
Internal and External Logics of
Abstract Interpretations

David Schmidt

Kansas State University

www.cis.ksu.edu/∼schmidt

(-: / 1

Motivations

How does a static analysis “connect” to the properties it is
meant to prove?

� use data-flow analysis to compute available-expression sets to

decide register allocation;

� use a state-space exploration to model check a temporal-logic

safety property or program-transformation criterion

� apply predicate abstraction with counter-example-guided

refinement (CEGAR) to generate an assertion set that proves a

safety property

The value domain used by an analysis and the logic used for
validation/transformation should be one and the same — the
logic is internal to the value domain. If the values and logic
differ, then the logic must be defined externally.

(-: / 2

Developments from this paper

Let Σ be the program’s state set; let A be the abstract domain; let
γ : A → P(Σ) be the concretization function.

1. γ defines a logic internal to A for Σ, where A’s elements act both
as computational values and as logical assertions. The model
theory, |=, is defined by γ; the proof theory, ⊢, by ⊑A.

2. The notion of (forwards) completeness from abstract
interpretation theory characterizes the internal logic.

3. When a logic for Σ is proposed independently from γ, then an
external logic must be fashioned from P↓(A). But, when γ
preserves meets and joins, the external logic can be embedded
within Aop (inverted).

In the last case, A has two interpretations: an overapproximating,
computational interpretation, and an underapproximating logical
interpretation (on Aop).

(-: / 3

Abstract interpretation: computing on properties

Example:

read(x)

if isPositive(x) :

x:= pred(x)

x:= succ(x)

write(x)

Q: Is output pos?

A: abstractly interpret Int by

Sign = {neg , zero, pos , any ,none}:

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}

pos

zero

none

any

neg

α

P(Int) Sign

Standard, collecting inter-
pretation:
f : P(Int) → P(Int):
isPos(S) = {n ∈ S | n > 0}

pred(S) = {n− 1 | n ∈ S}

succ(S) = {n+ 1 | n ∈ S}

Abstract interpretation: f♯ : A → A:
isPos♯(pos) = pos

isPos♯(neg) = none

isPos♯(any) = pos , etc.
succ♯(pos) = pos

succ♯(zero) = pos

succ♯(neg) = any , etc.
pred♯(neg) = neg

pred♯(zero) = neg

pred♯(pos) = any , etc.

(-: / 4

Abstract values = logical properties

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}

pos

zero

none

any

neg

α

P(Int) Sign

Read computational

values like neg ∈ Sign

as logical propositions,

“isNegative”, etc.

For S ⊆ Σ, a, a ′ ∈ A, γ : A → P(Σ), define

� S |= a iff S ⊆ γ(a) e.g., {−3,−1} |= neg

� a |= a ′ iff γ(a) ⊆ γ(a ′) e.g., neg |= any

� a ⊢ a ′ iff a⊑a ′ e.g., neg ⊢ any

Proposition: (soundness) a ⊢ a ′ implies a |= a ′.

Proposition: (completeness) if γ is an upper adjoint of a Galois

connection and is 1-1, then a |= a ′ implies a ⊢ a ′.

(-: / 5

Abstract transformers compute on properties

For f : PC → PC, f♯ : A → A is sound iff

f ◦ γ ⊑ γ ◦ f♯ iff α ◦ f ⊑ f♯ ◦ α

a

(a)

f #
f #(a)

f

γγ

γ
α

f #α (S)

f(S)S
f

α

This makes f♯ a postcondition transformer:

Proposition: (soundness) S |= a implies f(S) |= f♯(a).

Example: For, succ : P(Int) → P(Int), we have succ{0} = {1}, which is soundly

mimicked by succ♯(zero) = pos.

f
♯
best = α ◦ f ◦ γ is the strongest postcondition transformer for A.

Definition: f♯ is γ-complete (forwards complete) for f iff
f ◦ γ = γ ◦ f♯ [Giacobazzi01] . f♯ is α-complete (backwards
complete) for f iff α ◦ f = f♯ ◦ α [Cousots00] .

(-: / 6

A has an internal logic that γ preserves

First, treat all a ∈ A as primitive propositions (isNeg, isPos, etc.).

A has conjunction when

S |= φ1⊓φ2 iff S |= φ1 and S |= φ2, for all S ⊆ Σ.

That is, γ(φ⊓ψ) = γ(φ) ∩ γ(ψ), for all φ,ψ ∈ A.

Proposition: When γ : A → P(Σ) is an upper adjoint, then A has

conjunction.

Sign has conjunction; so do all predicate-abstraction analyses.

Proposition: When γ(φ⊔ψ) = γ(φ) ∪ γ(ψ), then A has disjunction:

S |= φ⊔ψ iff S |= φ or S |= ψ.

Sign lacks disjunction: zero |= neg ⊔ pos (because neg ⊔ pos = any but zero 6|= neg

and zero 6|= pos).

