
Modular, parsing-based, flow analysis of

dictionary data structures in scripting languages

David A. Schmidt⋆

Kansas State University, Manhattan, Kansas, USA

Abstract. We design and implement a modular, constant-propagation-
like forwards flow analysis for a Python subset containing strings and
dictionaries (hash tables). The analysis infers types of dictionaries and
the functions and modules that use them. Unlike records and class-based
objects, dictionaries are wholly dynamic, and we employ a domain of dic-
tionary types that delineate which fields a dictionary must have. We have
deliberately omitted unification-based inference and row variables to ob-
tain the benefits of a forwards analysis that matches a programmer’s
intuitions. Nonetheless, to accommodate a modular analysis, the values
of parameters and free (global) variables are represented by tokens to
which are attached constraints. At link- and function-call-time, the con-
straints are matched against the actual values of arguments and global
variables.
Finally, programmers are encouraged to use a BNF-like syntax to define
the forms of data types employed in their scripts. The analysis uses the
programmer-written BNF rules to “abstractly parse” program phrases
and associate them with derivations possible from the programmer-defined
grammars. A prototype of the system is under construction.

1 Introduction

Programmers like the dynamic data structures of scripting languages like Perl,
Ruby, and Python. The dictionary (hash table) structure is particularly useful
for data modelling. For example, one can model an empty, heterogenous binary
tree by the string, ’nil’, and a nonempty tree by the dictionary, {’val’: V,

’left’:T1, ’right’:T2}, where V can be any phrase whatsoever and each Ti

can be a subtree. By omitting the ’left’ and ’right’ fields, we model partial
trees as well. Functions that process partial trees are simply written; see Figure
1.

The partial-tree data structure is difficult to define simply in a typed lan-
guage. But such heterogeneous data structures are common in practice and are
handled well by dynamically-typed scripting languages. Unfortunately, when a
single script or a collection of script-coded modules grows above 5000 lines, loss of
comprehension cancels the gain of simplicity. Further, the time spent debugging
data-structure mismatch errors (“typing errors”) becomes significant.

⋆ das@ksu.edu. Supported by NSF CNS-0939431.

def count(t): # counts the values in tree t

if t == ’nil’: # empty tree ?

return 0

elif isinstance(t, dict): # a nonempty tree ?

ans = 1

if ’left’ in t: ans = ans + count(t[’left’])

if ’right’ in t: ans = ans + count(t[’right’])

return ans

Fig. 1. Function that counts nodes in a partial binary tree

As researchers have noted [2, 3, 8–11], an ideal solution would be a mini-
mally programmer-assisted, type-inference tool to check script modules for data-
structure mismatches. This paper describes an approach that does dictionary
checking and complements the work on record and class-based object checking
[1, 4, 6, 12]

2 Related efforts

Two key previous efforts relevent to our work are soft typing [2] and gradual

typing [8, 9].
Soft typing is an ML-like type inference which infers types from the type

domain of primitive types, function types, true unions, and fixed points. Phrases
that cannot be assigned a type are wrapped with a run-time cast. The standard
implementation of soft typing encodes a union type as a record whose fields
enumerate all the type constructors in the programming language; a field’s value
is set to must if its constructor is a component of the union type, and must-not,
when it is certainly excluded. To define subtyping of unions, a field can also
take on a may value. Remy’s inference algorithm for records, paired with Huet’s
unification algorithm, are used to perform the inference and synthesis of recursive
defined union types [6]. Soft typing is elegant but is not modular and does not
scale well [3].

Gradual typing is a type inference for a type calculus that is augmented by a
type dynamic (“?”) or ”unknown.” The typing is named “gradual” because the
programmer is encouraged to refine the program with more and more types to
reduce occurrences of ?. Checking is performed up to the occurrences of ?, which
are checked at run-time. This induces a type compatibility relationship, ∼, such
that int ∼?, (int →?) ∼ (? → bool), etc. The definition of ∼ is compatible with
type refinement (replacement of occurrences of ? by concrete types). Gradual
typing has been defined for ML and Java subsets (whose class definitions aid
type inference) [8, 9].

Two other recent efforts deserve mention: Furr, et al. [4] have defined a Ruby
subset, DRuby, along with a type-inference algorithm. DRuby does not support
dictionaries, and it depends on class definitions to check object creation and
message passing. Jensen, et al. [5] have designed a precise flow analysis to detect

C ∈ Command

L ∈ LeftHandSide

E ∈ Expression

B ∈ BoolExpression

I ∈ Identifier

S ∈ StringConstant

C ::= L = E | if B:C1 else: C2 | while B:C
| def I1(I2) : C | global I | return E | C1; C2

L ::= I |E[I]
E ::= S | stringop E | {Ei : E′

i}0≤i<m
| L | L(E)

B ::= E1 == E2 |E in L | isinstance(L, str)
| isinstance(L, dict) | callable(L)

Fig. 2. Syntax of Python subset

errors in Javascript scripts, which use prototype objects that provide information
similar to a class definition’s.

