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Abstract. We show that every abstract interpretation possesses an in-
ternal logic, whose proof theory is defined by the partial ordering on the
abstract domain’s elements and whose model theory is defined by the do-
main’s concretization function. We explain how program validation and
transformation depend on this logic.

Next, when a logic external to the abstract interpretation is imposed, we
show how to synthesize a sound, underapproximating, set-based variant
of the external logic and give conditions when the underapproximating
logic can be embedded within the original abstract domain, inverted. We
show how model-checking logics depend on this construction.

The intent of this paper is tutorial, to integrate little-publicized results
into a standard framework that can be used by practitioners of static
analysis.

Perhaps the central issue in program validation and transformation is how
to apply the results of a static program analysis to prove that a desired valida-
tion/transformation property holds true: How does the domain of logical prop-
erties “connect” to the domain of values used in the static analysis?

Here are three examples: (i) we use data-flow analysis to compute sets of
available expressions and use the sets to decide properties of register alloca-
tion [20]; (ii) we complete a state-space exploration and use it to model check a
temporal-logic formula that defines a safety property [4] or program-transformation
criterion [15]; (iii) we apply predicate abstraction with counter-example-guided
refinement (CEGAR) to generate an assertion set that proves a safety property
[1, 2, 19, 28].

This paper asserts that the value domain used by a static analysis and the
logic used for validation and transformation should be one and the same — the
logic should be internal to the value domain. If the values and logical properties
differ, then the logic must be defined externally, and this paper shows how.

Let Σ be the states/stores generated by a program; let A be an abstract
domain for static analysis (e.g., sign values or sets of available expressions or
names of state partitions); and let γ : A→ P(Σ) be the concretization function
that maps each a ∈ A to the values it models in Σ.

In this paper, we demonstate that
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– γ defines a logic internal to A for Σ. The elements of A act both as com-
putational values and as logical assertions. (Data-flow analysis, predicate
abstraction, and CEGAR-based model checking exploit this coincidence.)

– The internal logic’s model theory, |=, is defined by γ; its proof theory, ⊢, is
defined by A’s partial ordering, ⊑ . (This is the beauty of partial-order-based
static analysis — a computable ⊑ defines the deduction system.)

– The notion of (forwards) completeness from abstract interpretation theory
[17, 25, 29] characterizes A’s internal logic — it tells us from the start what
we can express and prove.

– When a logic for Σ is proposed independently from A and γ, then an ex-
ternal logic must be fashioned, using a powerset completion. But, when γ

preserves both meets and joins, the external logic can be embedded within A
by inverting A’s partial ordering!

We conclude, in the last case, that every abstract domain A with such a γ has
two interpretations: an overapproximating, computational interpretation, used
to compute the results of a static analysis, and an underapproximating, logical
interpretation, used to prove logical properties of the results. In this formal sense,
we “overapproximate the model and underapproximate the logic.”

These developments are implicit in virtually all applications of static analysis
to program validation and transformation, and this paper aims to present the
principles as directly as possible.

1 Abstract interpretation

A program is a discrete dynamic system [6]: there is a domain of possible program
states, Σ, and one or more transition functions, f : Σ → Σ, that are repeatedly
applied to an initial state selected from Σ.

For a program written in declarative notation the state might be the pro-
gram’s source text, and the transition function is a rewriting engine. For “flowchart
programs,” there is a control-flow graph, whose nodes are program points, and a
transition function is attached to each arc in the graph; the transition function
updates the state that traverses the arc. (See Figure 1 for such an example.) Or,
there is a single, global transition function, written as a “case” command, that
updates the state that is depicted as a program-point, storage pair.

A static analysis is a finitely computed estimate of the states generated by the
transition functions. The estimate is typically phrased as a superset of the actual,
concrete states that are reached. Based on the estimate, a program validation
or transformation might be undertaken.

To compute finitely these state-set estimates, we define a set, A, of abstract
representations of those subsets of Σ of interest.

To relate A to Σ, we define a concretization function, γ : A → P(Σ), such
that for S ⊆ Σ and a ∈ A, S is approximated by a if S ⊆ γ(a).

For a variety of implementational reasons [7, 20, 22], we partially order the
abstract values as (A, ⊑ ) such that (i) ⊑ is finitely computable and (ii) γ is
monotone. (For some applications, a discrete ordering on A works fine.)



Example program and its flowgraph annotated by transition functions:

p0 : readInt(x)
p1 : if x > 0 :

p2 : x:= pred(x)

p3 : x:= succ(x)

p4 : writeInt(x)

succ

0

p1

p2

p3

p4

gzT gzF

pred

p

Let Σ = Int be the domain of program states.
(Here, the state remembers x’s value.)

The transition functions (standard semantics) for pred, succ, and > 0 have arity,
Σ → Σ⊥:

pred(n) = n − 1
succ(n) = n + 1

gzT (n) = n, if n > 0
gzT (n) = ⊥, if n ≤ 0

gzF (n) = n, if n ≤ 0
gzF (n) = ⊥, if n > 0

(Note: gzT and gzF act as “filter functions”; all transition functions are ⊥-strict
— ⊥ is not propagated in a concrete execution trace.)