(-: / 7

Complete lattice A is distributive if a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c), for
all a, b, c ∈ A. When ⊓ is Scott-continuous, then

φ⇒ψ ≡
⊔

{a ∈ A | a⊓φ⊑ψ}

satisfies the property, a ⊢ φ⇒ψ iff a⊓φ ⊢ ψ.

Proposition: If A is a distributive complete lattice, ⊓ is
Scott-continuous, and upper adjoint γ is 1-1, then A has
Heyting implication, φ⇒ψ, such that

S |= φ⇒ψ iff γ(α(S)) ∩ γ(φ) ⊆ γ(ψ).

That is, γ(φ⇒ψ) =
⋃

{S ∈ γ[A] | S ∩ γ(φ) ⊆ γ(ψ)}.

Heyting implication is weaker than classical implication, where S |= φ⇒ψ iff

S ∩ γ(φ) ⊆ γ(ψ) iff for all c ∈ S, if {c} |= φ, then {c} |= ψ.

The POS domain for groundness analysis of logic programs uses Heyting implication

[Cortesi91,Marriott93] .

(-: / 8

If γ(⊥A) = ∅ ∈ P(Σ), we have falsity (⊥); this yields the logic,

φ ::= a | φ1⊓φ2 | φ1⊔φ2 | φ1 ⇒φ2 | ⊥

In particular, ¬φ abbreviates φ⇒⊥ and defines the refutation of φ

within A, as done in TVLA [Sagiv02] .

γ : A → P(Σ) is the interpretation function for the internal logic:

γ(a) = given

γ(φ⊓ψ) = γ(φ) ∩ γ(ψ)

γ(φ⊔ψ) = γ(φ) ∪ γ(ψ)

γ(φ⇒ψ) =
⋃

{S ∈ γ[A] | S ∩ γ(φ) ⊆ γ(ψ)}

γ(⊥) = ∅

(-: / 9

γ-completeness characterizes the internal logic

The previous interpretation, e.g., for conjunction:

γ(φ⊓ψ) = γ(φ) ∩ γ(ψ)

shows that γ-completeness is exactly the criterion for determining

which connectives are embedded in A’s internal logic:

Proposition: For f : P(Σ) × P(Σ) × · · · → P(Σ), A has
connective f♯ iff f♯ is γ-complete for f:

γ(f♯(φ1, φ2, · · ·)) = f(γ(φ1), γ(φ2), · · ·).

Example: For Sign, negate♯ is γ-complete for negate(S) = {−n | n ∈ S}

(where negate♯(pos) = neg , negate♯(neg) = pos, etc.):

φ ::= a | φ1 ⊓φ2 | negate♯(φ)

We can state “negate” assertions, e.g., pos |= negate♯(neg ⊓ any).

(-: / 10

Transition functions in the logic: predicate transformers

It is useful to know when f(S) |= φ, that is, S |= [f]φ.

Define [·] in terms of p̃re :

[f](S) = p̃ref(S) =
⋃

{S ′ ∈ Σ | f(S ′) ⊆ S}, for S ⊆ P(Σ)

[f♯](a) = p̃ref♯(a) = {a ′ ∈ A | f♯(a ′)⊑a}, for a ∈ A

When f♯ is sound for f, then p̃ref♯ is sound for p̃ref.

Proposition: Assume that γ is an upper adjoint and preserves
joins. Then, p̃ref♯ is γ-complete for p̃ref iff f♯ is α-complete for f.

In this case, we have that [f♯] exists in A’s internal logic, where

γ([f♯]φ) = p̃ref(γ(φ))

But, it is not so common that f♯ is α-complete for f.

(-: / 11

Logics not internal to the abstract domain

It is common to work with a logic “external” from A’s internal logic

(e.g., because the transition functions, f♯ : A → A, lack α-

completeness).

Example: We want this logic for reasoning about Sign:

φ ::= a |φ1 ∧φ2 |φ1 ∨φ2 | [f]φ for a ∈ Sign and f ∈ {succ, pred}

where [[·]] : L → P(Σ) is defined

[[a]] = γ(a)

[[[f]φ]] = p̃ref[[φ]]

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]

But this logic is not internal to Sign (which lacks disjunction, and both

succ♯ and pred♯ are not α-complete). What do we do?

(-: / 12

We can fashion an external logic

For each [[φ]] ⊆ Σ, define

[[φ]]A = {a ∈ A | γ(a) ⊆ [[φ]]}

Then, assert a ⊢ φ iff a ∈ [[φ]]A.

This definition follows from a Galois connection whose abstract

domain is P↓(A)op — downclosed subsets of A, ordered by superset:

γ(T) =
⋃

{γ(a) | a ∈ T }

α(S) = {a | γ(a) ⊆ S}

op
γ UI

[[]]ϕ

[[]]ϕ Aγ UI

P()Σ

α

P (A)[[]]ϕ A

[[]]ϕα

op

That is, [[φ]]A = α[[φ]].

