A brief introduction to
static program analysis

David Schmidt
Kansas State University

www.cis.ksu.edu/ schmidt

What Is static program analysis?

It is the extraction of a program’s properties in advance of the
program’s execution.

Example properties:
¢ the program will not generate a run-time exception (error)
¢ the program will generate an output that has a desirable property

¢ the program’s internal statements have desirable properties that
admit optimization

Standard techniques:

¢ type checking
¢ iterative dataflow analysis

¢ theorem provimg

An example Python program

Let n be some input integer:

p:1=n; X=0;
plo: while i 1= 0 :

P, : XxX=x+1 1=1-1
b_ - print X

What properties can we extract?
¢ the program will not generate a type-mismatch exception
¢ the definitions (assignments) at point po possibly reach p3

¢ the program satisfies the postcondition, x = n

Type checking the Python program

Eo :/v:hlrl]e le: é);_ The program is well-typed:
' b x=x+1i=i-1 it won’t generate a mismatch
b_* print X exception.

s NFej:int T'kFex:int TThej:int 'k ey :int
'F0:int I'Fei +er:int I'Hey ==ey:bool

N-e:T el IiEep:ly TEe:bool TEc:T
NEx=e: T+ [x— T "Fcyier: Ty ' whilee:c: T

Although it’'s drawn as an (inverted) deduction, type checking is
Implemented as a traversal of the program’s parse tree:

[] i=n;x=0;whilei!=0:x=x+1;i=i-1 3r0
[1l=i=n [i|->in] [i|->inl—x=0 *Ty T~ whilei=0:x=x+1;i=i-1 T
— 1= . — = == - T
FO| il=n Mo FOI XxX=x+1i=i-1 0

Let T, =[x[—>int i[->int] L : i
0 I‘OI X=x+1 o Foi i—1

Reaching definitions calculated
by dataflow analysis

N
% ;(_:no
¢ ing, = Up’emed p; OUtp:
i11=07 outy, = inp, —{pxlpx = x = e; U{pij,
o Xx=x+1 for pi =x' = ¢’
I=i—-1 out, =1in,., forp;=e?
P, print X

For the example program, the equations for reaching definitions are
solved iteratively as

in]:)o =1 inm = {po, P2}

in,, =1{po,P2) inp; =1po,P2J

Partial correctness proved within Hoare logic

{le/x|P}x = e {P]

p:1=n; Xx=0;
pl"; whilei1=0: (Plc1{Q}c2{R}
oo x=x+1i=i-1 {P} cl;c2 {R}
P print
o' PIX {e AP} c{P)
{P} whilee: c{—e /A P}
{x+1=n-i+1} x=x+1 {x=n-i+1} i=i-1 {x=n-i}
{il=0 & x=n-i} x=x+1;i=i-1 {x=n-i}
{x=n-i1} whilei!'=0:x=x+1;i=i-1 {x=n}
{true} i=n; x=0 {x=n-1} whilei!'=0:x=x+1;i=i-1 {x=n}

One must discover the loop invariant, x = n — 1, to accomplish the
proof.

Three axes of static analyses

ALGORITHM

/\ human
Interaction

PRESENTATION
graph
(whole

Iti
multipass orogram)

(repeat till
convergence)
Inductive (modular)

1 pass

syntax directed LOGIC (abstract domain)

—_— —
propositional modal/predicate

Some standard static analyses

logic algorithm presentation
type propositional ONne pass
checking logic: int, (traverse syntax-directed
int — bool syntax tree)
ML type shallow one pass
: yP v logic: p . syntax-directed
Inference + unification
Voo — «
a.l.-based propositional . .
: iterate until
dataflow logic graph-based
. convergence
analysis (token sets)
LTL, ACTL
model . .
. (modal-like iterate forever (!) graph-based
checking _
logics)
theorem Inductive,
proving, predicate logics | human interaction | stated
LF axiomatically

A “hybrid” analysis: predicate abstraction

We wish to prove that z > x /A z > y at ps:

If X < y Po, <?> ?> ?>
tr;en Z=Y, P1, <t> ‘j/a ?> pZ)\ff) ?a ?>
& : eise Z = X,
Py exit ps3, (t,t, 1) p3, (f, 1, 1)

b1 =x<y
We choose three predicates, ¢, =z > x

br=z2>y

and compute their values at the program’s points. The predicates’
values come from the domain, {t, f,?}. (Read ? as t \V f.)

At all occurrences of p3 in the abstract trace, ¢» /A ¢3 holds.

When a goal is undecided, refinement Is
necessary

Prove ¢po =x > y at p4:

R iflx>=y) bo <?>\

Py - then{.i:X;_ | Phﬁ pa, (t)
I:b X = _)I’ P2, <f>
% - y=1 P3, <t>

To decide the goal, we must refine the state by adding a needed
auxiliary predicate: wp(y =1i,x>y) = (x> 1) = 1.

Po, <?>\?>
P1, @ P4, (t)

(f, 1) __---because x # y and x > i
D3 <t,t> -7 imply y > i implies xnenw > 1
(t, 1)

But incremental predicate refinement cannot synthesize many
Interesting loop invariants. For this example:

 1=n;x=0;
P while 1!1=0 {
P Xx=x+1 i1=1-1;

}
Py goal:x=n

We find that the initial predicate set, Pp = {i = 0,x = n}, does not
validate the loop body.

The first refinement suggests we add P; ={i = 1,x =n — 1} to the

program state, but this fails to validate a loop that iterates more than
once.

Refinement stage j adds predicates P; ={i =j,x =n —j}; the
refinement process continues forever!

The loop invariantisx=n—1i :-)

Mr. Gedell will present interesting combinations and variations
of the standard analyses....

References This talk: www.cis.ksu.edu/~schmidt/presentations

1. A. Aho and J. Ullman. Principles of Compiler Design. Addison Wesley, 1977.

2. K. Apt and G. Plotkin. Ten years of Hoare’s logic: a survey, part 1. ACM
TOPLAS 3 (1981).

3. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press 1999.
4. P. Cousot and R.Cousot. Abstract interpretation. ACM POPL 1977.

5. F Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

6. D. Schmidt. Introduction to static analysis and abstract interpretation. School on
Semantics and Applications, 2003.
http://santos.cis.ksu.edu/schmidt/Escuela03/home.html