The collecting semantics transition functions have arity, P(Σ) → P(Σ); let S ⊆ Σ:

pred(S) = {n − 1 | n ∈ S}
succ(S) = {n + 1 | n ∈ S}

gzT (S) = {n ∈ S | n > 0}
gzF (S) = {n ∈ S | n ≤ 0}

Fig. 1. Sample program and its transition functions

Figure 1 introduces an example program that uses transition functions succ
and pred to manipulate integer input. Perhaps we wish to estimate the output
sets from this program for the cases when the input sets are all the negatives,
or all the positives, or just the integer, 0 — the information might enable useful
validations or transformations.

To do this, we define an abstract domain, Sign, with representatives for the
previously mentioned data sets, along with representatives for the empty set and
Int , partially ordered (so that ⊔ is defined). γ maps the representations to the
sets they represent. See Figure 2.

We might ask if γ has an inverse, which maps a state set, S ⊆ Σ, to the
A-value that most precisely approximates S. If so, a Galois connection results:

Definition 1. For partially ordered sets, (P(Σ),⊆) and (A, ⊑ ), a pair of mono-
tone functions, α : P(Σ) → A and γ : A → P(Σ), form a Galois connection iff
(i) for all S ∈ P(Σ), S ⊆ γ(α(S)), and (ii) for all a ∈ A, α(γ(a))⊑ a.

Equivalently, there is a Galois connection when S ⊆ γ(a) iff α(S)⊑ a, for all
S ∈ P(Σ) and a ∈ A.

γ is called the upper adjoint and α is the lower adjoint of the Galois connection.



Sign

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{−4,−1,0}

{...,−3,−2,−1}

{−2}
{−4,−1}

{0}

{}
none

any

pos

zero
neg

α

P(Int)

γ

γ(neg) = {· · · ,−3,−2,−1}
γ(zero) = {0}
γ(pos) = {1, 2, 3, · · ·}
γ(any) = Int

γ(none) = ∅

α{2, 4, 6, 8, ...} = pos
α{−4,−1, 0} = any
α{0} = zero
α{} = none, etc.

α and γ form a Galois connection: γ interprets the properties, and α(S) = ⊓{a | S ⊆
γ(a)} maps state set, S, to the property that best describes it [7].

Fig. 2. Abstract domain of signed values, placed within a Galois connection

Galois connections enjoy many properties [12, 16]; here are a key few. First,
α and γ are inverses on each other’s ranges: for all S ∈ γ[A], γ(α(S)) = S, and
for all a ∈ α[Σ], α(γ(a)) = a. Next, every upper (lower) adjoint has a unique
lower (upper) adjoint mate, and when we say that γ “is an upper adjoint,” we
imply the existence of the uniquely defined α. Third, γ preserves meets: for all
T ⊆ A, γ(⊓ T ) = ∩a∈Tγ(a) (similar for α and joins). Conversely, when A is a
complete lattice and function γ preserves meets, then γ is an upper adjoint. In
Figure 2, γ is an upper adjoint.

1.1 Abstracting state transition functions

Now that concrete state sets are approximated by elements of A, we can approx-
imate the transition functions. For generality, say that each transition function
has arity, f : P(Σ) → P(Σ), so that f can express nondeterminism as well as
pre- and post-images of state sets (“collecting semantics” [21] — cf. Figure 1).

For each f , the corresponding abstract transition function, f ♯ : A→ A, must
soundly overestimate f ’s post-images:

Definition 2. f ♯ : A → A is sound for f : P(Σ) → P(Σ), if for all a ∈ A,
f(γ(a)) ⊆ γ(f ♯(a)), that is, f ◦ γ ⊑A→P(Σ) γ ◦ f ♯.

When γ is an upper adjoint, the above is equivalent to α(f(S))⊑ f ♯(α(S)), for

all S ∈ P(Σ). The most precise (“best”) sound f ♯ for f is f ♯
best = α ◦ f ◦ γ. See

Figure 3 for succ♯ and pred♯ and an example static analysis.

When the inequalities that define soundness are strengthened to equalities,
we have:



Abstractly interpret P(Int) by Sign = {neg , zero, pos , any ,none}; the abstracted
program and flowgraph are

p0 : readSign(x)
p1 : if gzT ♯(x):
p2 : x:= pred♯(x)
p3 : x:= succ♯(x)
p4 : writeSign(x)

gzT

0

p1

p3

p4

p2

#

#

#

#

pred

succ

gzF

p

The abstract transition functions are

succ♯(pos) = pos
succ♯(zero) = pos
succ♯(neg) = any
succ♯(any) = any

pred♯(neg) = neg
pred♯(zero) = neg
pred♯(pos) = any
pred♯(any) = any

gzT ♯(neg) = none
gzT ♯(zero) = none
gzT ♯(pos) = pos
gzT ♯(any) = pos

gzF ♯(neg) = neg
gzF ♯(zero) = zero
gzF ♯(pos) = none
gzF ♯(any) = any (!)

(All functions, f ♯,
are strict:
f ♯(none) = none .)

