
Abstract parsing:

static analysis of dynamically generated string

output using LR-parsing technology

Kyung-Goo Doh1 ⋆, Hyunha Kim1⋆, and David A. Schmidt2 ⋆⋆

1 Hanyang University, Ansan, South Korea
2 Kansas State University, Manhattan, Kansas, USA

Abstract. We combine LR(k)-parsing technology and data-flow anal-
ysis to analyze, in advance of execution, the documents generated dy-
namically by a program. Based on the document language’s context-
free reference grammar and the program’s control structure, the analysis
predicts how the documents will be generated and parses the predicted
documents. Our strategy remembers context-free structure by comput-
ing abstract LR-parse stacks. The technique is implemented in Objective
Caml and has statically validated a suite of PHP programs that dynam-
ically generate HTML documents.

1 Introduction

Scripting languages like PHP, Perl, Ruby, and Python use strings as a “universal
data structure” to communicate values, commands, and programs. For example,
one might write a PHP script that assembles within a string variable an SQL
query or an HTML page or an XML document. Typically, the well-formedness
of the assembled string is verified when the string is supplied as input to its
intended processor (database, web browser, or interpreter), and an incorrectly
assembled string might cause processor failure. Worse still, a malicious user might
deliberately supply misleading input that generates a document that attempts
a cross-site-scripting or injection attack.

As a first step towards preventing failures and attacks, the well-formedness of
a dynamically generated, “grammatically structured” string (document) should
be checked with respect to the document’s context-free reference grammar (for
SQL or HTML or XML) before the document is supplied to its processor. Better
still, the document generator program itself should be analyzed to validate that
all its generated documents are well formed with respect to the reference gram-
mar, like an application program is type checked in advance of execution. Such an

⋆ Supported in part by grant R01-2006-000-10926-0 from the Basic Research Program
of the Korea Science and Engineering Foundation and in part by the Engineering
Research Center of Excellence Program of Korea Ministry of Education, Science and
Technology(MEST) / Korea Science and Engineering Foundation(KOSEF), R11-
2008-007-01003-0.

⋆⋆ Supported by NSF ITR-0326577.

analysis should indicate the grammatical structure of the generated documents
so that there is clear indication of those positions within the document where
unsanitized data or potential attacks might appear. This level of precision goes
further than what is provided by regular-expression-based analysis techniques.

In this paper, we employ LR(k)-parsing technology and data-flow analysis to
analyze statically a program that dynamically generates documents as strings,
and at the same time, parse the dynamically generated strings with the context-
free reference grammar for the document language. We compute abstract parse
stacks that remember the context-free structure of the strings.

Our approach requires that the reference grammar is LR(k) and that the
program analyzed is annotated with “hot spots” (those program points where
critically important strings are generated). Starting from each hot spot, the
static analysis conducts demand-driven abstract parsing of the string assembled
at the hot-spot. We have implemented an abstract-parsing analyzer and applied
it to PHP programs that dynamically generate strings of HTML documents.

The paper is organized as follows: The next section reviews research on string
analysis, and Section 3 summarizes our contributions. Sections 4 and 5 present
a motivating example and the key concepts behind abstract parsing. Section 6
surveys the worklist algorithm that implements the flow analysis, and Sections
7 and 8 discuss technical issues regarding input variables and string-update op-
erations. Section 9 sketches our implementation, and Section 10 concludes.

2 Previous efforts

Because of the popularity of document generators and the dangers that they
introduce, there exist a variety of approaches for validating document generators
and their generated documents:

Parsing the generated strings: From the perspective of the document proces-
sor, it is important to protect oneself from malicious incoming queries. Wasser-
mann and Su [20] studied the format of command-injection attacks on SQL
servers and devised an SQL reference grammar with annotations that identify in
the grammar the positions where injection attacks might be inserted. A parser
based on the grammar is inserted as a front-end filter to the SQL database —
every incoming query must be parsed before it proceeds to the database.

Document-generation languages: One might limit malformed document gen-
eration by restricting the language used to write document-generator programs.
XDuce [9, 10] is an ML-like language for building XML documents that are
struct-like values statically typed with regular-expressions. The typing ensures
that dynamically generated documents conform to “templates” defined by the
document types. In a similar vein, <bigwig> [3] and JWIG [6] are domain-specific
languages for XHTML-document generation. JWIG, an extension of Java, pro-
vides Java-encoded templates, and an accompanying static analyzer validates
regular-expression well-formedness of the assembled documents.

Thiemann [18] studied the problem of inferring string-data types that are ex-
actly the reference grammar’s nonterminals: His extension of ML’s type checker

generates a set of typing constraints, expressed as grammar rules, for the strings
generated by a program and checks containment of the constraint-set language
in the reference-grammar language with Early’s parsing algorithm, searching for
grammar nonterminals that are solutions to the constraint set.

Regular-expression-based static analysis: Checking context-free grammar in-
clusion is costly, so analyses based on regular expressions are typically employed.
One example is Christensen, et al.’s string analyzer [5], which extracts from a
Java program a set of data-flow equations for the generated strings, treating the
equations as a context-free grammar. Rather than check for context-free lan-
guage inclusion, the flow equations are overapproximated into a regular gram-
mar, using a conversion due to Mohri and Nederhof. Queries about grammatical
well-formedness are posed as regular expressions, and finite-state machinery de-
cides the answers.

