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Overview

◮ Statically analyze the documents generated dynamically by a
program

◮ LR(k)-parsing technology + data-flow analysis

◮ Based on the document language’s context-free reference
grammar and the program’s control structure, the analysis
predicts how the documents will be generated and parses the
predicted documents.

◮ Our strategy remembers context-free structure by computing
abstract LR-parse stacks.

◮ The technique is implemented in Objective Caml and has
statically validated a suite of PHP programs that dynamically
generate HTML documents.



Problem

◮ Scripting languages like PHP, Perl, Ruby, and Python use
strings as a “universal data structure” to communicate values,
commands, and programs.

◮ Example: a PHP script that assembles within a string variable
an SQL query or an HTML page or an XML document.

◮ Typically, the well-formedness of the assembled string is
verified when the string is supplied as input to its intended
processor (database, web browser, or interpreter), and an
incorrectly assembled string might cause processor failure.

◮ Worse still, a malicious user might deliberately supply
misleading input that generates a document that attempts a
cross-site-scripting or injection attack.



Solution

◮ Dynamic solution
◮ As a first step towards preventing failures and attacks, the

well-formedness of a dynamically generated, “grammatically
structured” string (document) should be checked with respect
to the document’s context-free reference grammar (for SQL or
HTML or XML) before the document is supplied to its
processor.

◮ Static solution
◮ Better still, the document generator program itself should be

analyzed to validate that all its generated documents are well
formed with respect to the reference grammar, like an
application program is type checked in advance of execution.



This Paper

◮ we employ LR(k)-parsing technology and data-flow analysis to
analyze statically a program that dynamically generates
documents as strings, and at the same time, parse the
dynamically generated strings with the context-free reference
grammar for the document language.

◮ We compute abstract parse stacks that remember the
context-free structure of the strings.
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Example

x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R
X3 = X1

(Read . as an infix string-append operation.)

◮ Does an output string generated by the above script conform
to this LR(0) grammar?

S → a | [ S ]

◮ Perhaps we require this program to print only well-formed
S-phrases — the occurrence of x at “print x” is a “hot
spot” and we must analyze x’s possible values.



Analysis based on Type Checking

x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R
X3 = X1

◮ An analysis based on type checking assigns types
(reference-grammar nonterminals) to the program’s variables.
The occurrences of x can indeed be data-typed as S , but r
has no data type that corresponds to a nonterminal.



Analysis based on Regular Expressions

x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R
X3 = X1

◮ An analysis based on regular expressions (works by
Christensen, Møller, & Schwartzbach; Minamide; Wasserman
& Su) solves flow equations shown above in the right column
in the domain of regular expressions, determining that the hot
spot’s (X3’s) values conform to the regular expression,
[∗ · a · ]∗, but this does not validate the assertion.



Grammar-based Analysis

x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R
X3 = X1

◮ A grammar-based analysis (Thiemann [?]) treats the flow
equations as a set of grammar rules. The “type” of x at the
hot spot is X3. Next, a language-inclusion check tries to
prove that all X3-generated strings are S-generable.



Our Approach

x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R
X3 = X1

◮ Our approach solves the flow equations in the domain of parse
stacks

◮ X3’s meaning is the set of LR-parses of the strings that might
be denoted by x.



Parse Controller for S → [S] | a

◮ Calculate its LR-items

◮ Build its parse (“goto”) controller.

[
. S

S .[S ]
.aS

s
0 S [. ]S

S .[S ]
.aS

s
1

.S
s5

S a.
s2

S [S.]
s3

S [S].
s4

[ S

S
a

a

]



Parse of ”[[a]]”

[
. S

S .[S ]
.aS

s
0 S [. ]S

S .[S ]
.aS

s
1

.S
s5

S a.
s2

S [S.]
s3

S [S].
s4

[ S

S
a

a

]

parse stack (top lies at right) input sequence (front lies at left)
s0 [[a]]

s0 :: s1 [a]] (because goto(s0 , [) = s1)
s0 :: s1 :: s1 a]]

s0 :: s1 :: s1 :: s2 ]] (reduce : S → a)
s0 :: s1 :: s1 S ]]

s0 :: s1 :: s1 :: s3 ]] (because goto(s1 ,S) = s3)
s0 :: s1 :: s1 :: s3 :: s4 ] (reduce : S → [S])
s0 :: s1 S ]

s0 :: s1 :: s3 ]

s0 :: s1 :: s3 :: s4 (reduce : S → [S])
s0 S

s0 :: s5 (finished)



Abstract Parsing

X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R

X3 = X1

[
. S

S .[S ]
.aS

s
0 S [. ]S

S .[S ]
.aS

s
1

.S
s5

S a.
s2

S [S.]
s3

S [S].
s4

[ S

S
a

a

]

◮ Interpret the flow equations as functions that map an input
parse state to (a set of) output parse stacks.