We now calculate a static analysis, which applies the abstracted transition functions
to the abstracted inputs (at p0), computing the abstracted outputs (at p4):

{zero 7→ pos , neg 7→ any , pos 7→ any , }

Fig. 3. Static analysis that calculates sign properties of example program

Definition 3. f ♯ is γ-complete (forwards complete) for f iff f ◦ γ = γ ◦ f ♯ [17,
29]. f ♯ is α-complete (backwards complete) for f iff α ◦ f = f ♯ ◦ α [11, 18]

These notions will be explained, developed, and shown useful in Section 3, where
we see the relation between logic and the transition functions.

2 Elements of A are logical properties

In Figure 2, note how neg and pos are both names of state sets as well as
logical assertions (“isNeg,” “isPos”). In data-flow analysis, this “pun” — state-
set approximations are logical properties — is critical to program transformation,
because an estimated state set, S ⊆ Σ, has property S′ ⊆ Σ if S ⊆ S′ holds.

In an analysis like the one in Figure 3, we say that an output, a ∈ Sign, has
property a′ ∈ Sign if a⊑ a′. (For example, zero has properties zero and any .)
Thus, all the concrete states modelled by a have property a′, too.

In predicate-abstraction-based static analysis, the abstract data values are
sets of primitive propositions (e.g., {x > 0, x ≤ y}), which can also be read as



propositions (x > 0 ∧ x ≤ y) that denote concrete-state sets ({(x, y) ∈ Σ | x >
0 and x ≤ y}).

This idea is exploited in counter-example-guided refinement [1, 2, 19, 28], which
enriches the abstract domain with additional primitive propositions as needed to
validate a logical property. This idea also underlies the definition of Kripke struc-
ture, used in abstract model checking [4], where each state partition is married
to the set of primitive propositions that hold true for the partition.

These observations are hardly novel — they harken back to Cousot’s Ph.D.
thesis [5] and his tutorial paper [6]. Now we develop the consequences.

2.1 Model theory of A

Treat A as a set of logical propositions. Define the entailment relation, |= ⊆
P(Σ) × A, as S |= a iff S ⊆ γ(a). (When γ is an upper adjoint, S |= a iff
α(S)⊑ a as well.) One key consequence is that S′ ⊆ S and S |= a imply S′ |= a.

An abstract transition function is exposed as a postcondition transformer:
S |= a implies f(S) |= f ♯(a), and this makes f ♯

best the strongest postcondition
transformer for f in the language of propositions expressible in A.

2.2 Proof theory of A

For a, a′ ∈ A, define a ⊢ a′ iff a⊑ a′. (Recall that we require that ⊑ be finitely
computable, and the “proof” that a ⊢ a′ is the computation that affirms a⊑ a′.)

As is standard [14], assert a |= a′ iff for all S ⊆ Σ, S |= a implies S |= a′.
Evidently, a |= a′ iff γ(a) ⊆ γ(a′).

Proposition 4. (soundness) For all a, a′ ∈ A, a ⊢ a′ implies a |= a′ (which
implies S |= a′, for all S ⊆ γ(a)).

Proof. Immediate from γ’s monotonicity. 2

Soundness justifies validations and transformations based on a static analyis.

Proposition 5. (completeness) When γ is an upper adjoint and an injective
(1-1) function, then a |= a′ implies a ⊢ a′ for all a, a′ ∈ A.

Proof. Assume γ(a) ⊆ γ(a′). By the definition of Galois connection, this gives
α(γ(a)))⊑ a′. Since γ is injective, α(γ(a))) = a. 2

The best abstract transition function computes post-images that are complete:

Theorem 6. (image completeness) When γ is an upper adjoint, then f
♯
best =

α ◦ f ◦ γ is image complete in the sense that, for all a, a′ ∈ A,

1. f ♯
best(a) |= a′ iff f

♯
best(a) ⊢ a

′

2. f(γ(a)) |= a′ iff f
♯
best(a) ⊢ a

′



Proof. For 1., we need to prove the only-if part: Assume γ(f ♯
best(a)) ⊆ γ(a′). By

the definition of f ♯
best and the Galois connection, we have f ◦ γ(a) ⊆ γ ◦ α ◦ f ◦

γ(a) ⊆ γ(a′). By applying monotone α to the previous inclusions and appealing

to the definition of Galois connection, we get f ♯
best(a) = α◦f◦γ(a)⊑α◦γ(a′)⊑ a′.

The proof of 2. is similar. 2

Image completeness does not ensure completeness upon multiple applications
of transition functions, which static analysis must do in practice. In Figure 2,
note that pred(succ{0}) |= zero, yet pred♯(succ♯(zero)) 6⊢ zero — the problem
is that, although {0} = γ(zero) falls in the range of γ, succ(γ(zero)) = {1} does
not and cannot be expressed precisely within Sign .

