Internal and External Logics of Abstract Interpretations

David Schmidt Kansas State University

www.cis.ksu.edu/~schmidt

Motivations

How does a static analysis "connect" to the properties it is meant to prove?

- use data-flow analysis to compute available-expression sets to decide register allocation;
- use a state-space exploration to model check a temporal-logic safety property or program-transformation criterion
- apply predicate abstraction with counter-example-guided refinement (CEGAR) to generate an assertion set that proves a safety property

The value domain used by an analysis and the logic used for validation/transformation should be *one and the same* — the logic is *internal* to the value domain. If the values and logic differ, then the logic must be defined *externally*.

Developments from this paper

Let Σ be the program's state set; let A be the abstract domain; let $\gamma : A \to \mathcal{P}(\Sigma)$ be the *concretization function*.

- 1. γ defines a logic *internal* to A for Σ , where A's elements act *both* as computational values and as logical assertions. The model theory, \models , is defined by γ ; the proof theory, \vdash , by \sqsubseteq_A .
- 2. The notion of (forwards) completeness from abstract interpretation theory *characterizes* the internal logic.
- 3. When a logic for Σ is proposed independently from γ , then an *external logic* must be fashioned from $\mathcal{P}_{\downarrow}(A)$. *But,* when γ preserves meets and joins, the external logic can be embedded within A^{op} (inverted).

In the last case, A has *two* interpretations: an overapproximating, *computational* interpretation, and an underapproximating *logical* interpretation (on A^{op}).

Abstract interpretation: computing on properties

Example:

```
read(x)
if isPositive(x) :
    x:= pred(x)
x:= succ(x)
write(x)
Q: ls output pos?
```

A: abstractly interpret Int by

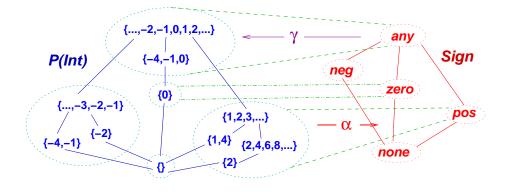
 $Sign = \{neg, zero, pos, any, none\}$:

{...,-2,-1,0,1,2,...} any Sign P(Int) {-4,-1,0} neg zero **{0}** {...,-3,-2,-1} pos {1,2,3,...} α {-2} {1,4} {2,4,6,8,...} {-4,-1} none

Standard, collecting interpretation:

 $f: \mathcal{P}(Int) \rightarrow \mathcal{P}(Int):$ $isPos(S) = \{n \in S \mid n > 0\}$ $pred(S) = \{n - 1 \mid n \in S\}$ $succ(S) = \{n + 1 \mid n \in S\}$ Abstract interpretation: $f^{\sharp} : A \to A$: $isPos^{\sharp}(pos) = pos$ $isPos^{\sharp}(neg) = none$ $isPos^{\sharp}(any) = pos$, etc. $succ^{\sharp}(pos) = pos$ $succ^{\sharp}(zero) = pos$ $succ^{\sharp}(zero) = pos$ $succ^{\sharp}(zero) = pos$ $succ^{\sharp}(pos) = pos$ $succ^{\sharp}(pos) = any$, etc.

Abstract values = logical properties



Read computational values like neg ∈ Sign as logical propositions, "isNegative", etc.

For $S \subseteq \Sigma$, $a, a' \in A$, $\gamma : A \to \mathcal{P}(\Sigma)$, define

- $\blacklozenge \ S \models a \ \text{iff} \ S \subseteq \gamma(a) \qquad \text{e.g., } \{-3, -1\} \models \textit{neg}$
- $\blacklozenge \ a \models a' \text{ iff } \gamma(a) \subseteq \gamma(a') \quad \text{ e.g., } neg \models any$
- ♦ $a \vdash a'$ iff $a \sqsubseteq a'$ e.g., $neg \vdash any$

Proposition: (soundness) $a \vdash a'$ implies $a \models a'$.

Proposition: (completeness) if γ is an upper adjoint of a Galois connection and is 1-1, then $a \models a'$ implies $a \vdash a'$.

