
Abstract Interpretation

from a Topological Perspective

David A. Schmidt⋆

Kansas State University, Manhattan, Kansas, USA

Abstract. We develop abstract interpretation from topological princi-
ples by relaxing the definitions of open set and continuity; key results
still hold. We study families of closed and open sets and show they gener-
ate post- and pre-condition analyses, respectively. Giacobazzi’s forwards-
and backwards-complete functions are characterized by the topologically
closed and continuous maps, respectively. Finally, we show that Smyth’s
upper and lower topologies for powersets induce the overapproximat-
ing and underapproximating transition functions used for abstract-model
checking.

1 Introduction

Topology is a major force in mathematics — it is the study of properties (open
sets) and functions that behave well (are continuous) regarding the properties.
For example, the real line, IR, has as open sets the open intervals, (a, b). A
number r ∈ IR has property (a, b) when r ∈ (a, b), e.g., π ∈ (3, 4). A function
f : IR → IR is topologically continuous when it maps arguments “close together”
(sharing many open sets) to answers “close together” (sharing equally many open
sets), e.g., area(r) = πr2 is continuous with respect to intervals. The continuous
functions on the real line are exactly the topologically continuous functions.1

One application of topology to computing is Scott-domain theory [19]: To
solve the domain equation, D = D → D, Scott needed to limit the cardinality of
functions on D. Continuity was the appropriate criterion: For complete lattice
L, Scott defined L’s open sets to be those subsets of L that are (i) upwards
closed and (ii) closed under tails of chains.2 Scott proved that the functions that
are topologically continuous for his Scott topology of L are exactly the chain-
continuous functions on L. By restricting D → D to the continuous functions,
Scott limited its cardinality so that the recursive domain equation had a solution.

Smyth [24] suggested that a domain’s Scott topology defines all the com-
putable properties of the domain, and he established correspondences between

⋆
schmidt@cis.ksu.edu. Supported by NSF ITR-0326577.

1 In contrast, g(r) = if r 6= 9 then r2 else 0 is discontinuous — the “closeness” of
answers is destroyed at argument 9.

2 That is, for every chain, C = {c0, c1, · · · ci, · · ·} ⊆ L, when ⊔C ∈ U , for open set
U ⊆ L, then there exists some ck ∈ C such that ck ∈ U also. This means C’s tail,
from ck onwards, is in U .

“upper,” “lower,” and “convex” topologies to the three main variants of pow-
erdomains [15]. Smyth’s observations generated intensive research on the Stone
duality within domain theory, leading to “domain theory in logical form” [1].

Given that topology is the study of computing on properties, one would
believe that it would be central to the theory of abstract interpretation [7],
which studies exactly this topic. There are indeed some precedents.

In [8], Cousot and Cousot employed topology to establish soundness of con-
vergence: They proposed a T0-topology, the ⊔-topology, for complete lattices,
where the basic open sets are up-closed and closed under finite meets. As with
the Scott topology, a function is chain continuous iff it is ⊔-topologically con-
tinuous. (The two topologies coincide for algebraic lattices.) The ⊔-topology
explains how computation on an abstract interpretation preserves properties:
When lattice L’s abstract interpretation is defined by an upper closure opera-
tion, ρ : L → L, the ⊔-topology on ρ[L] is exactly the relative topology on L:
every open U ′ ⊆ ρ[L] equals U ∩ ρ[L], for some open U ⊆ L.

One application where topology has been employed is backwards strictness
analysis. A characterization of a strictness-analysis domain as open-set properties
was made by Hunt [16], who observed that Clack and Peyton Jones’s backwards
strictness analysis employed abstract values called frontiers, which were finite
subsets of a finite lattice, D, that represented up-closed subsets of D. Since up-
closed subsets of a finite lattice are Scott-open, all monotone functions f : D →
D are Scott-continuous, implying f−1 maps frontiers to frontiers, ensuring that
the analysis preserved strictness properties “on the nose.” (In the present paper,
we will show that such functions f are therefore backwards complete [14].)

Dybjer formalized this property for denotational semantics definitions and
domain equations, axiomatizing the Scott topology of the latter as well as the
law that the inverse of a Scott-continuous function maps open sets to open sets.
He then showed strictness analysis is an instance of his axiomatization [12].

The most striking application of topology to abstract domains came from
Jensen [17], who utilized Abramsky’s domain theory in logical form [1]. Recall
that Abramsky applied Stone duality [18] to domain theory, generating a Scott
domain from a set of atomic elements that act as primitive propositions in a
domain logic, closing them under a set of frame axioms. Jensen observed that
one can use a finite subset of the atomic elements with the frame axioms to
generate an abstract domain that approximates the domain generated from all
the atomic elements. Jensen called his methodology abstract interpretation in
logical form and applied it to strictness analysis, as did Benton, who proposed
his own “strictness logic” [2].

The present paper steps back from strictness analysis and frame structures
and poses a general question: “Starting from naive set theory, in what sense
does an abstract domain define a “topology” on the concrete domain that it
approximates?” Based on this “topology,” what does it mean for a function to
preserve and reflect the “open” and “closed” sets? How do these notions define
both forwards and backwards static analyses and how do they ensure soundness
and completeness of the analyses?

f

U

V

r f(r)

Fig. 1. Continuous function, f : When f(r) falls within property (open set) V , then f

maps some property, U , of r within V also.

To answer these questions, we develop abstract interpretation from topolog-
ical principles by relaxing the definitions of open set and continuity so that they
apply to arbitrary families of property sets. Surprisingly, key results still hold.
When we study families of closed sets and open sets (induced from closure and
interior operations), we discover that closed families generate postcondition anal-
yses and open families generate precondition analyses (e.g., backwards strictness
analyses). Even more striking, Giacobazzi’s forwards- and backwards-complete
functions [13, 14] are characterized as the topologically closed and continuous
maps, respectively. Finally, we show that Smyth’s upper and lower topologies
for powersets [25] induce the overapproximating and underapproximating tran-
sition functions proposed by Cleaveland, et al. [5], and Dams, et al. [11], for
abstract-model checking.