For the remainder of this subsection, assume that γ is an upper adjoint. First,
say that f : P(Σ) → P(Σ) is γ-complete if there exists some f ♯ : A→ A that is

γ-complete for f (cf. Defn. 3): evidently, f ◦γ = γ ◦f ♯
best. It is well known that f

is γ-complete iff for all a ∈ A, f(γ(a)) ∈ γ[A], that is, f stays in γ’s range [17].
When f is γ-complete, then its repeated application to an initial argument

in γ’s range can be precisely approximated by f ♯
best.

1

An inappropriate choice of A can prevent a transition function from γ-
completeness, e.g., succ : P(Int) → P(Int) is not γ-complete for Sign. The
repeated applications of succ to {0} = γ(zero) require that we add to Sign new
elements, I, for each {i}, i > 0, so that γ(I) = {i} and succ is γ-complete.
This is too expensive of a price to pay, but we see in the next section that
γ-completeness plays a critical role in determining a domain’s internal logic.

3 Internal logic of A

We understand a logic as an inductively defined assertion set, an inductively
defined interpretation, and (an inductively defined) proof theory, typically pre-
sented as a set of deduction rules. We now explore the logic that is internal to
domain A and concretization map γ.

First, we treat the elements of A as primitive propositions and we use φ
and ψ to represent elements from A. γ : A → P(Σ) interprets the primitive
propositions.

Definition 7. Abstract domain A’s internal logic has conjunction when

S |= φ1 ⊓φ2 iff S |= φ1 and S |= φ2, for all S ⊆ Σ.

Proposition 8. When γ preserves binary meet as set intersection — γ(φ⊓ψ) =
γ(φ) ∩ γ(ψ), for all φ, ψ ∈ A — then A’s internal logic has conjunction.

1 It is also true that precise approximation of multiple applications of f will be main-
tained if some f ♯ is α-complete for f . (f is α-complete iff for all S, S′ ∈ P(S),
α(S) = α(S′) implies α(f(S)) = α(f(S′)) — f maps α-related arguments to α-
related answers. Alas, when a function is not α-complete, the cost of adding extra
elements to A can be just as expensive as when γ-completeness is desired.



Recall that when γ is an upper adjoint, it preserves meets; this is a major benefit
of structuring A so that it admits a Galois connection.

Now, we have this inductively defined assertion set, the internal logic of A:

φ ::= a | φ1 ⊓φ2

γ interprets the logic, and it satisfies these inductively defined laws:

γ(a) = given
γ(φ⊓ψ) = γ(φ) ∩ γ(ψ)

This logic of primitives and conjunction is already strong enough to express
most predicate abstractions and CEGAR structures. The internal logic for Sign
in Figure 2 possesses conjunction.

Sign’s proof theory is defined by the finitely computable ⊑ , which obviates
the usual set of deduction rules. A static analysis proves its facts, φ ⊢ ψ, using
⊑ , and this is one of the beauties of the subject.

Now that conjunction exists, we can read the earlier definition of |= ⊆ A×A

in the classical way: For ∆ ⊆ A, define ∆ |= ψ iff for all S ⊆ Σ, if (for all ψ ∈ ∆,
S |= ψ) then (S |= φ) as well. Evidently, ∆ |= ψ iff γ(⊓∆) ⊆ γ(ψ).

We can explore for other propositional connectives:

Proposition 9. If γ preserves binary join as set union, then A’s internal logic
has disjunction: S |= φ⊔ψ iff S |= φ or S |= ψ, where γ(φ⊔ψ) = γ(φ) ∪ γ(ψ).

The Sign domain in Figure 2 lacks disjunction: zero |= neg ⊔ pos (because
neg ⊔ pos = any but zero 6|= neg and zero 6|= pos). If we add new elements to
Sign, namely, ≤ 0, 6= 0, and ≥ 0, we have disjunction for the expanded domain.2

We can search for intuitionistic (Heyting) implication: Complete lattice A
is distributive if a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c), for all a, b, c ∈ A; this makes the
set, {a ∈ A | a⊓φ⊑ψ}, directed, and when ⊓ is Scott-continuous, then

φ⇒ψ ≡ ⊔ {a ∈ A | a⊓φ⊑ψ}

defines implication in A, where a ⊢ φ⇒ψ iff a⊓φ ⊢ ψ [13].

Proposition 10. If A is a complete distributive lattice where ⊓ is Scott-continuous
and upper adjoint γ is injective, then A’s internal logic has Heyting implication:
S |= φ⇒ψ iff γ(α(S)) ∩ γ(φ) ⊆ γ(ψ), where

γ(φ⇒ψ) =
⋃
{S ∈ γ[A] | S ∩ γ(φ) ⊆ γ(ψ)}.

Proof. Let T = {a | a⊓φ⊑ψ}. First, by [13], ⊔T ∈ T ; This implies γ(⊔ T ) =
∪a∈Tγ(a) = ∪{γ(a) | a⊓φ⊑ψ}. Consider the predicate, a ⊓ φ⊑ψ; since γ

is injective, the predicate is equivalent to γ(a⊓φ) ⊆ γ(ψ) (cf. Proposition 5),
which is equivalent to γ(a)∩γ(φ) ⊆ γ(ψ), because γ preserves meets. So we have
γ(φ⇒ψ) = ∪{γ(a) | γ(a) ∩ γ(φ) ⊆ γ(ψ)} = ∪{S ∈ γ[A] | S ∩ γ(φ) ⊆ γ(ψ)} ∈
γ[A].

