
Internal and External Logics of
Abstract Interpretations

David Schmidt

Kansas State University

www.cis.ksu.edu/∼schmidt

(-: / 1



Motivations

How does a static analysis “connect” to the properties it is
meant to prove?

� use data-flow analysis to compute available-expression sets to

decide register allocation;

� use a state-space exploration to model check a temporal-logic

safety property or program-transformation criterion

� apply predicate abstraction with counter-example-guided

refinement (CEGAR) to generate an assertion set that proves a

safety property

The value domain used by an analysis and the logic used for
validation/transformation should be one and the same — the
logic is internal to the value domain. If the values and logic
differ, then the logic must be defined externally.
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Developments from this paper

Let Σ be the program’s state set; let A be the abstract domain; let
γ : A → P(Σ) be the concretization function.

1. γ defines a logic internal to A for Σ, where A’s elements act both
as computational values and as logical assertions. The model
theory, |=, is defined by γ; the proof theory, ⊢, by ⊑A.

2. The notion of (forwards) completeness from abstract
interpretation theory characterizes the internal logic.

3. When a logic for Σ is proposed independently from γ, then an
external logic must be fashioned from P↓(A). But, when γ
preserves meets and joins, the external logic can be embedded
within Aop (inverted).

In the last case, A has two interpretations: an overapproximating,
computational interpretation, and an underapproximating logical
interpretation (on Aop).
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Abstract interpretation: computing on properties

Example:

read(x)

if isPositive(x) :

x:= pred(x)

x:= succ(x)

write(x)

Q: Is output pos?

A: abstractly interpret Int by

Sign = {neg , zero, pos , any ,none}:

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}

pos

zero

none

any

neg

α

P(Int) Sign

Standard, collecting inter-
pretation:
f : P(Int) → P(Int):
isPos(S) = {n ∈ S | n > 0}

pred(S) = {n− 1 | n ∈ S}

succ(S) = {n+ 1 | n ∈ S}

Abstract interpretation: f♯ : A → A:
isPos♯(pos) = pos

isPos♯(neg) = none

isPos♯(any) = pos , etc.
succ♯(pos) = pos

succ♯(zero) = pos

succ♯(neg) = any , etc.
pred♯(neg) = neg

pred♯(zero) = neg

pred♯(pos) = any , etc.
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Abstract values = logical properties

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}

pos

zero

none

any

neg

α

P(Int) Sign

Read computational

values like neg ∈ Sign

as logical propositions,

“isNegative”, etc.

For S ⊆ Σ, a, a ′ ∈ A, γ : A → P(Σ), define

� S |= a iff S ⊆ γ(a) e.g., {−3,−1} |= neg

� a |= a ′ iff γ(a) ⊆ γ(a ′) e.g., neg |= any

� a ⊢ a ′ iff a⊑a ′ e.g., neg ⊢ any

Proposition: (soundness) a ⊢ a ′ implies a |= a ′.

Proposition: (completeness) if γ is an upper adjoint of a Galois

connection and is 1-1, then a |= a ′ implies a ⊢ a ′.
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Abstract transformers compute on properties

For f : PC → PC, f♯ : A → A is sound iff

f ◦ γ ⊑ γ ◦ f♯ iff α ◦ f ⊑ f♯ ◦ α

a

( a )

f #
f #(a)

f

γγ

γ
α

f #α ( S )

f(S)S
f

α

This makes f♯ a postcondition transformer:

Proposition: (soundness) S |= a implies f(S) |= f♯(a).

Example: For, succ : P(Int) → P(Int), we have succ{0} = {1}, which is soundly

mimicked by succ♯(zero) = pos.

f
♯
best = α ◦ f ◦ γ is the strongest postcondition transformer for A.

Definition: f♯ is γ-complete (forwards complete) for f iff
f ◦ γ = γ ◦ f♯ [Giacobazzi01] . f♯ is α-complete (backwards
complete) for f iff α ◦ f = f♯ ◦ α [Cousots00] .
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A has an internal logic that γ preserves

First, treat all a ∈ A as primitive propositions (isNeg, isPos, etc.).

A has conjunction when

S |= φ1⊓φ2 iff S |= φ1 and S |= φ2, for all S ⊆ Σ.

That is, γ(φ⊓ψ) = γ(φ) ∩ γ(ψ), for all φ,ψ ∈ A.

Proposition: When γ : A → P(Σ) is an upper adjoint, then A has

conjunction.