Abstract transformers compute on properties

For $f : PC \to PC$, $f^{\sharp} : A \to A$ is *sound* iff

 $f \circ \gamma \sqsubseteq \gamma \circ f^{\sharp} \quad iff \quad \alpha \circ f \sqsubseteq f^{\sharp} \circ \alpha$ $\gamma (a) \xrightarrow{f} \bullet \qquad \qquad s \xrightarrow{f} f(S)$ $\gamma \stackrel{\wedge}{}_{a} \xrightarrow{f^{\#}} f^{\#}(a) \qquad \qquad \alpha (s) \xrightarrow{f^{\#}} f^{\#}(a)$

This makes f[#] a *postcondition transformer*.

Proposition: (soundness) $S \models a$ implies $f(S) \models f^{\sharp}(a)$.

Example: For, succ : $\mathcal{P}(Int) \to \mathcal{P}(Int)$, we have succ $\{0\} = \{1\}$, which is soundly mimicked by succ^{\ddagger}(zero) = pos.

 $f_{best}^{\sharp} = \alpha \circ f \circ \gamma$ is the *strongest postcondition* transformer for A. **Definition:** f^{\sharp} is γ -complete (forwards complete) for f iff $f \circ \gamma = \gamma \circ f^{\sharp}$ [Giacobazzi01]. f^{\sharp} is α -complete (backwards complete) for f iff $\alpha \circ f = f^{\sharp} \circ \alpha$ [Cousots00].

A has an internal logic that γ preserves

First, treat all $a \in A$ as primitive propositions (*isNeg*, *isPos*, etc.).

A has conjunction when

 $S \models \phi_1 \sqcap \phi_2$ iff $S \models \phi_1$ and $S \models \phi_2$, for all $S \subseteq \Sigma$.

That is, $\gamma(\phi \sqcap \psi) = \gamma(\phi) \cap \gamma(\psi)$, for all $\phi, \psi \in A$.

Proposition: When $\gamma : A \to \mathcal{P}(\Sigma)$ is an upper adjoint, then A has conjunction.

Sign has conjunction; so do all predicate-abstraction analyses.

Proposition: When $\gamma(\varphi \sqcup \psi) = \gamma(\varphi) \cup \gamma(\psi)$, then A has *disjunction*: $S \models \varphi \sqcup \psi$ iff $S \models \varphi$ or $S \models \psi$.

Sign lacks disjunction: $zero \models neg \sqcup pos$ (because $neg \sqcup pos = any$ but $zero \not\models neg$ and $zero \not\models pos$).

Complete lattice A is *distributive* if $a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)$, for all $a, b, c \in A$. When \sqcap is Scott-continuous, then

 $\varphi \! \Rightarrow \! \psi \; \equiv \; \bigsqcup \{ a \in A \mid a \sqcap \varphi \sqsubseteq \psi \}$

satisfies the property, $a \vdash \phi \Rightarrow \psi$ iff $a \sqcap \phi \vdash \psi$.

Proposition: If A is a distributive complete lattice, \sqcap is Scott-continuous, and upper adjoint γ is 1-1, then A has *Heyting implication*, $\phi \Rightarrow \psi$, such that

 $S \models \phi \Rightarrow \psi \text{ iff } \gamma(\alpha(S)) \cap \gamma(\phi) \subseteq \gamma(\psi).$

That is, $\gamma(\phi \Rightarrow \psi) = \bigcup \{S \in \gamma[A] \mid S \cap \gamma(\phi) \subseteq \gamma(\psi)\}.$

Heyting implication is weaker than classical implication, where $S \models \phi \Rightarrow \psi$ iff $S \cap \gamma(\phi) \subseteq \gamma(\psi)$ iff for all $c \in S$, if $\{c\} \models \phi$, then $\{c\} \models \psi$.

The POS domain for groundness analysis of logic programs uses Heyting implication [Cortesi91,Marriott93].

If $\gamma(\perp_A) = \emptyset \in \mathcal{P}(\Sigma)$, we have falsity (\perp); this yields the logic,

 $\phi ::= \mathbf{a} | \phi_1 \sqcap \phi_2 | \phi_1 \sqcup \phi_2 | \phi_1 \Rightarrow \phi_2 | \bot$

In particular, $\neg \phi$ abbreviates $\phi \Rightarrow \bot$ and defines the *refutation* of ϕ within A, as done in TVLA [Sagiv02].