Next, S |= φ⇒ψ iff S ⊆ γ(⊔T ), implying S ⊆ γ(α(S)) ⊆ γ(α(γ(⊔T ))) =
γ(⊔T ). So, S |= φ⇒ψ iff γ(α(S)) |= φ⇒ψ. Finally, because γ(α(S)) ∈ γ[A] and
pointwise reasoning on set union, γ(α(S)) |= φ⇒ψ iff γ(α(S))∩γ(φ) ⊆ γ(ψ). 2

2 By adding these elements, we computed the disjunctive completion of Sign [10].



Heyting implication is weaker than classical implication (where S |= φ⇒ψ iff
S ∩ γ(φ) ⊆ γ(ψ) iff for all c ∈ S, if {c} |= φ, then {c} |= ψ).

As an immediate consequence, we have a Deduction Theorem: ∆,ψ ⊢ φ iff
∆ ⊢ ψ⇒φ. And if γ(⊥A) = ∅ ∈ P(Σ), we have falsity (⊥); this gives us

φ ::= a | φ1 ⊓φ2 | φ1 ⊔φ2 | φ1 ⇒φ2 | ⊥

In particular, ¬φ abbreviates φ⇒⊥ and defines the refutation of φ within A, such
as is done with a three-valued static analyzer such as TVLA [27]. In practice,
most static analyses do not require all this structure — conjunction alone (cf.
Figure 2) often suffices.

3.1 The general principle is γ-completeness

There is a general principle for determining when an operation is “logical” and
is present in A’s internal logic as a connective. To expose this principle, consider
again the interpretation of conjunction, where both the connective (⊓ ) and its
concrete interpretation (∩) are stated as binary functions:

γ(⊓ (φ, ψ)) = ∩(γ(φ), γ(ψ))

γ-completeness is exactly the criterion for determining which connectives are
embedded in A:

Corollary 11. For f : P(Σ)×P(Σ)× · · · → P(Σ), A’s internal logic has con-
nective f ♯ iff f is γ-complete: For all φ ∈ A, γ(f ♯(φ1, φ2, · · ·)) = f(γ(φ1), γ(φ2), · · ·).

Example: reconsider Sign in Figure 2, and note that negate : P(Int) → P(Int),
where negate(S) = {−n | n ∈ S}, is γ-complete. We have that negate♯ : A→ A

(where negate♯(pos) = neg, negate♯(neg) = pos , etc.) exists in Sign ’s logic:

φ ::= a | φ1 ⊓φ2 | negate♯(φ)

We can state “negate” assertions, e.g., pos ⊢ negate♯(neg ⊓ any). negate♯ is a
connective, a modality, a predicate transformer.

3.2 Predicate transformers in the internal logic

We saw from the example for Sign that the absence of γ-completeness for transi-
tion functions succ (and pred) made it impossible to prove pred♯(succ♯(zero)) ⊢
zero — the two transition functions cannot be connectives in Sign’s logic.

But even when a transition function, f : P(Σ) → P(Σ), is γ-complete, it is
not used as a connective — for program analysis and transformation, it is not
useful to know a ⊢ f ♯(φ), that is, state set γ(a) falls in f ’s postimage of γ(φ). It
is more useful to know f ♯(a) ⊢ φ, that is, f ’s postimage of γ(a) lies within γ(φ).

In programming logic, f ♯(a) ⊢ φ is written a ⊢ [f ♯]φ, using a precondition
predicate transformer. To formalize, for S ⊆ P(Σ), define

[f ](S) = p̃ref (S) =
⋃
{S′ ∈ Σ | f(S′) ⊆ S}



We wish to add [f ] to the internal logic, so we must show it is γ-complete:

Theorem 12. Assume that γ is an upper adjoint and preserves joins. Then,
p̃ref is γ-complete iff f is α-complete.

Proof. To prove the if part, we show that p̃ref (γ(a)) = ∪{S | f(S) ⊆ γ(a)}
is in γ[A]. By definition of Galois connection, f(S) ⊆ γ(a) iff α ◦ f(S)⊑ a,
and because f is α-complete, this is equivalent to α ◦ f ◦ γ ◦ α(S) ⊑ a. Again,
by the Galois connection, we have the equivalent f ◦ γ ◦ α(S)⊑ γ(a). Thus,
p̃ref (γ(a)) = ∪{S | f ◦ γ ◦ α(S)⊑ γ(a)}. Now, when some S ∈ P(Σ) belongs to
the set, then so must γ ◦ α(S) (which is a superset of S): we have p̃ref (γ(a)) =
∪{S ∈ γ[A] | f(S) ⊆ γ(a)}. Finally, because γ preserves joins, the union of the
set must be itself be in γ[A].

