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What is static program analysis?

It is the extraction of a program’s properties in advance of the

program’s execution.

Example properties:

� the program will not generate a run-time exception (error)

� the program will generate an output that has a desirable property

� the program’s internal statements have desirable properties that

admit optimization

Standard techniques:

� type checking

� iterative dataflow analysis

� theorem provimg

(-: / 2



An example Python program

Let n be some input integer:

x = x + 1;  i = i − 1

:p

p :
1

p :
2

p :
3

while i != 0 :
i = n;  x = 0;

print x

0

What properties can we extract?

� the program will not generate a type-mismatch exception

� the definitions (assignments) at point p0 possibly reach p3

� the program satisfies the postcondition, x = n
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Type checking the Python program

x = x + 1;  i = i − 1

:p

p :
1

p :
2

p :
3

while i != 0 :
i = n;  x = 0;

print x

0 The program is well-typed:

it won’t generate a mismatch

exception.

Γ ⊢ 0 : int Γ ⊢ e1 : int Γ ⊢ e2 : int
Γ ⊢ e1 + e2 : int

Γ ⊢ e1 : int Γ ⊢ e2 : int
Γ ⊢ e1 == e2 : bool

Γ ⊢ e : τ
Γ ⊢ x = e : Γ + [x 7→ τ]

Γ ⊢ c1 : Γ1 Γ1 ⊢ c2 : Γ2

Γ ⊢ c1; c2 : Γ2

Γ ⊢ e : bool Γ ⊢ c : Γ
Γ ⊢ while e: c : Γ

Although it’s drawn as an (inverted) deduction, type checking is
implemented as a traversal of the program’s parse tree:

[ ]

0
Γ
0

Γ
0 Γ

0
:Γ

0
Γ
0

:x = x + 1 i = i − 1

Γ
0

Γ
0

:Γ
0

Γ
0

:i != n x = x + 1; i = i − 1

[ ] i = n [i |−> int] Γ
0

:x = 0[i |−> int]

Γ
0:

Γ
0

= [ x |−> int, i |−> int]Let

while i != 0: x = x + 1; i = i − 1 :

i = n; x = 0; while i != 0: x = x + 1; i = i − 1

Γ
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Reaching definitions calculated
by dataflow analysis

Does the assignment at pi reach point pj?

print x

:p

p :
2

p :
1

p :
3

i = n
x = 0

i != 0 ?

x = x + 1
i = i − 1

0

inpi
=

⋃
p′∈predpi

outp′

outpi
= inpi

− {px|px ≡ x = e} ∪ {pi},

for pi ≡ x ′ = e ′

outpi
= inpi

, for pi ≡ e?

For the example program, the equations for reaching definitions are
solved iteratively as

inp0
= {} inp1

= {p0, p2}

inp2
= {p0, p2} inp3

= {p0, p2}
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Partial correctness proved within Hoare logic

x = x + 1;  i = i − 1

:p

p :
1

p :
2

p :
3

while i != 0 :
i = n;  x = 0;

print x

0

{[e/x]P} x = e {P}

{P} c1 {Q} c2 {R}
{P} c1; c2 {R}

{e ∧ P} c {P}
{P} while e : c {¬e ∧ P}

{ true }

x = x + 1; i = i − 1{ i != 0  &  x = n − i } { x = n − i }

{ x = n − i } { x = n }

x = x + 1 { x = n − i + 1 } i = i − 1 { x = n − i }{ x + 1 = n − i + 1 }

while i != 0: x = x + 1; i = i − 1

{ x = n }while i != 0: x = x + 1; i = i − 1{ x = n − i }i = n;  x = 0

One must discover the loop invariant, x = n − i, to accomplish the

proof.
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Three axes of static analyses

modal/predicatepropositional

1 pass

human
interaction

multipass
(repeat till
convergence)

syntax directed

graph
(whole

program)

ALGORITHM

inductive (modular)

(abstract domain)LOGIC

PRESENTATION

(-: / 7



Some standard static analyses

logic algorithm presentation

type
checking

propositional
logic: int,
int → bool

one pass
(traverse
syntax tree)

syntax-directed

ML type
inference

shallow
∀ logic:
∀α.α → α

one pass
+ unification

syntax-directed

a.i.-based
dataflow
analysis

propositional
logic
(token sets)

iterate until
convergence

graph-based

model
checking

LTL, ACTL
(modal-like
logics)

iterate forever (!) graph-based

theorem
proving,
LF

predicate logics human interaction
inductive,
stated
axiomatically
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A “hybrid” analysis: predicate abstraction

We wish to prove that z ≥ x ∧ z ≥ y at p3:

p1 :
p0 :

p2 :
p3 :

if x < y 
then z = y;
else z = x;

exit

p1, 〈t, ?, ?〉

p3, 〈t, t, t〉

p0, 〈?, ?, ?〉

p2, 〈f, ?, ?〉

p3, 〈f, t, t〉

We choose three predicates,

φ1 = x < y

φ2 = z ≥ x

φ2 = z ≥ y

and compute their values at the program’s points. The predicates’

values come from the domain, {t, f, ?}. (Read ? as t ∨ f.)

At all occurrences of p3 in the abstract trace, φ2 ∧ φ3 holds.
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When a goal is undecided, refinement is
necessary

Prove φ0 ≡ x ≥ y at p4:

p0 :
p1 :

p2 :
p3 :

p4 :

if !(x >= y)
then { i = x;

x = y;
y = i;

}

p1, 〈f〉
p2, 〈f〉
p3, 〈t〉
p4, 〈?〉

p0, 〈?〉

p4, 〈t〉

To decide the goal, we must refine the state by adding a needed
auxiliary predicate: wp(y = i, x ≥ y) = (x ≥ i) ≡ φ1.

p1, 〈f, ?〉
p2, 〈f, t〉
p3, 〈t, t〉
p4, 〈t, t〉

p0, 〈?, ?〉

p4, 〈t〉
because x 6≥ y and x ≥ i

imply y > i implies xnew ≥ i
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But incremental predicate refinement cannot synthesize many
interesting loop invariants. For this example:

p0 :
p1 :

p2 :

p3 :

i = n; x = 0;
while  i != 0  {

x = x + 1;  i = i − 1;   

}
goal: x = n

We find that the initial predicate set, P0 ≡ {i = 0, x = n}, does not
validate the loop body.

The first refinement suggests we add P1 ≡ {i = 1, x = n − 1} to the
program state, but this fails to validate a loop that iterates more than
once.

Refinement stage j adds predicates Pj ≡ {i = j, x = n − j}; the
refinement process continues forever!

The loop invariant is x = n − i :-)
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Mr. Gedell will present interesting combinations and variations
of the standard analyses....
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