Using Christensen, et al.’s string analyzer and a context-free-language reach-
ability algorithm, Wasserman, et al.[19] devised a static analysis that type checks
dynamically generated SQL queries in Java database applications. Kirkegaard
and Møller [13] adapted Christensen, et al.’s work and Knuth’s balanced gram-
mars to check whether the approximated regular grammar conforms to a bal-
anced XML grammar, statically predicting generated XML documents to be
well-formed.

Minamide’s analysis [14] also uses Christensen, et al.’s string analyzer and
extracts a flow-equation set for a string expression, treating the equation set as
if it were a context-free grammar. The novelty is the application of finite-state-
automata transducers to revise the flow equations due to string-update opera-
tions embedded in the program. The transducers are also used to sanitize suspect
user input before it is injected into a dynamically generated document. Subse-
quently, Minamide’s group developed exponential-time algorithms that validate
a context-free grammar against a subclass of balanced context-free grammars,
which can be used to validate dynamically generated XML and HTML docu-
ments [15, 17].

Choi, et al. [4] used abstract-interpretation with heuristic widening to devise
a string analyzer that handles heap variables and context sensitivity. Its regular-
expression-based machinery shares the same limitations with earlier efforts.

Flow-analysis techniques: When a user supplies malicious input data for in-
clusion into a dynamically generated document, a flow analyzer might track the
input’s flow and determine whether unsanitized input is injected into a dynami-
cally generated document. Xie and Aiken [22] devised and applied an interproce-
dural flow analyzer that detects potential SQL injection errors in PHP programs.
Jovanovich, et al., [12] implemented a tool with similar aims.

Combining the regular-expression and flow-analysis approaches are Wasser-
mann and Su [21], who use Minamide’s approach to extract data-flow equations
from a program. They then annotate the flow equations as to which strings are
untrustworthy so that solving the equations implements a data-flow analysis that
tracks potential injection errors.

x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R =]

X1 = X0 ⊔X2
X2 = [·X1 · R
X3 = X1

(Read . as an infix string-append operation.)

Fig. 1. Sample program and its data-flow equations

3 Our contribution

Our work means to complement these approaches by improving their precision:

1. We use the data-flow equations extracted from a program as a higher-order
schema from which we generate first-order flow equations that calculate the
parse stacks generated when the dynamically generated strings are parsed (by
the context-free reference grammar). The solved equations convey context
information more precise than that given by regular-expression techniques.

2. We cannot retain all parse information and ensure termination, so we ”fold”
“repeating” parse stacks into single-entry, single-exit graphs (with cycles).

3. Rather than implement string-update operations as f.s.a.-transductions on
the original flow equation set (cf. [14]), we use an invariance property for
string updates, which means a string can be updated only if the outcome of
the string’s LR-parse is left unaltered.

It is easy to envision how our abstract parsing technique can be augmented by
semantic-processing functions [2] so that a Xie-and-Aiken or Wassermann-and-
Su tainting analysis can be conducted along with the abstract parse.

4 Motivating example

We can compare the approaches just surveyed with a small example. Say that a
script must generate an output string that conforms to this grammar,

S → a | [S]

where S is the only nonterminal. (HTML, XML, and SQL are such bracket
languages.) The grammar is LR(0), but it can be difficult to enforce even for
simple programs, like the one in Figure 1, left column. Perhaps we require this
program to print only well-formed S-phrases — the occurrence of x at “print x”
is a “hot spot” and we must analyze x’s possible values.

An analysis based on type checking assigns types (reference-grammar non-
terminals) to the program’s variables. The occurrences of x can indeed be data-
typed as S, but r has no data type that corresponds to a nonterminal.

[
. S

S .[S]
.aS

s
0 S [.]S

S .[S]
.aS

s
1

.S
s5

S a.
s2

S [S.]
s3

S [S].
s4

[S

S
a

a

]

parse stack (top lies at right) input sequence (front lies at left)

s0 [[a]]

s0 :: s1 [a]] (because goto(s0, [) = s1)
s0 :: s1 :: s1 a]]

s0 :: s1 :: s1 :: s2]] (reduce:S → a)
s0 :: s1 :: s1 S]]

s0 :: s1 :: s1 :: s3]] (because goto(s1, S) = s3)
s0 :: s1 :: s1 :: s3 :: s4] (reduce:S → [S])
s0 :: s1 S]

s0 :: s1 :: s3]

s0 :: s1 :: s3 :: s4 (reduce:S → [S])
s0 S

s0 :: s5 (finished)

Fig. 2. goto controller for S → [S] | a and an example parse of [[a]]

An analysis based on regular expressions solves flow equations shown in Fig-
ure 1’s right column in the domain of regular expressions, determining that the
hot spot’s (X3’s) values conform to the regular expression, [∗ · a ·]∗, but this
does not validate the assertion. A grammar-based analysis does not solve the
flow equations, but treats them instead as a set of grammar rules. The “type”
of x at the hot spot is X3. Next, a language-inclusion check tries to prove that
all X3-generated strings are S-generable.

