
Inverse-Limit and Topological Aspects of Abstract

Interpretation

David A. Schmidta,1

aComputing and Information Sciences Dept., Kansas State University, Manhattan, KS

66506, USA

Abstract

We develop abstract-interpretation domain construction in terms of the
inverse-limit construction of denotational semantics and topological princi-
ples: We define an abstract domain as a “structural approximation” of a con-
crete domain if the former exists as a finite approximant in the inverse-limit
construction of the latter, and we extract the appropriate Galois connection
for sound and complete abstract interpretations. The elements of the abstract
domain denote (basic) open sets from the concrete domain’s Scott topology,
and we hypothesize that every abstract domain, even non-structural approx-
imations, defines a weakened form of topology on its corresponding concrete
domain.

We implement this observation by relaxing the definitions of topological
open set and continuity; key results still hold. We show that families of closed
and open sets defined by abstract domains generate post- and pre-condition
analyses, respectively, and Giacobazzi’s forwards- and backwards-complete
functions of abstract-interpretation theory are the topologically closed and
continuous maps, respectively. Finally, we show that Smyth’s upper and
lower topologies for powerdomains induce the overapproximating and under-
approximating transition functions used for abstract-model checking.

Key words: Abstract interpretation, denotational semantics, inverse-limit
construction, Galois connection, Scott-topology

Email address: das@ksu.edu (David A. Schmidt)
1Supported by NSF ITR-0326577.

Preprint submitted to Elsevier June 9, 2011

readInt(x)

x := negate(x)

while x < 0 :

x := succ(x)

writeInt(x)

Transfer functions: For i ∈ Int ,
negate(i) = −i

f ilter<0(i) =

{
i if i < 0
⊥ if i ≥ 0

filter≥0(i) =

{
i if i ≥ 0
⊥ if i < 0

succ(i) = i + 1

For functions p, q ∈ Int ⇀ Int , their composition is strict, that is, if p(k) = ⊥,
then (q ◦ p)(k) = ⊥. The meaning of the program is

P = p1 ◦ p0 : Int ⇀ Int

where
p0 = negate

p1(i) = p11(i) ⊔ (p1 ◦ p2 ◦ p12)(i)
p11 = filter≥0

p12 = filter<0

p2 = succ

Figure 1: Example program, its transfer functions of arity Int ⇀ Int , and its functional
semantics

1. Introduction

Abstract intepretation performs finite computation of program properties
[1, 2, 3]. As indicated by Cousot and Cousot [1, 4], for state set Σ and
program P : Σ ⇀ Σ,2 the “program properties” are subsets of Σ. For
example, for input property S0 ⊆ Σ, P ’s postcondition property is P [S0] ⊆ Σ
(where P [S0] = {P (s) ∈ Σ | s ∈ S0}). In general, it is impossible to calculate
finitely P [S0], because S0 might be infinite, or there might exist some σ0 ∈ S0

such that P (σ0) diverges. For this reason, abstract interpretation computes
finitely an approximate answer, S ′, such that P [S0] ⊆ S ′.

Here is a motivating example. Figure 1 shows a small program in its
upper left column, whose state consists of a single integer, named x. The
meaning of the program is assembled from partial transfer functions of arity
Int ⇀ Int . The transfer functions are listed in the upper right column. The
program’s denotation is a composition of the transfer functions. (When p(i)

2Here, Σ ⇀ Σ denotes the partial functions from Σ to Σ.

2

is undefined, we write p(i) = ⊥ in the Figure.)
In particular, the while-loop is denoted by a recursively defined function,

p1, whose meaning is its least-fixed point within the cpo, (Int ⇀ Int) →
(Int ⇀ Int). The functions, filter<0 and filter≥0, guard the loop’s body
and exit, respectively, and the results are joined via ⊔. Since the two filters
are disjoint on the integer values they filter, ⊔ is well defined.

For P = p1 ◦ p0, we can prove that P (2) = 0, P (3) = 0, and indeed,
P (i) = 0 for all i ≥ 0. Likewise, we can prove P (j) = −j, for all j < 0. These
properties are postcondition properties, and they are defined by “lifting”
each p : Int ⇀ Int in Figure 1 to a total function, p : P(Int) → P(Int),
p[S] = {p(i) ∈ Int | i ∈ S}. This is the forwards collecting interpretation
[1] of p, and it is a partial-correctness interpretation, ignoring instances of
p(i) = ⊥. The meaning of P = p1 ◦ p0 : P(Int) → P(Int) lifts accordingly,
where the recursion is solved within the domain, (P(Int) → P(Int)) →
(P(Int) → P(Int)), and ⊔ is computed on P(Int) as set union.

Now, we can prove that P{i | i ≥ 0} = {0} and P{j | j < 0} = {j | j >
0}, which are the strongest postconditions of the two input properties.

The forwards collecting semantics of P is well defined, but it is not finitely
computable, and a key insight of abstract-interpretation theory is to limit
to a finite number the calls to the pi functions when computing P [S]. To
accomplish this, we limit to a finite number the sets that are allowed as
arguments and answers to the pis. For state set, Σ, let the abstract domain,
A ⊆ P(Σ), be a finite subcollection of P(Σ) such that {} ∈ A, and for all
sets, a1, a2 ∈ A, there exists a3 ∈ A such that a1 ∪ a2 ⊆ a3, that is, A is a
finite, bounded cpo.

When A is defined so that, for every S ∈ P(Σ), there exists a least a ∈ A

such that S ⊆ a, then there is a Galois connection between A and P(Σ),
which we develop in the next section.

We compute upon the elements of abstract domain A. A function, p :
P(Σ) → P(Σ), is overapproximated by p♯ : A → A when p♯(a) ⊇ p[a] for
all a ∈ A. Since A = {a0, a1, · · · , am} has finite cardinality m > 0, each
function p♯(x) = ex is expanded into its m first-order equational instances,
{p♯(a′) = ea′ | a′ ∈ A}, and the equations are solved simultaneously.

For the example in Figure 1, perhaps we choose the finite collection,
Sign0 = {none, neg , zero,≤0, pos, any}, where the names denote, respec-
tively, the sets {}, {i ∈ Int | i < 0}, {0}, {i ∈ Int | i ≤ 0}, {i ∈ Int | i > 0},
and Int .

Figure 2 shows the program’s abstract interpretation upon Sign0, which

3

p♯(pos) = p
♯
1(p

♯
0(pos)) = p

♯
1(neg) = · · · (see below) · · · = zero

p
♯
0(pos) = negate♯(pos) = neg

p
♯
1(neg) = p

♯
11(neg) ⊔ (p♯

1 ◦ p
♯
2 ◦ p

♯
12)(neg) = none ⊔ p

♯
1(≤0)

= none ⊔ zero = zero

p
♯
11(neg) = filter

♯
≥0(neg) = none

p
♯
12(neg) = filter

♯
<0(neg) = neg

p
♯
2(neg) = succ♯(neg) = ≤0

p
♯
1(≤0) = p

♯
11(≤0) ⊔ (p♯

1 ◦ p
♯
2 ◦ p

♯
12)(≤0) = zero ⊔ p

♯
1(≤0)

= · · · (least fixed point) · · · = zero

p
♯
11(≤0) = filter

♯
≥0(≤0) = zero

p
♯
12(≤0) = filter

♯
<0(≤0) = neg

Figure 2: Abstract intepretation, p♯(pos), of program p using abstract domain, Sign
0

=
{none,neg, zero,≤0, pos , any}

calculates for precondition, pos , that postcondition p♯(pos) is zero. How
did we know in advance to choose Sign0 to calculate this postcondition? In
practice, either one chooses in advance the abstract domain, A, based on
“structural” considerations of Σ [1, 2, 5], or one dynamically generates A on
the fly, based on “relational” considerations [6, 7].

In this paper, we draw from precedents from denotational semantics and
topology to understand better the choice of abstract domain, A ⊆ P(Σ):

1. “Structural” approximations of Σ are extracted from the inverse-limit
construction of the Scott domain, Σ = D∞. Within the inverse-limit
chain, each Dk serves as a structural approximation of its limit, D∞, in
the sense that the elements of Dk name subsets of D∞. Indeed, these
named subsets are open sets from D∞’s Scott topology, consistent with
Smyth’s hypothesis that open sets are “semicomputable properties” [8],
in this case, for program analysis.

2. When an abstract domain is defined on-the-fly, usually “relationally,”
based on the relation between values in Σ and the program analyzed
(e.g., intervals [1], polyhedra [6], and predicate abstractions [7]), we
relate the abstract domain’s elements to Σ as if the former define a
topology on the latter. The resulting, “weak topology” (not always
closed under union, not always closed under binary intersection) pre-
serves basic topological concepts, and we prove that the notions of
forwards-complete and backwards-complete functions, introduced by

4

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−3,−2,−1}

{−4,−1}
{−2}

{0}

{...,−2,−1,0,1,2,...}

{}

{−4,−1,0}

pos

zero

none

any

neg

α

P(Int)
Sign

Define Sign = {none ,neg , zero, pos , any} and γ : Sign → P(Int) as
γ(none) = ∅; γ(neg) = {· · · ,−2,−1}; γ(zero) = {0};

γ(pos) = {1, 2, · · ·}; γ(any) = Int

Define α : P(Int) → Sign as α(S) = ⊓{a ∈ Sign | S ⊆ γ(a)}. For example,
α{−4,−1} = neg , α{−4,−1, 0} = any , α{0} = zero, etc.

Figure 3: Abstract domain, Sign, concretization map, γ, and its adjoint, α

Giacobazzi, et al. [9, 10] to formalize most-precise abstract interpre-
tations, are characterized as the topologically closed and topologically
continuous maps on the weak topology.

2. Background: Abstract interpretation

We first review the classical notions used in abstract interpretation.
For concrete-data domain, Σ, we select a set of property names, A, that

denote subsets of Σ: Each a ∈ A names the set γ(a) ⊆ Σ, for γ : A→ P(Σ).
We order abstract domain A so that a⊑ a′ iff γ(a) ⊆ γ(a′) — to be useful, A
should be a bounded cpo, and better still, it should have binary joins. Figure
3 uses the property names, neg , zero, and pos, to partition the integers, Int ,
within a complete lattice named Sign.

When γ possesses an adjoint, α : P(Σ) → Sign, then there is a Galois
connection (that is, S ⊆ γ(a) iff α(S)⊑ a, for all S ∈ P(Σ) and a ∈ A). α is
the lower adjoint and γ is the upper adjoint, and we write this as P(Σ)〈α, γ〉A.
This situation ensures that every S ⊆ Σ can be closed into a least property,
α(S), such that S ⊆ γ(α(S)). We define ρ = γ ◦ α to embed a set into its
most-precise property set: ρ : P(Σ) → P(Σ) is an upper closure operator: it
is monotone, extensive (S ⊆ ρ(S)), and idempotent (ρ ◦ ρ = ρ). ρ’s image is
closed under intersection.

5

Let f : Σ ⇀ Σ be a partial function whose properties we wish to express
within abstract domain, A. As before, we define its lift, f : P(Σ) → P(Σ),
as f [S] = {f(σ) ∈ Σ | σ ∈ S}. f ♯ : A→ A soundly approximates f if, for all
a ∈ A, f [γ(a)] ⊆ γ(f ♯(a)). When γ has an adjoint, α, this is equivalent to
α(f [S])⊑ f ♯(α(S)), for all S ∈ P(Σ). It is always the case that f ♯

0 = α◦f ◦γ
soundly approximates f . Indeed, f ♯

0(a) calculates strongest postconditions
for f within in A: for all a, a′ ∈ A, if f [γ(a)] ⊆ γ(a′), then f ♯

0(a) ⊑ a′. (That
is, f [γ(a)] ⊆ γ(f ♯

0(a)) ⊆ γ(a′).)
Figure 4 displays some sample functions on Sign, their lifts, and sound

approximating functions. All the approximating functions compute strongest
postconditions on Sign.

When f is approximated exactly by f ♯ such that f ◦ γ = γ ◦ f ♯, we say
f ♯ is forwards complete for f [10]. When f is approximated exactly such
that α ◦ f = f ♯ ◦ α, we say f ♯ is backwards complete for f [9, 11]. The two
completeness notions are homomorphism properties, as illustrated in Figure
5.