◮ To analyze the hot spot at X3, we generate the function call,
X3(s0), where s0 is the start state for parsing an S-phrase.



Abstract Parsing

X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R

X3 = X1

[
. S

S .[S ]
.aS

s
0 S [. ]S

S .[S ]
.aS

s
1

.S
s5

S a.
s2

S [S.]
s3

S [S].
s4

[ S

S
a

a

]

The flow equation, X3 = X1, generates

X3(s0) = X1(s0)

which itself demands a parse of the string generated at point X1
from state s0:

X1(s0) = X0(s0) ∪ X2(s0)

The union of the parses from X0 and X2 must be computed.



Abstract Parsing

X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R

X3 = X1

[
. S

S .[S ]
.aS

s
0 S [. ]S

S .[S ]
.aS

s
1

.S
s5

S a.
s2

S [S.]
s3

S [S].
s4

[ S

S
a

a

]

Consider X0(s0):

X0(s0) = goto(s0, a) = s2 (reduce : S → a)
⇒ goto(s0,S) = s5

A parse of string ’a’ from s0 generates s2, a final state, that
reduces to nonterminal S , which generates s5 — an S-phrase has
been parsed. (The ⇒ signifies a reduce step to a nonterminal.)
The completed stack is therefore s0 :: s5.



Abstract Parsing

X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R

X3 = X1

[
. S

S .[S ]
.aS

s
0 S [. ]S

S .[S ]
.aS

s
1

.S
s5

S a.
s2

S [S.]
s3

S [S].
s4

[ S

S
a

a

]

The remaining call, X2(s0), goes

X2(s0) = ([ · X1 · R)(s0) = goto(s0, [) ⊕ (X1 · R)
= s1 ⊕ (X1 · R) = s1 :: (X1(s1) ⊕ R)

The ⊕ operator sequences the parse steps: for parse stack, st, and
function, E , st ⊕ E = st :: E (top(st)), that is, the stack made by
appending st to the stack returned by E (top(st)).



Abstract Parsing

X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R

X3 = X1

[
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S .[S ]
.aS

s
0 S [. ]S

S .[S ]
.aS

s
1

.S
s5

S a.
s2

S [S.]
s3

S [S].
s4

[ S

S
a

a

]

Then, X1(s1) = X0(s1) ∪ X2(s1) computes to s3, and

X2(s0) = s1 :: (X1(s1) ⊕ R) = s1 :: (s3 ⊕ R) = s1 :: s3 :: R(s3)
= s1 :: s3 :: s4 (reduce : S → [S])
⇒ goto(s0,S) = s5

That is, X2(s0) built the stack, s1 :: s3 :: s4, denoting a parse of
[S], which reduced to S , giving s5.



Abstract Parsing
X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R

X3 = X1

Here is the complete list of solved function calls:

X3(s0) = X1(s0)
X1(s0) = X0(s0) ∪ X2(s0) = · · · = s5 ∪ s5 = s5
X0(s0) = goto(s0, a) = s2 ⇒ goto(s0, S) = s5
X2(s0) = goto(s0, [) ⊕ (X1 · R) = s1 :: X1(s1) ⊕ R

= · · · = s1 :: s3 :: R(s3) = s1 :: s3 :: s4 ⇒ goto(s0, S) = s5
R(s3) = goto(s3, ]) = s4
X1(s1) = X0(s1) ∪ X2(s1) = · · · = s3 ∪ s3 = s3
X0(s1) = goto(s1, a) = s2 ⇒ goto(s1, S) = s3
X2(s1) = goto(s1, [) ⊕ (X1 · R)

= s1 :: (X1(s1) ⊕ R) = · · · = s1 :: s3 :: R(s3)
= s1 :: s3 :: s4 ⇒ goto(s1, S) = s3

The solution is X3(s0) = s5, validating that the strings printed at the hot

spot must be S-phrases.