For the only-if part, assume that p̃ref is γ-complete, that is, for all a ∈ A,
∪{S | α(f(S))⊑ a} ∈ γ[A]. To show f is α-complete, we must prove that if
α(S0) = α(S1), then α(f(S0)) = α(f(S1)). Assume α(S0) = α(S1); we first
show α(f(S0))⊑α(f(S1)). Consider the set, T1 = {S | α(f(S))⊑α(f(S1))}.
First, note that S1 ⊆ ∪T1, implying that α(S1)⊑α(∪T1). Since α(S0) = α(S1),
we have α(S0)⊑α(∪T1) as well, and this implies S0 ⊆ γ(α(S0)) ⊆ γ(α(∪T1)) =
∪T1, since ∪T1 ∈ γ[A]. Within P(Σ), it must be that S0 ∈ T1, implying
α(f(S0))⊑α(f(S1)). Identical reasoning with T0 = {S | α(f(S))⊑α(f(S0))}
yields the other inclusion, meaning that f is α-complete. 2

Similar developments are possible with the other common variants of predi-
cate transformers, but the technicalities increase [30].

Because of their dependence on α-γ-completeness, predicate transformers
might not appear in an internal logic. In this case, we must underapproximate
the transformers with a logic that is external to the abstract domain.

4 External logic

This paper argues that the logical reasoning one uses with a static analysis
should be based on the abstract domain’s internal logic. Yet, transition functions
that lack α- and γ-completeness can make such reasoning hugely imprecise, and
adding additional elements to make the abstract domain complete can be too
expensive or destroy finite computability — One might be forced to work with
a less-precise logic that lives “outside” the internal logic.

Also, it is not uncommon to be presented with a set of assertions, L, and an
interpretation, [[ · ]] : L → P(Σ), already fixed for the concrete domain, P(Σ),
prior to the selection of A. For Figure 3, Sign lacks disjunction and both succ♯

and pred♯ and neither α- nor γ-complete, but perhaps the logic in Figure 4 is
demanded, nonetheless. How do we deal with this?

Common sense suggests, for each assertion form, φ, that we collect all the
a ∈ A that satisfy φ and define an abstract interpretation of [[φ]] as follows:

[[φ]]♯ = {a | γ(a) ⊆ [[φ]]}



φ ::= a | φ1 ∧ φ2 | φ1 ∨ φ2 | [f ]φ for a ∈ Sign and f ∈ {succ, pred}

[[ · ]] : L → P(Σ)

[[a]] = γ(a)
[[φ1 ∧ φ2 ]] = [[φ1 ]] ∩ [[φ2 ]]
[[φ1 ∨ φ2 ]] = [[φ1 ]] ∪ [[φ2 ]]
[[[f ]φ]] = p̃ref [[φ]] = ∪{S | f(S) ⊆ [[φ]]}

Fig. 4. Sample logic for sign properties

Then, we can use the results of a static analysis based on A to prove properties:
assert a ⊢ φ iff a ∈ [[φ]]♯. This defines a logic that is external to A.

Underlying this informal development is a Galois connection whose abstract
domain is P↓(A)op — downclosed subsets of A, ordered by superset:

P↓(A)op = ({T ⊆ A | T is downclosed},⊇)
where T is downclosed iff T = {a ∈ A | ∃b ∈ T , a ⊑ b}

Elements of P↓(A)op serve as denotations of [[φ]]♯ ∈ P↓(A)op.3

Here is the Galois connection: Let A be a partially ordered set and P(Σ)op =
(P(Σ),⊇). Then, for any monotone γ : A→ P(Σ), the functions α : P(Σ)op →
P↓(A)op and γ : P↓(A)op → P(Σ)op form a Galois connection, where

γ(T ) =
⋃
{γ(a) | a ∈ T}

α(S) =
⋃
{T | S ⊇ γ(T )} = {a | γ(a) ⊆ S}

op
γ UI

[[ ]]ϕ

[[ ]]ϕ #γ UI

P(   )Σ

α

P (A)[[ ]]ϕ #

[[ ]]ϕα

op

Upper adjoint γ “lifts” from γ and preserves unions; when γ is an upper adjoint,
then γ preserves intersections, too [30]. α is exactly the approximation we guessed
earlier: [[φ]]♯ = α[[φ]]. The inverted ordering gives underapproximation: [[φ]] ⊇
γ[[φ]]♯. We have soundness — a ∈ [[φ]]♯ implies γ(a) ⊆ [[φ]] — because we used
the adjoint to define the abstract interpretation of the logic.4

P↓(A)op is itself an abstract domain, a complete lattice, and its internal logic
contains disjunction (set union) and conjunction (set intersection) when γ is
an upper adjoint. The domain is distributive, but γ might not be injective, so
Heyting implication is not ensured (cf. Proposition 10). But it is the existence
of disjunction that is the key to defining a sound [[·]]♯. To summarize,

Proposition 13. For all choices of partially ordered set, A, monotone γ : A→
P(Σ), and [[ · ]] : L → P(Σ), there is a sound external logic, [[·]]♯ : L → P↓(A), in
the sense that, for all a ∈ A, a ∈ [[φ]]♯ implies γ(a) ⊆ [[φ]], for all φ ∈ L. (Indeed,
the most precise such logic is α ◦ [[ · ]].)