It is easy to prove that when some f ♯ is forwards complete for f , then
f ♯ = f

♯
0 (similar for backwards complete). Since f ♯

0 is defined from f , we say
that “f is forwards complete” when f ♯

0 is forwards complete for f (similar for
“backwards complete”). For example, in Figure 3, filter<0 is forwards but
not backwards complete; negate is both backwards and forwards complete,
and succ and filter≥0 are neither.

Since ρ[P(Σ)] = γ[A] lists the properties named by A, we can under-
stand f ♯ : A → A as if it had arity, ρ[P(Σ)] → ρ[P(Σ)]. In particular,
(ρ ◦ f) : ρ[P(Σ)] → ρ[P(Σ)] soundly approximates f in ρ[P(Σ)] (that is, for
φ ∈ ρ[P(Σ)], f [φ] ⊆ (ρ◦f)[φ]), and it computes computes strongest postcon-
ditions for f (that is, for all φ, ψ ∈ ρ[P(Σ)], if f [φ] ⊆ ψ, then (ρ◦f)[φ] ⊆ ψ).

We define f ♯
0 = ρ ◦ f : P(Σ) → ρ[P(Σ)] in the propositions that follow:

Proposition 1. [10] The following are equivalent:

• f
♯
0 is forwards complete for f

• for all φ ∈ ρ[P(Σ)], f [φ] ∈ ρ[P(Σ)]

• f ◦ ρ = ρ ◦ f ◦ ρ

Proposition 2. [2, 9] The following are equivalent:

• f
♯
0 is backwards complete for f

6

f : Int ⇀ Int f : P(Int) → P(Int) f ♯ : Sign → Sign

succ(i) = i + 1

succ[S] =
{succ(i) | i ∈ S}

Not forwards complete
(consider neg); not
backwards complete
(consider {−1}).

succ♯(none) = none

succ♯(zero) = pos

succ♯(pos) = pos

succ♯(neg) = any (!)
succ♯(any) = any (!)

negate(i) = −i

negate[S] =
{negate(i) | i ∈ S}

Forwards complete;
backwards complete

negate♯(neg) = pos

negate♯(zero) = zero

negate♯(pos) = neg

negate♯(any) = any

negate♯(none) = none

filter<0(i)

=

{
i if i < 0
⊥ if i ≥ 0

filter<0[S] =
{filter<0(i) | i ∈ S}

Forwards complete;
not backwards com-
plete (consider {0, 1}).

filter
♯
<0(neg) = neg

filter
♯
<0(any) = neg

filter
♯
<0(zero) = none

filter
♯
<0(pos) = none

filter
♯
<0(none) = none

filter≥0(i)

=

{
i if i ≥ 0
⊥ if i < 0

filter≥0[S] =
{filter≥0(i) | i ∈ S}

Not forwards complete
(consider any); not
backwards complete
(consider {−1, 1})

filter
♯
≥0(neg) = none

filter
♯
≥0(none) = none

filter
♯
≥0(zero) = zero

filter
♯
≥0(pos) = pos

filter
♯
<0(any) = any (!)

Figure 4: Transfer functions, their collecting interpretations, and their sound approxima-
tions on Sign

7

f ♯ : A → A is sound for f : Σ → Σ iff f ◦ γ ⊑ γ ◦ f ♯ iff α ◦ f ⊑ f ♯ ◦ α

UI(a)

f #
f #(a)

γ (a)[]ff

γγ
a

γ
α

#
f # S)α (()α (S)

f[S]S
f

α
f

α and γ act as semi-homomorphisms.

Forwards completeness [10]:
f ◦ γ = γ ◦ f ♯

γ
#

γ (a)

f #(a)

γ (a)[]f
f

a

γ
f

γ is a homomorphism from A to
P(Σ) — it preserves f ♯ as f .

Backwards completeness [2, 9]:
α ◦ f = f ♯ ◦ α

α
#α (S) f # S)α (()

f[S]S
f

α
f

α is a homomorphism from P(Σ) to A

— it preserves f as f ♯.

Figure 5: Sound and complete forms of abstract functions

• for all S1, S2 ∈ P(Σ), ρ(S1) = ρ(S2) implies ρ(f [S1]) = ρ(f [S2])

• ρ ◦ f = ρ ◦ f ◦ ρ.

Both forwards- and backwards-complete functions calculate strongest post-
conditions, even though the two notions are inequivalent [10]. Later, we will
use topology to prove that a forwards-complete function preserves properties,
whereas a backwards-complete function reflects them, cf. Figure 5.

3. Background: Denotational semantics

One might explain denotational semantics as the interpretation of a pro-
gram’s phrases as values from Scott-domains. We treat a Scott-domain as
the inverse limit of a sequence of finite-cardinality bounded cpos, related by
embedding-projection pairs (the “Sequence of Finite Posets” construction)
[12, 13]. Figure 6 presents the Scott-domain of finite and infinite lists cor-
responding to the domain equation, L = ({nil} + (D × L))⊥.3 For each

3As usual, + represents disjoint union, × is product, and ⊥ is lifting.

8

L∞ ≈ ({nil} + (D × L∞)⊥, where D is some fixed Scott-domain

. . .d, ⊥nil
⊥

α0

0γ

1α

1γ

d,d, ⊥d,nil

d, ⊥nil
⊥

L

L0 L1 L2
Li

2α

2γ
d, ⊥nil

⊥

d i ⊥i−1d nil

d,nil d,d, ⊥
d,d,nil

iα

iγ

d, ⊥nil
⊥

d i ⊥i−1d nil

d

d,nil d,d, ⊥
d,d,nil⊥ . . .

For L0 = {⊥}, Li+1 = ({nil} + (D × Li)⊥,
the embedding, projection pairs, Li〈γi, αi〉Li+1, are defined

γ0(⊥) = ⊥
α0(ℓ) = ⊥

γi+1 = F (γi)
(that is, γi+1(ℓ) = ℓ)

αi+1 = F (αi)
where

F (f)(⊥) = ⊥
F (f)(nil) = nil

F (f)(d, ℓ) = (d, f(ℓ))

For i < j, define
γi,j = γj−1 ◦ · · · ◦ γi+1 ◦ γi

αj,i = αi ◦ · · · ◦ αj−2 ◦ αj−1

The elements of L∞ are tuples, 〈ℓi〉i≥0, such that each ℓi ∈ Li and
ℓi = αi(ℓi+1) for all i ≥ 0.

For all i ≥ 0, Li〈γi,∞, α∞,i〉L
∞ are defined

γi,∞(ℓ) = 〈αi−1,0(ℓ), αi−1,1(ℓ), · · · , αi(ℓ), ℓ, γi(ℓ), γi,i+2(ℓ), γi,i+3(ℓ), · · ·〉
α∞,i〈ℓ0, ℓ1, · · · , ℓi, · · ·〉 = ℓi

Finally, L∞〈γ∞, α∞〉({nil}+(D×L∞))⊥ forms an order-isomorphism, where
γ∞ = ⊔i≥0 F (γi,∞) ◦ α∞,i+1

α∞ = ⊔i≥0 γi+1,∞ ◦ F (α∞,i)

Figure 6: Inverse limit of L = ({nil} + (D × L))⊥

9

d ∈ Data(atomic data)
x ∈ Var (variable names)
G ∈ Guard(boolean expressions)
E ∈ Expression ::= x | tl E | cons d E
C ∈ Command ::= x = E | C1; C2 | if (Gi : Ci)i∈I fi | while G do C

Domain of stores: σ ∈ Σ = Var → L∞

G : Guard → Σ → Σ⊥

G[[G]]σ = σ when G holds true in σ; G[[G]]σ = ⊥ otherwise

E : Expression → Σ → L∞

E [[x]]σ = lookup [[x]] σ where lookup v σ = σ(v)

E [[tl E]]σ = tail (E [[E]]σ) where tail(v) = cases γ∞(v) of

⊥ : α∞(⊥)
nil : α∞(⊥)
(d, ℓ) : ℓ

E [[cons d E]]σ = cons d (E [[E]]σ) where cons d ℓ = α∞(d, ℓ)

C : Command → Σ → Σ⊥

C[[x = E]]σ = update [[x]] (E [[E]]σ) σ where update v ℓ σ = σ + [v 7→ ℓ]
C[[C1; C2]] = C[[C2]] ◦ C[[C1]]

Note : ◦ forces strictness: g ◦ f(σ) = ⊥ when f(σ) = ⊥
C[[if (Gi : Ci)i∈I fi]] =

⊔
i∈I C[[Ci]] ◦ G[[Gi]]

C[[while G do C]] = lfp λf. (G[[¬G]]) ⊔ (f ◦ C[[C]] ◦ G[[G]])

Figure 7: Denotational semantics for while-language based on L∞

i ≥ 0, the corresponding embedding-projection pair defines a Galois con-
nection, Li〈γi, αi〉Li+1, as does Li〈γi,∞, α∞,i〉L

∞. (Here, the γ functions are
lower adjoints.)

Figure 7 shows a denotational semantics for a while-language based on
L∞. A store is a mapping from a set of variables, Var , to values in L∞.
Absence of store is denoted by ⊥ (to distinguish it from ⊥ ∈ L∞). The
language uses a guarded-if construction, where a guard, Gj, filters the input
store to its guarded command, Cj , and the results of all Gj : Cj pairs are joined.
When the guards of an if-command are mutually exclusive, the semantics is
the usual one. (We use this formulation to ease the transition into abstract
interpretation, which treats software somewhat like flowcharts or circuits, cf.
Figure 1).

The while-command is a tail-recursive guarded-if, such that while B do C

10

⊥

⊥nil
⊥

k−1d nil d k⊥

d,nil d,d, ⊥
d,d,nil α k

k,γ

d, ⊥nil
⊥

i−1d nil

d

d i ⊥

d,nil d,d, ⊥
d,d,nil

Pα

Pγ

Lk

⊥

d{ }

L| l: }{(d,d,l)

L{(d,l) | l: }

L

{ }

{nil}

{(d,nil)}

UI

. . .

LP() op
L

⊥

⊥

d,

Define L⊤
k 〈γ, α〉P(L∞)op as

γ = γP ◦ γk,∞

α = α∞,k ◦ αP
,

where
γP (ℓ) = ↑ℓ = {m ∈ L∞ | ℓ ⊑ m}
αP (S) = ⊓S

. We can rotate the above diagram

and define the Galois connection, P(L∞)〈α, γ〉L⊤
k

op

Figure 8: Collecting domain (data-test sets), P(L∞)
op

, for L∞ and the associated Galois
connections

has a denotation equal to if (¬B : skip), (B : (C; while B do C)) fi.
Here is an example: let σ0 = [[[x]] 7→ nil]. Then,
C[[if (isNil x : x = cons d0 x) (isNonNil x : x = x) fi]]σ0

= (C[[x = cons d0 x]] ◦ G[[isNil x]])σ0 ⊔ (C[[x = x]] ◦ G[[isNonNil x]])σ0

= C[[x = cons d0 x]]σ0 ⊔ C[[x = x]]⊥
= (update [[x]] (E [[cons d0 x]]σ0) σ0) ⊔ ⊥ = [[[x]] 7→ (d0, nil)]

The example shows how G[[isNil x]] passes σ0 forwards because the guard
holds true for the store, whereas G[[isNonNil x]] passes ⊥.

4. Collecting domains

Reconsidering the Lk domains in Figure 6, we note that an element like
(d,⊥) denotes a list that has d as its head element and an unknown tail, that
is, (d,⊥) approximates the set, {(d, ℓ) | ℓ ∈ L∞} ⊆ L∞. In this sense, the
elements of Lk name properties of L∞, and Lk is a structural approximating
domain of L∞, like the ones used for abstract interpretation (cf. Sign in
Figure 3).

We formalize this with a Galois connection. First, define the collecting
domain, P(L∞), ordered by ⊇. (We ignore the ordering on L∞ [14].) Next,
if we “crown” L∞ with a ⊤ element, we have a Galois connection between
the collecting domain and complete lattice, L∞⊤; see Figure 8. Element

11

⊤ ∈ L∞⊤ denotes contradictory (literally, no) information content and maps
to the empty (“false”) property in P(L∞)op. In contrast, ⊥ ∈ L∞⊤ denotes
all values in L∞ (“true”). One might also restrict the collecting domain to
be just the totally defined lists or just the finite, total lists.