Abstract Parsing

X3(s0) = X1(s0)
X1(s0) = X0(s0) ∪ X2(s0) = · · · = s5 ∪ s5 = s5
X0(s0) = goto(s0, a) = s2 ⇒ goto(s0, S) = s5
X2(s0) = goto(s0, [) ⊕ (X1 · R) = s1 :: X1(s1) ⊕ R

= · · · = s1 :: s3 :: R(s3) = s1 :: s3 :: s4 ⇒ goto(s0, S) = s5
R(s3) = goto(s3, ]) = s4
X1(s1) = X0(s1) ∪ X2(s1) = · · · = s3 ∪ s3 = s3
X0(s1) = goto(s1, a) = s2 ⇒ goto(s1, S) = s3
X2(s1) = goto(s1, [) ⊕ (X1 · R)

= s1 :: (X1(s1) ⊕ R) = · · · = s1 :: s3 :: R(s3)
= s1 :: s3 :: s4 ⇒ goto(s1, S) = s3

◮ Each equation instance, Xi (sj) = Eij , is a first-order data-flow
equation.



Abstract Parsing

X3(s0) = X1(s0)
X1(s0) = X0(s0) ∪ X2(s0) = · · · = s5 ∪ s5 = s5
X0(s0) = goto(s0, a) = s2 ⇒ goto(s0, S) = s5
X2(s0) = goto(s0, [) ⊕ (X1 · R) = s1 :: X1(s1) ⊕ R

= · · · = s1 :: s3 :: R(s3) = s1 :: s3 :: s4 ⇒ goto(s0, S) = s5
R(s3) = goto(s3, ]) = s4
X1(s1) = X0(s1) ∪ X2(s1) = · · · = s3 ∪ s3 = s3
X0(s1) = goto(s1, a) = s2 ⇒ goto(s1, S) = s3
X2(s1) = goto(s1, [) ⊕ (X1 · R)

= s1 :: (X1(s1) ⊕ R) = · · · = s1 :: s3 :: R(s3)
= s1 :: s3 :: s4 ⇒ goto(s1, S) = s3

◮ Each equation instance, Xi (sj) = Eij , is a first-order data-flow
equation.

◮ In the example, X1(s1) and X2(s1) are mutually recursively defined,
and their solutions are obtained by iteration-until-convergence.



Abstract Parsing

X3(s0) = X1(s0)
X1(s0) = X0(s0) ∪ X2(s0) = · · · = s5 ∪ s5 = s5
X0(s0) = goto(s0, a) = s2 ⇒ goto(s0, S) = s5
X2(s0) = goto(s0, [) ⊕ (X1 · R) = s1 :: X1(s1) ⊕ R

= · · · = s1 :: s3 :: R(s3) = s1 :: s3 :: s4 ⇒ goto(s0, S) = s5
R(s3) = goto(s3, ]) = s4
X1(s1) = X0(s1) ∪ X2(s1) = · · · = s3 ∪ s3 = s3
X0(s1) = goto(s1, a) = s2 ⇒ goto(s1, S) = s3
X2(s1) = goto(s1, [) ⊕ (X1 · R)

= s1 :: (X1(s1) ⊕ R) = · · · = s1 :: s3 :: R(s3)
= s1 :: s3 :: s4 ⇒ goto(s1, S) = s3

◮ The flow-equation set is generated dynamically while the equations
are being solved.



Abstract Parsing

X3(s0) = X1(s0)
X1(s0) = X0(s0) ∪ X2(s0) = · · · = s5 ∪ s5 = s5
X0(s0) = goto(s0, a) = s2 ⇒ goto(s0, S) = s5
X2(s0) = goto(s0, [) ⊕ (X1 · R) = s1 :: X1(s1) ⊕ R

= · · · = s1 :: s3 :: R(s3) = s1 :: s3 :: s4 ⇒ goto(s0, S) = s5
R(s3) = goto(s3, ]) = s4
X1(s1) = X0(s1) ∪ X2(s1) = · · · = s3 ∪ s3 = s3
X0(s1) = goto(s1, a) = s2 ⇒ goto(s1, S) = s3
X2(s1) = goto(s1, [) ⊕ (X1 · R)

= s1 :: (X1(s1) ⊕ R) = · · · = s1 :: s3 :: R(s3)
= s1 :: s3 :: s4 ⇒ goto(s1, S) = s3

◮ The flow-equation set is generated dynamically while the equations
are being solved.