Our approach solves the flow equations in the domain of parse stacks —
X3’s meaning is the set of LR-parses of the strings that might be denoted by x.
Assume that the reference grammar is LR(k); we first calculate its LR-items and
build its parse (“goto”) controller; see Figure 2. (This example, and the others
in this paper, are LR(0) for simplicity.) The Figure displays an example parse.

We interpret the flow equations in Figure 1 as functions that map an input
parse state to (a set of) output parse stacks. Figure 3 defines the collecting
interpretation, but the informal explanation of Figure 1 conveys the intuitions:

The demand in Figure 1 to analyze the hot spot at X3 generates the func-
tion call, X3(s0), where s0 is the start state for parsing an S-phrase. The flow
equation, X3 = X1, generates the function,

X3(s0) = X1(s0)

which itself demands a parse of the string generated at point X1 from state s0:

Concrete semantics: A source program computes a store that maps variables
to strings. The concrete collecting semantics computes a set of stores for each
program point; the collecting semantics is then abstracted so that it computes, for
each program point, a single store that maps each variable to a set of strings.

The collecting semantics is overapproximated by the data-flow semantics, which
uses flow equations to compute the set of strings denoted by each variable at
each program point. In Figure 1, the data-flow semantics computes these values of
variable x at the program points:

X0 = {a} X2 = {[s1] | s1 ∈ X1} R = {]} X1 = X0 ∪X2 = X3

Let Σ name the states in the parser’s goto-controller. A parse stack, st ∈ Σ+,
models those strings that parse to st. Function γ : P(Σ+)→ P(String) concretizes
a set of parse stacks into a set of strings:

γ(S) = {t ∈ String | s0 :: s1 :: · · · :: sk ∈ S and parse(s0, t) = s0 :: s1 :: · · · :: sk}

The abstract collecting interpretation, X , computes the set of parse stacks denoted
by a program variable. For flow equation, Xi = Ei, the function, Xi : Σ → P(Σ∗),
is defined as Xi(s) = [[Ei]](s), where s ∈ Σ and

[[t]]s = {reduce(s, goto(s,t))}, where t is a terminal symbol

[[E1 ⊔E2]]s = [[E1]]s ∪ [[E2]]s

[[Xj]]s = [[Ej]]s, where Xj = Ej is the flow equation for Xj

[[E1 · E2]]s = {reduce(s, p′) | p′ ∈ ([[E1]]s)⊕ [[E2]]},

where S ⊕ g = {p :: g(top(p)) | p ∈ S}

where reduce(s, p) reduces the final states within parse stack, s :: p.
reduce(s, p) =

t := top(p)
if t = sm, the final state for item, T → U1U2 · · ·Um·,
then p′ := pop(m,p) // pop m states, corresponding to U1U2 · · ·Um

p′′ := p′ :: goto(top(s :: p′), T)
return reduce(s, p′′) // repeat till finished

else return p // t was not a final state, so nothing to reduce

Fig. 3. Abstract collecting interpretation: Xi(s) = [[Ei]]s denotes the set of parse stacks
generated by parsing the strings denoted by Ei, starting from parse state s.

X1(s0) = X0(s0) ∪ X2(s0)

The union of the parses from X0 and X2 must be computed.3 Consider X0(s0):

X0(s0) = goto(s0, a) = s2 (reduce:S → a)
⇒ goto(s0, S) = s5

showing that a parse of string ’a’ from state s0 generates state s2, a final state,
that reduces to nonterminal S, which generates state s5 — an S-phrase has been
parsed. (The ⇒ signifies when the parser makes a reduce step to a nonterminal.)
The completed stack is therefore s0 :: s5. The remaining call, X2(s0), commences
like this (⊕ is explained two lines below):

X2(s0) = ([· X1 · R)(s0) = goto(s0, [) ⊕ (X1 · R)
= s1 ⊕ (X1 · R) = s1 :: (X1(s1) ⊕ R)

The ⊕ operator sequences the parse steps: for parse stack, st, and function, E,
st ⊕ E = st :: E(top(st)), that is, the stack made by appending st to the stack
returned by E(top(st)). Then, X1(s1) = X0(s1) ∪ X2(s1) computes to s3, and

X2(s0) = s1 :: (X1(s1) ⊕ R) = s1 :: (s3 ⊕ R) = s1 :: s3 :: R(s3)
= s1 :: s3 :: s4 (reduce:S → [S])
⇒ goto(s0, S) = s5

That is, X2(s0) built the stack, s1 :: s3 :: s4, denoting a parse of [S], which
reduced to S, giving s5. Here is the complete list of solved function calls:

X3(s0) = X1(s0)
X1(s0) = X0(s0) ∪ X2(s0) = · · · = s5 ∪ s5 = s5

X0(s0) = goto(s0, a) = s2 ⇒ goto(s0, S) = s5

X2(s0) = goto(s0, [) ⊕ (X1 · R) = s1 :: X1(s1) ⊕ R

= · · · = s1 :: s3 :: R(s3) = s1 :: s3 :: s4 ⇒ goto(s0, S) = s5

R(s3) = goto(s3,]) = s4

X1(s1) = X0(s1) ∪ X2(s1) = · · · = s3 ∪ s3 = s3 (see comment below)
X0(s1) = goto(s1, a) = s2 ⇒ goto(s1, S) = s3

X2(s1) = goto(s1, [) ⊕ (X1 · R)
= s1 :: (X1(s1) ⊕ R) = · · · = s1 :: s3 :: R(s3) (see comment below)
= s1 :: s3 :: s4 ⇒ goto(s1, S) = s3

The solution is X3(s0) = s5, validating that the strings printed at the hot spot
must be S-phrases.