The Figure shows how the Galois connection composes with the
embedding-projection pair, L⊤

k 〈γk,∞, α∞,k〉L
∞⊤, where Lk is also crowned.

The Galois connection that results, L⊤
k 〈γ, α〉P(L∞)op, is significant: If we

“rotate” it, we have a Galois connection suitable for abstract interpretation:

P(L∞)〈α, γ〉L⊤
k

op
:

L

{ }

UI

LP()
γ

α

⊥d,
⊥d,d,

k−1d nil d k⊥

nil
⊥

d,nil

d,d,nil

⊥

Lk

⊥

op

In this way, we have extracted a useful, structural abstract interpretation
from a domain’s inverse-limit construction.

An element, (dn,⊥) ∈ L⊤
k

op
, names the property of a list having at least

n-many d-elements, and (dn, nil) names the property of a list of exactly
length n. The next section shows how to replace L∞ by L⊤

k

op
within the

denotational semantics of Figure 7 and obtain an abstract interpretation.
Other abstract domains can be synthesized by means of inverse limits

and collecting domains. The Sign domain in Figure 3 is derived from these
Scott-domain definitions:

N = {1}⊥ ⊕N, where ⊕ denotes disjoint sum with merged ⊥s
S = (N + {0} +N)⊥

S denotes the integers partitioned into the negatives, zero, and the positives.
The approximating domain, S1 = (N0+{0}+N0)⊥, where N0 = {⊥}, defines
Sign = S⊤

1
op

in Figure 3. The Galois connection in Figure 3 goes between
the collecting domain of sets of total values of S∞ and Sign. We can define
better-precision signs-analyses by using domains Sk, k > 1, which would
distinguish individual integers, e.g, S⊤

2
op

= {⊤, neg ,−1, zero, 1, pos,⊥}.
Many abstract domains are defined this way — they are “partitions” [15]

of data sets, “crowned” by a ⊤, named by a finite domain from an inverse-
limit sequence. But here are two that are not:

12

any

none

0 1 2−1−2.

. . .

−[,0] +[1,]

− +[,]

...
...

...
...

[1]

[]

[0][−1] [2]

[−1,0] [1,2] [2,3][−2,−1]

[−2,0] [1,3]

[−i,0] [1,i]

. . .

.

. . .

The Const domain, shown on the left, is used for constant-propagation analy-
sis: a program’s variables are analyzed to see if they are uninitialized (none),
are assigned a single, constant value (n ∈ Int), or are assigned multiple
values (any) [5]. Rather than an approximating domain, Const is N∞⊤op,
where N∞ is the inverse limit of N = ({0}+N)⊥. In practice, the elements
of Const are generated on-the-fly while the program is analyzed, such that
only a finite number of them appear in the analysis.

On the right is the Interval domain, which is employed when an analysis
determines the range of values that a variable is assigned [2]. The domain
is infinite, its elements are generated on-the-fly while a program is analyzed,
and its γ : Interval → P(Int) is γ([a, b]) = {n ∈ Int | a ≤ n ≤ b}.

Domains like Const and Interval are “nonstructural” — not approxi-
mations of inverse limits. Standard relational domains from abstract inter-
pretation are typically nonstructural, e.g., the polyhedral domain [6], whose
values describe linear relationships between variables’ values in the store. For
example, this set of inequalities,

{2x + 1y ≤ 100, 4x + 1y− 3z ≤ 0, − 1z ≤ 2}

is an abstract value in the polyhedral domain that abstracts the store, Var →
Σ. Abstract polyhedra are conjunctive propositions of form,

∧
i((

∑
j(aij ·

xij) ≤ bi), and are implemented as tuples, matrices, or graphs. The values are
generated on-the-fly while a program is analyzed. Similar to the polyhedral
domain is the octagon domain [16] and the predicate-abstraction domains
[7, 17].

Domains can be combined: There are the usual constructions for col-
lecting domains for products, sums, and liftings. Figure 9 shows two such
constructions, indexed product and lifting. The indexed product generates

13

Let D be a Scott-domain, A its approximant, and P(D)〈α, γ〉A the collecting
Galois connection.

Set-indexed product: I → D, for set I: P(I → D)〈αI , γI〉I → A

where
γI(ai)i∈I = {(di)i∈I | di ∈ γ(ai)}
αI(S) = (α{ti | t ∈ S})i∈I

Compressed lift: D⊥: P(D ∪ {⊥})〈α⊥, γ⊥〉A (that is, ⊥ is aliased to the
existing ⊥ ∈ A)

where
γ⊥(a) = γ(a) ∪ {⊥}
α⊥(S) = α(S − {⊥})

Figure 9: Compound Galois connections for collecting domains

an independent attribute analysis [18], where a set of indexed tuples is ab-
stracted to a single tuple that covers the set. The lifting construction com-
presses the ⊥ element with the existing ⊥ in A and is used when an abstract
interpretation ignores nontermination.

5. Open sets, disjunctive completion, and logic

Each abstract domain element names a property set; this suggests a topo-
logical connection. For approximating domain, Lk, and ℓ ∈ Lk, each γ(ℓ) is
a Scott-basic open set [19, 20] — a “computable property” [8]. Using the
closure operator, ρ = γ ◦ α : P(L∞) → P(L∞), we have that the family
of sets, ρ[P(L∞)], are all Scott-basic opens and the family is closed under
(arbitrary) intersection.

It is natural to close ρ[P(L∞)] under arbitrary unions as well to generate a
topology on L∞, one that is coarser than the Scott topology — it defines the
“topology of the abstract interpretation.” This construction already exists in
abstract-interpretation methodology — it is the disjunctive completion [14]
of the abstract domain, and it adds elements to an abstract domain when
more precision is needed for an analysis. For example, the Sign domain in
Figure 3 can be disjunctively completed to a new domain, SignO, by closing
γ[Sign] under union:

14

SignO = {none, neg , ≤0, zero,
6=0, ≥0, pos, any}

:
{0}

{ }

{...,−1,0,1,...}

{...,−2,−1}

{...,−2,−1,1,2,...}

{...,−2,−1,0} {0,1,2,3,...}

{1,2,3,...}

SignO

There is another reason why the disjunctive completion is useful. It re-
minds us that every abstract domain, L⊤

k

op
, defines a “logic,” where ⊤ ∈ Lk

denotes False, ⊥ ∈ Lk denotes True, and L⊤
k

op
’s ⊓ denotes conjunction

and its ⊑ denotes entailment. The disjunctive completion employs ⊔ as
disjunction, making a frame [21].

In general terms, an abstract domain A’s logic is defined as (i) primitive
assertions, namely, a ∈ A; (ii) f ♯

0(φ), for φ in A’s logic, f ♯
0 = ρ ◦ f , and f

is forwards complete. (That is, f is a logical operator: for all S ∈ ρ[P(Σ)],
f [S] ∈ ρ[P(Σ)]; it maps property sets “on the nose.”)

For example, Sign’s logic includes

φ ::= a | φ1 ⊓φ2 | negate
♯ φ | filter ♯

<0 φ, where a ∈ Sign

because both ∩ and negate are logical operators (forwards complete). In
constrast, union (∪) is not a logical operator for Sign (although it is for
SignO), nor is the successor operation, succ.

The logic of the approximating domain is critical to an abstract inter-
pretation: Only properties that belong to the abstract domain’s logic may be
soundly verified by the abstract interpretation. This makes the forwards-
completeness property critical to the design of an abstract interpretation.

The above development can be read as naive domain logic as presented
by Abramsky [22], where a domain like L∞ is generated from a set of atomic
(finite) elements, which are the primitive propositions (observable properties)
in the logic, closed under frame-like axioms.

6. Abstract denotational semantics

Recall from Section 2 that a Galois connection, P(Σ)〈α, γ〉A, models
subsets of Σ as elements of A. Computation by f : Σ ⇀ Σ is modelled by
f ♯ : A → A such that f [γ(a)] ⊆ γ(f ♯(a)), and the most precise such f ♯ is
f

♯
0 = α ◦ f ◦ γ.

A Galois connection induces an abstract interpretation of a language’s
denotational semantics: Replace Σ by A and replace functions, f : Σ → Σ⊥

15

Abstract store domain: σ ∈ Σ♯ = Var → L⊤
k

op

Collecting Galois connections for Scott-domains:
L∞: P(L∞)〈α, γ〉L⊤

k

op

Σ = Var → L∞: P(Σ)〈αVar , γVar 〉Σ
♯

Σ⊥: P(Σ⊥)〈α⊥, γ⊥〉Σ
♯

, defined in Figures 7, 8, and 9.

G♯ : Guard → Σ♯ → Σ♯

G♯[[G]] = α⊥ ◦ G[[G]] ◦ γVar

E♯ : Expression → Σ♯ → L⊤
k

op

E♯[[x]]σ = lookup♯ [[x]] σ

where lookup♯ v = α ◦ lookup v ◦ γVar , that is, lookup♯ v σ = σ(v)
E♯[[tl E]]σ = tail♯(E♯[[E]]σ)

where tail♯ = α ◦ tail ◦ γ,

that is, tail♯(a, ℓ) = ℓ; tail♯(nil) = ⊥ = tail♯(⊥)
E♯[[cons a E]]σ = cons♯ a (E♯[[E]]σ)

where cons♯(a, v) = α ◦ cons a ◦ γ, that is, cons♯ a ℓ = (a, ℓ)

C♯ : Command → Σ♯ → Σ♯

C♯[[x = E]]σ = update♯ [[x]] (E♯[[E]]σ) σ

where update♯[[x]] = α⊥ ◦ update[[x]] ◦ (γ × γVar),
that is, update♯ v ℓ σ = σ + [v 7→ ℓ]

C♯[[C1; C2]] = C♯[[C2]] ◦ C
♯[[C1]]

C♯[[if (Gi : Ci)Ifi]] =
⊔

i∈I C
♯[[Ci]] ◦ G

♯[[Gi]]
C♯[[while B do C]] = lfp λf. G♯[[¬G]] ⊔ (f ◦ C♯[[C]] ◦ G♯[[G]])

Figure 10: Abstract interpretation derived from P(L∞)〈α, γ〉L⊤

k

op

by some f ♯ : A → A, say, f ♯
0. An induction proof shows that the resulting

valuation, C♯[[C]], is sound for C[[C]], for all phrases, C, in the language, because
soundness is preserved by function composition and joins. Figure 10 shows
the abstract denotational semantics that results from the Galois connection,
P(L∞)〈α, γ〉L⊤

k

op
, and the two constructions from Figure 9. This style of

abstract interpretation was first proposed by Donzeau-Gouge [23] and Neilson
[24, 25, 26].

Here is an example abstract denotation: Let σ0 = [[[x]] 7→ ⊥] ∈ Σ♯, that
is, x might be any L∞-value at all (because γ(⊥) = L∞):

C♯[[if (isNil x : x = cons d0 x), (isNonNil x : x = x) fi]]σ0

= (C♯[[x = cons d0 x]] ◦ G♯[[isNil x]])σ0 ⊔ (C♯[[x = x]] ◦ G♯[[isNonNil x]])σ0

Now,

16

G♯[[isNil x]])σ0 = (α⊥ ◦ G[[isNil x]] ◦ γVar)σ0

= (α⊥ ◦ G[[isNil x]]){[[[x]] 7→ ℓ] | ℓ ∈ L∞}
= α⊥{[[[x]] 7→ nil], ⊥} = [[[x]] 7→ nil]

The abstracted guard calculates the abstract store that covers all
stores that satisfy isNil x. A similar calculation demonstrates that
G♯[[isNonNil x]])σ0 = α⊥({[[[x]] 7→ (d, ℓ)] | ℓ ∈ L∞} ∪ {⊥}) = [[[x]] 7→ (d,⊥)].
We complete the derivation:

C♯[[x = cons d0 x]][[[x]] 7→ nil] ⊔ C♯[[x = x]][[[x]] 7→ (d,⊥)]
= (update♯ [[x]] (E ♯[[cons d0 x]][[[x]] 7→ nil]) [[[x]] 7→ nil]) ⊔ [[[x]] 7→ (d,⊥)]
= [[[x]] 7→ (d0, nil)] ⊔ [[[x]] 7→ (d,⊥)]
= [[[x]] 7→ (d0 ⊔ d, nil ⊔L⊤

k

op ⊥)] = [[[x]] 7→ (d0 ⊔ d, ⊥)]

The outcomes are joined, precision is lost, and the result is an abstract store
that maps x to a non-nil list whose head is d0⊔ d and whose tail is unknown
(i.e., might be any L∞-value at all).