◮ This is a demand-driven analysis (Agrawal 99, Duesterwald 97,
Horwitz 95), called minimal function-graph semantics (Jones &
Mycroft 86), computed by a worklist algorithm.



Worklist-algorithm calculation of call, X3(s0)

Worklist,
added and processed
from top to bottom:

X3(s0)
X1(s0)
X0(s0)
X2(s0)
X1(s0)
X1(s1)
X3(s0)
X0(s1)
X2(s1)
X1(s1)
X2(s0)
X2(s1)
R(s3)
X2(s0)
X2(s1)
X1(s0)
X1(s1)

Cache updates, inserted from top to bottom,
where X (s) 7→ P abbreviates Cache[X (s)] := P

X3(s0) 7→ ∅
X1(s0) 7→ ∅
X0(s0) 7→ ∅
X2(s0) 7→ ∅
X0(s0) 7→ reduce(s0, goto(s0 , a)) = reduce(s0, s2)

= reduce(s0, goto(s0 , S)) = reduce(s0, s5) = {s5}
X1(s1) 7→ ∅
X1(s0) 7→ {s5}
X0(s1) 7→ ∅
X2(s1) 7→ ∅
X3(s0) 7→ {s5}
X0(s1) 7→ reduce(s1, goto(s1 , a)) = {s3}
X1(s1) 7→ {s3}
R(s3) 7→ ∅
R(s3) 7→ reduce(s3, goto(s3 , ])) = {s4}
X2(s0) 7→ ([ :: X1 :: R)(s0)

= s1 ⊕ (X1 :: R) = (s1 :: X1(s1)) ⊕ R

= s1 :: s3 :: R(s3) = reduce(s0, s1 :: s3 :: s4)
= reduce(s0, goto(s0 , S)) = {s5}

X2(s1) 7→ ([ :: X1 :: R)(s1) = {s3}

Generated call graph:

0X3 ( )

s
1X2 ( )

s
3

( )R
s
0X1 ( )

s
0X2 ( )

s
0X0 ( )

s
1X1 ( )

s
1X0 ( )

s



Worklist-algorithm calculation of call, X3(s0)

The initialization step places initial call, X0(s0), into the worklist
and into the call graph and assigns to the cache the partial
solution, Cache[X0(s0)] 7→ ∅.
The iteration step repeats the following until the worklist is empty:

1. Extract a call, X (s), from the worklist, and for the corresponding
flow equation, X = E , compute E (s), folding abstract stacks as
necessary.

2. While computing E (s), if a call, X ′(s ′) is encountered, (i) add the
dependency, X ′(s ′) → X (s), to the call graph (if it is not already
present); (ii) if there is no entry for X ′(s ′) in the cache, then assign
Cache[X ′(s ′)] 7→ ∅ and place X ′(s ′) on the worklist.

3. When E (s) computes to an answer set, P , and P contains an
abstract parse stack not already listed in Cache[X (s)], then assign
Cache[X (s)] 7→ (Cache[X (s)] ∪ P) and add to the worklist all
X ′′(s ′′) such that the dependency, X (s) → X ′′(s ′′), appears in the
flowgraph.
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Abstract Parse Stacks

◮ In the previous example, the result for each Xi(sj ) was a single
stack. In general, a set of parse stacks can result, e.g., for

x = ’[’

while ...

x = x . ’[’

x = x . ’a’ . ’]’

X0 = [

X1 = X0 ⊔ X2
X2 = X1 · [
X3 = X1 · a · ]

at conclusion, x holds zero or more left brackets and an
S-phrase; X3(s0) is the infinite set,
{s5, s1 :: s3, s1 :: s1 :: s3, s1 :: s1 :: s1 :: s3, · · · }.

◮ To bound the set, we abstract it by “folding” its stacks so
that no parse state repeats in a stack.

◮ Since Σ, the set of parse-state names, is finite, folding
produces a finite set of finite-sized stacks (that contain
cycles).



Abstract Parse Stacks

The abstract interpretation based on abstract, folded stacks can be
calculated; here is the intuition:

◮ A stack segment like p = s1 :: s1 is a linked list, a graph,
11 ss , where the stack’s top and bottom are marked by

pointers; when we push a state, e.g., p :: s2, we get
1 s1 s2

s .

