A brief introduction to static program analysis

David Schmidt Kansas State University

www.cis.ksu.edu/~schmidt

What is static program analysis?

It is the extraction of a program's properties in advance of the program's execution.

Example properties:

- the program will not generate a run-time exception (error)
- the program will generate an output that has a desirable property
- the program's internal statements have desirable properties that admit optimization

Standard techniques:

- type checking
- iterative dataflow analysis
- theorem provimg

An example Python program

Let n be some input integer:

What properties can we extract?

- the program will not generate a type-mismatch exception
- the definitions (assignments) at point p_0 possibly reach p_3
- the program satisfies the postcondition, x = n

Type checking the Python program

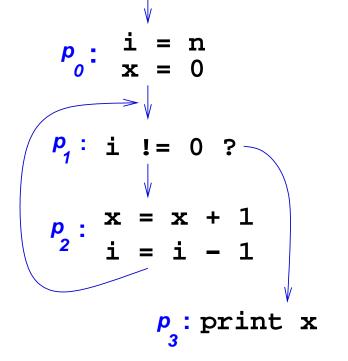
Although it's drawn as an (inverted) deduction, type checking is implemented as a traversal of the program's parse tree:

[] \vdash i = n; x = 0; while i != 0: x = x + 1; i = i - 1; Γ_0

 $[] \vdash i = n [i \mid -> int] \quad [i \mid -> int] \vdash x = 0 : \Gamma_{0}$ $\Gamma_{0} \vdash while i != 0: x = x + 1; i = i - 1: \Gamma_{0}$ $\Gamma_{0} \vdash i != n: \Gamma_{0} \quad \Gamma_{0} \vdash x = x + 1; i = i - 1: \Gamma_{0}$ $Let \Gamma_{0} = [x \mid -> int, i \mid -> int]$ $\Gamma_{0} \vdash x = x + 1: \Gamma_{0} \quad \Gamma_{0} \vdash i = i - 1: \Gamma_{0}$

Reaching definitions calculated by dataflow analysis

Does the assignment at p_i reach point p_j ?



$$\begin{split} &\text{in}_{p_i} = \bigcup_{p' \in \text{pred } p_i} \text{out}_{p'} \\ &\text{out}_{p_i} = \text{in}_{p_i} - \{p_x | p_x \equiv x = e\} \cup \{p_i\}, \\ &\text{for } p_i \equiv x' = e' \\ &\text{out}_{p_i} = \text{in}_{p_i}, \text{ for } p_i \equiv e? \end{split}$$

For the example program, the equations for reaching definitions are solved iteratively as

$$\label{eq:mp_0} \begin{split} & \text{in}_{p_0} = \{\} & \text{in}_{p_1} = \{p_0, p_2\} \\ & \text{in}_{p_2} = \{p_0, p_2\} & \text{in}_{p_3} = \{p_0, p_2\} \end{split}$$

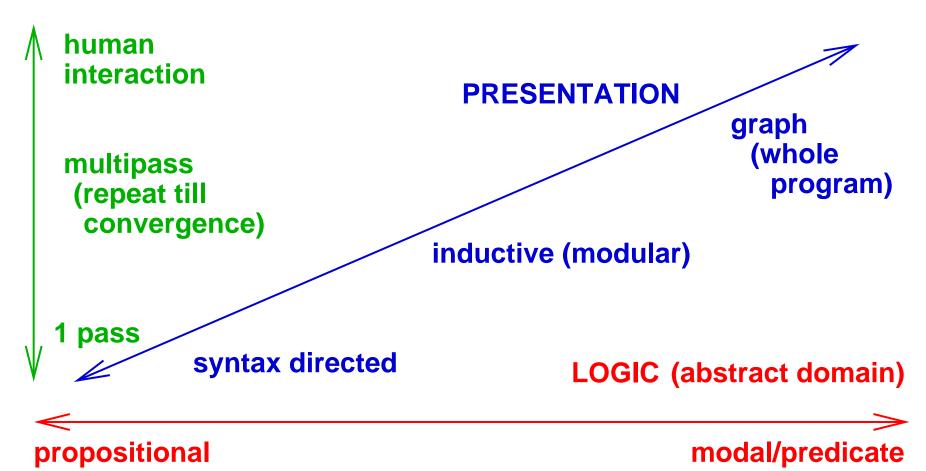
Partial correctness proved within Hoare logic

	$\{[e/x]P\} x = e \{P\}$			
<pre> P:i=n; x = 0; P_0; while i != 0:</pre>	$\frac{\{P\} c1 \{Q\} c2 \{R\}}{\{P\} c1; c2 \{R\}}$			
p ₃ : print x	$\frac{\{e \land P\} c \{P\}}{\{P\} while e : c \{\neg e \land P\}}$			
${x+1=n-i+1} x = x + 1 {x=n-i+1} i = i - 1 {x=n-i}$				
$\{i = 0 \& x = n - i\} x = x + i$	1; i = i - 1 { x = n - i }			
{x=n-i} while i != 0: x =	x + 1; i = i - 1 { x = n }			
{true} i = n; x = 0 { x = n - i } while i != 0: x = x + 1; i = i - 1{ x = n }				

One must discover the loop invariant, x = n - i, to accomplish the proof.