The example demonstrates how an abstract intepretation is used: an
input property is supplied and its output is calculated by derivation. To
calculate the output, f(σ0), from a program denotation, f = λσ.Ffσ′ , we
must ensure finite unfolding of the calls, fσ′, and detectable termination of
the unfoldings. To bound the unfolding, we employ “minimal function graph”
semantics [27]: Starting from fσ0, we generate the subsequent unfoldings,
fσi, generating a family of k first-order equations,

fσ0 = Ffσ1

fσ1 = Ffσ2

· · ·
fσk = Ffσj

, for some j ≤ k

which we solve iteratively. The equation set is guaranteed finite if the abstract
domain from which σ ranges is finite (e.g., Sign or L⊤

k

op
).

If the abstract domain is infinite but has finite height (e.g., Const), we
force k to be finite by making the argument sequence, σ0, σ1, · · · , σk, into a
chain so that the domain’s finite-height ensures a finite equation set: when
f(σi) generates the call, f(σ′), we replace the latter by f(σi ⊔σ

′), which can
be safely used in place of the former. The abstract domain’s finite height
bounds the quantity of the generated equation set.

An abstract domain like Interval has infinitely ascending chains. In this
situation, ⊔ is replaced by a monotonic, extensive widening function that
generates chains of finite height [1]. For the Interval domain, its widening
function is defined widen(σi, σ

′), where σi is the ith element in the chain
under construction, and σ′ is newly appearing in a call, f(σ′):

17

widen([], [c, d]) = [c, d]
widen([a, b], [c, d]) = [a, b], if a ≤ c and d ≤ b

widen([a, b], [c, d]) = [−∞, b], if c < a and d ≤ b

widen([a, b], [c, d]) = [a,+∞], if a ≤ c and b < d

widen([a, b], [c, d]) = [−∞,+∞], if c < a and b < d

Widening operations are also required for polyhedral domains.
Here is an example from Figure 10: For C♯[[while NonNil x : x = tl x]] =

f , where f(σ) = G♯[[Nil x]]σ⊔ f(C♯[[x = tl x]](G♯[[NonNil x]]σ)), we calculate
from an input property σdb: Let σdb = [x 7→ (d,⊥)] and σb = [x 7→ ⊥].
(Recall, in L⊤

k

op
, that ⊥ ∈ L⊤

k means “all lists,” and ⊤ ∈ L⊤
k means “no

lists.”) Now, C♯[[while NonNil x : x = tl x]]σdb = fσdb, where

fσdb = G♯[[Nil x]]σdb ⊔ f(C♯[[x = tl x]](G♯[[NonNil x]]σdb)
= [x 7→ ⊤] ⊔ f(C♯[[x = tl x]]σdb)
= [x 7→ ⊤] ⊔ fσb

= fσb

fσb = G♯[[Nil x]]σb ⊔ f(C♯[[x = tl x]](G♯[[NonNil x]]σb)
= [x 7→ nil] ⊔ f(C♯[[x = tl x]]σdb)
= [x 7→ nil] ⊔ fσb

We solve these two first-order equations.
The inductive definition format ensures soundness: For E [[op(Ei)]] =

f(E [[Ei]]), we define the abstract semantics inductively as E ♯[[op(Ei)]] =
f

♯
0(E

♯[[Ei]]), where f ♯
0 = α ◦ f ◦ γ. It is immediate that E ♯ is sound for E :

E [[E]] ◦ γ = γ ◦ E ♯[[E]] (equivalently stated as α ◦ E [[E]] = E ♯[[E]] ◦ α).
Recall the two notions of completeness, applied to E :

forwards completeness: For all E, E [[E]] ◦ γ = γ ◦ E ♯[[E]]
backwards completeness: For all E, α ◦ E [[E]] = E ♯[[E]] ◦ α

As proved by Cousot and Cousot [2], both forms of completeness are pre-
served by least- and greatest-fixed-point constructions, as well as by function
composition and by inductive definition on syntax: If for every equation,
E [[op(Ei)]] = f(E [[Ei]]), f

♯
0 is forwards (resp. backwards) complete for f , then

E ♯ is forwards (resp. backwards) complete for E . When there is not com-
pleteness, the inductive definition of E ♯ is sound but may be weaker than the
strongest abstract interpretation: E ♯[[E]] ⊒ α ◦ E [[E]] ◦ γ.

As noted earier, the two completeness forms both define strongest-
postcondition semantics yet they are inequivalent. To clarify the situation,
we study the topology induced by the underlying Galois connection.

18

7. Topological characterization of completeness

Topology plays a key role in denotational semantics. To solve the domain
equation, D = D → D, Scott needed to limit the cardinality of functions
on D. Topological continuity was the appropriate criterion: For complete
lattice L, Scott defined L’s open sets to be those subsets of L that are (i)
upwards closed and (ii) closed under tails of chains.4 The functions that are
topologically continuous for the Scott-topology of L are exactly the chain-
continuous functions on L. Continuity limited the cardinality of D → D so
that the recursive domain equation had a solution.

Consider the Scott-topology on an algebraic bcpo: D is algebraic iff there
is a subset, FD ⊆ D, of finite elements5 such that for every d ∈ D, d = ⊔{e ∈
FD | e ⊑ d}. Each e ∈ FD defines the property of “having e-information
level,” and the basic open sets for D’s Scott-topology are {↑e | e ∈ FD}.

6

Given that topology is the study of computing on properties, one would
believe that it would be central to the theory of abstract interpretation [1],
which studies exactly this topic. There are indeed some precedents.

In [28], Cousot and Cousot employed topology to establish soundness of
convergence: They proposed a T0-topology, the ⊔-topology, for complete
lattices, where the basic open sets are up-closed and closed under finite
meets. As with the Scott topology, a function is chain continuous iff it is
⊔-topologically continuous. (The two topologies coincide for algebraic lat-
tices.) The ⊔-topology explains how computation on an abstract interpreta-
tion preserves properties: When lattice L’s abstract interpretation is defined
by an upper closure operation, ρ : L→ L, the ⊔-topology on ρ[L] is exactly
the relative topology on L: every open U ′ ⊆ ρ[L] equals U ∩ ρ[L], for some
open U ⊆ L.

One application where topology has been employed is backwards strict-
ness analysis. A characterization of a strictness-analysis domain as open-set
properties was made by Hunt [29], who observed that Clack and Peyton
Jones’s backwards strictness analysis employed abstract values called fron-
tiers, which were finite subsets of a finite lattice, D, that represented up-

4That is, for every chain, C = {c0, c1, · · · ci, · · ·} ⊆ L, when ⊔C ∈ U , for open set
U ⊆ L, then there exists some ck ∈ C such that ck ∈ U also. This means C’s tail, from ck

onwards, is in U .
5e ∈ D is finite iff for all chains C ⊆ D, e ⊑ ⊔C implies e ⊑ c for some c ∈ C.
6where ↑e = {d ∈ D | e ⊑ d}

19

closed subsets of D. Since up-closed subsets of a finite lattice are Scott-open,
all monotone functions f : D → D are Scott-continuous, implying f−1 maps
frontiers to frontiers, ensuring that the analysis preserved strictness proper-
ties “on the nose.” Dybjer formalized this property for denotational seman-
tics definitions and domain equations, axiomatizing the Scott topology of the
latter as well as the law that the inverse of a Scott-continuous function maps
open sets to open sets. He then showed strictness analysis is an instance of
his axiomatization [30].

The most striking application of topology to abstract domains came from
Jensen [31], who utilized Abramsky’s domain theory in logical form [22]. Re-
call that Abramsky applied Stone duality [21] to domain theory, generating
a Scott domain from a set of atomic elements that act as primitive proposi-
tions in a domain logic, closing them under a set of frame axioms. Jensen
observed that one can use a finite subset of the atomic elements with the
frame axioms to generate an abstract domain that approximates the domain
generated from all the atomic elements. Jensen called his methodology ab-
stract interpretation in logical form and applied it to strictness analysis, as
did Benton, who proposed his own “strictness logic” [32].

How do these efforts relate to the development in this paper? For abstract
domain, L⊤

k

op
, its elements name properties that are used in an abstract

interpretation: each ℓ ∈ L⊤
k names the set, ↑ℓ ⊆ L∞, a Scott-basic open set

in L∞. The collection, γ[L⊤
k], is a family that is closed under intersection

but not necessarily under union. If we close under union, we have a topology
on L∞, coarser than the Scott-topology. But this analogy fails for relational
abstract domains. To resolve the issue, we will assume that the elements in
any abstract domain define “open sets” like the ones in L⊤

k

op
and develop the

consequences.
One defines a topology so to ask, “what are the continuous functions?” In

the case of the “topology” defined by an abstract domain, we ask “what are
the open, closed, and continuous maps?” We will see that the elements of an
overapproximating abstract domain define closed sets and the elements of an
underapproximating abstract domain define open sets; we also see that those
functions that preserve members of an abstract domain (the closed/open
maps) are the forwards-complete functions of abstract-interpretation theory
and those functions that reflect members of an abstract domain (the contin-
uous maps) are the backwards-complete functions.

20

8. Basic definitions

We review core concepts from topology [33]: For a set, Σ, a topology, OΣ ⊆
P(Σ), is a family of property sets, called the open sets, that are closed under
union (for all S ⊆ OΣ,

⋃
S ∈ OΣ) and binary intersection (U1∩U2 ∈ OΣ when

U1, U2 ∈ OΣ) and include Σ (
⋃
OΣ = Σ). The complement, ∼U = Σ − U ,

of an open set U is a closed set; define CΣ = {∼U | U ∈ OΣ}. For topology
OΣ, a base is a subset, BΣ ⊆ OΣ, such that every U ∈ OΣ is the union of
some members of the base (for all U ∈ OΣ, there exists S ⊆ BΣ such that
∪S = U). The members of the base are called basic-open sets.

For S ⊆ Σ, its interior, ι(S), is the largest open set within S; ι(S) =⋃
{U ∈ OΣ | U ⊆ S}. The smallest closed set enclosing S is its closure,

ρ(S) =
⋂
{K | S ⊆ K, K ∈ CΣ}.

A function, f : Σ → Σ, is (topologically) continuous iff for all s ∈ Σ and
V ∈ OΣ, if f(s) ∈ V , then there exists some U ∈ OΣ such that s ∈ U and
f [U] ⊆ V (where f : P(Σ) → P(Σ) is f [U] = {f(x) | x ∈ U}). See Figure
13. A crucial result is that f is continuous iff for all U ∈ OΣ, f−1(U) ∈ OΣ

also, where f−1(U) = {x ∈ Σ | f(x) ∈ U}. (As a corollary, f is continuous
iff for all K ∈ CΣ, f−1(K) ∈ CΣ also.) Function f is an open map iff for all
U ∈ OΣ, f [U] ∈ OΣ and it is a closed map iff for all K ∈ CΣ, f [K] ∈ CΣ.

9. Property families, function preservation and reflection

We now adapt topological concepts to abstract interpretation. For a
concrete state set, Σ, choose some FΣ ⊆ P(Σ) as a family of properties. In
Figure 3, the family SignInt is {∅, {i | i < 0}, {0}, {i | i > 0}, Int}.

For each U ∈ FΣ, its complement is ∼U = Σ−U ; for FΣ, its complement
family, ∼FΣ, is {∼U | U ∈ FΣ}. E.g., ∼SignInt is {Int , {i | i ≥ 0}, {i | i 6=
0}, {i | i ≤ 0}, ∅}. When property family OΣ ⊆ P(Σ) is closed under unions,
then OΣ is an open family and has the interior operator, ι : P(Σ) → OΣ.
Dually, if a property family CΣ is closed under intersections, it is a closed
family (Moore family [2]) and has a closure operator, ρ : P(Σ) → CΣ. SignInt

in Figure 3 is a closed (but not open) family, whose closure operation is the
ρ stated in the Figure. If OΣ is an open family, then its complement is a
closed family (and vice versa), where

⋂
i∈I Ki = ∼

⋃
i∈I ∼ Ki (and where⋃

i∈I Ui = ∼
⋂

i∈I ∼Ui).