2 Basics of topology and abstract interpretation

We provide here the bare essentials of topology; details appear later as needed.
(Willard [26] is a good reference.) For a set, Σ, a topology, OΣ ⊆ P(Σ), is a
family of property sets, called the open sets, that are closed under union (for all
S ⊆ OΣ ,

⋃
S ∈ OΣ) and binary intersection (U1 ∩U2 ∈ OΣ when U1, U2 ∈ OΣ)

and include Σ (
⋃
OΣ = Σ). The complement, ∼U = Σ−U , of an open set U is

a closed set; define CΣ = {∼U | U ∈ OΣ}. For topology OΣ , a base is a subset,
BΣ ⊆ OΣ , such that every U ∈ OΣ is the union of some members of the base
(for all U ∈ OΣ , there exists S ⊆ BΣ such that ∪S = U). The members of the
base are called basic-open sets. The topology on the real line uses open intervals,
(a, b), for a, b ∈ IR, as its base.

For S ⊆ Σ, its interior, ι(S), is the largest open set within S. Indeed, ι(S) =⋃
{U ∈ OΣ | U ⊆ S}. The smallest closed set enclosing S is its closure, ρ(S) =⋂
{K | S ⊆ K, K ∈ CΣ}.

Given topologies for sets Σ and ∆, there are standard definitions for the
coarsest topologies for Σ ×∆, Σ → ∆, etc. [26].

A function, f : Σ → Σ, is (topologically) continuous iff for all s ∈ Σ and
V ∈ OΣ , if f(s) ∈ V , then there exists some U ∈ OΣ such that s ∈ U and
f [U] ⊆ V (where lift f to P(Σ) → P(Σ): f [U] = {f(x) | x ∈ U}). See Figure
1. A crucial result is that f is continuous iff for all U ∈ OΣ , f−1(U) ∈ OΣ also,

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−3,−2,−1}

{−4,−1}
{−2}

{0}

{...,−2,−1,0,1,2,...}

{}

{−4,−1,0}

pos

zero

none

any

neg
α

P(Int)
Sign

γ(none) = ∅; γ(neg) = {· · · ,−2,−1}; γ(zero) = {0};
γ(pos) = {1, 2, · · ·}; γ(any) = Int

ρ = γ ◦ α : P(Int) → P(Int) ρ[P(Int)] = {∅, {· · · ,−2,−1}, {0}, {1, 2, · · ·}, Int}
ρ(S) =

⋂
{K ∈ ρ[P(Int)] | S ⊆ K}, e.g., ρ{1, 4} = {1, 2, 3, · · ·}

succ(i) = i + 1
negate(i) = −i

sq(i) = i ∗ i

succ♯(none) = none

succ♯(neg) = any

succ♯(zero) = pos

succ♯(pos) = pos

succ♯(any) = any

negate♯(none) = none

negate♯(neg) = pos

negate♯(zero) = zero

negate♯(pos) = neg

negate♯(any) = any

sq♯(none) = none

sq♯(neg) = pos

sq♯(zero) = zero

sq♯(pos) = pos

sq♯(any) = any

Fig. 2. Abstract domain, Sign, and the properties, ρ[P(Int)], it represents

where f−1(U) = {x ∈ Σ | f(x) ∈ U}. Function f is an open map iff for all
U ∈ OΣ , f [U] ∈ OΣ and it is a closed map iff for all K ∈ CΣ , f [K] ∈ CΣ .

Abstract interpretation is computational approximation by computation on
properties: For concrete data domain, Σ, select a set of property names, A, such
that each a ∈ A names the set γ(a) ⊆ Σ, for γ : A → P(Σ). γ identifies the
family of properties modelled by A. Order A s.t. a⊑ a′ iff γ(a) ⊆ γ(a′) — it
should be a partial ordering.

Figure 2 displays an approximation of the integers, Int , by sign properties,
Sign. (Notice how few properties are identified — just {none,neg, zero, pos , any}.)

When γ possesses an adjoint, α : P(Σ) → Sign, then there is a Galois
connection3 and ρ = γ ◦ α is an upper closure operator — ρ : P(Σ) → P(Σ) is
monotone, extensive (S ⊆ ρ(S)), and idempotent (ρ◦ρ = ρ). ρ’s range, ρ[P(Σ)],
identifies a family of property sets, but the family is typically not a topology,
although it is closed under intersection (for all S ⊆ ρ[P(Σ)],

⋂
S ∈ ρ[P(Σ)]).

Computation functions, f : Σ → Σ, are soundly approximated by f ♯ : A→ A

iff α(f [S])⊑ f ♯(α(S)), for all S ∈ P(Σ) (equivalently, iff f [γ(a)] ⊆ γ(f ♯(a)), for
all a ∈ A) where we “lift” f to f [S] = {f(s) | s ∈ S}. See Figure 2.

The most precise such f ♯ is defined f ♯
0 = α ◦ f ◦ γ, where again, f is “lifted.”

When f is approximated exactly by f ♯
0 such that f◦γ = γ◦f ♯

0, we say f is forwards
complete; f is forwards complete iff for all K ∈ ρ[P(Σ)], f [K] ∈ ρ[P(Σ)], that

3 that is, S ⊆ γ(a) iff α(S)⊑ a, for all S ∈ P(Σ) and a ∈ A

For f : P(Σ) → P(Σ), f ♯ : A → A is sound iff

α ◦ f ⊑ f ♯ ◦ α or, equivalently, f ◦ γ ⊑ γ ◦ f ♯

α
#

f # S)α (()α (S)

f(S)S
f

α
f a

(a)

f #
f #(a)

γ (a)()ff

γγ

γ

α and γ act as semi-homomorphisms; f ♯ is a postcondition transformer. The
strongest transformer is f

♯
0

= α ◦ f ◦ γ. Next, define ρ = γ ◦ α : P(Σ) → P(Σ):

Forwards completeness [13]:

f ◦ γ = γ ◦ f ♯

γ
#

γ (a)

f #(a)

γ (a)()f
f

a

γ
f

γ is a homomorphism from A to P(Σ).
f is forwards complete (with respect to
f

♯
0
) iff for all K ∈ ρ[P(Σ)], f [K] ∈

ρ[P(Σ)].

Backwards completeness [9, 14]:

α ◦ f = f ♯ ◦ α

α
#α (S) f # S)α (()

f(S)S
f

α
f

α is a homomorphism from P(Σ) to A.
f is backwards complete (w.r.t. f

♯
0
) iff

for all S, S′ ∈ P(Σ), ρ(S) = ρ(S′) im-
plies ρ(f [S]) = ρ(f [S′]).