 $\gamma : A \to \mathcal{P}(\Sigma)$ is the interpretation function for the internal logic:

$$\begin{split} \gamma(a) &= \text{given} \\ \gamma(\varphi \sqcap \psi) &= \gamma(\varphi) \cap \gamma(\psi) \\ \gamma(\varphi \sqcup \psi) &= \gamma(\varphi) \cup \gamma(\psi) \\ \gamma(\varphi \Rightarrow \psi) &= \bigcup \{S \in \gamma[A] \mid S \cap \gamma(\varphi) \subseteq \gamma(\psi)\} \\ \gamma(\bot) &= \emptyset \end{split}$$

γ -completeness characterizes the internal logic

The previous interpretation, e.g., for conjunction:

 $\gamma(\varphi \sqcap \psi) = \gamma(\varphi) \cap \gamma(\psi)$

shows that γ -completeness is *exactly* the criterion for determining which connectives are embedded in A's internal logic:

Proposition: For $f : \mathcal{P}(\Sigma) \times \mathcal{P}(\Sigma) \times \cdots \to \mathcal{P}(\Sigma)$, A has connective f^{\sharp} iff f^{\sharp} is γ -complete for f:

 $\gamma(f^{\sharp}(\phi_1,\phi_2,\cdots)) = f(\gamma(\phi_1),\gamma(\phi_2),\cdots).$

Example: For *Sign*, negate[#] is γ -complete for negate(S) = {-n | n \in S} (where negate[#](*pos*) = *neg*, negate[#](*neg*) = *pos*, etc.):

 $\phi ::= a | \phi_1 \sqcap \phi_2 | negate^{\sharp}(\phi)$

We can state "negate" assertions, e.g., $pos \models negate^{\sharp}(neg \sqcap any)$.

Transition functions in the logic: predicate transformers

It is useful to know when $f(S) \models \phi$, *that is,* $S \models [f]\phi$.

Define $[\cdot]$ in terms of \widetilde{pre} :

$$\begin{split} [f](S) &= \widetilde{pre}_{f}(S) = \bigcup \{S' \in \Sigma \mid f(S') \subseteq S\}, & \text{ for } S \subseteq \mathcal{P}(\Sigma) \\ [f^{\sharp}](a) &= \widetilde{pre}_{f^{\sharp}}(a) = \{a' \in A \mid f^{\sharp}(a') \sqsubseteq a\}, & \text{ for } a \in A \end{split}$$

When f^{\sharp} is sound for f, then $\widetilde{pre}_{f^{\sharp}}$ is sound for \widetilde{pre}_{f} .

Proposition: Assume that γ is an upper adjoint and preserves joins. Then, $\widetilde{pre}_{f^{\sharp}}$ is γ -complete for \widetilde{pre}_{f} iff f^{\sharp} is α -complete for f.

In this case, we have that [f[‡]] exists in A's internal logic, where

 $\gamma([\mathbf{f}^{\sharp}]\boldsymbol{\Phi}) = \widetilde{pre}_{\mathbf{f}}(\boldsymbol{\gamma}(\boldsymbol{\Phi}))$

But, it is not so common that f^{\sharp} is α -complete for f.

Logics not internal to the abstract domain

It is common to work with a logic "external" from A's internal logic (e.g., because the transition functions, $f^{\sharp} : A \to A$, lack α -completeness).

Example: We want this logic for reasoning about *Sign*:

 $\varphi ::= \mathfrak{a} | \varphi_1 \land \varphi_2 | \varphi_1 \lor \varphi_2 | [f] \varphi \quad \text{ for } \mathfrak{a} \in \underline{Sign} \text{ and } f \in \{\text{succ}, \text{pred}\}$ where $\llbracket \cdot \rrbracket : \mathcal{L} \to \mathcal{P}(\Sigma)$ is defined

 $\llbracket \mathbf{a} \rrbracket = \mathbf{\gamma}(\mathbf{a}) \qquad \llbracket \mathbf{\phi}_1 \land \mathbf{\phi}_2 \rrbracket = \llbracket \mathbf{\phi}_1 \rrbracket \cap \llbracket \mathbf{\phi}_2 \rrbracket$ $\llbracket \llbracket \mathbf{f} \rrbracket \mathbf{\phi} \rrbracket = \widetilde{pre}_{\mathbf{f}} \llbracket \mathbf{\phi} \rrbracket \qquad \llbracket \mathbf{\phi}_1 \lor \mathbf{\phi}_2 \rrbracket = \llbracket \mathbf{\phi}_1 \rrbracket \cup \llbracket \mathbf{\phi}_2 \rrbracket$

