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Abstract. We combine LR(k)-parsing technology and data-flow analysis to analyze, in ad-
vance of execution, the documents generated dynamically by a program. Based on the docu-
ment language’s context-free reference grammar and the program’s control structure, format-
ted as a set of flow equations, the analysis predicts how the documents will be generated and
simultaneously parses the predicted documents. Recursions in the flow equations cause the
analysis to emit a set of residual equations that are solved by least-fixed point calculation in
the domain of abstract (folded) LR-parse stacks.
Since the technique accommodates LR(k) grammars, it can also handle string-update opera-
tions in the programs by translating the updates into finite-state transducers, whose controllers
are composed with the LR(k)-parser controller.

1 Motivation

Scripting languages like PHP, Perl, Ruby, and Python use strings as a “universal data structure”
to communicate values, commands, and programs. For example, one might write a PHP script that
assembles within a string variable an SQL query or an HTML page or an XML document.

Typically, the well-formedness of the assembled string is verified when the string is supplied as
input to its intended processor (database, web browser, or interpreter), and an incorrectly assem-
bled string might cause processor failure. Worse still, a malicious user might deliberately supply
misleading input that generates a document that attempts a cross-site-scripting or injection attack.

As a first step towards preventing failures and attacks, the well-formedness of a dynamically
generated, “grammatically structured” string (document) should be checked with respect to the
document’s context-free reference grammar (for SQL or HTML or XML) before the document is
supplied to its processor. Better still, the document generator program itself should be analyzed to
validate that all its generated documents are well formed with respect to the reference grammar,
like an application program is type checked in advance of execution.



2 Motivating example

Say that a script must generate an output string that conforms to this grammar,

S → a | [S ]

where S is the only nonterminal. (HTML, XML, and SQL are such bracket languages.) The grammar
is LR(0), but it can be difficult to enforce even for simple programs, like the one in Figure 1, left
column. Perhaps we require this program to print only well-formed S-phrases — the occurrence of

x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R
X3 = X1

(Read . as an infix string-append operation.)

Fig. 1. Sample program and its data-flow equations

x at “print x” is a “hot spot” and we must analyze x’s possible values.

1. An analysis based on type checking assigns types (reference-grammar nonterminals) to the pro-
gram’s variables. The occurrences of x can indeed be data-typed as S, but r has no data type
that corresponds to a nonterminal.

2. An analysis based on regular expressions (Christensen [2], Minamide [6], Wasserman [8]) solves
flow equations shown in Figure 1’s right column in the domain of regular expressions, determining
that the hot spot’s (X3’s) values conform to the regular expression, [∗ · a · ]∗, but this does not
validate the assertion.

3. A grammar-based analysis (Thiemann [7]) treats the flow equations as a set of grammar rules. A
language-inclusion check based on Early’s algorithm tries to prove that all X3-generated strings
are S-generable.

Our approach solves the flow equations in the domain of parse stacks — X3’s meaning is the set
of LR-parses of the strings that might be denoted by x. The technique ”unfolds” the strings denoted
by X3 at the same time that it executes the LR(k) parser. This is more precise than the techniques
listed above.



[
.S

S .[S]
.aS

s0 S [. ]S
S .[S]

.aS

s1

.S
s5 S a.

s2

S [S.]
s3

S [S].
s4

[ S

S
a

a

]

Shift transitions:
[[ →֒ s0] ⇒ s0 :: [s1] [[ →֒ s1] ⇒ s1 :: [s1]
[S →֒ s0] ⇒ [s5] [a →֒ s1] ⇒ s1 :: [s2]
[a →֒ s0] ⇒ s0 :: [s2] [S →֒ s1] ⇒ s1 :: [s3]

[] →֒ s3] ⇒ s3 :: [s4]

Reduce transitions:
s :: [s2] ⇒ [S →֒ s]
si :: sj :: sk :: [s4] ⇒ [S →֒ si]

parse stack (top lies at right) input sequence (front lies at left)

[s0] [[a]]