◮ The folded stack is formed by merging same-state objects and

retaining all links: 1 s2s . (This can be written as the
regular expression, s+

1 :: s2.)

◮ Folding can apply to multiple states, e.g.,

6 s7
s
6 s7

s
6 s8s folds to 6 s7

s8s
.



Abstract Parse Stacks

x = ’[’

while ...

x = x . ’[’

x = x . ’a’ . ’]’

X0 = [

X1 = X0 ⊔ X2
X2 = X1 · [
X3 = X1 · a · ]

The abstract interpretation of the above loop program is defined
with abstract stacks in the next slide.



Iterative solution with folded parse stacks

Flow equation set generated from demand, X3(s0):

X0(s0) = [(s0)
X1(s0) = X0(s0) ∪ X2(s0)

X2(s0) = X1(s0) ⊕ [

X3(s0) = X1(s0) ⊕ (a.])

Least fixed-point solution expressed with abstract parse stacks:

X0(s0) = [(s0) = {s1}

Because X1 and X2 are mutually defined, we iterate to a solution,
where Xi ’s value at iteration j is denoted Xij :

X11(s0) = {s1} ∪ ∅ = {s1}

X21(s0) = X11(s0) ⊕ [ = fold{s1 :: s1} = {s+
1 }

X12(s0) = {s1} ∪ {s+
1 } = {s1, s+

1 }

= {s+
1 }. (We can merge the two stack segments since the first

is a prefix of the second and has the same bottom and top states.)

X22(s0) = X12(s0) ⊕ [ = {s+
1 :: [(s1)} = fold{s+

1 :: s1} = {s+
1 }

X13(s0) = {s1} ∪ {s+
1 } = {s1, s+

1 } = {s+
1 } = X12(s0)

X23(s0) = {s+
1 } = X22(s0)

X3(s0) = {s+
1 :: a(s1) ⊕ ]}

First, s+
1 :: a(s1) = s+

1 :: s2 ⇒ s+
1 :: goto(s1 , S) = s+

1 :: s3.

= {s+
1 :: s3 :: ](s3)} = {s+

1 :: s3 :: s4}
The reduction, S → [S], splits the stack into two cases:

(i) there are multiple s1s within s+
1 ; (ii) there is only one s1:

= (i){s+
1 :: goto(s1 , S)} ∪ (ii){goto(s0 , S)}

= {s+
1 :: s3, s5}



Abstract Parse Stacks

x = ’[’

while ...

x = x . ’[’

x = x . ’a’ . ’]’

X0 = [

X1 = X0 ⊔ X2
X2 = X1 · [
X3 = X1 · a · ]

Flow equation set generated from demand, X3(s0):

X0(s0) = [(s0)
X1(s0) = X0(s0) ∪ X2(s0)

X2(s0) = X1(s0) ⊕ [

X3(s0) = X1(s0) ⊕ (a.])

The result, X3(s0) = {s+
1 :: s3, s5}, asserts that

◮ the string at X3 might be a well-formed S phrase, or

◮ it might contain a surplus of unmatched left brackets.



Abstract Parse Stacks

Least fixed-point solution expressed with abstract parse stacks:

X3(s0) = {s+
1 :: a(s1) ⊕ ]}

First, s+
1 :: a(s1) = s+

1 :: s2 ⇒ s+
1 :: goto(s1 , S) = s+

1 :: s3.

= {s+
1 :: s3 :: ](s3)} = {s+

1 :: s3 :: s4}
The reduction, S → [S], splits the stack into two cases:
(i) there are multiple s1s within s+

1 ; (ii) there is only one s1:
= (i){s+

1 :: goto(s1 , S)} ∪ (ii){goto(s0 , S)}
= {s+

1 :: s3, s5}

◮ The reduction of S → [S ] is done on s+
1 :: s3 :: s4.

◮ That is, the complete stack is 0 s1 s3 s4
s

, meaning that
three states must be popped: we traverse s4, s3, and s1, and follow
the links from the last state, s1, to see what the remaining stack
might be.

◮ There are two possibilities: 10 ss
and s0 .

◮ We compute the result for each case, as shown in the above Figure.
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String-update Operations

◮ String-manipulating languages use operations like replace

and substring, which can be employed foolishly or sensibly.