Each equation instance, Xi(sj) = Eij , is a first-order data-flow equation.
In the example, X1(s1) and X2(s1) are mutually recursively defined, and their
solutions are obtained by iteration-until-convergence. The flow-equation set is
generated dynamically while the equations are being solved. This is a demand-
driven analysis [1, 7, 8], called minimal function-graph semantics [11], computed
by a worklist algorithm, described later.

3 As Figure 3 indicates, the functions compute sets of parse stacks; in this motivating
example, all the sets are singletons.

5 Abstract parse stacks

In the previous example, the result for each Xi(sj) was a single stack. In general,
a set of parse stacks can result, e.g., for

x = ’[’

while ...

x = x . ’[’

x = x . ’a’ . ’]’

X0 = [

X1 = X0 ⊔ X2
X2 = X1 · [
X3 = X1 · a ·]

at conclusion, x holds zero or more left brackets and an S-phrase; X3(s0) is the
infinite set, {s5, s1 :: s3, s1 :: s1 :: s3, s1 :: s1 :: s1 :: s3, · · ·}.

To bound the set, we abstract it by “folding” its stacks so that no parse
state repeats in a stack. Since Σ, the set of parse-state names, is finite, folding
produces a finite set of finite-sized stacks (that contain cycles).

The abstract interpretation based on abstract, folded stacks is defined in
Figure 4. Here is the intuition: A stack segment like p = s1 :: s1 is a linked list, a

graph, 11 ss
, where the stack’s top and bottom are marked by pointers;

when we push a state, e.g., p :: s2, we get 1 s1 s2
s

. The folded stack is

formed by merging same-state objects and retaining all links: 1 s2s . (This
can be written as the regular expression, s+

1 :: s2.) Folding can apply to multiple

states, e.g., 6 s7
s
6 s7

s
6 s8s

folds to 6 s7
s8s

.
The abstract interpretation of the loop program that began this section is

defined with abstract stacks in Figure 5. The result, X3(s0) = {s+
1 :: s3, s5},

asserts that the string at X3 might be a well-formed S phrase, or it might contain
a surplus of unmatched left brackets.

At the end of the calculation in Figure 5, the reduction of S → [S] is
done on the folded stack segment, s+

1 :: s3 :: s4, that is, the complete stack

is 0 s1 s3 s4
s

, meaning that three states must be popped: we traverse
s4, s3, and s1, and follow the links from the last state, s1, to see what the re-

maining stack might be. There are two possibilities: 10 ss
and s0 . We

compute the result for each case, as shown in the Figure.

6 Worklist algorithm

The algorithm that computes the solution to a hot-spot is a variation of the
conventional worklist algorithm.

In the conventional worklist algorithm, there is a fixed flowgraph that indi-
cates flows to nodes and a flow equation for each node. The initialization step
builds the entire flowgraph and places demands on the worklist to calculate the
value at every node in the graph. The algorithm then iterates, extracting a de-
mand from the worklist, computing the value of that demand, and placing into

A set of parse stacks can be soundly approximated by a single, abstract stack: For
label set Σ, a Σ-labelled graph, g, is a tuple, 〈nodesg , edgesg , labelg〉, where

– nodesg is a set of nodes,
– edgesg ⊆ nodesg × nodesg is a set of directed edges (at most one per source,

target node pair),
– and labelg : nodesg → Σ assigns a label to each node.

Let GraphΣ be the set of Σ-labelled graphs.

An abstract stack is a triple, (g, bot, top), such that g ∈ GraphΣ and
bot, top ∈ nodesg mark the bottom and top nodes of the stack. Let AbsStackΣ be
the set of abstract stacks labelled with Σ-values.

Example: the stack, s1 :: s1 :: s3, is modeled as (〈{a, b, c}, {(c, b), (b, a)}, [a 7→
s1, b 7→ s1, c 7→ s3]〉, a, c).

An abstract stack, (g, bot, top) ∈ AbsStackΣ, concretizes to a set of parse stacks:

γ(g, bot, top) = {st ∈ P(Σ+) | st is a finite path through g from top to bot}

Two abstract stacks, G1 = (g1, bot1, top1) and G2 = (g2, bot2, top2), are composed
by :: into the disjoint union of g1 and g2 plus one new edge from bot2 to top1:

G1 :: G2 = (〈nodesg1 ⊎ nodesg2 ,

edgesg1 ∪ edgesg2 ∪ {(bot2, top1)},
labelg1 + labelg2 〉, bot1, top2)

An abstract stack is folded (widened) by merging all nodes that share the same
label, in effect, equating the nodes with the labels:

fold(g, bot, top) = (〈{s ∈ Σ | ∃n ∈ nodesg , labelg(n) = s},
{(s, s′) | ∃(n, n′) ∈ edgesg , labelg(n) = s, labelg(n

′) = s′},
λs.s〉, labelg(bot), labelg(top))

The abstract interpretation of flow equation, Xi = Ei, is the function,
Xi : Σ → Pfin(AbsStackΣ), defined as

Xi(s) = {fold(p) | p ∈ [[Ei]](s)}.