Over a number of years, Felleisen and his colleagues have implemented and
profiled several soft-typing and set-based analyses for module-based Scheme [3].
Their conclusions are that the methods do not scale well, are “brittle” (type
errors easily arise) and do not provide good error diagnostics, and must be
augmented by additional theory to accommodate modules [3]. Their latest efforts
have moved towards type checking of Scheme augmented by programmer-written
ML-like datatype definitions and annotated case-selector functions [3, 10, 11].

3 Script modules with dictionaries

Based on our experiences working with scripting languages and based on the
research documented above, we learned there is value in having a tool assistant
that can warn a programmer of mismatches in dictionary usage. We realize that
is impossible to impose a static typing discipline on a script, so we search for
a middle ground, where a modular, forwards, data-flow-analysis-based inference
algorithm provides directives to the programmer where repairs might be neces-
sary. For the reasons outlined by Felleisen [3], we employ an object-based, for-
wards, iterative data-flow constant-propagation algorithm as our tool’s software
architecture. The tool accepts programmer assistance supplied as generalized
datatype definitions and parameter annotations.

We start our work with a Python subset, consisting of strings, dictionaries,
conditionals, loops, and functions. Every Python script is itself a module, which
is executed (imported) and then can be linked to other modules that use the
script’s public namespace (variable and function definitions). The source syntax
is defined in Figure 2.

Figure 3 shows a small script with strings, dictionaries, and nested scopes.
Python employs static scoping on its namespaces (environments), but declara-
tions are unneeded — namespaces are dynamically filled, as when f is called in
the example: f’s local namespace holds a binding for z, and its global names-

def f(z):

global x

if isinstance(y, dict): y[x] = z

x = y

def g():

y = ’cd’; f(y)

x = ’ab’; y = {}; g()

while x in y: # is x a field in dictionary y ?

print y[x]; y = y[x]

Fig. 3. Sample script/module

pace, whose identity was fixed at f’s definition, is consulted for x. Since y cannot
be found in f’s local namespace, the global namespace is searched for it. Note
that global y’s value is not changed by calling g. Finally, there is a potential
for generating an exception by evaluating the test, x in y, at the head of the
while-loop, because y might take on a non-dictionary value. (This possibility will
be detected by our analysis.) The example shows that Python’s static scoping
and its dictionaries pose problems in that both are modelled by namespaces that
are dynamically filled with fieldname, value pairs. Also, fieldnames for dictionary
lookups are computed at run-time, like array indexes, and dictionaries can be
aliased.

Figures 4 and 5 give the language’s denotational semantics. The semantics
shows that a command’s environment is a stack (list) of locations (addresses)
of namespaces in the heap. The environment is statically calculated, but each
namespace referencd by an environment is dynamically filled. The ”global” token
is a “patch” that allows a function to assign to a top-level variable. Note that
primitive values (here, strings), dictionaries (namespaces) and closures can be
stored in the heap and assigned to variable names.

4 Modular forwards constant-propagation analysis

The error-detection analysis is an abstract interpretation of the concrete seman-
tics, where the main abstraction is upon namespaces:

AbsNS = {(AbsStr : AbsDenotable)∗}[!]
AbsStr = String ∪ {Strany}
AbsDenotable = Set Of (AbsStr + NSLocation + ClLocation)

That is, an abstract namespace is a dictionary of abstract-string, denotable-set,
mappings with an optional ! suffix, which denotes “exactly”. For example, the
abstract namespace, {”a” : {”mm”, ℓ0}, ”b” : Strany}! denotes all namespaces
that have exactly two fields, ”a” and ”b”, where ”a” denotes either string ”mm”
or location ℓ0 and ”b” maps to some string (represented by Strany). Since ”b”’s
value is a singleton set, we omit the set braces to ease eye strain. If we remove the
! suffix, the abstract namespace denotes those namespaces that have at least the

Semantic domains:

ρ ∈ Environment = NSLocation∗ (stack of namespaces’ locations)
σ ∈ Heap = (NSLocation→ Namespace) × (ClLocation→ Closure)
Namespace = Iden→ Denotable, where Iden ⊆ String

Denotable = String +NSLocation +ClLocation + ”global”
Expressible = Denotable+ ”error”
Closure = Iden× Command× Environment