[[ →֒ s0] [a]]

s0 :: [s1] [a]]

s0 :: [[ →֒ s1] a]]

s0 :: s1 :: [s1] a]]

s0 :: s1 :: [a →֒ s1] ]]

s0 :: s1 :: s1 :: [s2] ]] (reduce:S → a)
s0 :: s1 :: [S →֒ s1] ]]

s0 :: s1 :: s1 :: [s3] ]]

s0 :: s1 :: s1 :: [] →֒ s3] ]

s0 :: s1 :: s1 :: s3 :: [s4] ] (reduce:S → [S])
s0 :: [S →֒ s1] ]

s0 :: s1 :: [s3] ]

s0 :: s1 :: [] →֒ s3]
s0 :: s1 :: s3 :: [s4] (reduce:S → [S])
[S →֒ s0]
[s5] (finished)

Fig. 2. Parse controller for S → [S] | a and an example parse of [[a]]



x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R
X3 = X1

[
.S

S .[S]
.aS

s0 S [. ]S
S .[S]

.aS

s1

.S
s5 S a.

s2

S [S.]
s3

S [S].
s4

[ S

S
a

a

]

To analyze the hot spot at X3, we must LRparse(s0, X3), which we portray as a function call, X3[s0].
The program’s flow equation, X3 = X1, generates this call step:

X3[s0] = X1[s0]

which demands a parse of the string generated at point X1 from state s0:

X1[s0] = X0[s0] ∪ X2[s0]

The union of the parses from X0 and X2 must be computed. (IMPORTANT: this computes sets of
parse stacks. In this example, all the sets are singletons.) Consider X0[s0]:

X0[s0] = [a →֒ s0] ⇒ s0 :: [s2] ⇒ [S →֒ s0] ⇒ [s5].

That is, a parse of ’a’ from s0 generates s5 — an S-phrase has been parsed. Finally,

X2[s0] = ([ · X1 · R)[s0] = [[ →֒ s0] ⊕ (X1 · R)
⇒ (s0 :: [s1]) ⊕ (X1 · R)
= s0 :: (X1 · R)[s1] = s0 :: (X1[s1] ⊕ R)

For parse stack, st, and function, E, define st ⊕ E = st :: E[top(st)]. That is, stack st’s top state
feeds to E. Next, X1[s1] = X0[s1] ∪ X2[s1] computes to s1 :: [s3], and this means

X2[s0] = s0 :: (X1[s1] ⊕ R) = (s0 :: s1 :: [s3]) ⊕ R = s0 :: s1 :: R[s3] = s0 :: s1 :: [] →֒ s3]
⇒ s0 :: s1 :: s3 :: [s4] ⇒ [S →֒ s0] ⇒ [s5]

That is, X2[s0] built the stack, s0 :: s1 :: s3 :: s4, denoting a parse of [S ], which reduced to S,
giving s5.



x = ’a’

r = ’]’

while ...

x = ’[’ . x . r

print x

X0 = a

R = ]

X1 = X0 ⊔ X2
X2 = [ · X1 · R
X3 = X1

Here is the complete list of generated function calls; these are residual equations of a kind of partial
evaluation [?] of the parser with the approximate string set, X3:

X3[s0] = X1[s0]
X1[s0] = X0[s0] ∪ X2[s0]
X0[s0] = [s5]
X2[s0] = s0 :: (X1[s1] ⊕ R)
X1[s1] = X0[s1] ∪ X2[s1]
X0[s1] = s1 :: [s3]
X2[s1] = s1 :: (X1[s1] ⊕ R)
R[s3] = s3 :: [s4]

Each function call, Xi[sj ] = Eij , is a first-order equation. The equations for X1[s1] and X2[s1] are
mutually recursively defined, and their solutions are obtained by iteration-until-convergence.

The equation set is generated dynamically while the equations are being solved. (This is where
R[s3] appears.) The solutions of the equations are

X3(s0) = X1[s0] = [s5]
X1[s0] = X0[s0] ∪ X2[s0] = [s5] ∪ [s5] = [s5]
X0(s0) = [s5]
X2[s0] = s0 :: (X1[s1] ⊕ R) ⇒ s0 :: s1 :: R[s3] = s0 :: s1 :: s3 :: [s4] ⇒ [s5]
R[s3] = s3 :: [s4]
X1[s1] = X0[s1] ∪ X2[s1] = (s1 :: [s3]) ∪ (s1 :: [s3]) = s1 :: [s3]
X0[s1] = s1 :: [s3]
X2[s1] = s1 :: (X1[s1] ⊕ R) ⇒ s1 :: s1 :: R[s3] ⇒ s1 :: [s3]

The solution is X3[s0] = [s5], validating that the strings printed at the hot spot must be S-phrases.
(Note: all of these stacks are really singleton sets.)