◮ An example of the former is

x = ’[[a]]’;

replace(’a’, ’[’, x)

which replaces occurrences of ’a’ in x by ’[’, changing x’s
value to the grammatically ill-formed phrase, ’[[[]]’.

◮ A more sensible replacement would be

replace(’[a]’, ’a’, x)

which preserves x’s grammatical structure.



String-update Operations

◮ To validate an operation, replace(U,V,x), we require that U
and V “parse the same” in every possible context where they
might appear (within x):

◮ Say that replace(U,V,x) is update-invariant for x iff for all
(nonfinal) parse states, s ∈ Σ, U(s) = V (s).

◮ This means replacing U by V preserves x’s parse.



String-update Operations

◮ When we analyze a program, we may first ignore the replace

operations, treating them as “no-ops.”

◮ Once the flow equations are solved, we validate the invariance
of each replace(U,V,x) by generating hot-spot requests for
strings U and V for all possible parse states, building on the
cached results of the worklist algorithm.

◮ Finally, we compare the results to see if replace(U,V,x) is
update-invariant for x.



String-update Operations

Here is an example:

y = ’[[[a]]]’

x = ’a’

while ...

x = ’[’. x .’]’

replace(x, ’a’, y)

Y 0 = [ · [ · [ · a · ] · ] · ]
X0 = a

X1 = X0 ∪ X2
X2 = [ · X1 · ]
Y 1 = replace(X1, a,Y 0)

◮ Say that the program must be analyzed for y’s final value:
Y 1(s0).

◮ We initially ignore the replacement operation at Y 1 and solve
the simpler equation, Y 1(s0) = Y 0(s0), instead, which quickly
computes to {s5}.

◮ Next, we analyze the replace operation by generating these
hot-spot requests for all the nonfinal parse states:

a(s0), X1(s0), a(s1), X1(s1), a(s3), X1(s3)



String-update Operations

y = ’[[[a]]]’

x = ’a’

while ...

x = ’[’. x .’]’

replace(x, ’a’, y)

Y 0 = [ · [ · [ · a · ] · ] · ]
X0 = a

X1 = X0 ∪ X2
X2 = [ · X1 · ]
Y 1 = replace(X1, a,Y 0)

◮ For example, the first request computes to

a(s0) = goto(s0, a) = s2 ⇒ goto(s0,S) = s5
and the second repeats an earlier example,

X1(s0) = X0(s0) ∪ X2(s0)
X2(s0) = · · · = s1 :: s3 :: s4 ⇒ goto(s0,S)) = s5

showing that both strings compute to the same parse-stack
segments in starting context s0.

◮ The other hot spots compute this same way.
◮ Once all the hot spots are solved, we confirm that X1 and a

have identical outcomes for all possible parse contexts.
◮ This validates the invariance of replace(x,’a’,y) at Y 1.



String-update Operations

◮ It is important that we validate update-invariance for all
possible contexts.

◮ Consider the reference grammar,

N → a | b | [a]

◮ Although both a and b are N-phrases,
replace(’a’,’b’,’[a]’) violates [a]’s grammatical
structure.
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Implementation

PHP program String−flow
Analyzer

Abstract
Parser

ocamlyacc
reference
grammar

data−flow
equations

LALR(1) table

parsed OK

parsing ERR

hot spot

PHP

◮ The implementation is in Objective Caml.

◮ The front end of Minamide’s analyzer for PHP was modified
to accept a PHP program with a hot-spot location and to
return data-flow equations with string operations for the hot
spot.

◮ ocamlyacc produces an LALR(1) parsing table, and the
abstract parser uses the data-flow equations and the parsing
table to parse statically the strings generated by the PHP
program.



Implementation

PHP program String−flow
Analyzer

Abstract
Parser

ocamlyacc
reference
grammar

data−flow
equations

LALR(1) table

parsed OK

parsing ERR

hot spot

PHP

◮ Abstract parsing works directly on characters (not tokens), so
the reference grammar is written for scannerless parsing.