This interpretation is sound for the abstract collecting semantics in Figure 3.

A set of abstract stacks can be further abstracted into a single stack of form,
GraphΣ × P(Σ) × P(Σ), by unioning the stacks’ node sets, edge sets, bot-values
and top-values. The resulting ”stack” is a subgraph of the parser’s goto-controller.

Fig. 4. Abstract interpretation defined in terms of abstract, folded, parse stacks

Flow equation set generated from demand, X3(s0):

X0(s0) = [(s0)
X1(s0) = X0(s0) ∪X2(s0)

X2(s0) = X1(s0)⊕ [

X3(s0) = X1(s0)⊕ (a.])

Least fixed-point solution expressed with abstract parse stacks:

X0(s0) = [(s0) = {s1}

Because X1 and X2 are mutually defined, we iterate to a solution,
where Xi’s value at iteration j is denoted Xij :

X11(s0) = {s1} ∪ ∅ = {s1}
X21(s0) = X11(s0)⊕ [= fold{s1 :: s1} = {s+

1 }
X12(s0) = {s1} ∪ {s

+
1 } = {s1, s

+
1 }

= {s+
1 }. (We can merge the two stack segments since the first

is a prefix of the second and has the same bottom and top states.)
X22(s0) = X12(s0)⊕ [= {s+

1 :: [(s1)} = fold{s+
1 :: s1} = {s+

1 }
X13(s0) = {s1} ∪ {s

+
1 } = {s1, s

+
1 } = {s+

1 } = X12(s0)
X23(s0) = {s+

1 } = X22(s0)

X3(s0) = {s+
1 :: a(s1)⊕]}

First, s+
1 :: a(s1) = s+

1 :: s2 ⇒ s+
1 :: goto(s1, S) = s+

1 :: s3.

= {s+
1 :: s3 ::](s3)} = {s+

1 :: s3 :: s4}
The reduction, S → [S], splits the stack into two cases:
(i) there are multiple s1s within s+

1 ; (ii) there is only one s1:
= (i){s+

1 :: goto(s1, S)} ∪ (ii){goto(s0, S)}
= {s+

1 :: s3, s5}

Fig. 5. Iterative solution with folded parse stacks, depicted as regular expressions

the worklist new demands to evaluate those nodes whose values are affected by
the one just updated. Iteration terminates when the worklist is empty [16].

In our worklist algorithm, the flowgraph is constructed while iteration is
undertaken. The algorithm uses three data structures: the worklist of unresolved
calls, Xi(sj); a Cache that maps each call to its current (partial) solution (a
set of abstract parse stacks); and the flowgraph of call dependencies, which is
dynamically constructed.

The algorithm is defined in the Appendix, but here is an overview: The
initialization step places the initial call, X0(s0), into the worklist and into the
call graph and then assigns to the cache the partial solution, Cache[X0(s0)] := ∅.
The iteration step repeats the following until the worklist is empty:

1. Extract a call, X(s), from the worklist, and for the corresponding flow equa-
tion, X = E, compute E(s), folding abstract stacks as necessary. (In the
Appendix, this is done by computeX(s)(s, E)).

2. While computing E(s), if a call, X ′(s′) is encountered, (i) add the depen-
dency, X ′(s′) → X(s), to the call graph (if it is not already present); (ii) if
there is no entry for X ′(s′) in the cache, then assign Cache[X ′(s′)] := ∅ and
place X ′(s′) on the worklist.

Worklist,
added and processed
from top to bottom:

X3(s0)
X1(s0)
X0(s0)
X2(s0)
X1(s0)
X1(s1)
X3(s0)
X0(s1)
X2(s1)
X1(s1)
X2(s0)
X2(s1)
R(s3)
X2(s0)
X2(s1)
X1(s0)
X1(s1)

Cache updates, inserted from top to bottom,
where X(s) 7→ P abbreviates Cache[X(s)] := P

X3(s0) 7→ ∅
X1(s0) 7→ ∅
X0(s0) 7→ ∅
X2(s0) 7→ ∅
X0(s0) 7→ reduce(s0, goto(s0, a)) = reduce(s0, s2)

= reduce(s0, goto(s0, S)) = reduce(s0, s5) = {s5}
X1(s1) 7→ ∅
X1(s0) 7→ {s5}
X0(s1) 7→ ∅
X2(s1) 7→ ∅
X3(s0) 7→ {s5}
X0(s1) 7→ reduce(s1, goto(s1, a)) = {s3}
X1(s1) 7→ {s3}
R(s3) 7→ ∅
R(s3) 7→ reduce(s3, goto(s3,])) = {s4}
X2(s0) 7→ ([:: X1 :: R)(s0)

= s1 ⊕ (X1 :: R) = (s1 :: X1(s1))⊕R

= s1 :: s3 :: R(s3) = reduce(s0, s1 :: s3 :: s4)
= reduce(s0, goto(s0, S)) = {s5}

X2(s1) 7→ ([:: X1 :: R)(s1) = {s3}

Generated call graph:

0X3 ()

s
1X2 ()

s
3

()R
s
0X1 ()

s
0X2 ()

s
0X0 ()

s
1X1 ()

s
1X0 ()

s

Fig. 6. Worklist-algorithm calculation of call, X3(s0), in Figure 1

3. When E(s) computes to an answer set, P , and P contains an abstract
parse stack not already listed in Cache[X(s)], then assign Cache[X(s)] :=
(Cache[X(s)] ∪ P) and add to the worklist all X ′′(s′′) such that the depen-
dency, X(s) → X ′′(s′′), appears in the flowgraph.