The algorithm is based on a demand-driven analysis [1, 3, 4], similar to minimal function-graph
semantics [5], and is computed by a worklist algorithm.



Worklist,
added and processed
from top to bottom:

X3[s0]
X1[s0]
X0[s0]
X2[s0]
X1[s0]
X1[s1]
X3[s0]
X0[s1]
X2[s1]
X1[s1]
X2[s0]
X2[s1]
R[s3]
X2[s0]
X2[s1]
X1[s0]
X1[s1]

Cache updates, inserted from top to bottom,
where X[s] 7→ P abbreviates Cache[X(s)] := P

X3[s0] 7→ ∅
X1[s0] 7→ ∅
X0[s0] 7→ ∅
X2[s0] 7→ ∅
X0[s0] 7→ [a →֒ s0] ⇒ s0 :: [s2] ⇒ [S →֒ s0] ⇒ [s5].
X1[s1] 7→ ∅
X1[s0] 7→ X0[s0] ∪ X2[s0] = [s5]
X0[s1] 7→ ∅
X2[s1] 7→ ∅
X3[s0] 7→ X1[s0] = [s5]
X0[s1] 7→ [a →֒ s1] ⇒ s1 :: [s2] ⇒ [S →֒ s1] ⇒ s1 :: [s3]
X1[s1] 7→ X0[s1] ∪ X2[s1] = s1 :: [s3]
R[s3] 7→ ∅
R[s3] 7→ [] →֒ s3] = s3 :: [s4]
X2[s0] 7→ ([ :: X1 :: R)[s0] = s0 :: (X1(s1) ⊕ R) = s0 :: s1 :: R[s3]

= s0 :: s1 :: s3 :: [s4] ⇒ [S →֒ s0] ⇒ [s5]
X2[s1] 7→ ([ :: X1 :: R)[s1] = · · · = s1 :: [s3]

Generated call graph:

0X3 ( )

s
1X2 ( )

s
3

( )R
s
0X1 ( )

s
0X2 ( )

s
0X0 ( )

s
1X1 ( )

s
1X0 ( )

s

Fig. 3. Worklist-algorithm calculation of call, X3[s0], in Figure 1

The initialization step places initial call, X0[s0], into the worklist and into the call graph and
assigns to the cache the partial solution, Cache[X0[s0]] 7→ ∅. The iteration step repeats the following
until the worklist is empty:

1. Extract a call, X [s], from the worklist, and for the corresponding flow equation, X = E, compute
E[s], folding abstract stacks as necessary.

2. While computing E[s], if a call, X ′[s′] is encountered, (i) add the dependency, X ′[s′] → X [s], to
the call graph [if it is not already present]; (ii) if there is no entry for X ′[s′] in the cache, then
assign Cache[X ′[s′]] 7→ ∅ and place X ′[s′] on the worklist.

3. When E[s] computes to an answer set, P , and P contains an abstract parse stack not already
listed in Cache[X [s]], then assign Cache[X [s]] 7→ [Cache[X [s]] ∪ P ] and add to the worklist all
X ′′[s′′] such that the dependency, X [s] → X ′′[s′′], appears in the flowgraph.



3 Abstract parse stacks

In the previous example, the result for each Xi[sj ] was a single stack. In general, a set of parse stacks
can result, e.g., for

x = ’[’

while ...

x = x . ’[’

x = x . ’a’ . ’]’

X0 = [

X1 = X0 ⊔ X2
X2 = X1 · [
X3 = X1 · a · ]

at conclusion, x holds zero or more left brackets and an S-phrase; X3[s0] is the infinite set, {[s5], s1 ::
[s3], s1 :: s1 :: [s3], s1 :: s1 :: s1 :: [s3], · · ·}.

To bound the set, we abstract it by “folding” its stacks so that no parse state repeats in a stack.
Since Σ, the set of parse-state names, is finite, folding produces a finite set of finite-sized stacks
(that contain cycles).

A stack segment like p = s1 :: [s1] is a linked list, a graph, 11 ss
, where the stack’s top

and bottom are marked by pointers; when we push a state, e.g., p :: [s2], we get 1 s1 s2
s

.