◮ Performance was good enough for practical use.
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Experiments

◮ We applied our tool to a suite of PHP programs that
dynamically generate HTML documents, the same one studied
by Minamide, using a MacOSX with an Intel Core 2 Duo
Processor (2.56GHz) and 4 GByte memory:

webchess faqforge phpwims timeclock schoolmate

files 21 11 30 6 54

lines 2918 1115 6606 1006 6822

no. of hot spots 6 14 30 7 1

no. of parsings 6 16 36 7 19

parsed OK 5 1 19 0 1

parsed ERR 1 15 17 7 18

no. of alarms 1 31 16 14 20

true positives 1 31 13 14 17

false positives 0 0 3 0 3

time(sec) 0.224 0.155 1.979 0.228 2.077



Experiments
◮ We manually identified the hot spots and ran our abstract

parser for each hot spot.
◮ Since we do not yet have parse-error recovery, each time a

parse error was identified by our analyzer, we located the
source of the error, fixed it, and tried again until no parse
errors were detected.

webchess faqforge phpwims timeclock schoolmate

files 21 11 30 6 54

lines 2918 1115 6606 1006 6822

no. of hot spots 6 14 30 7 1

no. of parsings 6 16 36 7 19

parsed OK 5 1 19 0 1

parsed ERR 1 15 17 7 18

no. of alarms 1 31 16 14 20

true positives 1 31 13 14 17

false positives 0 0 3 0 3

time(sec) 0.224 0.155 1.979 0.228 2.077



Experiments
◮ All the false-positive alarms were caused by ignoring the tests

within conditional commands.
◮ The parsing time shown in the table is the sum of all execution

times needed to find all parsing errors for all hot spots.
◮ The reference grammar’s parse table took 1.323 seconds to

construct; this is not included in the analysis times.

webchess faqforge phpwims timeclock schoolmate

files 21 11 30 6 54

lines 2918 1115 6606 1006 6822

no. of hot spots 6 14 30 7 1

no. of parsings 6 16 36 7 19

parsed OK 5 1 19 0 1

parsed ERR 1 15 17 7 18

no. of alarms 1 31 16 14 20

true positives 1 31 13 14 17

false positives 0 0 3 0 3

time(sec) 0.224 0.155 1.979 0.228 2.077



Experiments

◮ The alarms are classified below:
classification occurrences

open/close tag syntax error 11
open/close tag missing 45

superfluous tag 5
improperly nested 14

misplaced tag 5
escaped character syntax error 2

◮ All in all, our abstract parser
◮ works without limiting the nesting depth of tags,
◮ validates the syntax reasonably fast, and
◮ is guaranteed to find all parsing errors reducing inevitable false

alarms to a minimum.



Experiments

◮ Minamide excluded one PHP application, named tagit, from
his experiments, since tagit generates an arbitrary nesting
depth of tags.

◮ In principle, our abstract parser should be able to validate
tagit, but we also excluded tagit from our studies because
the current version of our abstract parser checks that
string-update operations satisfy the update-invariance
property.

◮ Unexpectedly (to us!), so many string updates in tagit

violated update invariance that our abstract parser generated
too many false-positives to be helpful.



Experiments

◮ We can reduce false positives due to violation of update
invariance by selectively employing Minamide’s
f.s.a.-transducer technique, where a string update is analyzed
separately from the flow analysis with its own f.s.a.
transducer.

◮ For example, the last flow equation in this program,

x = ’a’

while ...

x = ’[[’. x .’]’

replace(’[[’, ’[’, x)

X0 = a

X1 = X0 ∪ X2
X2 = [ · [ · X1 · ]
X3 = replace([[, [,X1)

could be replaced by just X3 = X1, and we would use a
separate transducer to analyze replace([[, [,X1).

◮ We leave this as a future work.



Experiments

◮ On the other hand, one might argue that any string-update
operator that violates update invariance is dubiously employed
and deserves closer scrutiny.

◮ In this regard, the abstract parser’s “false positives” are
healthy warnings.
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Conclusion

◮ Injection and cross-site-scripting attacks can be reduced by
analyzing the programs that dynamically generate documents
(Ref: A series of works by Wassermann & Su).

◮ In this paper, we have improved the precision of such analyses
by employing LR-parsing technology to validate the
context-free grammatical structure of generated documents.



Future Work

◮ A parse tree is but the first stage in calculating a string’s
meaning.

◮ The parsed string has a semantics (as enforced by its
interpreter), and one can encode this semantics with
semantics-processing functions, like those written for use with
a parser-generator.

◮ Tainting analysis — tracking unsanitized data — is an
example semantic property that can be encoded this way.

◮ The semantics can then be approximated by the static
analysis so that abstract parsing and abstract semantic
processing proceed simultaneously.
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