Fig. 3. Sound and complete forms of abstract functions

is, iff f ◦ρ = ρ◦f ◦ρ [13]. That is, f maps properties to properties “on the nose.”

When f is approximated exactly such that α ◦ f = f
♯
0 ◦α, we say f is backwards

complete; f is backwards complete iff for all S, S′ ∈ P(Σ), ρ(S) = ρ(S′) implies
ρ(f [S]) = ρ(f [S′]), that is, iff ρ ◦ f = ρ ◦ f ◦ ρ. [14, 21]. That is, f maps ρ-
equivalent arguments to ρ-equivalent answers. See Figure 3. In Figure 2, sq is
backwards but not forwards complete; negate is both backwards and forwards
complete, and succ is neither.

Giacobazzi and his colleagues defined iterative refinement methods, called
shell constructions, that add new elements to an abstract domain so that a
incomplete function f becomes forwards or backwards complete, as desired [13,
14]. They showed that the shell constructions formalize the CEGAR refinement
method of abstract model checking [3].

This paper’s main result is the equivalence of backwards and forwards com-
pleteness to topological continuity and topologically closed maps, respectively.

3 Property families, function preservation and reflection

We now develop abstract interpretation with topological concepts.
For a concrete state set, Σ, choose some FΣ ⊆ P(Σ) as a family of properties.

(In Figure 2, the family SignInt is {∅, {i | i < 0}, {0}, {i | i > 0}, Int}.)

For each U ∈ FΣ , its complement is ∼U = Σ − U ; for FΣ, its complement
family, ∼FΣ , is {∼U | U ∈ FΣ}. (E.g., ∼ SignInt is {Int, {i | i ≥ 0}, {i | i 6=
0}, {i | i ≤ 0}, ∅}.)

When property family OΣ ⊆ P(Σ) is closed under unions, then OΣ is an
open family. Every open family has an interior operation, ι, which computes
the largest property contained within a set: ι : P(Σ) → OΣ is defined ι(S) =
∪{U ∈ OΣ | U ⊆ S}.

Dually, if a property family CΣ is closed under intersections, it is a closed
family (Moore family [9]). Every closed family has a closure operation, ρ, which
computes the smallest property covering a set: ρ : Σ → CΣ is defined ρ(S) =
∩{K ∈ CΣ | S ⊆ K}. (SignInt in Figure 2 is a closed (but not open) family,
whose closure operation is the ρ stated in the Figure.)

If OΣ is an open family, then its complement is a closed family (and vice
versa), where

⋂
i∈I Ki = ∼

⋃
i∈I ∼Ki (where

⋃
i∈I Ui = ∼

⋂
i∈I ∼Ui).

Let f : Σ → ∆ be a function; define f : P(Σ) → P(∆) as f [S] = {f(s) | s ∈
S}. Next, define function inverse, f−1 : P(∆) → P(Σ), as f−1(T) = {s ∈
Σ | f(s) ∈ T }.

For property families, FΣ and F∆, f : Σ → ∆ is FΣF∆-preserving iff for all
U ∈ FΣ , f [U] ∈ F∆. In such a case, f : FΣ → F∆ is well defined. To reduce
notation, we use functions, f : Σ → Σ, with the same domain and codomain (and
we say, “f is FΣ-preserving”), but all results that follow hold for functions with
distinct codomains and domains, too. (In Figure 2, negate is SignInt -preserving.)

Definition 1. For s ∈ Σ and S ⊆ Σ, let Us (respectively, US) denote a member
of FΣ such that s ∈ Us (respectively, S ⊆ US).

(i) For s ∈ Σ, f : Σ → Σ is continuous at s iff for all Vf(s) ∈ FΣ, there
exists some Us ∈ FΣ such that f [Us] ⊆ Vf(s).

(ii) For S ⊆ Σ, f is continuous at S iff for all Vf [S] ∈ FΣ, there exists some
US ∈ FΣ such that f [US] ⊆ Vf [S].

(iii) f is FΣ-reflecting iff for all V ∈ FΣ, f−1(V) ∈ FΣ, that is, f−1 is
FΣ-preserving.

Proposition 2. (i) f is FΣ-reflecting iff f is continuous at S, for all S ⊆ Σ.
(ii) If FΣ is an open family, then f is FΣ-reflecting iff f is continuous at s, for
all s ∈ Σ.

Proof. We prove (i); (ii) is a standard result [26]. Only if: for V ∈ FΣ, consider
f−1(V). Because f is continuous at all S ⊆ Σ, there is some Uf−1(V) ∈ FΣ such
that f [Uf−1(V)] ⊆ V . But Uf−1(V) must equal f−1(V) for this to hold.

If: for S ⊆ Σ, say that VS ∈ FΣ . Since f is reflecting, f−1(VS) ∈ FΣ . Thus,
f [f−1(VS)] ⊆ VS .2

The proofs in this paper rely on naive-set reasoning (cf. Willard [26]) and will
often be omitted. We retain these critical dualities for all f and FΣ :

Proposition 3. f : Σ → Σ is ∼FΣ-reflecting iff f is FΣ-reflecting.
f is FΣ-preserving iff f̃ = ∼ ◦f◦ ∼ is ∼FΣ-preserving.

{ }

{1,2,3,...}{0}

{...,−1,0,1,...}

{...,−2,−1,0}

{...,−2,−1}

{...,−2,−1,1,2,...}
{0,1,2,3,...}

IntSignO ρ∪(S) = ∪{ρ{s} | s ∈ S}

f ♯ = ρ∪ ◦ f

p̃ref♯(U) = ∪{V ∈ SignOInt | f ♯(V) ⊆
U}

For succ(i) = i + 1,

succ♯{i | i < 0} = {i | i ≤ 0}
succ♯{0} = {i | i > 0}
succ♯{i | i > 0} = {i | i > 0}
succ♯{i | i ≤ 0} = Int

succ♯{i | i 6= 0} = Int , etc.

p̃resucc♯{i | i > 0} = {i | i ≥ 0}
p̃resucc♯{0} = ∅
p̃resucc♯{i | i < 0} = ∅
p̃resucc♯{i | i ≤ 0} = {i | i < 0}, etc.

Fig. 4. Using SignInt = {∅, {i | i < 0}, {0}, {i | i > 0}, Int} as a base for a topology.