The folded stack is formed by merging same-state objects and retaining all links: 1 s2s .
(This can be written as the regular expression, s+

1 :: [s2].) Folding can apply to multiple states, e.g.,

6 s7
s
6 s7

s
6 s8s

folds to 6 s7
s8s

.

For the above example, X3[s0] = {[s5], s+

1 :: [s3]}.



4 LR(k) grammars are accommodated the same way

Parser for LR(1) grammar, S → aS | a . Input and lookahead symbols are saved in the current state:

a!. S
S . Sa

.aS

s
0

.S
s4

S a.S
S .a S

.aS

s
2 S a .S

s3

S a.
s1

S!

la

laS!

a!

Shift transitions:
[ℓ →֒ a →֒ s0] → s0 :: [ℓ →֒ s2]
[! →֒ a →֒ s0] → s0 :: [! →֒ s1]
[! →֒ S →֒ s0] → s0 :: [! →֒ s4]
[ℓ →֒ a →֒ s2] → s2 :: [ℓ →֒ s2]

[! →֒ a →֒ s2] → s2 :: [! →֒ s1]
[! →֒ S →֒ s2] → s2 :: [! →֒ s3]
Reduce transitions:
si[m →֒ s1] → [m →֒ S →֒ si]
si :: sj [m →֒ s3] → [m →֒ S →֒ si]

where ! denotes end of input and ℓ denotes any non-! input symbol.

parse stack (top lies at right) input sequence

[s0] aa!

[a →֒ s0] a!

[a →֒ a →֒ s0] ! (next, do shift transition)
s0 :: [a →֒ s2] !

s0 :: [! →֒ a →֒ s2] (do shift transition)
s0 :: s2 :: [! →֒ s1] (reduce S → a; pop one state and insert S)
s0 :: [! →֒ S →֒ s2] (do shift transition)
s0 :: s2 :: [! →֒ s3] (reduce S → aS; pop two states and insert S)
[! →֒ S →֒ s0] (do final transition)
s0 :: [! →֒ s4] (finished)

Fig. 4. An LR(k) grammar uses a state of form, [ℓk →֒ ℓk−1 →֒ · · · →֒ ℓ0 →֒ s].

When a program is statically parsed with an LR(k) grammar, k > 0, the generated equations
have form,

Xi[ℓj →֒ · · · →֒ ℓ0 →֒ s] = E

for 0 < j < k. Alas, this means a residual-equation set of order (k + 1)!.



We mainly use the LR(k) technique to abstractly parse string-replacement operators, user input,
and test expressions in conditional commands:

– A PHP-style string replacement operator, e.g.,

y = replace ’aa’ by ’b’ in x

defines a finite-state string transducer to which x’s string-value is supplied as input. Since the
transducer is a finite-state machine, we compose its controller with the controller of the LR(k)-
parser. The compound controller analyzes the equations generated by the input program. We
see this in an example to come.

– If unknown user input can be described by a nonterminal symbol, then that nonterminal can be
input for abstract parsing — Our analyzer treats grammar nonterminals as valid inputs.
For example, if the range of user inputs is contained within this syntax: S ::= a | aS,
then the script on the left generates the equations on the right:

x = getinputS

y = replace ’aa’ by ’b’ in x

print y

S = a ∪ a · S
X = S
Y = replace(aa, b, X)

When X is called with parse state, [ℓj →֒ · · · →֒ ℓ0 →֒ s], the generated first-order equation is

S[ℓj →֒ · · · →֒ ℓ0 →֒ s] = [S →֒ ℓj →֒ · · · →֒ ℓ0 →֒ s]

which continues the parse with input symbol S. (Note: S is unfolded if it feeds directly into a
string-replacement automaton.)

– Conditional tests on strings can often be expressed by finite automata or grammar nonterminals.
We use the techniques mentioned above.