LV alue = NSLocation× Iden

Outcome = Heap+ (Expressible×Heap)

Auxiliary functions:

allocateNS : Denotable×Heap→ NSLocation×Heap

allocateNS(v, σ) = (ℓ0, σ + [ℓ0 7→ v]),where ℓ0 is a fresh location
allocateCl : Denotable×Heap→ ClLocation×Heap (similar)

findNSof : Iden× Environment×Heap→ NSLocation + ”none”
findNSof (i, nil, σ) = ”none”
findNSof (i, ℓ :: ρ′, σ) = if i ∈ dom(σ(ℓ))

then if σ(ℓ) = ”global” then last(ℓ :: ρ′) else ℓ

where last(ℓ0 :: ℓ1 :: · · · :: ℓn) = ℓn
else findNSof (i, ρ′, σ)

lookup : LV alue×Heap→ Denotable+ ”error”
lookup((ℓ, i), σ) = if i ∈ σ(ℓ) then σ(ℓ)(i) else ”error”

update : LV alue×Denotable×Heap→ Heap

update((ℓ, i), v, σ) = σ + [σ(ℓ) 7→ σ(ℓ) + [i : v]]

apply : (Heap→ Outcome) ×Outcome → Outcome

apply(f,ψ) = if ψ ∈ Heap then f(ψ) else ψ

C : Command→ Environment→ Heap→ Outcome

C[[L =E]]ρσ =
let θ, σ′ = L[[L]]ρσ
let v, σ′′ = E [[E]]ρσ′

in update(θ, v, σ′′)

C[[ifB :C1 else:C2]]ρσ =
let b, σ′ = B[[B]]ρσ
if b then C[[C1]]ρσ

′ else C[[C1]]ρσ
′

C[[whileB do:C]]ρ = f,

where fσ =
let b, σ′ = B[[B]]ρσ
if b then apply(f,C[[C]]ρσ′) else σ′

C[[def I1(I2):C]]ρσ =

let θ, σ1 = L[[I1]]ρσ
let ℓ2, σ2 = allocateNS({}, σ1)
let ℓ3, σ3 = allocateCl((I2, C, (ℓ0 :: ρ)), σ2)
in update(θ, ℓ3, σ3)

C[[global I]]ρσ = update((head(ρ), I), ”global”, σ)

C[[returnE]]ρσ = E [[E]]ρσ

C[[C1 ;C2]]ρσ = apply(C[[C2]]ρ, C[[C1]]ρσ)

Fig. 4. Semantics of Python subset

L : LeftHandSide→ Environment→ Heap→ ((LV alue+ ”error”) ×Heap)

L[[I]]ρσ =
let ℓ = findNSof (I, ρ, σ)
if ℓ = ”none”then ((head(ρ), I), σ) else ((ℓ, I), σ)

L[[E[I]]]ρσ =
let ℓ, σ′ = E [[E]]ρσ
if v ∈ NSLocation then ((v, I), σ′) else (”error”, σ′)

E : Expression→ Environment→ (Expressible×Heap)

E [["abc"]]ρσ = ”abc”, σ

E [[L]]ρσ = let θ, σ′ = L[[L]]ρσ in (lookup(θ, σ′), σ′)

E [[L(E)]]ρσ =

let ℓ, σ′ = E [[L]]ρσ
if ℓ 6∈ ClLocation then (”error”, σ′)
else let I, C, (ℓ0 :: ρ0) = σ(ℓ)

let v, σ′′ = E [[E]]ρσ′

in if v = ”error” then (”error”, σ′′)
else C[[C]](ℓ0 :: ρ)(update((ℓ0, I), v, σ

′′))

E [[{Ei:E
′
i}0≤i<m]]ρσ =

let ℓ, σ0 = allocateNS(σ)
foreach Ei, E

′
i, 0 ≤ i < m,

let φi, σ
′
i = E [[Ei]]ρσi

let vi, σ
′′
i = E [[E′

i]]ρσ
′
i

let σi+1 = update((ℓ,φi), vi, σ
′′
i)

in (ℓ, σm)

B : BoolExpr → Environment → Heap→ (Boolean+ ”error”) ×Heap

B[[E inL]]ρσ =

let v1, σ1 = E [[E]]ρσ
let v2, σ2 = E [[L]]ρσ1

if v1 6∈ String or v2 6∈ NSLocation then (”error”, σ2)
else (v1 ∈ dom(σ2(v2)), σ2)

B[[instanceof(L, dict)]]ρσ =
let v, σ′ = E [[L]]ρσ
if v = ”error” then (”error”, σ′)
else (v ∈ NSLocation, σ′)

B[[callable(L)]]σ =
let v, σ′ = E [[L]]ρσ
if v = ”error” then (”error”, σ′) else (v ∈ ClLocation, σ′)

B[[E1 ==E2]]ρσ =

let v1, σ1 = E [[E1]]ρσ
let v2, σ2 = E [[E2]]ρσ1

if v1 or v2 = ”error” then (”error”, σ2) else (v1 ≡ v2, σ2)
where ≡ defines equality on strings, ”deep equality”
on namespaces, and ClLocation equality on closures

Fig. 5. Semantics of Python subset, concl.