Three axes of static analyses

ALGORITHM

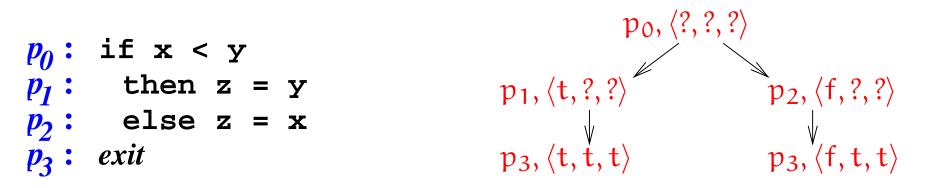


(-: / 7

	logic	algorithm	presentation
type checking	propositional logic: int, int \rightarrow bool	one pass (traverse syntax tree)	syntax-directed
ML type inference	shallow $\forall \text{ logic:}$ $\forall \alpha. \alpha \rightarrow \alpha$	one pass + unification	syntax-directed
a.ibased dataflow analysis	propositional logic (token sets)	iterate until convergence	graph-based
model checking	LTL, ACTL (modal-like logics)	iterate forever (!)	graph-based
theorem proving, LF	predicate logics	human interaction	inductive, stated axiomatically

A "hybrid" analysis: predicate abstraction

We wish to prove that $z \ge x \land z \ge y$ at p_3 :



$$\phi_1 = \mathbf{x} < \mathbf{y}$$

We choose three predicates, $\phi_2 = z \ge x$

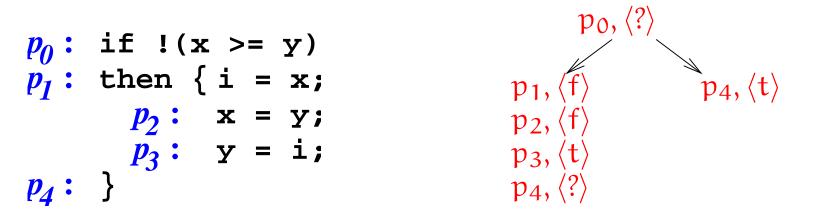
$$\phi_2 = z \ge y$$

and compute their values at the program's points. The predicates' values come from the domain, $\{t, f, ?\}$. (Read ? as $t \lor f$.)

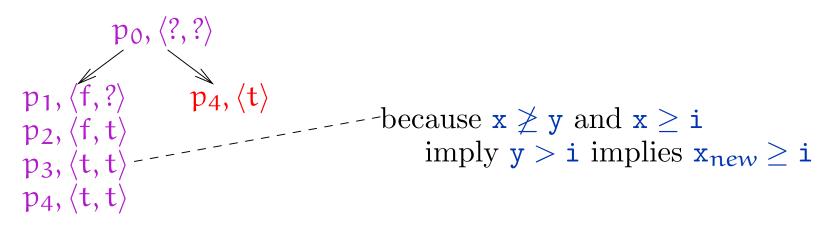
At all occurrences of p_3 in the abstract trace, $\phi_2 \wedge \phi_3$ holds.

When a goal is undecided, refinement is necessary

Prove $\phi_0 \equiv \mathbf{x} \geq \mathbf{y}$ at \mathbf{p}_4 :



To decide the goal, we must refine the state by adding a needed auxiliary predicate: $wp(y = i, x \ge y) = (x \ge i) \equiv \phi_1$.



But incremental predicate refinement cannot synthesize many interesting loop invariants. For this example:

We find that the initial predicate set, $P_0 \equiv \{i = 0, x = n\}$, does not validate the loop body.

The first refinement suggests we add $P_1 \equiv \{i = 1, x = n - 1\}$ to the program state, but this fails to validate a loop that iterates more than once.

Refinement stage j adds predicates $P_j \equiv \{i = j, x = n - j\}$; the refinement process continues forever!

The loop invariant is x = n - i :-

Mr. Gedell will present interesting combinations and variations of the standard analyses....

References This talk: www.cis.ksu.edu/~schmidt/presentations

- 1. A. Aho and J. Ullman. Principles of Compiler Design. Addison Wesley, 1977.
- 2. K. Apt and G. Plotkin. Ten years of Hoare's logic: a survey, part 1. ACM TOPLAS 3 (1981).
- 3. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press 1999.
- 4. P. Cousot and R.Cousot. Abstract interpretation. ACM POPL 1977.
- 5. F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, 1999.
- 6. D. Schmidt. Introduction to static analysis and abstract interpretation. School on Semantics and Applications, 2003.

http://santos.cis.ksu.edu/schmidt/Escuela03/home.html