This proposition underlies “abstract model checking” [3], where A holds the
names of partitions of Σ and γ maps each state-partition name to its members.

3 Clearly, all [[φ]]♯ are downclosed sets.
4 Precisely stated, the best approximation of [[ · ]] : L → P↓(A) is α ◦ [[ · ]] ◦ idL.



[[a]]♯best = α(γ(a))

[[φ1 ∧ φ2 ]]
♯
best = α (γ[[φ1 ]]

♯
best ∩ γ[[φ2]]

♯
best)

[[φ1 ∨ φ2 ]]
♯
best = α (γ[[φ1 ]]

♯
best ∪ γ[[φ2]]

♯
best)

[[[f ]φ]]♯best = α (p̃ref (γ[[φ]]♯best)) = {a | f(γ(a)) ⊆ γ[[φ]]♯best}

[[a]]♯
fin

= α(γ(a))

[[φ1 ∧ φ2 ]]
♯
fin = [[φ1 ]]

♯
fin ∩ [[φ2 ]]

♯
fin

[[φ1 ∨ φ2 ]]
♯
fin = [[φ1 ]]

♯
fin ∪ [[φ2 ]]

♯
fin

[[[f ]φ]]♯fin = p̃ref♯ [[φ]]♯fin = {a ∈ A | f ♯(a) ∈ [[φ]]♯fin}, where f ♯ is sound for f

Fig. 5. Inductively defined logics for Sign: best and finitely computable

But we are not finished — we want an inductively defined abstract interpre-
tation. This is readily obtained from the inductively defined concrete interpre-
tation, whose equations take the form,

[[f(φ1, φ2, · · ·)]] = f([[φ1 ]], [[φ2 ]], · · ·)

We use the adjoints to abstract each logical operation, f : P(Σ)×P(Σ)× · · · →

P(Σ), by f
♯
best = α ◦ f ◦ (γ × γ × · · ·). The most precise, inductively defined,

abstract logic is therefore

[[f(φ1, φ2, · · ·)]]
♯
best = f

♯
best([[φ1 ]]

♯
best, [[φ2 ]]

♯
best, · · ·)

Because the fixed-point operators are well behaved, we can also define abstract
recursion operators [11, 26].

An issue that arises with sets of abstract values is that the synthesized f ♯
best :

P↓(A)×P↓(A)×· · · → P↓(A) might not be finitely computable — we must locate
a computable approximation of it. Consider again [[·]] in Figure 4; its most precise

inductively defined logic, [[·]]♯best, and a finitely computable approximation, [[·]]♯fin ,
are stated in Figure 5. We see that ∩ = (α◦∩◦(γ×γ)) — precision is preserved

— but this is not true for ∪ : For example, any ∈ [[neg ∨ zero ∨ pos ]]♯best = Sign

but any 6∈ [[neg ]]♯fin ∪ [[zero ]]♯fin ∪ [[pos ]]♯fin = {neg, zero, pos ,none}.5

For predicate transformers, it is well known that p̃ref♯ is sound for p̃ref , for

any f ♯ sound for f . But it is grossly imprecise. We can improve it by replacing
f ♯ : A → A by f

♯
∨ : A → P↓(A), where f ♯

∨(a) =↓{α{c} | c ∈ f(γ(a))}.6 For

example, from Figure 3, succ♯(neg) = any, but succ♯∨(neg) = {neg, zero,none},
which gives the more precise p̃re

succ
♯
∨

.7

These technicalities let us prove that p̃re
f♯
∨

= (α ◦ p̃ref ◦ γ) [30].

5 The problem is that {none ,neg , zero, pos} and Sign both concretize to neg∨zero∨pos
and are candidates to represent it in P↓(Sign). We must eliminate one of the sets.

6 where ↓S = {s | ∃s′ ∈ S, s⊑ s′}
7 Underlying f

♯
∨’s definition is yet another Galois connection, between complete lat-

tices (P(Σ),⊆) and (P↓(A), ⊆ ), where the upper adjoint is γ and the lower adjoint
is αo(S) = ∩{T | S ⊆ γ(T )} =↓{α{c} | c ∈ S}. Then, f

♯
∨ = αo ◦ f ◦ γ. This Galois

connection is possible when γ is an upper adjoint.



4.1 Provability, soundness, completeness

Entailment and provability for an inductively defined external logic is defined as
expected: a |= φ iff γ(a) ⊆ [[φ]], and a ⊢ φ iff a ∈ [[φ]]♯fin .8

Soundness (that is, ⊢ implies |=) is immediate, and completeness (|= implies

⊢) follows when α ◦ [[ · ]] = [[·]]♯fin . This is called logical best preservation or logical
α-completeness [11, 29].

There is another, independent, form of completeness, logical strong preserva-
tion or logical γ-completeness: γ◦[[·]]♯fin = [[·]] [17, 26, 29].9 For inductively defined

[[·]]♯fin , if all the mentioned abstract logical operations are α-complete, then [[·]]♯fin

has best preservation; when all abstract logical operators are γ-complete, then
[[·]]♯fin has strong preservation. (The converses might not hold [26].)