”a” and ”b” fields with the values just described. Figure 6 defines the abstract
patterns, their concretizations, and their partial orderings.

Abstract domains:

AbsStr = String ∪ {Strany}
AbsDenotable = SetOf (AbsStr +NSLocation+ ClLocation)
AbsNS = {(String : AbsDenotable)∗}[!] + {Strany : AbsDenotable}

Concretization functions on abstract strings, denotables, and namespaces:

γ : AbsStr → P(String)
γ(s) = {s}
γ(Strany) = String

γ : AbsDenotable→ P(Denotable)
γ{vi}0≤i≤n =

⋃
0≤i≤n

γ(vi)

where γ(ℓ) = {ℓ}, for ℓ ∈ NSLocation ∪ ClLocation

γ : AbsNS → P(Namespace)
γ{si : Ti}0≤i<n = {d ∈ Namespace | for every si, 0 ≤ i < n,

there exists s′ ∈ dom(d) such that s′ ∈ γ(si) and d(s′) ∈ γ(Ti)}
γ{si : Ti}0≤i<n! = {d ∈ Namespace | dom(d) =

⋃
0≤i≤n

γ(si),

and for every 0 ≤ i < n, d(si) ∈ γ(Ti)}

Partial orderings: (reflexive, transitive closure of)

AbsString :
s ⊑ Strany, for all s ∈ String

AbsDenotable :
T ⊑ T ′ if for every v ∈ T there exists v′ ∈ T ′ such that v ⊑ v′

AbsNS: let d1 = {si : vi}0≤i<m and d2 = {s′j : v′j}0≤j<n :
d1[!] ⊑ d2 if for every s′j ∈ dom(d2), 0 ≤ j < n,

there exists si ∈ dom(d1) such that si ⊑ s′j and d1[si] ⊑ d2[s
′
j]

d1! ⊑ d2! if dom(d1) = dom(d2) and for every s′j ∈ dom(d2), d1[s
′
j] ⊑ d2[s

′
j]

Fig. 6. Abstract domains of strings and namespaces

The partial orderings are used by the flow-analysis algorithm to compute
least fixed points — the key property is that P1 ⊑ P2 implies γ(P1) ⊆ γ(P2).
Since the token, Strany, denotes “any string at all”, we have that ”abc” ⊑ Strany,
etc. An abstract denotable value is now a set of possible denotables, and two
abstract denotable sets are compared by using the lower powerset ordering, e.g.,
{”abc”, ℓ2} ⊑ {Strany, ℓ2, ℓ1}. Dictionaries are ordered by contravariance on the
field names: {”a” : {”m”, ”n”}, ”b” : {ℓ0}}! ⊑ {”a” : {Strany}, ”b” : {ℓ0, ”n”}}!
⊑ {”a” : {Strany}, ”b” : {ℓ0, ”n”}} ⊑ {”b” : {ℓ0, ”n”}} ⊑ {”b” : {ℓ0, Strany}}
⊑ {Strany : {ℓ0, Strany}} ⊑ {}.

Program and flow equations:

x = {}
α

while ...:

x[’a’] = {}
β

x = x[’a’]

... x[’a’] ...

P0 = initialHeapn0

P1 = assign x {}α P0

P2 = P1 ⊔ P4

P3 = assign (index x ”a”) {}β P2

P4 = assign x (index x ”a”) P3

P5 = · · · (index x ”a”) · · ·P2

At all program points, Pi, the environment has value, [n0], where n0 is the address
of the global namespace. The initial heap is [n0 7→ {}!]× [] — there are no variable
bindings yet in n0’s namespace. The second heap component, [] (closure bindings)
stays empty and is omitted hereon. The worklist solution to the flow equations goes
as follows:

P0 = [n0 7→ {}!]
P1 = [n0 7→ {x : ℓα}!, ℓα 7→ {}!]

P2 = [n0 7→ {x : ℓα}!, ℓα 7→ {}!]
P3 = [n0 7→ {x : ℓα}!, ℓα 7→ {”a” : ℓβ}!, ℓβ 7→ {}!]
P4 = [n0 7→ {x : ℓβ}!, ℓα 7→ {”a” : ℓβ}!, ℓβ 7→ {}!]

