι

backwards-FΣ-completeness: ι ◦ f−1 = ι ◦ f−1 ◦ ι

f−1 is FΣ-preserving iff f−1 is forwards-FΣ-complete iff f is

∼FΣ-reflecting iff f is FΣ-reflecting.

This is the classic pre- post-condition duality of predicate transformers.
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Powerdomains

[Smyth83] showed, for algebraic Scott-domain D, that the lower
powerdomain, PL(D), and the upper powerdomain, PU(D), are
generated from D’s Scott-topology, OD, as follows:

� lower topology, OL
OD

: generated from the base
BL
OD

= {∃U | U ∈ OD}, where ∃U = {S ⊆ D | S ∩U 6= ∅} (“all sets that

meet U”)

� upper topology, OU
OD

: generated from the base
BU
OD

= {∀U | U ∈ OD}, where ∀U = {S ⊆ D | S ⊆ U} (“all sets covered

by U”)

We can show that when Σ is abstractly interpreted by closed family,
CΣ, the abstract interpretation for ACTL checking that proves the most
CΣ-properties is generated from the (co)base BU

CΣ
.

Similarly, the best abstract interpretation for ECTL checking is
generated from the (co)base BL

CΣ
.
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For f : Σ → P(Σ), there are two preimage maps:

1. p̃ref(S) = {c ∈ Σ | f(c) ⊆ S}

2. pref(S) = {c ∈ Σ | f(c) ∩ S 6= ∅}

Abstract model checking [CleavelandIyerYankelevich95,

DamsGerthGrumberg97] starts from CΣ to generate an a.i. for P(Σ):

Let CU
CΣ

be the closed family generated from BU
CΣ

:

Theorem: For CU
CΣ

, p̃ref is a CΣ-preserving map iff f is
CΣC

U
CΣ

-reflecting.

That is, [f] can be precisely model checked exactly when f is CΣC
U
CΣ

-continuous.

Let CL
CΣ

be the closed family generated from BL
CΣ

:

Theorem: For CL
CΣ

, pref is a CΣ-preserving map iff f is
CΣC

L
CΣ

-reflecting.

That is, 〈f〉 can be precisely model checked exactly when f is CΣC
L
CΣ

-continuous.

This is the origin of Dams’s mixed Kripke structures.
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Conclusion

...many key notions and theorems from abstract interpretation
theory appear as definitions and corollaries of “naive
topology”...
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