In Figure 2, negate and square are SignInt -reflecting (but succ is not). This
makes the two functions ∼ SignInt reflecting, where ∼ SignInt = {Int , {i | i ≥
0}, {i | i 6= 0}, {i | i ≤ 0}, ∅}. Since negate is SignInt -preserving, ˜negate is
∼ SignInt -preserving, e.g., ˜negate{i | i ≥ 0} = {i | i ≤ 0}. We exploit such
dualities in the next section.

4 Applications: logics, postconditions, preconditions

A property family lists the properties that can be computed by an abstract
interpretation. To implement it, we name each of the sets in the family, e.g.,
Figure 2 shows that Sign = {none,neg, zero, pos , any} are the names for SignInt

and γ : Sign → SignInt concretizes each name to its property set. Within Sign ,
a ⊑ a′ iff γ(a) ⊆ γ(a′). To reduce notation, the abstract interpretations in this
paper are defined directly upon the property sets rather upon than the names
of the sets [6, 14]. For example, we write succ♯{0} = {i | i > 0} rather than
succ♯(zero) = pos .

There is a weakened form of Stone duality here [1, 18]: a property family FΣ

has a frame-like “logic” whose “primitive propositions” are the U ∈ FΣ and
“connectives” are the functions that are FΣ-preserving. Based on Figure 2, we
know that SignInt ’s logic includes

φ ::= U | φ1 ∩ φ2 | negate φ

where U ∈ SignInt . ∩ appears because the family is closed; negate appears
because it is SignInt -preserving. A set S has property φ iff S ⊆ φ, e.g., {1, 3} has
property negate{i | i < 0}. (When FΣ is a topology, its logic is a frame [18]
and includes false (empty set), true (Σ), disjunction (union), and conjunction
(intersection).)

Ideally, for conducting an abstract interpretation, a program’s transition
functions, f : Σ → Σ, are A-preserving — fall within the logic (cf. [16]). This

rarely happens, e.g., a program that counts by ones uses the transition function,
succ : Int → Int , succ(i) = i + 1, which is not SignInt -preserving. In this case,
we must define a succ♯ : SignInt → SignInt to soundly approximate succ.

If property family CΣ is closed, we use its closure operator, ρ, to define from
f : Σ → Σ its overapproximation f ♯ : CΣ → CΣ as f ♯ = ρ ◦ f . Function f ♯ gen-
erates sound postconditions, because this relational assertion (“Hoare triple”),

{φ}f{f ♯(φ)}

holds true (where {φ}f{ψ} asserts f [φ] ⊆ ψ, for φ, ψ ∈ CΣ). Because f ♯(φ) =
ρ(f [φ]) is the smallest set in CΣ that contains f [φ], it is the strongest postcondi-
tion of f and φ expressible in CΣ: {φ}f{ψ} implies {φ}f{f ♯(φ)} and f ♯(φ) ⊆ ψ.4

(For example, for SignInt , succ
♯ = ρ ◦ succ, so that succ♯{0} = ρ(succ{0}) =

ρ{1} = {i | i ≥ 0}, etc.)
When f is forwards complete (cf. Figure 3), we have completeness in the

entire codomain: for every S ⊆ P(Σ), {φ}f{S} implies {φ}f{f ♯(φ)} and f ♯(φ) ⊆
S. When f is backwards complete, completeness extends to the entire domain:
for every S ⊆ P(Σ), {S}f{ψ} implies {S}f{f ♯(ρ(S))} and f ♯(ρ(S)) ⊆ ψ. But
each completeness notion yields nothing more in the logic than the strongest
postcondition — what deeper property is hiding here? (See the next section.)

In summary, a forwards static analysis calculates postconditions [6, 7], and
the development suggests this moral:

Use a closed family of properties to generate a postcondition analysis.

What if we desire preconditions from a forwards analysis? We must first
define f ♯’s inverse, f ♯−

CΣ
: CΣ → P(CΣ), as

(⋆) f ♯−
CΣ

(U) = {V ∈ CΣ | f ♯(V) ⊆ U}

We have, for all V ∈ f ♯−
CΣ

(φ), that {V }f{φ} holds true, but ∪f ♯−
CΣ

(U) itself is
not necessarily expressible in the closed family, CΣ.

To repair the flaw, we close CΣ under unions, that is, we use it as a base for
a topology on Σ, namely, COΣ = {∪T | T ⊆ CΣ}, which is both an open and a
closed family. (The closure map ρ∪ : COΣ → COΣ equals ρ∪(S) = ∪{ρ{s} | s ∈
S}.) Now, we approximate with COΣ : for f : Σ → Σ, we define f ♯ : COΣ →
COΣ as f ♯ = ρ∪ ◦ f ; we define f ♯−

COΣ
: COΣ → P(COΣ) as f ♯−

COΣ
(U) =

{V ∈ COΣ | f ♯(V) ⊆ U}, like before; and this makes f ♯’s weakest precondition,
p̃ref♯ : COΣ → COΣ , well defined: p̃ref♯(U) = ∪f ♯−

COΣ
(U).5

In lattice theory, closure under unions is called disjunctive completion [10].
Figure 4 shows the disjunctive completion of SignInt to SignOInt and the pre-
condition function for succ♯. Now, we have preconditions, but the extra sets gen-
erated by the disjunctive completion may make the abstract domain too large
for a practical static analysis.

4 If FΣ is not closed, then the f : Σ → Σ must be approximated by some f ♯ : FΣ →
FΣ such that {U}f{f ♯(U)} holds for all U ∈ FΣ .

5 Since COΣ possesses an interior operation, ι, we can define the precondition as
merely ι ◦ f−1, and one can prove that p̃ref♯ = ι ◦ f−1 [22].

{0}

{0,1}

{ }

{0,1,2,3,...}

{1,2,3,...}

Count
Nat For Nat = {0, 1, 2, · · ·},

CountNat = {∅, {0}, {0, 1}, {1, 2, 3, · · ·},Nat}

ι(S) = ∪{U | U ⊆ S}, e.g.,
ι{0, 1, 2} = {0, 1}
ι{2, 4, 6, 8, · · ·} = ∅

For succ(n) = n + 1,
succ−o = ι ◦ succ−1, e.g.,

succ−o{0, 1} = {0}
succ−o{0} = ∅ = succ−o(∅)
succ−o{1, 2, 3, · · ·} = Nat = succ−o(Nat)

Fig. 5. Open family for counting analysis

If we are primarily interested in preconditions, we should start with an open
family of properties (one closed under unions), OΣ ⊆ P(Σ), so that we have
straightaway an interior operation, ι : Σ → OΣ . An open family’s logic includes
disjunction as well as the inverses of those functions that are OΣ-reflecting.