P2 = [n0 7→ {x : {ℓα, ℓβ}}!, ℓα 7→ {}, ℓβ 7→ {}!]
P3 = [n0 7→ {x : {ℓα, ℓβ}}!, ℓα 7→ {”a” : ℓβ}, ℓβ 7→ {”a” : ℓβ}!]
P4 = [n0 7→ {x : ℓβ}!, ℓα 7→ {”a” : ℓβ}, ℓβ 7→ {”a” : ℓβ}!]

P2 = [n0 7→ {x : {ℓα, ℓβ}}!, ℓα 7→ {}, ℓβ 7→ {}]
P3 = [n0 7→ {x : {ℓα, ℓβ}}!, ℓα 7→ {”a” : ℓβ}, ℓβ 7→ {”a” : ℓβ}]
P4 = [n0 7→ {x : ℓβ}!, ℓα 7→ {”a” : ℓβ}, ℓβ 7→ {”a” : ℓβ}]

P2 = [n0 7→ {x : {ℓα, ℓβ}}!, ℓα 7→ {}, ℓβ 7→ {}]
(converges)

(To reduce eye strain, the brackets around singleton-set abstract denotables are
omitted.)

Fig. 7. Sample program and its flow analysis

Using the abstract domains, we compute a forwards data-flow analysis, where
each line in the source program generates one or more flow equations. The fam-
ily of simultaneously defined flow equations are solved so that each equation
computes to an environment (stack of NSlocation) and abstract heap of form
(NSlocation → AbsNS) × (CLlocation → Closure). Since Python is statically
scoped, the computation of the enviroments can be undertaken prior to the
computation of the abstract heaps.

Figure 8 shows a small loop program, its flow equations, and the solution
to the equations. Because the loop’s iterations are unknown, so is the quantity
of dictionaries allocated within the loop. For simplicity, we employ summary

nodes [7, 13], ℓα and ℓβ, to denote the dictionary objects allocated during the
analysis. The heap at loop exit is summarized by [n0 7→ {x : {ℓα, ℓβ}}!, ℓα 7→
{}, ℓβ 7→ {}}]. That is, at loop exit, x (and no other variable) is definitely

defined in the global namespace and denotes a dictionary. The dictionary’s value
is overapproximated by {}, which means the dictionary’s fields and values are
uncertain; the dictionary might be empty. (Indeed, this is the case at run time.)
The heap lets us analyze the reference to x[’a’] at point P5 — a missing-field
error might occur, since there is no guarantee that the field labelled ’a’ exists.

The primary purpose of the analysis is to detect operator-operand incom-
patibility errors and missing-field errors (key errors) in dictionary usage. The
analysis looks superficially like type analyses for class-based object-oriented lan-
guages, but as the previous example shows, dictionaries pose new challenges in
that fields can be added dynamically and field names for lookups can be com-
puted at run-time.

5 Function-definition analysis

To make the analysis modular, we analyze a function definition with an ab-
stract heap that contains symbolic constants, called tokens, for the values of the
function’s free variables, namely, the function’s formal parameters and nonlocal
variables.

While the function body is analysed, references to the free variables generate
conditional constraints on the corresponding tokens. The constraints are included
along with the function’s output image of the abstract heap, as the function’s
abstract denotation — a summary template. At function-call time, the template
is compared to the actual-parameter arguments and global-variable values in the
call-time heap for a compatibility check (“type check”). If the constraints are
satisfied, the call-time actual-parameter arguments and global-variable values
are substituted for the tokens in the function’s template, producing the function
call’s output heap, which is then reconciled with the input heap to the call. (This
last step is discussed in the next section.)

Figure 8 gives an example of a template resulting from an analyzed function.
The value of P1 shows how free variables d and g reside in the local and global
namespaces, respectively. The conditional’s test generates the constraint that
td is {} — d’s value is a dictionary — in the then-arm. Since d is dereferenced
within the then-arm, the constraint is expanded into a conditional constraint,
td is {} ⇒ (td is {”b” : td′}) — if d’s initial value is a dictionary, then it must
possess a ”b” field. The updates to d[”c”] and d[”b”] are expressed in the heap,

on fresh tokens, as seen in P5.
P6’s value shows how g is updated in the else arm; note the constraint that

d is “not a dictionary” within the else arm. The negation can be expressed as
a disjunction of all the type structures that are not dictionary structures (here,
“string or closure”) or can be left as is; see Section 8.