Sign has conjunction; so do all predicate-abstraction analyses.

Proposition: When γ(φ⊔ψ) = γ(φ) ∪ γ(ψ), then A has disjunction:

S |= φ⊔ψ iff S |= φ or S |= ψ.

Sign lacks disjunction: zero |= neg ⊔ pos (because neg ⊔ pos = any but zero 6|= neg

and zero 6|= pos).
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Complete lattice A is distributive if a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c), for
all a, b, c ∈ A. When ⊓ is Scott-continuous, then

φ⇒ψ ≡
⊔

{a ∈ A | a⊓φ⊑ψ}

satisfies the property, a ⊢ φ⇒ψ iff a⊓φ ⊢ ψ.

Proposition: If A is a distributive complete lattice, ⊓ is
Scott-continuous, and upper adjoint γ is 1-1, then A has
Heyting implication, φ⇒ψ, such that

S |= φ⇒ψ iff γ(α(S)) ∩ γ(φ) ⊆ γ(ψ).

That is, γ(φ⇒ψ) =
⋃

{S ∈ γ[A] | S ∩ γ(φ) ⊆ γ(ψ)}.

Heyting implication is weaker than classical implication, where S |= φ⇒ψ iff

S ∩ γ(φ) ⊆ γ(ψ) iff for all c ∈ S, if {c} |= φ, then {c} |= ψ.

The POS domain for groundness analysis of logic programs uses Heyting implication

[Cortesi91,Marriott93] .
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If γ(⊥A) = ∅ ∈ P(Σ), we have falsity (⊥); this yields the logic,

φ ::= a | φ1⊓φ2 | φ1⊔φ2 | φ1 ⇒φ2 | ⊥

In particular, ¬φ abbreviates φ⇒⊥ and defines the refutation of φ

within A, as done in TVLA [Sagiv02] .

γ : A → P(Σ) is the interpretation function for the internal logic:

γ(a) = given

γ(φ⊓ψ) = γ(φ) ∩ γ(ψ)

γ(φ⊔ψ) = γ(φ) ∪ γ(ψ)

γ(φ⇒ψ) =
⋃

{S ∈ γ[A] | S ∩ γ(φ) ⊆ γ(ψ)}

γ(⊥) = ∅
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γ-completeness characterizes the internal logic

The previous interpretation, e.g., for conjunction:

γ(φ⊓ψ) = γ(φ) ∩ γ(ψ)

shows that γ-completeness is exactly the criterion for determining

which connectives are embedded in A’s internal logic:

Proposition: For f : P(Σ) × P(Σ) × · · · → P(Σ), A has
connective f♯ iff f♯ is γ-complete for f:

γ(f♯(φ1, φ2, · · ·)) = f(γ(φ1), γ(φ2), · · ·).

Example: For Sign, negate♯ is γ-complete for negate(S) = {−n | n ∈ S}

(where negate♯(pos) = neg , negate♯(neg) = pos, etc.):

φ ::= a | φ1 ⊓φ2 | negate♯(φ)

We can state “negate” assertions, e.g., pos |= negate♯(neg ⊓ any).
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Transition functions in the logic: predicate transformers

It is useful to know when f(S) |= φ, that is, S |= [f]φ.

Define [·] in terms of p̃re :

[f](S) = p̃ref(S) =
⋃

{S ′ ∈ Σ | f(S ′) ⊆ S}, for S ⊆ P(Σ)

[f♯](a) = p̃ref♯(a) = {a ′ ∈ A | f♯(a ′)⊑a}, for a ∈ A

When f♯ is sound for f, then p̃ref♯ is sound for p̃ref.

Proposition: Assume that γ is an upper adjoint and preserves
joins. Then, p̃ref♯ is γ-complete for p̃ref iff f♯ is α-complete for f.

In this case, we have that [f♯] exists in A’s internal logic, where

γ([f♯]φ) = p̃ref(γ(φ))

But, it is not so common that f♯ is α-complete for f.
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Logics not internal to the abstract domain

It is common to work with a logic “external” from A’s internal logic

(e.g., because the transition functions, f♯ : A → A, lack α-

completeness).