We underapproximate the inverses of transition functions: For f : Σ → Σ,
define f−o : OΣ → OΣ as f−o = ι ◦ f−1. This implies

{f−o(ψ)}f{ψ}

holds true and f−o(ψ) is the weakest precondition of f and ψ expressible in OΣ:
{φ}f{ψ} implies {f−o(ψ)}f{ψ} and φ ⊆ f−o(ψ). Further, we can formalize the
two forms of completeness with respect to ι, but we see in the next section a
topological characterization.

Figure 5 defines an open (but not closed) family, CountNat , for a backwards
counting analysis. The successor operation, succ : Nat → Nat , is CountNat -
reflecting, so succ−1 lives in the family’s logic and succ−o = succ−1. (See the
Figure.) Predecessor (pred(n) = n − 1) is not reflecting, and pred−o = ι ◦
pred−1 yields pred−o{0, 1} = ι{0, 1, 2} = {1}, etc. Abstract domain CountNat is
imperfect, e.g., it cannot prove the assertion, {{0}}succ; pred{{0}}. As indicated
by research on backwards strictness analysis [2, 12, 16, 17], the moral is:

Use an open family of properties to generate a precondition analysis.

There is no need to work from a closed property family.6

Because the complement of a closed family is open (and vice versa), we can
move from a postcondition analysis to a precondition one: Say that CΣ is closed
so that OΣ = ∼CΣ is open. First, every CΣ-reflecting f is OΣ-reflecting, and for
every CΣ-preserving f : Σ → Σ, f̃ is OΣ-preserving, by Proposition 3. (So, CΣ’s
conjunction operation is preserved in OΣ’s logic as disjunction.) We have

Lemma 4. For all f : Σ → Σ and S ⊆ Σ, ∼f−1(S) = f−1(∼S).
For closed family CΣ and OΣ = ∼CΣ, ∼ ◦ ρ = ι ◦ ∼.

6 But there is an adjoint here, P(Σ)op〈ι, id〉Oop
Σ — ⊆ becomes ⊇.

Proposition 5. For all S ⊆ Σ, f̃−1(S) = f−1(S).
˜(f−1)♯(U) = f−o(U), for all U ∈ OΣ. (Note: ˜(f−1)♯ = ∼ ◦(f−1)♯◦ ∼.)

Proof. We prove the second claim, ˜(f−1)♯(U) = ∼ ◦ρ ◦ f−1◦ ∼ (∼K), where
U = ∼ K. This equals ∼ ρ(f−1(K)) = ι(∼ f−1(K)), by the previous lemma,
which equals ι(f−1(∼K)), by the lemma, which equals f−o(U). 2

The last result says that, by using CΣ’s closure operator to define the overapprox-
imating (f−1)♯, we can compute an underapproximating, weakest-precondition

analysis on OΣ = ∼CΣ defined as ˜(f−1)♯.
As an example, consider ∼ SignInt = {Int , {i | i ≥ 0}, {i | i 6= 0}, {i | i ≤

0}, ∅}, based on Figure 2. This open family’s logic includes

ψ ::= ∼U | ψ1 ∪ ψ2 | negate−1ψ | sq−1ψ, for U ∈ SignInt

Because succ is not SignInt -reflecting, we underapproximate it by succ−o =
˜(succ−1)♯. We have succ−o{i | i 6= 0} = {i | i ≥ 0}; succ−oInt = Int ; and

succ−o(U) = ∅, otherwise. In this fashion, a postcondition analysis based on CΣ

defines a precondition analysis on ∼CΣ .
Finally, every FΣ possesses both a logic for validation (viz., FΣ ’s sets and

its preserving operators) as well as a dual, refutation logic: ∼FΣ’s logic. We say
that S has property ¬φ if S ⊆ ∼ φ, for ∼ φ ∈ ∼ FΣ. This is the foundation
for three-valued static analyses [20], where one uses a single abstract domain to
compute validation, refutation, and “don’t know” judgements.

5 From continuity to completeness

As stated earlier, there is a correspondence between functions that preserve and
reflect property sets and abstract-interpretation-complete functions:

Recall that f : Σ → Σ is FΣ-preserving iff for all S ∈ FΣ , f [S] ∈ FΣ .
But this is exactly the definition of abstract-interpretation forwards completeness
when FΣ is a closed family. In topological terms, f is a closed map.

We now prove that FΣ-reflection is exactly backwards completeness when
FΣ is a closed family. For S, S′ ⊆ Σ, write S ≤FΣ S′ iff for all K ∈ FΣ, S ⊆ K

implies S′ ⊆ K. This is called the specialization ordering in topology. Write
S ≡FΣ S′ iff S ≤FΣ S′ and S′ ≤FΣ S. The following definition is the usual one
for abstract-interpretation backwards completeness:

Definition 6. For property family, FΣ, f : Σ → Σ is BFΣ -complete iff for all
S, S′ ⊆ Σ, S ≡FΣ S′ implies f [S] ≡FΣ f [S′].

Proposition 7. If f is FΣ-reflecting, then it is BFΣ -complete.

Proof. Assume S ≤Σ S′ and show f [S] ≤Σ f [S′]: Say that f [S] ⊆ K ∈ FΣ ;
since f is reflecting, f−1(K) ∈ FΣ, too, and S ⊆ f−1(K). Because S ≤Σ S′,
S′ ⊆ f−1(K), implying f [S′] ⊆ K. 2

The converse of the above might not hold, but say that CΣ is a closed family so
that ρ(S) = ∩{K ∈ CΣ | S ⊆ K}; we can prove the converse:

Lemma 8. For all S ⊆ Σ, S ≡CΣ ρ(S).
For all S, S′ ⊆ Σ, S ≡CΣ S′ iff ρ(S) = ρ(S′).

Lemma 9. The following are equivalent for closed family, CΣ:
(i) f is BCΣ -complete;
(ii) for all S ⊆ Σ, f [S] ≡CΣ f [ρ(S)];
(iii) ρ ◦ f = ρ ◦ f ◦ ρ.