5 Abstract parsing with string-replacement operations

Recall that the current parse state has form, [ℓj →֒ · · · →֒ ℓ0 →֒ s], 0 < j < k. The state is updated
by the parse controller, which is a finite automaton. A string update operation, e.g.,

y = replace ’aa’ by ’b’ in x

defines an automaton (more precisely, a transducer):

α0 α1

l = ’a’ : ε

l != ’a’ : l

l = ’a’ : ’b’

l != ’a’ : ’a’. l

(We use B : ℓ to mean “take the transition if B holds true and emit letter ℓ as output”.) When a
replace operation appears in a program, the automaton defined by replace is composed with the
parse-controller automaton to consume the input stream. From the assignment,

x = replace S1 by S2 in E

We generate this flow equation

X = replaceαE

Where α names the finite automaton (transducer) generated from the string pattern, S1, and the
replacement pattern, S2. When the above equation is called with a parse state, [ℓj →֒ · · · →֒ ℓ0 →֒ s],
we generate this first-order equation:

X [ℓj →֒ · · · →֒ ℓ0 →֒ s] = eraseα(E[α0, ℓj →֒ · · · →֒ ℓ0 →֒ s])

where α0 is the start state of the α automaton that defines the string replacement.
The string generated from expression E is given to state α0, which processes it and emits string

output that is added to state s’s input stream.



For example, the operator, replace ’b’ by ’a’ in Y, generates this automaton, β:

β0(b) → β0/a
β0(ℓ) → β0/ℓ, if ℓ 6= b

For this script and its flow equations,

y = ’b’

x = ’a’.(replace ’b’ by ’a’ in y)

Y = b

X = a · replaceβ(Y )

The abstract parse of X · ! proceeds like this:

(X · !)[s0] = X [s0] ⊕ !

X [s0] = (a · replaceβ(Y ))[s0]
= a[s0] ⊕ replaceβ(Y )
= replaceβ(Y )[a →֒ s0]
= eraseβ(Y [β0, a →֒ s0])

Y [β0, a →֒ s0] = b[β0, a →֒ s0]
= [b →֒ β0, a →֒ s0]
= [β0, a →֒ a →֒ s0]
= s0 :: [β0, a →֒ s2]

Once all of Y ’s string is processed, automaton β is erased from the compound parse state:

eraseβ(Y [β0, a →֒ s0]) = eraseβ(s0 :: [β0, a →֒ s2])
= s0 :: [a →֒ s2]

Our embedding of string-replacement operations into the parse state lets us retain the existing
least-fixed point machinery for computing the solutions to the a script’s flow equations. So, it is
perfectly acceptable to allow string replacements within loop bodies — this surmounts existing
techniques [2, ?,6], because we are not generating a new grammar to approximate and check.



6 Using string-replacement automata to implement conditional tests

One fundamental technique needed for implementing taint analysis [9, 10, 8] is implementing filter
functions for the tests of conditional commands. For example,

read x

if isAllDigits(x) :

then · · · the analysis assumes that x holds all digits · · ·

Think of the test expression, isAllDigits(x), as an automaton (transducer) that reads the string
contents of x and emits failure if a character of the input string is a nondigit. A failure causes the
subsequent analysis to fail, too. In this fashion, the automaton acts as a “diode” or “filter function”
that prevents non-digit string input from entering the conditional’s body.

Here is the filter automaton for the test, isAllDigits(x):

βfail

l ε’0’..’9’ : l

β0

l ε’0’..’9’ :/ fail
l ε’0’..’9’ :/ fail

: faileos

: faill

β1
l ε’0’..’9’ : l

The filter automaton is a string-replacement automaton that emits fail when the input string does
not satisfy the boolean test. The complement automaton, ¬β, merely swaps the outputs, ℓ and fail.

Our approach to analyzing conditional statements goes as follows:

For the conditional,
if B(x):
then · · · x · · ·
else · · · x · · ·

generate these flow equations:
XB = replaceβX
· · ·XB · · ·
X¬B = replace¬βX
· · ·X¬B · · ·

where β is the automaton that implements test B and ¬β implements ¬B.
The fail character is special — when it is processed as an input, it causes the parse itself to

denote ⊥ (empty set in the powerset lattice):

[· · · , fail, · · ·] = ⊥

For example,
x = ’a’

if isAllDigits(x):

print x !

X0 = a

X1 = replaceβX0
X2 = X1 · !

and
X2[s0] = X1 · ![s0] = X1[s0] ⊕ !

X1[s0] = replaceβX0[s0] = eraseβ(X0[β0, s0])
X0[β0, s0] = a[β0, s0] = [a →֒ β0, s0] = [β0, fail →֒ s0] = ⊥

Hence,
X1[s0] = eraseβ(⊥) = ⊥
X2[s0] = ⊥⊕ ! = ⊥

The analysis correctly predicts that nothing prints within the body of the conditional.