21

Let f : Σ → ∆ be a total function;7 define f : P(Σ) → P(∆) as f [S] =
{f(s) ∈ ∆ | s ∈ S}. Next, define function inverse, f−1 : P(∆) → P(Σ), as
f−1(T) = {s ∈ Σ | f(s) ∈ T}.

For property families, FΣ and F∆, f : Σ → ∆ is FΣF∆-preserving iff for
all U ∈ FΣ, f [U] ∈ F∆. In such a case, f : FΣ → F∆ is well defined. To
reduce notation, we use functions, f : Σ → Σ, with the same domain and
codomain (and we say, “f is FΣ-preserving”), but all results that follow hold
for functions with distinct codomains and domains, too.

Definition 3. For s ∈ Σ and S ⊆ Σ, let Us (respectively, US) denote a
member of FΣ such that s ∈ Us (respectively, S ⊆ US).

(i) For s ∈ Σ, f : Σ → Σ is continuous at s iff for all Vf(s) ∈ FΣ, there
exists some Us ∈ FΣ such that f [Us] ⊆ Vf(s).

(ii) For S ⊆ Σ, f is continuous at S iff for all Vf [S] ∈ FΣ, there exists
some US ∈ FΣ such that f [US] ⊆ Vf [S].

(iii) f is FΣ-reflecting iff for all V ∈ FΣ, f−1(V) ∈ FΣ, that is, f−1 is
FΣ-preserving.

Proposition 4. (i) f is FΣ-reflecting iff f is continuous at S, for all S ⊆ Σ.
(ii) If FΣ is an open family, then f is FΣ-reflecting iff f is continuous at s,
for all s ∈ Σ.

Proof. We prove (i); (ii) is a standard result [33]. If: for V ∈ FΣ, consider
f−1(V). Because f is continuous at all S ⊆ Σ, there is some Uf−1(V) ∈ FΣ

such that f [Uf−1(V)] ⊆ V . But Uf−1(V) must equal f−1(V) for this to hold.
Only if: for S ⊆ Σ, say that VS ∈ FΣ. Since f is reflecting, f−1(VS) ∈ FΣ.

Thus, f [f−1(VS)] ⊆ VS.2

We retain these critical dualities for all f and FΣ:

Proposition 5. f : Σ → Σ is ∼FΣ-reflecting iff f is FΣ-reflecting.
f is FΣ-preserving iff f̃ = ∼ ◦f◦ ∼ is ∼FΣ-preserving.

In Figure 3, negate and square are SignInt -reflecting (but succ is not).
Both functions are ∼ SignInt reflecting, where ∼ SignInt = {Int , {i | i ≥

0}, {i | i 6= 0}, {i | i ≤ 0}, ∅}. Since negate is SignInt -preserving, ñegate is

∼ SignInt -preserving, e.g., ñegate{i | i ≥ 0} = {i | i ≤ 0}. We exploit such
dualities in the next section.

7The results are best understood with total functions. Partial functions are addressed
in a later section.

22

{0}

{ }

{...,−1,0,1,...}

{...,−2,−1}

{...,−2,−1,1,2,...}

{...,−2,−1,0} {0,1,2,3,...}

{1,2,3,...}

SignO ρ∪(S) = ∪{ρ{s} | s ∈ S}

f ♯ = ρ∪ ◦ f

f ♯−1(U) = ∪{V ∈ SignOInt | f ♯(V) ⊆ U}

For succ(i) = i + 1,

succ♯{i | i < 0} = {i | i ≤ 0}
succ♯{0} = {i | i > 0}
succ♯{i | i > 0} = {i | i > 0}
succ♯{i | i ≤ 0} = Int

succ♯{i | i 6= 0} = Int , etc.

succ♯−1
{i | i > 0} = {i | i ≥ 0}

succ♯−1
{0} = ∅

succ♯−1
{i | i < 0} = ∅

succ♯−1
{i | i ≤ 0} = {i | i < 0}, etc.

Figure 11: Using SignInt = {∅, {i | i < 0}, {0}, {i | i > 0}, Int} as a base for a topology.

10. Postcondition and precondition analyses

A property family lists the properties that can be computed by an abstract
interpretation. Function f ♯ : FΣ → FΣ soundly approximates f : Σ →
Σ iff for all V ∈ FΣ, f [V] ⊆ f ♯(V). When CΣ is a closed family, we use
its closure operator, ρ, to define from f its sound, strongest-postcondition
approximation, f ♯ = ρ ◦ f . A forwards abstract interpretation calculates
overapproximating postconditions, and one uses a closed family to generate
a postcondition analysis; the literature abounds with examples [4, 1].

What if we desire preconditions from a closed family? We might define
f ♯’s inverse, f ♯−

CΣ
: CΣ → P(CΣ), as

(⋆) f ♯−
CΣ

(U) = {V ∈ CΣ | f ♯(V) ⊆ U}

Although this definition is sound, in the sense that ∪f ♯−
CΣ

(U) ⊆ f−1(U), the

value ∪f ♯−
CΣ

(U) is not necessarily expressible in the closed family, CΣ. To
repair the flaw, we close CΣ under unions, that is, we use it as a base for
a topology on Σ, namely, COΣ = {∪T | T ⊆ CΣ}, which is both an open
and a closed family. (The closure map ρ∪ : COΣ → COΣ equals ρ∪(S) =
∪{ρ{s} | s ∈ S}.) Now, we approximate with COΣ: for f : Σ → Σ, we
define f ♯ : COΣ → COΣ as f ♯ = ρ∪ ◦ f ; we define f ♯−

COΣ
: COΣ → P(COΣ) as

f ♯−
COΣ

(U) = {V ∈ COΣ | f ♯(V) ⊆ U}, like before; and this makes f ♯’s weakest

23

{0}

{0,1}

{ }

{0,1,2,3,...}

{1,2,3,...}

Count
Nat For Nat = {0, 1, 2, · · ·},

CountNat = {∅, {0}, {0, 1}, {1, 2, 3, · · ·},Nat}
ι(S) = ∪{U | U ⊆ S}, e.g.,
ι{0, 1, 2} = {0, 1}
ι{2, 4, 6, 8, · · ·} = ∅

For succ(n) = n + 1,
succ−o = ι ◦ succ−1, e.g.,

succ−o{0, 1} = {0}
succ−o{0} = ∅ = succ−o(∅)
succ−o{1, 2, 3, · · ·} = Nat = succ−o(Nat)

Figure 12: Open family for counting analysis

precondition, f ♯−1 : COΣ → COΣ, well defined: f ♯−1(U) = ∪f ♯−
COΣ

(U).8

COΣ is the disjunctive completion construction, seen earlier. Figure 11
shows the disjunctive completion of SignInt to SignOInt and the precondition
function for succ♯. Now, we have preconditions, but the extra sets generated
by the disjunctive completion may make the abstract domain too large for a
practical static analysis.

If we are primarily interested in preconditions, we should start with an
open family of properties (one closed under unions), OΣ ⊆ P(Σ), so that we
have straightaway an interior operator, ι : Σ → OΣ. We underapproximate
the inverses of transition functions: For f : Σ → Σ, define f−o : OΣ → OΣ

as f−o = ι ◦ f−1. f−o(ψ) calculates the weakest precondition of f and ψ

expressible in OΣ: for φ, ψ ∈ OΣ, if f [φ] ⊆ ψ, then f [f−o(ψ)] ⊆ ψ and
φ ⊆ f−o(ψ).

Disjunctive completions of closed families — topologies — are the stan-
dard examples of open families, but Figure 12 defines an open but not closed
family, CountNat , for a backwards counting analysis. The successor opera-
tion, succ : Nat → Nat , is CountNat -reflecting, so succ−o = succ−1. (See
the Figure.) Predecessor (pred(n + 1) = n, pred(0) = 0) is not reflecting,
and pred−o = ι ◦ pred−1 yields pred−o{0, 1} = ι{0, 1, 2} = {0, 1}, etc. As
indicated by research on backwards strictness analysis [32, 30, 29, 31], one
should use an open family of properties to generate a precondition analysis.

8More precisely stated, it is the weakest liberal precondition, as explained in Section 15.
Also, since COΣ possesses an interior operator, ι, we can define the precondition function
as ι ◦ f−1 and prove that f ♯−1 = ι ◦ f−1 [11].

24

Because the complement of a closed family is open (and vice versa), we
can move from a postcondition analysis to its dual, precondition analysis:
Say that CΣ is closed so that OΣ = ∼CΣ is open. First, every CΣ-reflecting f
is OΣ-reflecting, and for every CΣ-preserving f : Σ → Σ, f̃ is OΣ-preserving,
by Proposition 5.

Lemma 6. For all f : Σ → Σ and V ∈ FΣ, ∼f−1(V) = f−1(∼V).

For all V ∈ FΣ, f̃−1(V) = f−1(V).
For closed family CΣ and its complement, OΣ = ∼CΣ, ∼ ◦ ρ = ι ◦ ∼.

These results yield

Proposition 7. (̃f−1)♯(U) = f−o(U), for all U ∈ OΣ. (Note: (̃f−1)♯ = ∼
◦(f−1)♯◦ ∼.)

Proof. (̃f−1)♯(U) = ∼ ◦ρ ◦ f−1◦ ∼ (∼K), where U = ∼K. This equals
∼ ρ(f−1(K)) = ι(∼ f−1(K)), by the previous lemma, which equals ι(f−1(∼
K)), by the lemma, which equals f−o(U). 2

The Proposition says, by using CΣ’s closure operator to define the over-
approximating (f−1)♯, we can compute an underapproximating, weakest-

precondition analysis on OΣ = ∼CΣ defined as (̃f−1)♯.
As an example, consider ∼SignInt = {Int , {i | i ≥ 0}, {i | i 6= 0}, {i | i ≤

0}, ∅}, based on Figure 3. This open family’s logic includes

ψ ::= ∼U | ψ1 ∪ ψ2 | negate
−1ψ | sq−1ψ, for U ∈ SignInt

Because succ is not SignInt -reflecting, we underapproximate it by succ−o =
˜(succ−1)♯. We have succ−o{i | i 6= 0} = {i | i ≥ 0}; succ−oInt = Int ; and

succ−o(U) = ∅, otherwise. In this fashion, a postcondition analysis based on
CΣ defines a precondition analysis on ∼CΣ.

Finally, every FΣ possesses both a logic for validation (viz., FΣ’s sets and
its logical operators) as well as a dual, refutation logic: ∼FΣ’s logic. We say
that S has property ¬φ if S ⊆ ∼φ, for ∼φ ∈ ∼FΣ. This is the foundation
for three-valued static analyses [34], where one uses a single abstract domain
to compute validation, refutation, and “don’t know” judgements.

25

11. From continuity to completeness

There is a correspondence between functions that preserve and reflect
property sets and abstract-interpretation-complete functions: Recall that f :
Σ → Σ is FΣ-preserving iff for all S ∈ FΣ, f [S] ∈ FΣ. But this is exactly
the definition of abstract-interpretation forwards completeness when FΣ is a
closed family. We say that f is FΣ-forwards complete. In topological terms,
f is a closed map. The forwards-completeness notion also applies when FΣ

is an open family and f is an open map.
We now develop the equivalence of FΣ-reflection to backwards complete-

ness. For S, S ′ ⊆ Σ, write S ≤FΣ
S ′ iff for all K ∈ FΣ, S ⊆ K implies

S ′ ⊆ K. This is the specialization ordering in topology. Write S ≡FΣ
S ′

iff S ≤FΣ
S ′ and S ′ ≤FΣ

S. Note that S ⊇ S ′ implies S ≤FΣ
S ′, but the

converse need not hold. Say that f : Σ → Σ is FΣ-monotone if for all
S, S ′ ∈ P(Σ), S ≤FΣ

S ′ implies f [S] ≤FΣ
f [S ′]. The following definition is

the usual one for abstract-interpretation backwards completeness:

Definition 8. For property family, FΣ, f : Σ → Σ is FΣ-backwards-
complete iff for all S, S ′ ⊆ Σ, S ≡FΣ

S ′ implies f [S] ≡FΣ
f [S ′].