The inverted ordering gives underapproximation: [[φ]] ⊇ γ([[φ]]A). This

form of external logic is standard in “abstract model checking.”

(-: / 13

It is also standard to write an inductively defined approximation to

α[[φ]]:

[[a]]Aind = α(γ(a))

[[φ1 ∧ φ2]]
A

ind = [[φ1]]
A

ind∩ [[φ2]]
A

ind

[[φ1 ∨ φ2]]
A
ind = [[φ1]]

A
ind∪ [[φ2]]

A
ind

[[[f]φ]]Aind = p̃ref♯ [[φ]]Aind = {a ∈ A | f♯(a) ∈ [[φ]]Aind}

Entailment and provability are as expected: a |= φ iff γ(a) ⊆ [[φ]], and

a ⊢ φ iff a ∈ [[φ]]Aind.

Soundness (⊢ implies |=) is immediate, and completeness (|= implies

⊢) follows when α ◦ [[·]] = [[·]]Aind. This is called logical best

preservation or logical α-completeness [Cousots00,Schmidt06] .

(-: / 14

Embedding the external logic within the internal

Say that γ is an upper adjoint and that it preserves joins, that is,

γT =
⋃

a∈T γ(a) = γ(
⊔

a∈T a) = γ(⊔T)

So, γ[P↓(A)] = γ[A] — their ranges are equal — and there is no new

expressivity gained by using sets of A-elements.

Proposition: If A is a complete lattice and γ : A → P(Σ)

preserves joins (as unions) and meets (as intersections), then

� γ is the upper adjoint of an overapproximating Galois
connection between (P(Σ),⊆) and (A, ⊑), where
αo(S) = ⊓ {a | S ⊆ γ(a)}.

� γ is the upper adjoint of an underapproximating Galois
connection between (P(Σ),⊇) and (A, ⊒), where
αu(S) = ⊔ {a | S ⊇ γ(a)}.

(-: / 15

1. For state-transition functions, f : P(Σ) → P(Σ), apply the first

Galois connection, giving the computational interpretation of f:

f
♯
best = αo ◦ f ◦ γ.

2. For logical connectives, [[f(φ1, φ2, · · ·)]] = f([[φ1]], [[φ2]], · · ·), apply

the second Galois connection, for the logical interpretation of f:

f♭best = αu ◦ f ◦ (γ× γ× ...) and

[[f(φ1, φ2, · · ·)]]
A
ind = f♭best([[φ1]]

A
ind, [[φ2]]

A
ind, · · ·),

When the f♭bests are αu-complete, then [[·]]Aind = αu ◦ [[·]], and the

resulting internal logic proves the same assertions as the external

logic:

� First, for [[φ]]A = α[[φ]] ∈ P↓(A), recall that a ⊢ φ iff a ∈ [[φ]]A.

� Next, for [[φ]]Aind = αu[[φ]] ∈ A, define a ⊢ φ iff a⊑ [[φ]]Aind.

Theorem: For all a ∈ A, a ∈ [[φ]]A iff a⊑ [[φ]]Aind.

(-: / 16

Conclusions

� A static analysis is “logical” in that it computes proofs (via ⊑) in

the abstract domain, A, that are sound (via |=, i.e., γ) in the

concrete domain, Σ.

� γ-completeness (homomorphism property) characterizes the

internal logic one can soundly validate on A-values, using ⊑ .

Assertions not in the internal logic can be approximated within an

external logic defined with sets of A-values and checked using ∈.

� When γ preserves joins and meets from A to P(Σ), the external

logic can be embedded within the abstract domain, letting it

overapproximate computations on Σ and underapproximate

assertions on Σ.

(-: / 17

References This talk: www.cis.ksu.edu/∼schmidt/papers

1. A. Cortesi, G. Filé and W. Winsborough. Prop revisited: propositional formulas
as an abstract domain for groundness analysis. LICS’91.

2. P. Cousot. Semantic foundations of program analysis. In Program Flow
Analysis, S. Muchnick and N. Jones, eds. Prentice-Hall 1981.

3. P. Cousot and R. Cousot. Temporal abstract interpretation. POPL’00.

4. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and
refinements in abstract model checking. SAS’01, LNCS 2126.

5. K. Marriott and H. Sondergaard. Precise and efficient groundness analysis for
logic programs. ACM LOPLAS 2 (1993).

6. F. Ranzato and F. Tapparo. Strong preservation of temporal fixpoint-based
operators. VMCAI’06, LNCS 3855.

7. M. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued
Logic. ACM TOPLAS (24) 2002.

8. D.A. Schmidt. Comparing completeness properties of static analyses and their
logics. APLAS’06, LNCS 4279.

(-: / 18