5 When the upper adjoint preserves joins, the external

logic lies within the inverted abstract domain

The “lift” of abstract domain A to P↓(A) is a disjunctive completion [10], where
an element, {a0, a1, a2, · · ·} ∈ P↓(A) is meant to be read as the disjunction,
a0 ∨ a1 ∨ a2 ∨ · · ·, and this is confirmed by the definition, γ{a0, a1, a2, · · ·} =
γ(a0) ∪ γ(a1) ∪ γ(a2) ∪ · · ·.

But say that γ is an upper adjoint and that it preserves joins, that is,

γT =
⋃

a∈T γ(a) = γ(
⊔

a∈T a) = γ(⊔T )

So, γ[P↓(A)] = γ[A] — their ranges are equal — and there is no new expressivity
gained by using sets of A-elements to model subsets of Σ. So, when upper adjoint
γ preserves joins, an external logic can be modelled internally within A. The key
is to invert A and define an underapproximating Galois connection:

Proposition 14. If A is a complete lattice and γ : A → P(Σ) preserves joins
(as unions) and meets (as intersections), then

– γ is the upper adjoint of a Galois connection between (P(Σ),⊆) and (A, ⊑ ),
where the lower adjoint, αo, is defined αo(S) = ⊓{a | S ⊆ γ(a)}.

– γ is the upper adjoint of a Galois connection between (P(Σ),⊇) and (A, ⊒ ),
where the lower adjoint, αu, is defined αu(S) = ⊔{a | S ⊇ γ(a)}.

The first Galois connection defines an overapproximation relationship; the second
defines an underapproximation relationship.

When we approximate a state-transition function, f : P(Σ) → P(Σ), we

apply the first Galois connection to define f ♯
best = αo ◦ f ◦ γ. We call this the

computational interpretation of f .

8 These notions are equivalently stated with sets: for T ∈ P↓(A), T |= φ iff γ(T ) ⊆ [[φ]],
and T ⊢ φ iff T ⊆ [[φ]]♯fin .

9 Strong preservation asserts, for all c ∈ Σ, that c ∈ [[φ]] iff α{c} ⊢ φ. In contrast, best
preservation states, for all a ∈ A, that γ(a) ⊆ [[φ]] iff a ⊢ φ. See [29] for criteria when
one implies the other.



When we are given a logical interpretation function, [[ · ]] : L → P(Σ), we
apply the second Galois connection to define [[·]]♯u = αu ◦ [[ · ]]. If [[ · ]] is inductively
defined, that is, has form [[f(φ1, φ2, · · ·)]] = f([[φ1 ]], [[φ2 ]], · · ·), we apply the second

Galois connection to define f ♭
best = αu◦f◦(γ×γ×...), giving [[f(φ1, φ2, · · ·)]]

♯
best =

f ♭
best([[φ1 ]]

♯
best, [[φ2 ]]

♯
best, · · ·)) We call this the logical interpretation of f .

When all the fs are αu-complete, then [[·]]♯u = [[·]]♯best. We can also show that
the logical interpretation proves the same assertions as the external logic:

First, for [[φ]]♯ = α[[φ]] ∈ P↓(A), recall that a ⊢ φ iff a ∈ [[φ]]♯.
Next, for [[φ]]♯u = αu[[φ]] ∈ A, define a ⊢ φ iff a⊑ [[φ]]♯u.

Theorem 15. For all a ∈ A, a⊑ [[φ]]♯u iff a ∈ [[φ]]♯.

Proof. First, note that a ∈ [[φ]]♯ iff γ(a) ⊆ [[φ]]. Next, a⊑ [[φ]]♯u iff a⊑ ⊔P , where
P = {a′ | γ(a′) ⊆ [[φ]]}.

To prove the if-part, assume γ(a) ⊆ [[φ]]. This places a ∈ P , hence a⊑ ⊔P .
To prove the only-if part, assume a⊑ ⊔P . Now, for all a′ ∈ P , γ(a′) ⊆

[[φ]], implying ∪a′∈Pγ(a
′) ⊆ [[φ]]. But γ preserves joins, meaning γ(⊔P ) ⊆ [[φ]],

implying that ⊔P ∈ P as well. Since a⊑ ⊔P , we have γ(a) ⊆ γ(⊔P ) ⊆ [[φ]]. 2

So, when γ preserves meets and also joins, we embed the external logic as an
underapproximation in Aop, retaining the logic’s proof theory and model theory.

6 Conclusion

Abstract interpretations are fundamentally “logical” — as Cousot and Cousot
have stated in key papers [5, 6, 8, 9, 11] — an abstract interpretation estimates
function pre- and post-images, which are represented as finitely-sized assertions.
The same idea underlies Kripke structures and abstract model checking [3, 4].

In this paper, we showed that the connection between abstract interpretation
and symbolic logic is fundamental: A static analysis computes proofs (via ⊑ )
that are sound (via |=) within the internal/external logic.

Acknowledgements: This paper was inspired by earlier work of Alan Mycroft
and Neil Jones [23, 24]. I would like to thank Alan for his interest in inter-
nal/external logics and his suggestion that I write this paper.
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