But this logic is not internal to *Sign* (which lacks disjunction, and both $succ^{\sharp}$ and $pred^{\sharp}$ are not α -complete). *What do we do?*

We can fashion an external logic

For each $\llbracket \varphi \rrbracket \subseteq \Sigma$, define

 $\llbracket \phi \rrbracket^{\mathcal{A}} = \{ \mathfrak{a} \in \mathcal{A} \mid \gamma(\mathfrak{a}) \subseteq \llbracket \phi \rrbracket \}$

Then, assert $\mathbf{a} \vdash \phi$ iff $\mathbf{a} \in \llbracket \phi \rrbracket^{\mathcal{A}}$.

This definition follows from a Galois connection whose abstract domain is $\mathcal{P}_{\downarrow}(A)^{\text{op}}$ — downclosed subsets of A, ordered by superset:

$$\overline{\gamma}(\mathsf{T}) = \bigcup\{\gamma(\mathfrak{a}) \mid \mathfrak{a} \in \mathsf{T}\} \qquad \begin{array}{c} P(\Sigma) \stackrel{op}{\gamma} \llbracket \varphi \rrbracket^{A} & \overline{\gamma} & \llbracket \varphi \rrbracket^{A} & P_{\psi}(A) \stackrel{op}{} \\ \Pi & \Pi & \Pi \\ \llbracket \varphi \rrbracket & \overline{\alpha} \llbracket \varphi \rrbracket & \overline{\alpha} \llbracket \varphi \rrbracket \end{array}$$

That is, $\llbracket \phi \rrbracket^{A} = \overline{\alpha} \llbracket \phi \rrbracket$.

The inverted ordering gives *underapproximation*: $\llbracket \varphi \rrbracket \supseteq \overline{\gamma}(\llbracket \varphi \rrbracket^{\mathcal{A}})$. This form of external logic is standard in "abstract model checking."

It is also standard to write an inductively defined approximation to $\overline{\alpha}[\phi]$:

$$\begin{split} \llbracket a \rrbracket_{\text{ind}}^{\mathcal{A}} &= \overline{\alpha}(\gamma(a)) \\ \llbracket \phi_1 \wedge \phi_2 \rrbracket_{\text{ind}}^{\mathcal{A}} &= \llbracket \phi_1 \rrbracket_{\text{ind}}^{\mathcal{A}} \cap \llbracket \phi_2 \rrbracket_{\text{ind}}^{\mathcal{A}} \\ \llbracket \phi_1 \vee \phi_2 \rrbracket_{\text{ind}}^{\mathcal{A}} &= \llbracket \phi_1 \rrbracket_{\text{ind}}^{\mathcal{A}} \cup \llbracket \phi_2 \rrbracket_{\text{ind}}^{\mathcal{A}} \\ \llbracket \llbracket f \rrbracket \phi \rrbracket_{\text{ind}}^{\mathcal{A}} &= \widetilde{pre}_{f^{\sharp}} \llbracket \phi \rrbracket_{\text{ind}}^{\mathcal{A}} = \{a \in \mathcal{A} \mid f^{\sharp}(a) \in \llbracket \phi \rrbracket_{\text{ind}}^{\mathcal{A}} \} \end{split}$$

Entailment and provability are as expected: $a \models \phi$ iff $\gamma(a) \subseteq \llbracket \phi \rrbracket$, and $a \vdash \phi$ iff $a \in \llbracket \phi \rrbracket_{ind}^{\mathcal{A}}$.

Soundness (\vdash implies \models) is immediate, and completeness (\models implies \vdash) follows when $\overline{\alpha} \circ \llbracket \cdot \rrbracket = \llbracket \cdot \rrbracket_{ind}^{\mathcal{A}}$. This is called *logical best preservation* or *logical* $\overline{\alpha}$ -completeness [Cousots00,Schmidt06].

Embedding the external logic within the internal

Say that γ is an upper adjoint and that it *preserves joins*, that is,

 $\overline{\gamma}T = \bigcup_{a \in T} \gamma(a) = \gamma(\bigsqcup_{a \in T} a) = \gamma(\sqcup T)$

So, $\overline{\gamma}[\mathcal{P}_{\downarrow}(A)] = \gamma[A]$ — their ranges are equal — and *there is no new* expressivity gained by using sets of A-elements.