Finally, the function’s output is defined by P7. The output heap collects
updates to both local and free variables. Precision is lost by joining the heaps
at P5 and P6. (In Section 9 we see how to regain precision by annotating d

with a user-defined type that lets us generate multiple templates for a function
definition.) The output heap is used at function-call time to update the call-time

Function and flow equations:

def f(d):

global g

if isinstance(d,dict):

d[’c’] = g

g = d[’b’]

d[’b’] = {}
else:

g = d

P0 = assign d td initialHeapn1,n0

P1 = assignglobal g tg P0

P2t = makeTrue (isinstance d dict) P1

P3 = assign (index d ”c”) g P2t

P4 = assign g (index d ”b”) P4

P5 = assign (index d ”b”) {} P4

P2f = makeFalse (isinstance d dict) P1

P6 = assign g d P2f

P7 = P5 ⊔ P6

The environment is [n1 :: n0], where n0 is the address of the global namespace. The
initial heap is [n1 7→ {}!, n0 7→ {}] × [· · ·] × (), where the second component maps
defined functions to their templates and the third component collects constraints
on the function’s free variables. The worklist solution is

P0 = [n1 7→ {d : td}!, n0 7→ {}], [· · ·], ()
P1 = [n1 7→ {d : td}!, n0 7→ {g : tg}], [· · ·], ()

P2t = [n1 7→ {d : td}!, n0 7→ {g : tg}, td 7→ {}], [· · ·], td is {} ⇒ ()
P3 = [n1 7→ {d : td}!, n0 7→ {g : tg}, td 7→ {”c” : tg}], [· · ·],

td is {} ⇒ ()
P4 = [n1 7→ {d : td}!, n0 7→ {g : td′}, td 7→ {”c” : tg, ”b” : td′}], [· · ·],

td is {} ⇒ (td is {”b” : td′})
P5 = [n1 7→ {d : td}!, n0 7→ {g : td′}, td 7→ {”b” : ℓ′0, ”c” : tg}, ℓ

′
0 7→ {}!], [· · ·],

td is {} ⇒ (td is {”b” : td′})

P2f = [n1 7→ {d : td}!, n0 7→ {g : tg}], [· · ·], td is ∼{} ⇒ ()
P6 = [n1 7→ {d : td}!, n0 7→ {g : td}, td is ∼{} ⇒ ()

P7 = [n1 7→ {d : td}!, n0 7→ {g : {td′ , td}}, td 7→ {”b” : ℓ′0, ”c” : tg}, ℓ
′
0 7→ {}!], [· · ·],

td is {} ⇒ (td is {”b” : td′})

The value of P7, heap and constraints, constitute the function’s template.

Fig. 8. Analysis of a function

heap, and the collected constraints are validated on the call-time arguments and
call-time heap. We consider this next.

6 Function-call processing

A function’s template is applied when the function is called. These steps are
undertaken:

1. At the point of call, the arguments and global variables are checked against
the constraints listed in the function’s template. If a constraint cannot be
validated, a mismatch error (type error) is generated. If any of the arguments
or globals themselves contain tokens, the constraints are copied into the
caller’s constraint set.

2. The value of the function template’s output heap is used to update the call-
time heap: For each of the namespaces listed in the caller’s environment,
the values of the function’s free variables overwrite the values in the call-
time heap. Here, locally constructed objects can “escape” from the called
function’s body and can be tracked by the analysis (cf. “escape analysis
[13]).

Here are two calls of the function that was analyzed in Figure 8. First, we
have the call,

g = ’mm’

h = {’b’:’n’}
f(h)

At the point of the call, f(h), the call-time heap is

[{n0 7→ {g : ”mm”, h : ℓ0}!, ℓ0 7→ {”b” : ”n”}!].

The call generates these two bindings to the function’s tokens: td = ℓ0 and
tg = ”mm”. With the bindings, the analysis validates that the input constraint,
td is {} ⇒ (td is {”b” : td′}), holds true; in the process, the binding, td′ = ”n”,
is established. The three bindings are applied to the function’s output heap —
recall that it is:

[n1 7→ {d : td}!, n0 7→ {g : {td′, td}}, td 7→ {”b” : ℓ′0, ”c” : tg}, ℓ
′

0 7→ {}!]

the above heap is reconciled with the call-time heap, generating this heap that
results from the completed function call:

[n0 7→ {g : {”n”, ℓ0}, h : ℓ0, }!, ℓ0 7→ {”b” : ℓ′0, ”c” : ”mm”}, ℓ′0 7→ {}!

The example shows the loss of precision regarding g’s value. Precision can be
improved if the function template would generate an output heap for each exe-
cution path (or, each generated constraint).