7 Modelling user input with nonterminals and unfolding

Say that a module uses a string-valued global variable that is initialized outside of the module. If we
assume the variable’s value has the structure named by a nonterminal, then the global variable can
be used in an abstract parse. For example, assume global variable g holds an S-structured string:

x = ’a’.g

print x !

G = S
X = a · G
X ′ = X · !

We compute the abstract parse for X ′[s0]:

(a · G · !)[s0] = G[a →֒ s0] ⊕ !

G[a →֒ s0] = [S →֒ a →֒ s0] = s0 :: [S →֒ s2]

Hence,

G[a →֒ s0] ⊕ ! = s0 :: ![S →֒ s2] = s0 :: [! →֒ S →֒ s2]
= s0 :: s2 :: [! →֒ s3] = [! →֒ S →֒ s0]
= s0 :: [! →֒ s4]

In a similar way, user input, supplied via read commands, can be assumed to have structure named
by a nonterminal, and abstract parsing can be undertaken:

g = readS()
x = ’a’.g

print x !

G = S
X = a · G
X ′ = X · !

This proceeds just like the previous example. (Of course, we must supply a script that parses the
input at runtime, to ensure that the input assumption is not violated.)

But there is a rub — say that the script includes string-replacement operations, which cannot
process nonterminals. We solve this problem by unfolding the nonterminal, supplying the generated
strings to the string-replacement automaton:

x = readS()
y = replace ’aa’ by ’a’ in x

print y !

X = S
S = a · S ⊔ a

Y = replaceγX
Y ′ = Y · !

where automaton γ is defined,

γ0(a) = γ1/ǫ
γ0(ℓ) = γ0/ℓ, if ℓ 6= a

γ1(a) = γ0/a

γ1(ℓ) = γ0/a · ℓ, if ℓ 6= a

γ0(eos) = γ0/ǫ
γ1(eos) = γ0/a

where γ0 is the final state.
The analysis of the print command generates these first-order equations to solve:

Y ′[s0] = Y [s0] ⊕ !

Y [s0] = eraseγ(X [γ0, s0])
X [γ0, s0] = S[γ0, s0]



The call to S generates these equations, which explain how to replace and parse all strings generated
from nonterminal, S:

S[γ0, s0] = (a · S)[γ0, s0] ∪ a[γ0, s0] = [a →֒ γ0, s0] ⊕ S ∪ [a →֒ γ0, s0]
= [γ1, s0] ⊕ S ∪ [γ1, s0]
= S[γ1, s0] ∪ [γ1, s0]

S[γ1, s0] = (a · S)[γ1, s0] ∪ a[γ1, s0] = S[γ0, a →֒ s0] ∪ [γ0, a →֒ s0]
S[γ0, a →֒ s0] = S[γ1, a →֒ s0] ∪ [γ1, a →֒ s0]
S[γ1, a →֒ s0] = [γ0, a →֒ a →֒ s0] ⊕ S ∪ [γ0, a →֒ a →֒ s0]

= s0 :: S[γ0, a →֒ s2] ∪ s0 :: [γ0, a →֒ s2]
S[γ0, a →֒ s2] = S[γ1, a →֒ s2] ∪ [γ1, a →֒ s2]
S[γ1, a →֒ s2] = s2 :: S[γ0, a →֒ s2] ∪ s2 :: [γ0, a →֒ s2]

All reachable combinations of the string-replacement automaton and parse controller are generated.
This completes the equation set, which is solved in the usual way.

The state explosion that is typical in such examples can be controlled by using SLR(k) or
LALR(k) grammars to define string structure.

With the technique just illustrated, we can show the correctness of input-validation codings. For
example, a script that goes

x = readS()

if isAllDigits(x):

then · · ·

can be analyzed with respect to the automaton defined by isAllDigits and this reference grammar:

S ::= C | CS
C ::= D | N
D ::= 0 · · · 9
N ::= all characters not in D

From here, it is only a small step to analyzing string-replacement and conditional-test automata
to check for language inclusion, that is, all strings generated by a grammar nonterminal are accepted
by the automaton.