Proposition: If A is a complete lattice and $\gamma : A \to \mathcal{P}(\Sigma)$ preserves joins (as unions) *and* meets (as intersections), then

- γ is the upper adjoint of an *overapproximating* Galois connection between $(\mathcal{P}(\Sigma), \subseteq)$ and (A, \sqsubseteq) , where $\alpha_o(S) = \sqcap \{ a \mid S \subseteq \gamma(a) \}.$
- γ is the upper adjoint of an *underapproximating* Galois connection between $(\mathcal{P}(\Sigma), \supseteq)$ and (A, \sqsupseteq) , where $\alpha_u(S) = \sqcup \{a \mid S \supseteq \gamma(a)\}.$

- 1. For state-transition functions, $f : \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$, apply the first Galois connection, giving the *computational interpretation* of f: $f_{\text{best}}^{\sharp} = \alpha_{o} \circ f \circ \gamma$.
- 2. For logical connectives, $[f(\phi_1, \phi_2, \cdots)] = f([\phi_1]], [\phi_2]], \cdots)$, apply the second Galois connection, for the *logical interpretation* of f: $f_{\text{best}}^{\flat} = \alpha_u \circ f \circ (\gamma \times \gamma \times ...)$ and $[f(\phi_1, \phi_2, \cdots)]_{\text{ind}}^{\mathcal{A}} = f_{\text{best}}^{\flat}([\phi_1]]_{\text{ind}}^{\mathcal{A}}, [\phi_2]]_{\text{ind}}^{\mathcal{A}}, \cdots),$

When the f_{best}^{\flat} s are α_u -complete, then $[\cdot]_{\text{ind}}^{\mathcal{A}} = \alpha_u \circ [\cdot]$, and the resulting internal logic *proves the same assertions* as the external logic:

• First, for $\llbracket \varphi \rrbracket^{\mathcal{A}} = \overline{\alpha} \llbracket \varphi \rrbracket \in \mathcal{P}_{\downarrow}(\mathcal{A})$, recall that $\mathfrak{a} \vdash \varphi$ iff $\mathfrak{a} \in \llbracket \varphi \rrbracket^{\mathcal{A}}$.

• Next, for $\llbracket \varphi \rrbracket_{ind}^{\mathcal{A}} = \alpha_u \llbracket \varphi \rrbracket \in \mathcal{A}$, define $a \vdash \varphi$ iff $a \sqsubseteq \llbracket \varphi \rrbracket_{ind}^{\mathcal{A}}$.

Theorem: For all $a \in A$, $a \in \llbracket \phi \rrbracket^{\mathcal{A}}$ iff $a \sqsubseteq \llbracket \phi \rrbracket^{\mathcal{A}}_{ind}$.

Conclusions

- A static analysis is "logical" in that it *computes proofs* (via ⊑) in the abstract domain, A, that are *sound* (via ⊨, i.e., γ) in the concrete domain, Σ.
- *γ*-completeness (homomorphism property) characterizes the internal logic one can soundly validate on A-values, using ⊑.
 Assertions not in the internal logic can be approximated within an external logic defined with sets of A-values and checked using ∈.
- When γ preserves joins and meets from A to P(Σ), the external logic can be *embedded* within the abstract domain, letting it *overapproximate* computations on Σ and *underapproximate* assertions on Σ.

References This talk: www.cis.ksu.edu/~schmidt/papers

- 1. A. Cortesi, G. Filé and W. Winsborough. Prop revisited: propositional formulas as an abstract domain for groundness analysis. LICS'91.
- 2. P. Cousot. Semantic foundations of program analysis. In *Program Flow Analysis*, S. Muchnick and N. Jones, eds. Prentice-Hall 1981.
- 3. P. Cousot and R. Cousot. Temporal abstract interpretation. POPL'00.
- 4. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and refinements in abstract model checking. SAS'01, LNCS 2126.
- K. Marriott and H. Sondergaard. Precise and efficient groundness analysis for logic programs. ACM LOPLAS 2 (1993).
- 6. F. Ranzato and F. Tapparo. Strong preservation of temporal fixpoint-based operators. VMCAI'06, LNCS 3855.
- M. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic. ACM TOPLAS (24) 2002.
- 8. D.A. Schmidt. Comparing completeness properties of static analyses and their logics. APLAS'06, LNCS 4279.