Clearly, if f is CΣ-monotone, it is CΣ-backwards-complete, but the converse
also holds for a closed family:

Proposition 9. If CΣ is a closed family and f is CΣ-backwards-complete,
then f is CΣ-monotone.

Proof. Assume S ≤ S ′ and f [S] ⊆ K, for K ∈ CΣ. Say that ρ is the
closure operator for CΣ; then, ρ ◦ f [S] ⊆ K, because K is closed, implying
ρ ◦ f ◦ ρ[S] ⊆ K, by CΣ-backwards-completeness, that is, (ρ ◦ f)(ρ(S)) ⊆ K.
This implies ρ ◦ f [S ′] ⊆ K, because S ⊆ ρ(S) and S ≤ S ′. This gives
◦f [S ′] ⊆ K.

Proposition 10. If f is FΣ-reflecting, then it is FΣ-backwards-complete.

Proof. Assume S ≤Σ S
′ and show f [S] ≤Σ f [S ′]: Say that f [S] ⊆ K ∈ FΣ;

since f is reflecting, f−1(K) ∈ FΣ, too, and S ⊆ f−1(K). Because S ≤Σ S
′,

S ′ ⊆ f−1(K), implying f [S ′] ⊆ K. 2

If CΣ is a closed family, we use its ρ to prove the converse. Here are the key
technical properties:

26

Lemma 11. For all S ⊆ Σ, S ≡CΣ
ρ(S).

For all S, S ′ ⊆ Σ, S ≡CΣ
S ′ iff ρ(S) = ρ(S ′).

Lemma 12. The following are equivalent for closed family, CΣ:
(i) f is CΣ-backwards-complete;
(ii) for all S ⊆ Σ, f [S] ≡CΣ

f [ρ(S)];
(iii) ρ ◦ f = ρ ◦ f ◦ ρ.

Proof. (i) implies (ii): From Lemma 11, S ≡CΣ
ρ(S); apply (i).

(ii) implies (iii): From (ii), f [S] and f [ρ(S)] are contained in exactly the
same closed sets, hence their closures are equal.

(iii) implies (i): Let S ≡CΣ
S ′ and f [S] ⊆ K for arbitrary K ∈ CΣ.

Then, ρ ◦ f [S] ⊆ K and then ρ ◦ f [ρ(S)] ⊆ K, by (iii). By Lemma 11,
ρ ◦ f [ρ(S ′)] ⊆ K, implying f [ρ(S ′)] ⊆ K.

For a closed family, reflection (topological continuity) is backwards complete-
ness:

Theorem 13. For CΣ, f : Σ → Σ is CΣ-backwards-complete iff f is CΣ-
reflecting.

Proof. The if-part is already proved. For the only-if part, assume f [S] ⊆
K ∈ CΣ and show there is some LS ∈ CΣ such that f [LS] ⊆ K. Let ρ(S)
be the LS: we have f [ρ(S)] ≡CΣ

f [S] by the previous Lemma, which implies
f [ρ(S)] ⊆ K. 2

Corollary 14. (i) if f is CΣ-backwards-complete, then f−1 is both CΣ- and
∼CΣ-forwards complete.

(ii) f is CΣ-forwards complete iff f̃ is ∼CΣ-forwards complete.

Proof. By Proposition 5 and the previous Theorem.

12. Relation to partial-order backwards completeness

The crucial characterization of backwards completeness by Giacobazzi, et
al. [9] was made in a “frame-theory” presentation [21], where (P(Σ),⊆) is
abstracted to a complete lattice, (D,⊑), and CΣ is abstracted to ρ[D] ⊆ D,
namely, the fixed points of an upper closure map, ρ : D → D. We can
rephrase their work in terms of our development:

27

First, define f− : D → P(D) as f−(d) = {e ∈ D | f(e) ⊑ d}. When
f− is chain-continuous, then f−(d) has a set of maximal points, denoted by
max(f−(d)). When f is an additive function, that is, f(⊔S) = ⊔d∈Sf(d),
for all S ⊆ D, then max(f−(d)) is a singleton set. This is the case for the
point-set topology used in the previous section.

Let ρ[D] define D’s closed family of “properties” and let f : D → D be
chain-continuous. First, (i) f is continuous at d ∈ D iff for all e ∈ ρ[D], if
f(d) ⊑ e, then there exists d′ ∈ ρ[D] such that d ⊑ d′ and f(d′) ⊑ e. Next,
(ii) f is ρ-reflecting iff for all e ∈ ρ[D], max((f−(d)) ⊆ ρ[D] (that is, the
maximum elements of f−(d) are in ρ[D]). It is easy to prove that (i) and (ii)
are equivalent.

We define d ≡ρ[D] d
′ iff for all e ∈ ρ[D], d ⊑ e iff d′ ⊑ e, that is, iff

ρ(d) = ρ(d′). This yields the definition of backwards completeness: f is ρ-
backwards complete if d ≡ρ[D] d

′ implies f(d) ≡ρ[D] f(d′) for all d, d′ ∈ D,
that is, ρ◦f = ρ◦f ◦ρ. We have immediately the main result of Giacobazzi,
et al. [9] in the “frame theory”: f : D → D is ρ-backwards complete iff it is
ρ-reflecting.

The characterizations of forwards completeness as property preservation
and backwards completeness as property reflection (continuity) link the shell
constructions of Giacobazzi, et al. [10, 9], to refinements of topologies and
the characterization of function continuity to convergence of nets [33].

13. Application to structural approximating domains

For domain L∞ and its finite approximants, Lk, consider the relationship
between the Scott-continuous functions, f : L∞ → L∞, and the backwards-
complete functions for each P(L∞)〈αk, γk〉L⊤

k

op
, k ≥ 0. First, all func-

tions f are trivially L0-backwards complete (that is, backwards complete
for P(L∞)〈α0, γ0〉L⊤

0
op

). Since the collection of property sets defined by
γk[Lk] is a subset of those for γk+1[Lk+1], any Lk-backwards complete f is
Lj-backwards complete for j < k.

Consider the domain defined in Figure 8:

• There is a Scott-continuous function, f : L∞ → L∞, that is not Lk-
backwards complete for all k > 0. Define f as follows: f(dk, nil) =
nil, for all k ≥ 0, and f(ℓ) = ⊥, otherwise. This function is Scott-
continuous. Consider f−1{nil}; it is exactly all the total, finite lists
in L∞, and for no finite element e ∈ L∞ does this set equal ↑e. (Nor

28

does the union of the upclosed sets of finite elements in any Lk equal
f−1(nil) — the union of the basic opens of all finite lists in L∞ are
required.)

• For each k > 0, there is a monotone, Lk-backwards complete function
that is not Scott-continuous. For k, define fk : L∞ → L∞ as follows:
f(⊥) = ⊥; for j < k, fk(d

j, nil) = (dj, nil) and fk(d
j,⊥) = (dj,⊥).

For j ≥ k, fk(d
j, nil) = (dk,⊥); fk(d

j,⊥) = (dk,⊥). Finally, define
fk(d

∞) = d∞. This makes fk monotone and backwards complete but
Scott-discontinuous. The result does not change when the sets defined
by Lk are closed under union.

These results are not surprising, because the property family for each Lk-
domain is coarser than the Scott topology for the corresponding domain.
They are frustrating, however, because they show how difficult it is to estab-
lish a homomorphism property from a concrete to an abstract denotational
semantics.

14. Completeness for open families

How do the definitions of forwards- and backwards-completeness relate
to open families? Let OΣ be open (closed under unions) and ι : P(Σ) → OΣ

be its interior map. Recall that open families are used for precondition
analyses, so for f : Σ → Σ, we focus upon f−1 : P(Σ) → P(Σ), defined as
f−1(S) = {s ∈ Σ | f(s) ∈ S}. The weakest precondition transformer for f
in OΣ is ι ◦ f−1 : OΣ → OΣ.

OΣ-forwards completeness for f−1 is defined f−1 ◦ ι = ι ◦ f−1 ◦ ι, that
is, f−1 maps open sets to open sets, that is, f is topologically continuous.
Stated completely, f−1 is OΣ-forwards complete iff f−1 is OΣ-preserving iff f
is OΣ-reflecting iff f is ∼OΣ-reflecting. This is the classic pre- post-condition
duality of predicate transformers [35].

We can define OΣ-backwards completeness for f−1 as ι◦ f−1 = ι◦ f−1 ◦ ι.
But backwards completeness in OΣ is not a statement of f ’s continuity —
the definition of the specialization ordering in Section 11 is suitable for closed
sets, not opens.

But we can dualize it: For OΣ and S, S ′ ⊆ Σ, say that S ≤OΣ
S ′ iff for

every U ∈ OΣ, when U ⊆ S, then U ⊆ S ′ as well. That is, S ≤OΣ
S ′ when

Ss interior falls within S ′s. Then, S ≡OΣ
S ′ iff S ≤OΣ

S ′ and S ′ ≤OΣ
S,

that is, S and S ′ have the same interior: ι(S) = ι(S ′). It is easy to prove

29

V

f[S]S

US
f

(i) For S ⊆ Σ, f is continuous at
S iff whenever f [S] ⊆ V ∈ FΣ,
there exists some U ∈ FΣ such
that S ⊆ U and f [U] ⊆ V.

S
U

−1f [V]

f [S]−1

−1f
V

(ii) For S ⊆ Σ, f−1 : P(Σ) →
P(Σ) is dual continuous at S iff
whenever f−1[S] ⊇ U ∈ FΣ, then
there exists V ∈ FΣ, V ⊆ S, such
that f−1[V] ⊇ U.

Figure 13: Continuity and dual continuity at a set

that f−1 is backwards-OΣ complete iff for all S, S ′ ⊆ Σ, S ≡OΣ
S ′ implies

f−1(S) ≡OΣ
f−1(S ′).

Backwards completeness for an open family and f−1 is a “dual continuity”
property. Say that f−1 : P(Σ) → P(Σ) is dual continuous at S ⊆ Σ iff for
all U ∈ OΣ, if f−1[S] ⊇ U then there exists V ∈ OΣ, V ⊆ S, such that
f−1[V] ⊇ U. Figure 13 depicts dual continuity at a set.

Theorem 15. For open family OΣ and f : Σ → Σ, f−1 is dual continuous
for all S ⊆ Σ iff f−1 is OΣ-backwards complete, that is, ι ◦ f−1 = ι ◦ f−1 ◦ ι.

15. Partial functions

The examples in Sections 1 and 2 used partial functions of arity Σ ⇀ Σ.
The completeness results proved in the previous sections used total functions,
of arity Σ → Σ. We now reconcile this discrepency and expose the two forms
of precondition analysis.

The examples based on partial functions, f : Σ ⇀ Σ, used this definition
of function image: f [S] = {f(σ) ∈ Σ | σ ∈ S}, which ignores those σ0 ∈ S

such that f(σ0) = ⊥. When f(σ0) = ⊥ then {f(σ0)} ⊆ U for every U ∈ FΣ.
As a consequence, the definition of inverse image cannot be merely f−1(S) =
{σ ∈ Σ | f(σ) ∈ S}, because this omits those σ0 such that f(σ0) = ⊥. One
repair is to use the definition, f−1(S) = ∪{S ′ ⊆ Σ | f [S ′] ⊆ S}, but there is
the unpleasant consequence that when f(σ0) = ⊥, then both σ0 ∈ f−1(U) as
well as σ0 ∈ f−1(∼U).

It is better to model f : Σ ⇀ Σ as the total function, f : Σ → Σ⊥, as one
does in denotational semantics. The examples in Sections 1 and 2 tacitly use
closed families on the space, Σ∪{⊥}, such that for every V ∈ CΣ∪{⊥}, ⊥ ∈ V.