For a closed family, reflection (topological continuity) is backwards completeness:

Theorem 10. For CΣ, f : Σ → Σ is BCΣ -complete iff f is CΣ-reflecting.

Proof. The if-part is already proved. For the only-if part, assume f [S] ⊆ K ∈ CΣ

and show there is some LS ∈ CΣ such that f [LS] ⊆ K. Let ρ(S) be the LS: we
have f [ρ(S)] ≡CΣ f [S] which implies f [ρ(S)] ⊆ K. Use the Lemma above. 2

Corollary 11. (i) if f is backwards complete for CΣ, then f−1 is forwards com-
plete for both CΣ and ∼CΣ.

(ii) f is forwards complete for CΣ iff f̃ is forwards complete for ∼CΣ.

Proof. By Proposition 3 and the previous Theorem.

The characterizations of forwards completeness as property preservation and
backwards completeness as property reflection (continuity) apply to open fami-
lies as well. They also link the shell constructions of Giacobazzi, et al. [13, 14],
to refinements of topologies and the characterization of function continuity to
convergence of nets [26].

6 Relation to partial-order backwards completeness

The crucial characterization of backwards completeness by Giacobazzi, et al. [14]
is made in a “frame-theory” presentation [18], where (P(Σ),⊆) is abstracted to
a complete lattice, (D,⊑), and CΣ is abstracted to ρ[D] ⊆ D, namely, the fixed
points of upper closure map, ρ : D → D. We can rephrase their work in terms
of our development:

First, define f− : D → P(D) as f−(d) = {e ∈ D | f(e) ⊑ d}. When
f− is chain-continuous, then f−(d) has a set of maximal points, denoted by
max(f−(d)). When f is an additive function, that is, f(⊔S) = ⊔d∈Sf(d), for all
S ⊆ D, then max(f−(d)) is a singleton set. This is the case for the point-set
topology used in the previous section.

Let ρ[D] define D’s closed family of “properties” and let f : D → D be
chain-continuous. First, (i) f is continuous at d ∈ D iff for all e ∈ ρ[D], if
f(d) ⊑ e, then there exists d′ ∈ ρ[D] such that d ⊑ d′ and f(d′) ⊑ e. Next, (ii)
f is ρ-reflecting iff for all e ∈ ρ[D], max((f−(d)) ⊆ ρ[D] (that is, the maximum
elements of f−(d) are in ρ[D]). It is easy to prove that (i) and (ii) are equivalent.

We define d ≡ρ[D] d
′ iff for all e ∈ ρ[D], d ⊑ e iff d′ ⊑ e, that is, iff ρ(d) =

ρ(d′). This yields the definition of backwards completeness: f is backwards-
ρ-complete if d ≡ρ[D] d

′ implies f(d) ≡ρ[D] f(d′) for all d, d′ ∈ D, that is,
ρ ◦ f = ρ ◦ f ◦ ρ. We have immediately the main result of Giacobazzi, et al. [14]
in the “frame theory”: f : D → D is backwards-ρ-complete iff it is ρ-reflecting.

7 Nondeterminism and semicontinuity

Model-checking applications of abstract interpretation commence with transition
relations on Σ×Σ, which we will treat as functions of arity, f : Σ → P(Σ). The
property family for P(Σ) is different from Σ’s and depends on how we define
f ’s preimage, a map, P(Σ) → P(Σ). We have two choices: for S ⊆ Σ,

pref (S) = {c ∈ Σ | f(c) ∩ S 6= ∅}
p̃ref (S) = {c ∈ Σ | f(c) ⊆ S}

The following definitions come from Vietoris [25]:

Definition 12. For property family, FΣ ⊆ Σ,
f : Σ → P(Σ) is lower semicontinuous for FΣ iff pref is FΣ-preserving.
f : Σ → P(Σ) is upper semicontinuous for FΣ iff p̃ref is FΣ-preserving.

Say we want pref in the logic for FΣ; what property family for P(Σ) is

appropriate? The answer was found by Smyth [25]: define OL
FΣ

⊆ P(P(Σ)) to

be the open family generated by taking all unions of the base, BL
FΣ

= {∃U | U ∈
FΣ}, where ∃U = {S ⊆ Σ | S ∩ U 6= ∅}. (Read ∃U as “all the sets that meet
property U”). Indeed, for all U ∈ FΣ, f−1(∃U) = pref (U). OL

FΣ
is called the

lower topology based on FΣ . This result is due to Smyth [25]:

Proposition 13. If OΣ ⊆ Σ is an open family for Σ, then f : Σ → P(Σ) is
lower semicontinuous for OΣ iff f is OΣOL

OΣ
-reflecting.

That is, pref lies in the logic for OΣ iff f is OΣOL
OΣ

-reflecting. When f : Σ →
P(Σ) is not lower semicontinuous, we simply use OΣ ’s interior operator, ι, to
approximate pref by ι ◦ pref : OΣ → OΣ , like in Section 4.

We can rephrase the previous Proposition in terms of its dual, closed family
and discover a well-travelled path: For open family, OΣ , and CΣ =∼OΣ, we have
that ∼OL

OΣ
is a closed family whose members are all the intersections of sets

taken from the (co)base, BU
CΣ

= {∀K | K ∈ CΣ}, where ∀K = {S ⊆ Σ | S ⊆ K}.
(Read ∀K as “all the sets covered by property K.”) Indeed, for all K ∈ CΣ ,
f−1(∀K) = p̃ref (K). We name the closed family: CU

CΣ
= ∼OL

OΣ
.

Corollary 14. Let CΣ be a closed family and define OΣ = ∼CΣ.
pref is OΣ-preserving iff p̃ref is CΣ-preserving.

f is OΣOL
OΣ

-reflecting iff it is CΣCU
CΣ

-reflecting.

Hence, p̃ref is CΣ-preserving iff f is CΣCU
CΣ

-reflecting iff f is upper semicon-
tinuous for CΣ.