Figure 6 shows the worklist calculation for X3(s0) in Figure 1.

7 Input variables

Input and nonlocal variables present the usual difficulties for a static analysis.
If we require that such variables hold grammatically well-structured strings as
their values, then we can use the nonterminal symbols of the reference grammar
as “data types.” For example, we might set the type of input variable, x, to be

nonterminal S and use Figure 2 to analyze

readS x

y = ’[’ . x . ’]’

X = S

Y = [· X ·]

We solve the flow equations,

Y (s0) = ([· X ·])(s0) = goto(s0, [) ⊕ (X ·]) = s1 :: (X(s1) ⊕])
X(s1) = goto(s1, S) = {s3}

and compute that Y (s0) = s1 :: s3 :: goto(s3,]) = s1 :: s3 :: s4 ⇒ goto(s0, S)
= {s5}, because we assumed that input variable x denotes a parsed S-phrase.

8 String-update operations

String-manipulating languages use operations like replace and substring, which
can be employed foolishly or sensibly on strings that represent well-structured
values. An example of the former is x = ’[[a]]’; replace(’a’, ’[’, x),
which replaces occurrences of ’a’ in x by ’[’, changing x’s value to the gram-
matically ill-formed phrase, ’[[[]]’. A more sensible replacement would be
replace(’[a]’, ’a’, x), which preserves x’s grammatical structure.

To validate an operation, replace(U,V,x), we require that U and V “parse
the same” in every possible context where they might appear (within x): Say
that replace(U,V,x) is update-invariant for x iff for all (nonfinal) parse states,
s ∈ Σ, U(s) = V (s). This means replacing U by V preserves x’s parse.

When we analyze a program, we may first ignore the replace operations,
treating them as “no-ops.” Once the flow equations are solved, we validate the
invariance of each replace(U,V,x) by generating hot-spot requests for strings U
and V for all possible parse states, building on the cached results of the worklist
algorithm. Finally, we compare the results to see if replace(U,V,x) is update-
invariant for x. Here is an example:

y = ’[[[a]]]’

x = ’a’

while ...

x = ’[’. x .’]’

replace(x, ’a’, y)

Y 0 = [· [· [· a ·] ·] ·]
X0 = a

X1 = X0 ∪ X2
X2 = [· X1 ·]
Y 1 = replace(X1, a, Y 0)

Say that the program must be analyzed for y’s final value: Y 1(s0). We initially
ignore the replacement operation at Y 1 and solve the simpler equation, Y 1(s0) =
Y 0(s0), instead, which quickly computes to {s5}. Next, we analyze the replace

operation by generating these hot-spot requests for all the nonfinal parse states:

a(s0), X1(s0), a(s1), X1(s1), a(s3), X1(s3)

For example, the first request computes to

a(s0) = goto(s0, a) = s2 ⇒ goto(s0, S) = s5

PHP program String−flow
Analyzer

Abstract
Parser

ocamlyacc
reference
grammar

data−flow
equations

LALR(1) table

parsed OK

parsing ERR

hot spot

PHP

Fig. 7. Implementation

and the second repeats an earlier example,

X1(s0) = X0(s0) ∪ X2(s0)
X2(s0) = · · · = s1 :: s3 :: s4 ⇒ goto(s0, S)) = s5

showing that both strings compute to the same parse-stack segments in starting
context s0. The other hot spots compute this same way. Once all the hot spots are
solved, we confirm that X1 and a have identical outcomes for all possible parse
contexts. This validates the invariance of replace(x,’a’,y) at Y 1, preserving
the original solution.

It is important that we validate update-invariance for all possible contexts.
Consider the reference grammar,

N → a | b | [a]

Although both a and b are N -phrases, replace(’a’,’b’,’[a]’) violates [a]’s
grammatical structure.

9 Implementation and experiments

The abstract parser, essentially the worklist algorithm, is implemented in Ob-
jective Caml, structured as in Figure 7. The front end of Minamide’s analyzer
for PHP [14] was modified to accept a PHP program with a hot-spot location
and to return data-flow equations with string operations for the hot spot. A
parser generator, ocamlyacc, produces an LALR(1) parsing table for the ref-
erence grammar, and the abstract parser uses the data-flow equations and the
parsing table to parse statically the strings generated by the PHP program.
Since abstract parsing works directly on characters (and not tokens), the refer-
ence grammar is given at the same level, like a grammar for scannerless parsing.
(Our experiment showed that the performance of character-based parsing was
good enough for practical use.) The algorithm in the Appendix is defined for
LR(0) grammars, but its extension to LR(1) required only minor modification.