Here is a second, example call:

g = ’mm’

f(g)

At the point of call, the call-time heap is [{n0 7→ {g : ”mm”}]. The bind-
ings, tg = ”mm” and td = ”mm”, validate the input constraint. The func-
tion’s output heap, listed above, is reconciled with the input heap, yielding
[n0 7→ {g : {⊥, ”nn”}}], which equals

[n0 7→ {g : ”nn”}]

In this example, there is no binding to td′ , since the token is a subpart of dic-

tionary td, which does not appear in the output heap that results from this call.
ℓ′
0

does not appear for the same reason.

Module M.py environment is [nM]
w = ... # global variable heap is [nM 7→ {w : · · ·}!]
def set(x): function environment is [nset :: nM]
global w entry heap is [nset 7→ {x : tx}!, nM 7→ {w : tw}]
w = x exit heap is [nset 7→ {x : tx}!, nM 7→ {w : tx}]

def get(): function environment is [nget :: nM]
return ...w... heap is [nget 7→ {}!, nM 7→ {w : tw}]

end module M

Module N.py environment is [nN]
import M heap is [nN 7→ {M : ℓ0}!, ℓ0 7→ {set : · · · , get : · · ·}!]
M.set(...) heap is unchanged (update to w is hidden)
...M.get()...

end module N

Fig. 9. Module definition, importation, and invocation

7 Module importation

Once a module is completely analyzed, a summary template must be generated
from it. This is necessary because the caller of the module’s functions owns an
environment whose namespaces are disjoint from the module’s. In particular,
updates that a called function makes to a module’s variables are hidden from
the caller. Figure 9 shows an example module, M.py, and its importation and use
by another, N.py. The environment used by module N is disjoint from module
M’s. This means the call, M.set(...), does not record the update to set, since
set has already been flow-analyzed.

But this demands that set’s analysis must ensure that all possible arguments
for parameter x meet the the input constraints generated by set’s body. (And
global variable w must hold a value that always satisfies the input constraints.)

For these reasons, the analysis first constructs module M’s summary template
by unioning and solving all constraints that were generated by all M’s functions
on all M’s variables. The solution to the constraints defines each module variable’s
invariant type. Next, each function’s output heap is checked to validate that the
values of the global variables in the output heap satisfy the invariant types. (If
a function fails to satisfy a variable’s invariant type, that function cannot be
called externally.)

The modular analysis of M.py generates a namespace of function templates
that is imported by module N and used just like those in a local function call.

8 Filter functions

Within a scripting language, the tests in conditional commands play the role
of classifying run-time values into types, and a useful analysis must exploit
the information. To do so, the analysis interprets type-discriminating tests as

Define

makeTrueIsinstance : Denotable×Heap→ Denotable×Heap

makeTrueIsinstance(s ∈ String, σ) = ⊥, σ
makeTrueIsinstance(ℓ ∈ NSlocation, σ) = ℓ, σ

makeTrueIsinstance(c ∈ CLlocation, σ) = ⊥, σ
makeTrueIsinstance(t ∈ Token, σ) = t′, σ + [t′ 7→ {}], where t′ is fresh

For instanceof(L, dict), say that θ is an L-value computed for L and that σ0 is
the current heap. The heap that results from the filter is defined

let {v1, v2, · · · vk}k≥0

let v′i+1, σi+1 = makeTrueIsinstance(vi+1, σi), for all 0 < i ≤ k

let T = {v”i}0<i≤k

in update(θ, T, σk)

Fig. 10. Module definition, importation, and invocation

filter functions, which narrow (make more precise) the values that flow into
the bodies of conditionals and loops. Figure 8 showed how the test predicate,
isinstance(d, dict), was used to update the value of the heap that entered
the conditional’s true arm to show that d’s value must be a dictionary (denoted,
{}).

Figure 10 gives the definition used by the analysis for the isinstance pred-
icate. For instanceof(L, dict), the definition examines each of the denotable
values that L denotes in the abstract heap. Each denotable value is filtered
through instanceof; some proceed, some do not. In the case of a token, the
token is specialized to a dictionary value. The results are collected into a set,
which updates L’s value.

The complement operation, makeFalseIsinstance, is defined similarly. In
Figure 8, a “meta pattern”,∼{}, was used as the output for makeFalseIsinstance.
This metapattern can be instantiated to a set of denotables, as suggested by Fig-
ure 10, or can be carried along as is. In the case of test predicates too complex
to filter (e.g., E1 == E2), the filter function can default to the identity filter,
which overrapproximates the flow into the arms of the conditional.