Let zero = {0}
neg = {i | i < 0}
pos = {i | i > 0}

Let ∀K = {S ⊆ Int | S ⊆ K}
Let K ∨ K′ denote K ∪ K′

{ }∀

(neg v pos)∀ (zero v pos)∀∀ (neg v zero)

neg∀ pos∀

Int∀
U
SignO Int

zero

C

∀

sqrt : Int → P(Int)
sqrt(0) = {0}
sqrt(1) = {−1, 1} = sqrt(2) = sqrt(3)
sqrt(4) = {−2, 2} = sqrt(5), etc.
sqrt(−1) = ∅, etc.

p̃resqrt : P(Int) → P(Int)
p̃resqrt{0, 1} = {0}
p̃resqrt{−1, 0, 1} = {0, 1, 2, 3}
p̃resqrt{i | i 6= 0} = {i | i 6= 0}, etc.

sqrt♯ : CU
SignOInt

→ CU
SignOInt

sqrt♯(zero) = ∀zero
sqrt♯(pos) = ∀(neg ∨ pos)

sqrt♯(neg) = ∀∅
sqrt♯(Int) = ∀Int

sqrt♯(neg ∨ pos) = ∀(neg ∨ pos)

sqrt♯(zero ∨ neg) = ∀zero
sqrt♯(zero ∨ pos) = ∀Int , etc.

p̃resqrt♯ : SignOInt → SignOInt

p̃resqrt♯(neg ∨ pos) = neg ∨ pos

p̃resqrt♯(pos) = ∅
p̃resqrt♯(zero ∨ neg) = zero

p̃resqrt♯(Int) = Int , etc.

Fig. 6. sqrt, upper topology on SignOInt , and sqrt♯

Proof. By Propositions 3 and 13. 2

The corollary tells us p̃ref lies in CΣ ’s logic when f : Σ → P(Σ) is upper
semicontinuous. But what if f is not? Then we must approximate it by some
f ♯ : CΣ → CU

CΣ
from which we induce a CΣ-preserving p̃ref♯ . (Alas, we have no

interior map to aid us, only a closure map.)
To do this, we need some insight: First, each M ∈ CU

CΣ
is a set of sets formed

as M =
⋂

i∈I{∀Ki | Ki ∈ CΣ}. Read property M as “∀K1∧∀K2∧· · ·∧∀Ki∧· · ·”
— M ’s members are sets covered by property K1 and covered by property K2

and ... covered by property Ki and so on. For f : Σ → P(Σ), we express its
relational assertions in the form,

{φ}f{∀ψ1 ∧ ∀ψ2 ∧ · · · ∧ ∀ψi ∧ · · ·}

By pointwise reasoning, the M defined above equals ∀
⋂
{Ki | Ki ∈ CΣ}, read as

“∀(K1 ∧ K2 ∧ · · · ∧ Ki ∧ · · ·).” But
⋂
{Ki | Ki ∈ CΣ} ∈ CΣ, meaning that the

relational assertion reverts to this benign format:

{φ}f{∀ψ}

for φ, ψ ∈ CΣ. (You can write it as “φ |= [f]ψ.”) The quantifier reminds us that
f ’s answer is a set of Σ-values, covered by ψ. And, φ ⊆ p̃ref (ψ) = f−1(∀ψ).

Say we approximate f : Σ → P(Σ) by f ♯(K) = ρU (f [K]), where ρU is the
closure operation for CU

CΣ
: ρU (T) =

⋂
{∀K | T ⊆ ∀K,K ∈ CΣ}. That is, ρU (T)

computes the conjunction of all properties K that cover all the sets in T . We
have, as usual, that {φ}f{f ♯(φ)}. Next, the approximation of p̃ref must be made
sound: p̃ref♯(K) ⊆ p̃ref (K) = f−1(∀K), for all K ∈ CΣ. We work from Equation

(⋆) in Section 4; f ♯’s inverse image is

f ♯−
CΣ

(K) = {K ′ ∈ CΣ | f ♯(K ′) ⊆ ∀K}

We wish to define p̃ref♯(K) = ∪f ♯−(K), but p̃ref♯ ’s image might fall outside
of CΣ . This issue arose in Section 4, and we repeat the development there:
build the disjunctive completion of CΣ (closure under unions), COΣ ; redefine
f ♯ : COΣ → CU

COΣ
; and define p̃ref♯ : COΣ → COΣ as p̃ref♯(K) = ∪f ♯−

COΣ
(K).

Figure 6 displays an integer square-root function, sqrt : Int → P(Int). The
disjunctive completion of SignInt produces the topology, SignOInt , in Figure 4,
from which we generate CU

SignOInt
, illustrated in Figure 6. This form of abstract

domain is used for checking the box-modality of modal-mu calculus.
There is a dual development. Starting again with Σ and its property family,

FΣ , define the property family for P(Σ), namely, OU
FΣ

⊆ P(P(Σ)), as the open

family generated by taking all unions of the base, BU
FΣ

= {∀U | U ∈ FΣ}, where
∀U = {S ⊆ Σ | S ⊆ U}. This is the upper topology based on FΣ . (Recall, for all
U ∈ FΣ , that f−1(∀U) = p̃ref (U).)

Proposition 15. [25] Let OΣ ⊆ Σ be an open family. f : Σ → P(Σ) is upper
semicontinuous for OΣ iff f is OΣOU

OΣ
-reflecting.

When f is not upper semicontinuous, we may use ι◦ p̃ref : OΣ → OΣ , where ι is

OΣ ’s interior operator. The dual goes as follows: CL
CΣ

= ∼OU
OΣ

, whose members

are all intersections of sets from the (co)base, BL
CΣ

= {∃K | K ∈ CΣ}, where
∃K = {S ⊆ Σ | S ∩K 6= ∅}. For all K ∈ CΣ , f−1(∃K) = pref (K).

Corollary 16. p̃ref is OΣ-preserving iff pref is CΣ-preserving.

f is OΣOU
OΣ

-reflecting iff it is CΣCL
CΣ

-reflecting.

Hence, pref is CΣ-preserving iff f is CΣCL
CΣ

-reflecting iff f is lower semicon-
tinuous for CΣ.

Say that f : Σ → P(Σ) is not lower semicontinuous. When we approximate
it by f ♭ : CΣ → CL

CΣ
, what is the result? What is pref♭? The answer summarizes

significant research on underapproximation [5, 11, 23].
Each M ∈ CL

CΣ
is a set of sets of form M =

⋂
i∈I{∃Ki | Ki ∈ CΣ}. Read M

as “∃K1 ∧ ∃K2 ∧ · · · ∧ ∃Ki ∧ · · ·” — each of M ’s members is a set that meets
(witnesses) K1 and K2 and ... Ki and so on. For f : Σ → P(Σ), we express its
relational assertions in the form,

{φ}f{∃ψ1 ∧ ∃ψ2 ∧ · · · ∧ ∃ψi ∧ · · ·}

for ψi ∈ CΣ . (In the case of {φ}f{∃ψ} you can write “φ |= 〈f〉ψ.” And, φ ⊆
pref (ψ) = f−1(∃ψ).)

