
A brief introduction to
static program analysis

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

(-: / 1

What is static program analysis?

It is the extraction of a program’s properties in advance of the

program’s execution.

Example properties:

� the program will not generate a run-time exception (error)

� the program will generate an output that has a desirable property

� the program’s internal statements have desirable properties that

admit optimization

Standard techniques:

� type checking

� iterative dataflow analysis

� theorem provimg

(-: / 2

An example Python program

Let n be some input integer:

x = x + 1; i = i − 1

:p

p :
1

p :
2

p :
3

while i != 0 :
i = n; x = 0;

print x

0

What properties can we extract?

� the program will not generate a type-mismatch exception

� the definitions (assignments) at point p0 possibly reach p3

� the program satisfies the postcondition, x = n

(-: / 3

Type checking the Python program

x = x + 1; i = i − 1

:p

p :
1

p :
2

p :
3

while i != 0 :
i = n; x = 0;

print x

0 The program is well-typed:

it won’t generate a mismatch

exception.

Γ ⊢ 0 : int Γ ⊢ e1 : int Γ ⊢ e2 : int
Γ ⊢ e1 + e2 : int

Γ ⊢ e1 : int Γ ⊢ e2 : int
Γ ⊢ e1 == e2 : bool

Γ ⊢ e : τ
Γ ⊢ x = e : Γ + [x 7→ τ]

Γ ⊢ c1 : Γ1 Γ1 ⊢ c2 : Γ2

Γ ⊢ c1; c2 : Γ2

Γ ⊢ e : bool Γ ⊢ c : Γ
Γ ⊢ while e: c : Γ

Although it’s drawn as an (inverted) deduction, type checking is
implemented as a traversal of the program’s parse tree:

[]

0
Γ
0

Γ
0 Γ

0
:Γ

0
Γ
0

:x = x + 1 i = i − 1

Γ
0

Γ
0

:Γ
0

Γ
0

:i != n x = x + 1; i = i − 1

[] i = n [i |−> int] Γ
0

:x = 0[i |−> int]

Γ
0:

Γ
0

= [x |−> int, i |−> int]Let

while i != 0: x = x + 1; i = i − 1 :

i = n; x = 0; while i != 0: x = x + 1; i = i − 1

Γ

(-: / 4

Reaching definitions calculated
by dataflow analysis

Does the assignment at pi reach point pj?

print x

:p

p :
2

p :
1

p :
3

i = n
x = 0

i != 0 ?

x = x + 1
i = i − 1

0

inpi
=

⋃
p′∈predpi

outp′

outpi
= inpi

− {px|px ≡ x = e} ∪ {pi},

for pi ≡ x ′ = e ′

outpi
= inpi

, for pi ≡ e?

For the example program, the equations for reaching definitions are
solved iteratively as

inp0
= {} inp1

= {p0, p2}

inp2
= {p0, p2} inp3

= {p0, p2}

(-: / 5

Partial correctness proved within Hoare logic

x = x + 1; i = i − 1

:p

p :
1

p :
2

p :
3

while i != 0 :
i = n; x = 0;

print x

0

{[e/x]P} x = e {P}

{P} c1 {Q} c2 {R}
{P} c1; c2 {R}

{e ∧ P} c {P}
{P} while e : c {¬e ∧ P}

{ true }

x = x + 1; i = i − 1{ i != 0 & x = n − i } { x = n − i }

{ x = n − i } { x = n }

x = x + 1 { x = n − i + 1 } i = i − 1 { x = n − i }{ x + 1 = n − i + 1 }

while i != 0: x = x + 1; i = i − 1

{ x = n }while i != 0: x = x + 1; i = i − 1{ x = n − i }i = n; x = 0

One must discover the loop invariant, x = n − i, to accomplish the

proof.

(-: / 6

Three axes of static analyses

modal/predicatepropositional

1 pass

human
interaction

multipass
(repeat till
convergence)

syntax directed

graph
(whole

program)

ALGORITHM

inductive (modular)

(abstract domain)LOGIC

PRESENTATION

(-: / 7

Some standard static analyses

logic algorithm presentation

type
checking

propositional
logic: int,
int → bool

one pass
(traverse
syntax tree)

syntax-directed

ML type
inference

shallow
∀ logic:
∀α.α → α

one pass
+ unification

syntax-directed

a.i.-based
dataflow
analysis

propositional
logic
(token sets)

iterate until
convergence

graph-based

model
checking

LTL, ACTL
(modal-like
logics)

iterate forever (!) graph-based

theorem
proving,
LF

predicate logics human interaction
inductive,
stated
axiomatically

(-: / 8

A “hybrid” analysis: predicate abstraction

We wish to prove that z ≥ x ∧ z ≥ y at p3:

p1 :
p0 :

p2 :
p3 :

if x < y
then z = y;
else z = x;

exit

p1, 〈t, ?, ?〉

p3, 〈t, t, t〉

p0, 〈?, ?, ?〉

p2, 〈f, ?, ?〉

p3, 〈f, t, t〉

We choose three predicates,

φ1 = x < y

φ2 = z ≥ x

φ2 = z ≥ y

and compute their values at the program’s points. The predicates’

values come from the domain, {t, f, ?}. (Read ? as t ∨ f.)

At all occurrences of p3 in the abstract trace, φ2 ∧ φ3 holds.

(-: / 9

When a goal is undecided, refinement is
necessary

Prove φ0 ≡ x ≥ y at p4:

p0 :
p1 :

p2 :
p3 :

p4 :

if !(x >= y)
then { i = x;

x = y;
y = i;

}

p1, 〈f〉
p2, 〈f〉
p3, 〈t〉
p4, 〈?〉

p0, 〈?〉

p4, 〈t〉

To decide the goal, we must refine the state by adding a needed
auxiliary predicate: wp(y = i, x ≥ y) = (x ≥ i) ≡ φ1.

p1, 〈f, ?〉
p2, 〈f, t〉
p3, 〈t, t〉
p4, 〈t, t〉

p0, 〈?, ?〉

p4, 〈t〉
because x 6≥ y and x ≥ i

imply y > i implies xnew ≥ i

(-: / 10

But incremental predicate refinement cannot synthesize many
interesting loop invariants. For this example:

p0 :
p1 :

p2 :

p3 :

i = n; x = 0;
while i != 0 {

x = x + 1; i = i − 1;

}
goal: x = n

We find that the initial predicate set, P0 ≡ {i = 0, x = n}, does not
validate the loop body.

The first refinement suggests we add P1 ≡ {i = 1, x = n − 1} to the
program state, but this fails to validate a loop that iterates more than
once.

Refinement stage j adds predicates Pj ≡ {i = j, x = n − j}; the
refinement process continues forever!

The loop invariant is x = n − i :-)

(-: / 11

Mr. Gedell will present interesting combinations and variations
of the standard analyses....

(-: / 12

References This talk: www.cis.ksu.edu/̃ schmidt/presentations

1. A. Aho and J. Ullman. Principles of Compiler Design. Addison Wesley, 1977.

2. K. Apt and G. Plotkin. Ten years of Hoare’s logic: a survey, part 1. ACM
TOPLAS 3 (1981).

3. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press 1999.

4. P. Cousot and R.Cousot. Abstract interpretation. ACM POPL 1977.

5. F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.

Springer, 1999.

6. D. Schmidt. Introduction to static analysis and abstract interpretation. School on

Semantics and Applications, 2003.
http://santos.cis.ksu.edu/schmidt/Escuela03/home.html

(-: / 13