9 User-defined type equations and abstract parsing

User-defined types can improve the quality of an analysis; a user may write
BNF-like type equations whose components are abstract-string and abstract-
namespace values, e.g.,

N = {’s’:N}! | ’nil’

A type equation defines a named denotable value that can be calculated upon by
the flow analysis. Figure 11 displays a example function whose analysis utilizes
the above named type, N . The named type generates a finite set of denotables,

N = {’s’:N}! | ’nil’

def search(x:N):

while isinstance(x, dict):

x = x[’s’]

return x

P0 = assign x N initialHeapn1,n0

P1 = P0 ⊔ P3

P2t = makeTrue (isinstance x dict) P1

P3 = assign x (index x ”s”) P2t

P2f = makeFalse (isinstance x dict) P1

P4 = return x P2f

The environment has value, [n1 :: n0], where n0 is the address of the global name-
space. The named type, N, generates the abstract parse states,

N = N0 ∪N1
N0 = {”s” : N}
N1 = ”nil”

which can be unfolded as needed within the analysis. The worklist solution to the
flow equations calculates these abstract heaps:

P0 = [n1 7→ {x : N}!, n0 7→ {}]
P1 = [n1 7→ {x : N}!, n0 7→ {}]
P2t = [n1 7→ {x : ℓN0}!, ℓN0 7→ N0, n0 7→ {}]
P3 = [n1 7→ {x : N}!, ℓN0 7→ N0, n0 7→ {}]
P2f = [n1 7→ {x : N1}, n0 7→ {}]
P4 = N1, [n1 7→ {x : N1}, n0 7→ {}]
P1 = [n1 7→ {x : N}!, ℓN0 7→ N0, n0 7→ {}]
P2f = [n1 7→ {x : N1}, ℓN0 7→ N0, n0 7→ {}]
P4 = N1, [n1 7→ {x : N1}, ℓN0 7→ N0, n0 7→ {}]
(converges)

Fig. 11. Analysis of function with named parameter type

each of which is named by the parse state that is obtained by parsing a value with
respect to the BNF equation. The parse states are used as denotable values by
the analysis and are unfolded as needed (e.g., at the test, isinstance(x,dict)).
In the example, parse state N0 acts as a “summary node,” limiting the size of
the abstract heap.

The type definitions also allow the analysis to generate multiple templates
per function. For example, Figure 11 could be revised to generate an analysis of
def search(x:N0) and an analysis of def search(x:N1). The separate analyses
prove useful in practice when a function is written to act as a disciminator, to
be used in the test of a conditional command [3].

10 Implementation status

We have implemented a prototype analyzer that incorporates much (but not
all) of the developments in this paper. The analyzer has proved to be a useful
development and refinement tool for the techniques outlined here. The work is

ongoing, and we expect refinements of the technques described in this paper as
a result of our profiling experiements.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996.
2. R. Cartwright and M. Fagan. Soft typing. In Proc. Conf. on Prog. Lang. Design

and Implementation, pages 278–292. ACM Press, 1991.
3. M. Felleisen. From Soft Scheme to Typed Scheme: Experiences from 20

years of script evolution, and some ideas on what works. Technical Re-
port www.ccs.neu.edu/home/matthias/Presentations/STOP/stop.pdf, Keynote
address, Workshop on Scripts to Programs, Genova, Italy, 2009.

4. M. Furr, J.-H. An, J. Foster, and M. Hicks. Static type inference for Ruby. In
Proc. Symposium on Applied Computing, pages 1859–1866. ACM Press, 2009.

5. S.H. Jensen, A. Møller, and P. Thiemann. Type inference for Javascript. In Proc.

Static Analysis Symposium, pages 238–255. Springer LNCS 5673, 2009.
6. D. Remy. Typechecking records and variants in a natural extension of ML. In

Proc. Symp. on Principles of Prog. Lang., pages 77–88. ACM Press, 1989.
7. S. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

ACM Trans. Programming Lang. and Systems, 24:217–298, 2002.
8. J. Siek and W. Taha. Gradual typing for functional languages. In Proc. Scheme

and Functional Programming Workshop, pages 374–388. ACM Press, 2006.
9. J. Siek and W. Taha. Gradual typing for objects. In Proc. European Conf. on

Object-Oriented Programming, pages 2–27. Springer LNCS 4609, 2007.
10. S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: from scripts to

programs. In Proc. OOPSLA Companion, pages 964–974. ACM Press, 2006.
11. S. Tobin-Hochstadt and M. Felleisen. The design and implementation of typed

scheme. In Proc. Symp. Principles of Prog. Languages, pages 395–406. ACM Press,
2007.

12. M. Wand. Type inference for record concatenation and multiple inheritance. In
Proc. Symp. on Logic in Computer Science, pages 92–97. IEEE Press, 1989.

13. J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java
programs. In Proc. OOPSLA’99, pages 187–206. ACM Press, 2009.