We approximate f : Σ → P(Σ) by f ♭(K) = ρL(f [K]), where ρL is the closure
operation for CL

CΣ
: ρL(T) =

⋂
{∃K | T ⊆ ∃K, K ∈ CΣ}. That is, ρL(T) collects

Let K ∧ K′ denote K ∩ K′

presqrt : P(Int) → P(Int)
presqrt{0, 1} = {0, 1, 2, 3}
presqrtInt = {i | i ≥ 0}
presqrt{i | i < 0} = {i | i > 0}
etc. { }

∃ neg v pos

v

pos∃zero∃neg∃
∃ neg v pos zero∃ vpos∃ neg zerov

Int∃

pos∃∃ neg

v

zero∃ pos∃

v∃ neg zero∃v

zero∃ pos∃∃ neg

v v

∃

zero∃ vpos neg∃v∃ neg zerov pos∃

v

P(P(Int)) "true"

"false"

C L
SignO

zero

Int

∃

sqrt♭ : SignInt → CL
SignOInt

sqrt♭(pos) = ∃neg ∧ ∃pos

sqrt♭(zero) = ∃zero

sqrt♭(Int) = true

sqrt♭(neg) = true

sqrt♭(pos ∨ zero) = ∃Int

sqrt♭(pos ∨ neg) = true

presqrt♭ : SignOInt → SignOInt

presqrt♭(pos) = pos

presqrt♭(neg) = pos

presqrt♭(zero) = zero

presqrt♭(Int) = zero ∨ pos

presqrt♭(∅) = ∅
presqrt♭(zero ∨ neg) = zero ∨ pos , etc.

Fig. 7. Lower topology on SignOInt and sqrt♭

all the properties, K, that are witnessed (met) by each of the sets in T . We have
{φ}f{f ♭(φ)}, and f ♭(φ) is the strongest postcondition in the logic associated
with CL

CΣ
, the “language of witnesses.” Once again, we define f ♭−

CΣ
(K) = {K ′ ∈

CΣ | f ♭(K ′) ⊆ ∃K} and pref♭(K) = ∪f ♭−
CΣ

(K). This is the definition used by
Cleaveland [5], Dams [11], and Schmidt [23] to prove that pref♭ computes weakest

preconditions for f within the logics for CΣ and CL
CΣ

. When pref♭ ’s image does
not fall within CΣ — see presqrt♭(Int) in Figure 7, for example — disjunctive
completion of CΣ to a topology again saves the day. The final moral, contained
in Cousot and Cousot’s use of topology in 1977 [8], is:

Every abstract domain defines a base for a topology on the corresponding
concrete domain.

Acknowledgements: This paper was inspired by a presentation Mike Smyth
gave in Edinburgh in December 1982; I thank Mike for his clear, intuitive papers
and explanations. The trailblazing works of Radhia and Patrick Cousot and
Roberto Giacobazzi and his colleagues are also greatly appreciated. I also thank
the referees for their detailed comments and many helpful suggestions.

References

1. S. Abramsky. Domain theory in logical form. Ann.Pure Appl.Logic, 51:1–77, 1991.
2. N. Benton. Strictness logic and polymorphic invariance. In Proc. Logical Found.

Comp. Sci, pages 33–44, 1992.
3. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement. In CAV’00, pages 154–169. Springer LNCS 1855, 2000.

4. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.
5. R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in abstractions of model

checking. In Proc. SAS’95, LNCS 983. Springer, 1995.
6. P. Cousot. Semantic foundations of program analysis. In S. Muchnick and N. Jones,

editors, Program Flow Analysis, pages 303–342. Prentice Hall, 1981.
7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static

analysis of programs. In Proc. 4th ACM Symp. POPL, pages 238–252, 1977.
8. P. Cousot and R. Cousot. Static determination of dynamic properties of recursive

procedures. In E.J. Neuhold, editor, Formal Description of Programming Concepts,
pages 238–277. North-Holland, 1978.

9. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. 6th ACM Symp. POPL, pages 269–282, 1979.

10. P. Cousot and R. Cousot. Higher-order abstract interpretation. In Proceedings

IEEE Int. Conf. Computer Lang., 1994.
11. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.

ACM Trans. Prog. Lang. Systems, 19:253–291, 1997.
12. P. Dybjer. Inverse image analysis generalises strictness analysis. Information and

Computation, 90:194–216, 1991.
13. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and refine-

ments in abstract model checking. In Static Analysis Symposium, LNCS 2126,
pages 356–373. Springer Verlag, 2001.

14. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-
plete. J. ACM, 47:361–416, 2000.

15. C. Gunter and D.S. Scott. Semantic domains. In Handbook of Theoretical Computer

Science, Vol. B, pages 633–674. MIT Press, 1991.
16. S. Hunt. Frontiers and open sets in abstract intepretation. In Proc. ACM Symp.

Functional Prog. and Comp. Architecture, pages 194–216, 1989.
17. T. Jensen. Abstract Interpretation in Logical Form. PhD thesis, Imperial College,

London, 1992.
18. P. Johnstone. Stone Spaces. Cambridge University Press, 1986.
19. J.C. Reynolds. Notes on a lattice-theoretic approach to the theory of computation.

Technical report, Computer Science, Syracuse University, 1972.
20. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

ACM TOPLAS, 24:217–298, 2002.
21. D.A. Schmidt. Comparing completeness properties of static analyses and their

logics. In Proc. APLAS’06, LNCS 4279, pages 183–199. Springer, 2006.
22. D.A. Schmidt. Underapproximating predicate transformers. In Proc. SAS’06,

LNCS 4134, pages 127–143. Springer, 2006.
23. D.A. Schmidt. A calculus of logical relations for over- and underapproximating

static analyses. Science of Computer Programming, 64:29–53, 2007.
24. M.B. Smyth. Effectively given domains. Theoretical Comp. Sci., 5:257–274, 1977.
25. M.B. Smyth. Powerdomains and predicate transformers: a topological view. In

Proc. ICALP’83, LNCS 154, pages 662–675. Springer, 1983.
26. S. Willard. General Topology. Dover Publications, 2004.