30

When a property family, FΣ, extends to the space Σ⊥ = Σ∪{⊥} such that
FΣ∪{⊥} = {V ∪ {⊥} | V ∈ FΣ}, we say that FΣ is ⊥-inclusive. In practice,
property families used for calculating postconditions of partial functions are
⊥-inclusive, because termination is undecidable. The result is a partial cor-
rectness postcondition analysis. Now we can use the classical definitions of
function image and preimage from Section 8 and retain the crucial property
that f−1(V) and f−1(∼V) form a partition of Σ, for every f : Σ → Σ⊥.

Section 10 defined a precondition semantics for closed families. It is worth
reviewing. Consider this partial integer-square-root function, sqrt : Int ⇀
Int :

sqrt(0) = 0
sqrt(i) = j, if i > 0, such that j > 0, j ∗ j ≤ i, and (j + 1) ∗ (j + 1) > i

sqrt(i) = ⊥, if i < 0

We have sqrt{−2,−1, 0} = {⊥, 0}, sqrt{4, 8, 10} = {2, 3}, etc.
We employ the ⊥-inclusive property family, SignInt =

{none, neg , zero, pos, any}, from Figure 3. Without ambiguity, we use
the same property names for SignInt∪{⊥} = {none, neg, zero, pos, any}, with
the assumption that ⊥ belongs to each named set.

Then, sqrt−1[zero] = zero ∪ neg , because sqrt[neg] = {⊥} and ⊥ ∈
zero ∈ SignInt∪{⊥}. For that matter, sqrt−1[neg] = neg . This indicates that
a ⊥-inclusive property family computes weakest liberal preconditions, where
termination is not a necessary condition for membership.

Since SignInt is a closed family, so is SignInt∪{⊥}; the latter’s closure
operator is defined ρ⊥(S) = ρ(S) ∪ {⊥}. We define sqrt’s approximation
as sqrt♯ = ρ⊥ ◦ sqrt (e.g., sqrt♯(zero) = zero, sqrt♯(pos) = pos , sqrt♯(neg) =
none, with the assumption that ⊥ belongs to each named answer set).

Section 10 showed that that one defines sqrt’s precondition for a closed
family as follows: For U ∈ CΣ∪{⊥},

sqrt♯
−1

(U) = ∪{V ∈ SignInt | sqrt
♯(V) ⊆ U}

For the example, we close SignInt under unions, producing SignOInt (see

Figure 11), which we decree is ⊥-inclusive. This makes sqrt♯
−1

soundly
underapproximate sqrt−1.

But say we want precondition analysis for sqrt that demands termination
as necessary for membership. When property family FΣ extends to Σ∪ {⊥}
such that FΣ∪{⊥} = FΣ, that is, for every U ∈ FΣ∪{⊥}, ⊥ 6∈ U , we say that FΣ

31

is ⊥-exclusive. In practice, open families that calculate weakest preconditions
are ⊥-exclusive. In the case of sqrt, we return to the property family
SignOInt , which possesses the interior operator, ι(S) = ∪{V ∈ SignInt | V ⊆
S}. So, sqrt♭−1 is ι ◦ sqrt−1 such that sqrt♭−1(zero) = zero, sqrt♭−1(neg) =
none, etc.

The development in this section is expressible within powerdomain theory
of denotational semantics, where partial functions are defined with arity,
Σ → Σ⊥, and weakest-liberal-preconditions are defined with arity PL(Σ) →
P(Σ), where PL(Σ) is the lower powerdomain [36, 37, 13], whose sets are
downwards closed in Σ⊥. Weakest preconditions are defined PU(Σ) → P(Σ),
where PU(Σ) is the upper powerdomain [37, 38], whose sets are upwards
closed in Σ⊥.

16. Nondeterminism and semicontinuity

Nondeterministic systems use transition relations on Σ × Σ, which we
treat as functions of arity, f : Σ → P(Σ). The property family for P(Σ)
is different from Σ’s and depends on how we define f ’s preimage, a map,
P(Σ) → P(Σ). We have two choices: for S ⊆ Σ,

pref(S) = {c ∈ Σ | f(c) ∩ S 6= ∅}
p̃ref(S) = {c ∈ Σ | f(c) ⊆ S}

The following definitions come from Vietoris via Smyth [8]:

Definition 16. For property family, FΣ ⊆ Σ,
f : Σ → P(Σ) is lower semicontinuous for FΣ iff pref is FΣ-preserving.
f : Σ → P(Σ) is upper semicontinuous for FΣ iff p̃ref is FΣ-preserving.

Say we want pref in the logic for FΣ; what property family for P(Σ) is
appropriate? The answer was found by Smyth [8]: define OL

FΣ
⊆ P(P(Σ))

to be the open family generated by taking all unions of the base, BL
FΣ

=
{∃U | U ∈ FΣ}, where ∃U = {S ⊆ Σ | S ∩ U 6= ∅}. (Read ∃U as “all the
sets that meet property U”). Indeed, for all U ∈ FΣ, f−1(∃U) = pref(U).
OL

FΣ
is called the lower topology based on FΣ. When FΣ is open, we apply

this result, due to Smyth [8]:

Proposition 17. If OΣ ⊆ Σ is an open family for Σ, then f : Σ → P(Σ) is
lower semicontinuous for OΣ iff f is OΣO

L
OΣ

-reflecting.

32

That is, pref lies in the logic for OΣ iff f is OΣO
L
OΣ

-reflecting. Smyth used
this result to explain the lower-powerdomain construction of denotational
semantics in topological terms.

For abstract interpretation OΣ, for f : Σ → P(Σ), we must compute
f ’s preimage in OΣ’s logic, that is, as a function of arity, OΣ → OΣ. If f
is lower semicontinuous, we use pref itself, thanks to the above proposition.
But if f is not lower semicontinuous, we use OΣ’s interior operator, ι, to
(under)approximate pref by (ι ◦ pref) : OΣ → OΣ, like in Section 10.

We can dualize the previous development and discover a well-known tech-
nique for approximating p̃ref within a closed family: As usual, define CΣ =
∼OΣ; we can calculate that ∼OL

OΣ
is the closed family whose members are

all the intersections of sets taken from the (co)base, BU
CΣ

= {∀K | K ∈ CΣ},
where ∀K = {S ⊆ Σ | S ⊆ K}. (Read ∀K as “all the sets covered by
property K.”) Indeed, for all K ∈ CΣ, f−1(∀K) = p̃ref(K). We name this
closed family: CU

CΣ
= ∼OL

OΣ
.

Corollary 18. Let CΣ be a closed family and define OΣ = ∼CΣ.
pref is OΣ-preserving iff p̃ref is CΣ-preserving.
f is OΣO

L
OΣ

-reflecting iff it is CΣC
U
CΣ

-reflecting.
Hence, p̃ref is CΣ-preserving iff f is CΣC

U
CΣ

-reflecting iff f is upper semi-
continuous for CΣ.

Proof. By Propositions 5 and 17. 2

The corollary tells us p̃ref lies in CΣ’s logic when f : Σ → P(Σ) is upper
semicontinuous. But what if f is not? Then we must underapproximate p̃ref
by some function of arity, CΣ → CΣ. But we have no interior map to aid us,
only a closure map.

The classic approach is to overapproximate f by some f ♯ : CΣ → CU
CΣ

, from
which we define a CΣ-preserving p̃ref♯ . To do this, we need some insight about
f ♯’s codomain: Each M ∈ CU

CΣ
is a set of sets formed asM =

⋂
i∈I{∀Ki | Ki ∈

CΣ}. Read property M as “∀K1 ∧∀K2 ∧· · ·∧∀Ki ∧· · ·” — M ’s members are
sets covered by property K1 and covered by property K2 and ... covered by
property Ki and so on. This forces f ♯ to have this format, for all arguments
K0 ∈ CΣ:

f ♯(K0) = ∀K1 ∧ ∀K2 ∧ · · · ∧ ∀Ki ∧ · · ·

By pointwise reasoning, the M defined above equals ∀
⋂
{Ki | Ki ∈ CΣ}, read

as “∀(K1 ∧K2 ∧ · · · ∧Ki ∧ · · ·).” But
⋂
{Ki | Ki ∈ CΣ} ∈ CΣ, meaning that

f ♯ reverts to this more benign format:

33

Let zero = {0}
neg = {i | i < 0}
pos = {i | i > 0}

Let ∀K = {S ⊆ Int | S ⊆ K}
Let K ∨ K ′ denote K ∪ K ′ { }∀

(neg v pos)∀ (zero v pos)∀∀ (neg v zero)

neg∀ pos∀

Int∀
U
SignO Int

zero

C

∀

sqrt : Int → P(Int)
sqrt(0) = {0}
sqrt(1) = {−1, 1} = sqrt(2) = sqrt(3)
sqrt(4) = {−2, 2} = sqrt(5), etc.
sqrt(−1) = ∅, etc.

p̃resqrt : P(Int) → P(Int)

p̃resqrt{0, 1} = {0}
p̃resqrt{−1, 0, 1} = {0, 1, 2, 3}
p̃resqrt{i | i 6= 0} = {i | i 6= 0}, etc.

sqrt♯ : CU
SignOInt

→ CU
SignOInt

sqrt♯(zero) = ∀zero
sqrt♯(pos) = ∀(neg ∨ pos)
sqrt♯(neg) = ∀∅
sqrt♯(Int) = ∀Int

sqrt♯(neg ∨ pos) = ∀(neg ∨ pos)
sqrt♯(zero ∨ neg) = ∀zero
sqrt♯(zero ∨ pos) = ∀Int , etc.

p̃resqrt♯ : SignOInt → SignOInt

p̃resqrt♯(neg ∨ pos) = neg ∨ pos

p̃resqrt♯(pos) = ∅
p̃resqrt♯(zero ∨ neg) = zero

p̃resqrt♯(Int) = Int , etc.

Figure 14: sqrt, upper topology on SignOInt , and sqrt♯

f ♯(K) = ∀K ′

where K,K ′ ∈ CΣ. The quantifier reminds us that f ’s answer is a set of Σ-
values, covered by K ′. In temporal logic, the quantifier is written as 2. That
is, because f ♯ overapproximates f and f ♯(K) = ∀K ′, we have thatK |= [f]K ′

is a sound assertion in temporal logic, that is, K ⊆ p̃ref(K
′) = f−1(∀K).

This connects the topology, CΣ, to the temporal logic.
Say we overapproximate f : Σ → P(Σ) as expected by f ♯(K) = ρU (f [K]),

where ρU is the closure operation for CU
CΣ

: ρU(T) =
⋂
{∀K | T ⊆ ∀K,K ∈

CΣ}. (That is, ρU (T) computes the conjunction of all properties K that cover
all the sets in T .) Next, we desire a sound p̃ref♯ so that p̃ref♯(K) ⊆ p̃ref(K) =
f−1(∀K), for all K ∈ CΣ. We work from Equation (⋆) in Section 10; f ♯’s
inverse image is

f ♯−
CΣ

(K) = {K ′ ∈ CΣ | f ♯(K ′) ⊆ ∀K}

We want p̃ref♯(K) = ∪f ♯−(K), and if CΣ is also closed under unions, we
have what we want. If not, then we repeat the development in Section 10:

34

build the disjunctive completion of CΣ (close it under unions), COΣ; redefine
f ♯ : COΣ → CU

COΣ
; and define p̃ref♯ : COΣ → COΣ as p̃ref♯(K) = ∪f ♯−

COΣ
(K).

Figure 14 displays an integer square-root function, sqrt : Int → P(Int).
The disjunctive completion of SignInt produces the topology, SignOInt , in
Figure 11, from which we generate CU

SignOInt
, illustrated in Figure 14.

There is a useful, dual development of everything seen so far in this
section. Starting again with Σ and its property family, FΣ, define the prop-
erty family for P(Σ), namely, OU

FΣ
⊆ P(P(Σ)), as the open family gen-

erated by taking all unions of the base, BU
FΣ

= {∀U | U ∈ FΣ}, where
∀U = {S ⊆ Σ | S ⊆ U}. This is the upper topology based on FΣ, used
by Smyth to characterize the upper powerdomain of denotational semantics.
(Recall, for all U ∈ FΣ, that f−1(∀U) = p̃ref (U).)

Proposition 19. [8] Let OΣ ⊆ Σ be an open family. f : Σ → P(Σ) is upper
semicontinuous for OΣ iff f is OΣO

U
OΣ

-reflecting.