Example: We want this logic for reasoning about Sign:

φ ::= a |φ1 ∧φ2 |φ1 ∨φ2 | [f]φ for a ∈ Sign and f ∈ {succ, pred}

where [[ · ]] : L → P(Σ) is defined

[[a]] = γ(a)

[[[f]φ]] = p̃ref[[φ]]

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]

But this logic is not internal to Sign (which lacks disjunction, and both

succ♯ and pred♯ are not α-complete). What do we do?
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We can fashion an external logic

For each [[φ]] ⊆ Σ, define

[[φ]]A = {a ∈ A | γ(a) ⊆ [[φ]]}

Then, assert a ⊢ φ iff a ∈ [[φ]]A.

This definition follows from a Galois connection whose abstract

domain is P↓(A)op — downclosed subsets of A, ordered by superset:

γ(T) =
⋃

{γ(a) | a ∈ T }

α(S) = {a | γ(a) ⊆ S}

op
γ UI

[[ ]]ϕ

[[ ]]ϕ Aγ UI

P(   )Σ

α

P (A)[[ ]]ϕ A

[[ ]]ϕα

op

That is, [[φ]]A = α[[φ]].

The inverted ordering gives underapproximation: [[φ]] ⊇ γ([[φ]]A). This

form of external logic is standard in “abstract model checking.”
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It is also standard to write an inductively defined approximation to

α[[φ]]:

[[a]]Aind = α(γ(a))

[[φ1 ∧ φ2]]
A

ind = [[φ1]]
A

ind∩ [[φ2]]
A

ind

[[φ1 ∨ φ2]]
A
ind = [[φ1]]

A
ind∪ [[φ2]]

A
ind

[[[f]φ]]Aind = p̃ref♯ [[φ]]Aind = {a ∈ A | f♯(a) ∈ [[φ]]Aind}

Entailment and provability are as expected: a |= φ iff γ(a) ⊆ [[φ]], and

a ⊢ φ iff a ∈ [[φ]]Aind.

Soundness (⊢ implies |=) is immediate, and completeness (|= implies

⊢) follows when α ◦ [[ · ]] = [[ · ]]Aind. This is called logical best

preservation or logical α-completeness [Cousots00,Schmidt06] .
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Embedding the external logic within the internal

Say that γ is an upper adjoint and that it preserves joins, that is,

γT =
⋃

a∈T γ(a) = γ(
⊔

a∈T a) = γ(⊔T)

So, γ[P↓(A)] = γ[A] — their ranges are equal — and there is no new

expressivity gained by using sets of A-elements.

Proposition: If A is a complete lattice and γ : A → P(Σ)

preserves joins (as unions) and meets (as intersections), then

� γ is the upper adjoint of an overapproximating Galois
connection between (P(Σ),⊆) and (A, ⊑ ), where
αo(S) = ⊓ {a | S ⊆ γ(a)}.

� γ is the upper adjoint of an underapproximating Galois
connection between (P(Σ),⊇) and (A, ⊒ ), where
αu(S) = ⊔ {a | S ⊇ γ(a)}.
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1. For state-transition functions, f : P(Σ) → P(Σ), apply the first

Galois connection, giving the computational interpretation of f:

f
♯
best = αo ◦ f ◦ γ.

2. For logical connectives, [[f(φ1, φ2, · · ·)]] = f([[φ1]], [[φ2]], · · ·), apply

the second Galois connection, for the logical interpretation of f:

f♭best = αu ◦ f ◦ (γ× γ× ...) and

[[f(φ1, φ2, · · ·)]]
A
ind = f♭best([[φ1]]

A
ind, [[φ2]]

A
ind, · · ·),

When the f♭bests are αu-complete, then [[ · ]]Aind = αu ◦ [[ · ]], and the

resulting internal logic proves the same assertions as the external

logic:

� First, for [[φ]]A = α[[φ]] ∈ P↓(A), recall that a ⊢ φ iff a ∈ [[φ]]A.

� Next, for [[φ]]Aind = αu[[φ]] ∈ A, define a ⊢ φ iff a⊑ [[φ]]Aind.

Theorem: For all a ∈ A, a ∈ [[φ]]A iff a⊑ [[φ]]Aind.
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Conclusions

� A static analysis is “logical” in that it computes proofs (via ⊑ ) in

the abstract domain, A, that are sound (via |=, i.e., γ) in the

concrete domain, Σ.

� γ-completeness (homomorphism property) characterizes the

internal logic one can soundly validate on A-values, using ⊑ .

Assertions not in the internal logic can be approximated within an

external logic defined with sets of A-values and checked using ∈.

� When γ preserves joins and meets from A to P(Σ), the external

logic can be embedded within the abstract domain, letting it

overapproximate computations on Σ and underapproximate

assertions on Σ.
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