We applied our abstract parser to publicly available PHP programs that
dynamically generate HTML documents, the same suite of programs Minamide
used in his paper [14]. Experiments were done on a MacOSX with an Intel Core
2 Duo Processor (2.56GHz) and 4 GByte memory. The table below summarizes
our experiments:

webchess faqforge phpwims timeclock schoolmate

files 21 11 30 6 54

lines 2918 1115 6606 1006 6822

no. of hot spots 6 14 30 7 1

no. of parsings 6 16 36 7 19

parsed OK 5 1 19 0 1

parsed ERR 1 15 17 7 18

no. of alarms 1 31 16 14 20

true positives 1 31 13 14 17

false positives 0 0 3 0 3

time(sec) 0.224 0.155 1.979 0.228 2.077

We manually identified the hot spots and ran our abstract parser for each hot
spot. There were multiple parsings in some hot spots, as expected. Since we do
not yet have parse-error recovery, each time a parse error was identified by our
analyzer, we located the source of the error in the program, fixed it, and tried
again until no parse errors were detected. In the case of phpwims, the number
of alarms is smaller than that of parsing errors because two parsings share the
same parsing error in control flows of this form:

parsed ERR
if ... then parsed OK else parsed OK;

All the false-positive alarms that appeared were caused by ignoring the tests
within conditional commands. The parsing time shown in the table is the sum
of all execution times needed to find all parsing errors for all hot spots. The
reference grammar’s parse table took 1.323 seconds to construct; this is not
included in the analysis times. The alarms are classified below:

classification occurrences

open/close tag syntax error 11
open/close tag missing 45

superfluous tag 5
improperly nested 14

misplaced tag 5
escaped character syntax error 2

All in all, our abstract parser works without limiting the nesting depth of tags,
validates the syntax reasonably fast, and is guaranteed to find all parsing errors
reducing inevitable false alarms to a minimum.

Minamide excluded one PHP application, named tagit, from his experiments
[14], since tagit generates an arbitrary nesting depth of tags. In principle, our
abstract parser should be able to validate tagit, but we also excluded tagit

from our studies because the current version of our abstract parser checks that
string-update operations satisfy the update-invariance property (cf. Section 8).
Unexpectedly (to us!), so many string updates in tagit violated update invari-
ance that our abstract parser generated too many false-positives to be helpful.

We can reduce false positives due to violation of update invariance by se-
lectively employing Minamide’s f.s.a.-transducer technique [14], where a string
update is analyzed separately from the flow analysis with its own f.s.a. trans-
ducer. For example, the last flow equation in this program,

x = ’a’

while ...

x = ’[[’. x .’]’

replace(’[[’, ’[’, x)

X0 = a

X1 = X0 ∪ X2
X2 = [· [· X1 ·]
X3 = replace([[, [, X1)

could be replaced by just X3 = X1, and we would use a separate transducer to
analyze replace([[, [, X1). We leave this as a future work.

On the other hand, one might argue that any string-update operator that
violates update invariance is dubiously employed and deserves closer scrutiny.
In this regard, the abstract parser’s “false positives” are healthy warnings.

10 Conclusion

Injection and cross-site-scripting attacks can be reduced by analyzing the pro-
grams that dynamically generate documents [21]. In this paper, we have im-
proved the precision of such analyses by employing LR-parsing technology to
validate the context-free grammatical structure of generated documents.

A parse tree is but the first stage in calculating a string’s meaning. The
parsed string has a semantics (as enforced by its interpreter), and one can encode
this semantics with semantics-processing functions, like those written for use
with a parser-generator. (Tainting analysis — tracking unsanitized data — is
an example semantic property that can be encoded this way.) The semantics
can then be approximated by the static analysis so that abstract parsing and
abstract semantic processing proceed simultaneously. This is future work.

Acknowledgements: We thank GTOne’s CEO Soo-Yong Lee for inspiration and

support and the anonymous referees for valuable suggestions and comments.

References

1. G. Agrawal. Simultaneous demand-driven data-flow and call graph analysis. In
Proc. Int’l. Conf. Software Maintenance, Oxford, 1999.

2. A. Aho and J. Ullman. Principles of Compiler Design. Addison Wesley, 1977.
3. C. Brabrand, A. Møller, and M.I. Schwartzbach. The <bigwig> project. ACM

Trans. Internet Technology, 2, 2002.
4. T.-H. Choi, O. Lee, H. Kim, and K.-G. Doh. A practical string analyzer by the

widening approach. In Proc. Asian Symp. Prog. Lang. and Systems, pages 374–388.
Springer LNCS 4279, 2006.

5. A.S. Christensen, A. Møller, and M.I. Schwartzbach. Static analysis for dynamic
XML. In Proc. PLAN-X-02, 2002.

6. A.S. Christensen, A. Møller, and M.I. Schwartzbach. Extending Java for high-level
web service construction. ACM TOPLAS, 25, 2003.

7. E. Duesterwald, R. Gupta, and M.L. Soffa. A practical framework for demand-
driven interprocedural data flow analysis. ACM TOPLAS, 19:992–1030, 1997.

8. S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis. In
Proc. 3rd ACM SIGSOFT Symp. Foundations of Software Engg., 1995.