When f is not upper semicontinuous, we may use ι ◦ p̃ref : OΣ → OΣ,
where ι is OΣ’s interior operator, to underapproximate p̃ref within the logic,
OΣ. This is an elegant alternative to the tedious formulation of f ♯ and p̃ref♯

presented in the preceding paragraphs.
The dual of Proposition 19 goes as follows: CL

CΣ
= ∼OU

OΣ
, whose members

are all intersections of sets from the (co)base, BL
CΣ

= {∃K | K ∈ CΣ}, where
∃K = {S ⊆ Σ | S ∩K 6= ∅}. For all K ∈ CΣ, f−1(∃K) = pref(K).

Corollary 20. p̃ref is OΣ-preserving iff pref is CΣ-preserving.
f is OΣO

U
OΣ

-reflecting iff it is CΣC
L
CΣ

-reflecting.
Hence, pref is CΣ-preserving iff f is CΣC

L
CΣ

-reflecting iff f is lower semi-
continuous for CΣ.

Say that f : Σ → P(Σ) is not lower semicontinuous. When we approx-
imate it by f ♭ : CΣ → CL

CΣ
, what is the result? What is pref♭? The answer

characterizes significant research on underapproximation in abstract model
checking [39, 40, 41].

Each M ∈ CL
CΣ

is a set of sets of form M =
⋂

i∈I{∃Ki | Ki ∈ CΣ}. Read
M as “∃K1 ∧ ∃K2 ∧ · · · ∧ ∃Ki ∧ · · ·” — each of M ’s members is a set that
meets (witnesses) K1 and K2 and ... Ki and so on. This forces f ♭ to have
this format, for all arguments K0 ∈ CΣ:

f ♭(K0) = ∃K1 ∧ ∃K2 ∧ · · · ∧ ∃Ki ∧ · · ·

35

Let K ∧ K ′ denote K ∩ K ′

presqrt : P(Int) → P(Int)

presqrt{0, 1} = {0, 1, 2, 3}
presqrtInt = {i | i ≥ 0}
presqrt{i | i < 0} = {i | i > 0}
etc.

{ }

∃ neg v pos

v

pos∃zero∃neg∃
∃ neg v pos zero∃ vpos∃ neg zerov

Int∃

pos∃∃ neg

v

zero∃ pos∃

v∃ neg zero∃v

zero∃ pos∃∃ neg

v v

∃

zero∃ vpos neg∃v∃ neg zerov pos∃

v

P(P(Int)) "true"

"false"

C L
SignO

zero

Int

∃

sqrt♭−1 : SignInt → CL
SignOInt

sqrt♭−1(pos) = ∃neg ∧ ∃pos

sqrt♭−1(zero) = ∃zero

sqrt♭−1(Int) = true

sqrt♭−1(neg) = true

sqrt♭−1(pos ∨ zero) = ∃Int

sqrt♭−1(pos ∨ neg) = true

presqrt♭−1 : SignOInt → SignOInt

presqrt♭−1(pos) = pos

presqrt♭−1(neg) = pos

presqrt♭−1(zero) = zero

presqrt♭−1(Int) = zero ∨ pos

presqrt♭−1(∅) = ∅

presqrt♭−1(zero ∨ neg) = zero ∨ pos , etc.

Figure 15: Lower topology on SignOInt and sqrt♭−1

The quantifiers remind us that f ’s answer is a set of Σ-values, witnessing
(meeting) each of the Ki’s. In temporal logic, the quantifier is written as 3,
and one may write K0 |= 〈f〉Ki, for each such Ki.

9

We approximate f : Σ → P(Σ) by f ♭(K) = ρL(f [K]), where ρL is the
closure operation for CL

CΣ
: ρL(T) =

⋂
{∃K | T ⊆ ∃K, K ∈ CΣ}, that is,

ρL(T) collects all the properties, K, that are witnessed (met) by each of
the sets in T . f ♭(K) is the strongest postcondition of K ∈ CΣ in the logic
associated with CL

CΣ
, the “language of witnesses.” Once again, we define

f ♭−
CΣ

(K) = {K ′ ∈ CΣ | f ♭(K ′) ⊆ ∃K} and pref♭(K) = ∪f ♭−
CΣ

(K). This is
the definition used by Cleaveland et al. [39], Dams [40], and Schmidt [41] to
prove that pref♭ computes weakest preconditions for f within the logics for
CΣ and CL

CΣ
. When pref♭ ’s image does not fall within CΣ — see presqrt♭−1(Int)

in Figure 15, for example — disjunctive completion of CΣ to a topology again
saves the day.

9Larsen and Xinxin [42] and Shoham and Grumberg [43] have noted that the nonre-
ducible structure of ∃K1∧∃K2∧· · ·∧∃Ki∧· · · is a source of precison loss in abstract-model
checking and have proposed useful alternatives.

36

17. Conclusion

Abstract interpretation and denotational semantics share foundations and
applications, and the interaction between the two areas is intricate. We have
shown how the inverse-limit construction and its associated Scott-topology
give new insights into the intricacies of abstract program analysis. In partic-
ular, the application of topology to abstract interpretation has a promising
future.

Acknowledgement: Robert Tennent’s depth of insight and clarity of pre-
sentation have been a continuing source of inspiration, and this paper is
dedicated to him on the occasion of his 65th birthday. Flash Sheridan is
thanked for his careful reading of an earlier draft.

References

[1] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model
for static analysis of programs, in: Proc. 4th ACM Symp. on Principles
of Programming Languages, ACM Press, 1977, pp. 238–252.

[2] P. Cousot, R. Cousot, Systematic design of program analysis frame-
works, in: Proc. 6th ACM Symp. on Principles of Programming Lan-
guages, ACM Press, 1979, pp. 269–282.

[3] N. Jones, F. Nielson, Abstract interpretation: a semantics-based tool
for program analysis, in: S. Abramsky, D. Gabbay, T. Maibaum (Eds.),
Handbook of Logic in Computer Science, Vol. 4, Oxford Univ. Press,
1995, pp. 527–636.

[4] P. Cousot, Semantic foundations of program analysis, in: S. Muchnick,
N. Jones (Eds.), Program Flow Analysis, Prentice Hall, 1981, pp. 303–
342.

[5] F. Nielson, H. Nielson, C. Hankin, Principles of Program Analysis,
Springer Verlag, 1999.

[6] P. Cousot, N. Halbwachs, Automatic discovery of linear restraints among
variables of a program, in: Proc. 5th ACM Symp. on Principles of Pro-
gramming Languages, ACM Press, 1978, pp. 84–96.

37

[7] S. Graf, H. Saidi, Construction of abstract state graphs with pvs, in:
Proc. Conf. Computer Aided Verification, Springer LNCS 1254, 1997,
pp. 72–83.

[8] M. Smyth, Powerdomains and predicate transformers: a topological
view, in: Proc. ICALP’83, LNCS 154, Springer, 1983, pp. 662–675.

[9] R. Giacobazzi, F. Ranzato, F. Scozzari, Making abstract interpretations
complete, J. ACM 47 (2000) 361–416.

[10] R. Giacobazzi, E. Quintarelli, Incompleteness, counterexamples, and re-
finements in abstract model checking, in: Static Analysis Symposium,
LNCS 2126, Springer Verlag, 2001, pp. 356–373.

[11] D. Schmidt, Comparing completeness properties of static analyses and
their logics, in: Asian Symp. Prog. Lang. Systems (APLAS’06), LNCS
4279, Springer Verlag, 2006, pp. 183–199.

[12] C. Gunter, Semantics of Programming Languages, MIT Press, Cam-
bridge, MA, 1992.

[13] G. Plotkin, Domains, lecture notes, Univ. Pisa/Edinburgh (1983).

[14] P. Cousot, R. Cousot, Higher-order abstract interpretation, in: Proceed-
ings IEEE Int. Conf. Computer Lang., 1994.

[15] F. Ranzato, F. Tapparo, Strong preservation as completeness in abstract
interpretation, in: Proc. European Symp. Programming, LNCS 2986,
Springer Verlag, 2004, pp. 18–32.

[16] A. Miné, The octagon abstract domain, J. Higher-Order and Symbolic
Computation 19 (2006) 31–100.

[17] T. Ball, A. Podeksi, S. Rajamani, Boolean and cartesian abstraction for
model checking C programs, J. Software Tools for Technology Transfer
5 (2003) 49–58.

[18] N. Jones, S. Muchnick, Flow analysis and optimization of LISP-like
structures, in: Proc. 6th. ACM Symp. Principles of Programming Lan-
guages, 1979, pp. 244–256.

38

[19] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott,
Continuous Lattices and Domains, Cambridge Univ. Press, 2003.

[20] J. Reynolds, Notes on a lattice-theoretic approach to the theory of
computation, Technical report, Computer Science, Syracuse University
(1972).

[21] P. Johnstone, Stone Spaces, Cambridge University Press, 1986.

[22] S. Abramsky, Domain theory in logical form, Ann.Pure Appl.Logic 51
(1991) 1–77.

[23] V. Donzeau-Gouge, Denotational definition of properties of program’s
computations, in: S. Muchnick, N. Jones (Eds.), Program Flow Analysis:
Theory and Applications, Prentice-Hall, 1981.

[24] F. Nielson, A denotational framework for data flow analysis, Acta In-
formatica 18 (1982) 265–287.

[25] F. Nielson, Program transformations in a denotational setting, ACM
Trans. Prog. Languages and Systems 7 (1985) 359–379.

[26] F. Nielson, H. R. Nielson, Two-Level Functional Languages, Cambridge
University Press, 1992.

[27] N. Jones, A. Mycroft, Data flow analysis of applicative programs using
minimal function graphs, in: Proc. 13th ACM Symp. on Principles of
Prog. Languages, 1986, pp. 296–306.

[28] P. Cousot, R. Cousot, Static determination of dynamic properties of
recursive procedures, in: E. Neuhold (Ed.), Formal Description of Pro-
gramming Concepts, North-Holland, 1978, pp. 238–277.

[29] S. Hunt, Frontiers and open sets in abstract intepretation, in: Proc.
ACM Symp. Functional Prog. and Comp. Architecture, 1989, pp. 194–
216.

[30] P. Dybjer, Inverse image analysis generalises strictness analysis, Infor-
mation and Computation 90 (1991) 194–216.

[31] T. Jensen, Abstract interpretation in logical form, Ph.D. thesis, Imperial
College, London (1992).

39

[32] N. Benton, Strictness logic and polymorphic invariance, in: Proc. Logi-
cal Found. Comp. Sci, 1992, pp. 33–44.

[33] S. Willard, General Topology, Dover Publications, 2004.

[34] M. Sagiv, T. Reps, R. Wilhelm, Parametric shape analysis via 3-valued
logic, ACM TOPLAS 24 (2002) 217–298.

[35] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, S. Bensalem, Property
preserving abstractions for verification of concurrent systems, Formal
Methods in System Design 6 (1995) 1–36.

[36] C. Gunter, D. Scott, Semantic domains, in: J. vanLeeuwen (Ed.), Hand-
book of Theoretical Computer Science: Volume B, Elsevier, 1990, pp.
633–674.

[37] R. Heckmann, Power domain constructions, Ph.D. thesis, Univ.
Saarbrücken (1990).

[38] M. Smyth, Powerdomains, Journal of Computer and System Sciences 16
(1978) 23–36.

[39] R. Cleaveland, P. Iyer, D. Yankelevich, Optimality in abstractions of
model checking, in: Proc. SAS’95, Springer LNCS 983, 1995.

[40] D. Dams, R. Gerth, O. Grumberg, Abstract interpretation of reactive
systems, ACM Trans. Prog. Lang. Systems 19 (1997) 253–291.

[41] D. Schmidt, Underapproximating predicate transformers, in: Proc.
Symp. Static Analysis (SAS’06), LNCS 4134, Springer Verlag, 2006,
pp. 127–143.

[42] K. Larsen, L. Xinxin, Equation solving using modal transition systems,
in: Proc. Logic in Computer Science, IEEE Press, 1990, pp. 108–117.

[43] S. Shoham, O. Grumberg, Three-valued abstraction: More precision at
less cost, Information and Computation 206 (1998) 1313–1333.

40