8 Definitions of parsing and collecting semantics

An LR(k) parse-stack configuration is a sequence, s0 :: s1 :: · · · si :: [ℓj →֒ · · · →֒ ℓ0 →֒ s], 0 < j < k,
where s0 · · · si, s are states from the parser controller; ℓ0 is the input symbol; and ℓ1 · · · ℓj are the
lookahead symbols. [ℓj →֒ · · · →֒ ℓ0 →֒ s] is the parse state and will always be presented as the “top”
of the parse-stack configuration.

A parse of input symbols a1 · · ·an! is defined as [[a1 · · ·an!]][s0], where s0 is the parse controller’s
start state. Let c stand for a parse state. The transition rules in Figure 4 can be formalized as

[[a]][ℓj →֒ · · · →֒ ℓ0 →֒ s] = move([a →֒ ℓj →֒ · · · →֒ ℓ0 →֒ s])

[[E1 · E2]]c = move([[E1]]c ⊕ [[E2]])
where (s0 :: s1 :: · · · si :: c′) ⊕ F = s0 :: s1 :: · · · si :: F (c′)

move(s0 :: · · · :: si :: [ℓj →֒ · · · →֒ ℓ0 →֒ s]) =
if s is a final (reduce) state for grammar rule, N → U1U2 · · ·Um, and m ≤ n,
then return move(s0 :: · · · :: sn−m :: [ℓj →֒ · · · →֒ ℓ0 →֒ N →֒ sn−m+1])

(pop top m states, and insert N at front of input stream)
else if there is a match of [ℓj →֒ · · · →֒ ℓ0 →֒ s] to the left-hand-side of a transition rule,

[ℓk →֒ · · · →֒ ℓ0 →֒ s] → [ℓk →֒ · · · →֒ ℓ1 →֒ s′],
then return move(s0 :: s1 :: · · · si :: s :: [ℓk →֒ · · · →֒ ℓ1 →֒ s′])

(shift)
else return s0 :: s1 :: · · · si :: [ℓj →֒ · · · →֒ ℓ0 →֒ s], as is.

The next definition of interest is the semantics of the flow equations extracted from a script. A
flow equation takes the form, X = E, where

E ::= a | E1 · E2 | E1 ⊔ E2 | Xj

The semantics is called the collecting semantics and is defined like this:

[[E]] : ParseState → P(ParseConfiguration)

[[a]][ℓj →֒ · · · →֒ ℓ0 →֒ s] = {move([a →֒ ℓj →֒ · · · →֒ ℓ0 →֒ s])}

[[E1 · E2]]c = {move(c′) | c′ ∈ [[E1]]c ⊕ [[E2]]}
where S ⊕ F = {tail(c) :: F (head(c)) | c ∈ S}

[[E1 ⊔ E2]]c = [[E1]]c ∪ [[E2]]c

[[Xj ]]c = [[Ej ]]c, where Xj = Ej is the corresponding flow equation

The definition shows that sets can result from the calculation of the collecting semantics. See [?] for
examples.

From the collecting semantics domain of sets of parse configurations, one defines an abstract
interpretation by approximating a set of configurations by a finite set of finite configurations or by
just a single configuration, say, written in regular-expression notation. This is developed in [?].

The resulting interpretation can be applied to a set of flow equations and solved with the usual
least-fixed-point techniques. This yields abstract parsing of the strings generated by a script.



9 Conclusion

Injection and cross-site-scripting attacks can be reduced by analyzing the programs that dynamically
generate documents [10]. In this paper, we have improved the precision of such analyses by employing
LR-parsing technology to validate the context-free grammatical structure of generated documents.

A parse tree is but the first stage in calculating a string’s meaning. The parsed string has
a semantics (as enforced by its interpreter), and one can encode this semantics with semantics-
processing functions, like those written for use with a parser-generator. (Tainting analysis — tracking
unsanitized data — is a simplistic semantic property that is encoded this way.) The semantics can
then be approximated by the static analysis so that abstract parsing and abstract semantic processing
proceed simultaneously.



This talk is saved at www.cis.ksu.edu/∼schmidt/papers/hometalks.html

It is based on a paper published at the 2009 Static Analysis Symposium (Springer LNCS 5673) as
well as an unpublished report. The paper and report are found at www.cis.ksu.edu/∼schmidt/papers
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