9. H. Hosoya. XDuce: A typed XML processing language. Technical Re-
port http://xduce.sourceforge.net/, 2008.

10. H. Hosoya, J. Vouillon, and B.C. Pierce. Regular expression types for XML. ACM

TOPLAS, 27:46–90, 2005.

11. N.D. Jones and A. Mycroft. Data flow analysis of applicative programs using
minimal function graphs. In Proc. 13th Symp. POPL, pages 296–306. ACM Press,
1986.

12. N. Jovanovich, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for detecting
web application vulnerabilities. In Proc. IEEE Symp. on Security and Privacy,
pages 258–263, 2006.

13. C. Kirkegaard and A. Møller. Static analysis for Java Servlets and JSP. In Proc.

International Symp. Static Analysis, pages 336–352. Springer LNCS 4134, 2006.

14. Y. Minamide. Static approximation of dynamically generated web pages. In Proc.

14th ACM Int’l Conf. on the World Wide Web, pages 432–441, 2005.
15. Y. Minimide and A. Tozawa. XML validation for context-free grammars. In Proc.

Asian Symp. Prog. Lang. and Systems, pages 357–373. Springer LNCS 4279, 2006.
16. F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer

Verlag, 1999.

17. T. Nishiyama and Y. Minimide. A translation from the HTML DTD into a regular
hedge grammar. In Proc. 13th Int. Conf. on Implementation and Applications of

Automata, pages 122–131. Springer LNCS 5148, 2008.

18. P. Thiemann. Grammar-based analysis of string expressions. In Proc. ACM work-

shop Types in languages design and implementation, pages 59–70, 2005.
19. G. Wassermann, C. Gould, Z. Su, and P. Devanbu. Static checking of dymanically

generated queries in database applications. ACM Trans. Software Engineering and

Methodology, 16(4):14:1–27, 2007.
20. G. Wassermann and Z. Su. The essence of command injection attacks in web

applications. In Proc. 33d ACM POPL, pages 372–382, 2006.
21. G. Wassermann and Z. Su. Sound and precise analysis of web applications for

injection vulnerabilities. In Proc. ACM PLDI, pages 32–41, 2007.

22. Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting lan-
guages. In Proc. 15th USENIX Security Symp., 2006.

Appendix: Worklist algorithm

Input:

– controller (goto function) for parser;
– flow-equation schemes, {Xi = Ei}0<i≤n;
– initial demand, X0(s0).

Data structures:

– W ∈ Call∗ = worklist of demands (calls) of form, Xj(s), s ∈ ParseState;

– F : dynamically generated call graph, consisting of arcs of form, X(s) → X ′(s′),
read as, “X(s)’s value flows to X ′(s′)”;

– Cache : Call → P(AbsStack): dynamic array mapping calls to sets of abstract
stacks, where
AbsStack = graphs whose nodes are ParseStates, such that one node is marked
the stack bottom and another the stack top.
There is a unique entry, Cache[X(s)] := P , in the cache array iff the node, X(s),
appears in F .

Algorithm:

1. Initialize: W := [X0(s0)]; F := {X0(s0)}; Cache[X0(s0)] := ∅

2. Iterate: while W 6= [] do :
X(s) := head(W); W := tail(W);
let X = E be the flow equation that matches X(s);
P := computeX(s)(s, E); (see below)
if P 6⊆ Cache[X(s)]
then Cache[X(s)] := Cache[X(s)] ∪ P ;

forall X ′(s′) such that X(s)→ X ′(s′) ∈ F,

W := W + [X ′(s′)];

where computeCall : ParseState× F lowExpression→ P(AbsStack) is
computec (s, a) = return reduce(s, goto(s, a))
computec(s, E1 ⊔ E2) = return computec(s, E1) ∪ computec(s, E2)

computec (s,X) =
if Cache[X(s)] is undefined (has no entry),
then Cache[X(s)] := ∅;

add the edge, X(s)→ c, to F ;
W := W + [X(s)];

if c < X (that is, c→ X(s) is a program back-arc),
then return fold(Cache[X(s)])
else return Cache[X(s)]

computec (s,E1 ·E2) =
P :=

⋃
{p⊕ E2 | p ∈ computec(s, E1)}

where p⊕ E2 = {p :: p′ | p′ ∈ computec(top(p), E2)}
return

⋃
{reduce(s, p′′) | p′′ ∈ P}

Auxiliary function reduce(s, p) reduces parse stack, s :: p, as needed, never popping
stack bottom, s. If the stack needs no reduction, reduce(s, p) = {p}:
reduce : ParseState× AbsStack → P(AbsStack)
reduce(s, p) = t := top(p);

if t = sm, a final state for item, T → U1U2 · · ·Um,
and the path, s1 ← s2 ← · · · ← sm = top(p) in p matches the item,

then

newTops := {s′ | s′ ← s1 ∈ p} // the predecessor states to s1 in p

if newTops = ∅, // popped stack empty?
then R := {goto(s, T)}
else poppedStacks := {p with s′ marked as top | s′ ∈ newTops}

R := {p′ :: goto(top(p′), T) | p′ ∈ poppedStacks} // “split” the stacks
return

⋃
{reduce(s, p′′) | p′′ ∈ R} // repeat till finished

else return {p} // t not a final state, nothing to reduce

