Principles and applications of abstract-interpretation-based static analysis

David Schmidt

Kansas State University
WWW.cis.ksu.edu/~schmidt

Outline

Static analysis is property extraction from formal systems.
Abstract interpretation is a foundation for static analysis based on Galois connections, semi-homomorphisms, and fixed-point calculation. In this talk, we

- introduce abstract interpretation
- apply it to static analyses of program semantics (state-transition systems, equationally specified definitions, rule-based relational definitions)
- survey applications of static analysis
- develop the correspondence of properties to propositions
- consider approaches to modular, "scalable" analyses

Background: abstract interpretation

An abstract domain defines properties

A formal system uses values from set C, and we wish to determine properties of the Cvalues that might arise during computation.

Define an abstract domain, A: a partially ordered set of properties, closed under meet (\sqcap). See example, Sign, above.

Define a monotone concretization map, $\gamma: A \rightarrow P C$, where $P C$ is the powerset of C, ordered by \subseteq, so that $\gamma(a)$ defines those elements that "have property a."
γ must preserve meets - for $T \subseteq A, \gamma(\sqcap T)=\bigcap_{a \in T} \gamma(a)$ - so that an inverse function, $\alpha: \mathrm{PC} \rightarrow A$, can be defined.

Operations f are abstracted to f^{\sharp} to compute on A

readInt (x)
$x=\operatorname{succ}(x)$ if $x<0$:

$$
x=\operatorname{negate}(x)
$$

else:

$$
x=\operatorname{succ}(x)
$$

writeInt(x)

Q:is the output pos?
A: abstractly interpret input domain Int by
Sign $=$
$\{$ neg, zero, pos, any, none $\}$:

readSign(x)

$\mathrm{x}=\operatorname{succ}^{\sharp}(\mathrm{x})$
if (filterNeg(x):

$$
\left.\mathrm{x}=\text { negate }^{\sharp}(\mathrm{x})\right)
$$

(filterNonNeg(x):
$\left.\mathrm{x}=\operatorname{succ}^{\sharp}(\mathrm{x})\right) \mathrm{fi}$ writeSign (x)

where | $\operatorname{succ}^{\sharp}($ pos $)=$ pos |
| :--- |
| |
| $\operatorname{succ}^{\sharp}($ zero $)=$ pos |
| |
| |
| |
| |
| $\operatorname{succ}^{\sharp}(n e g)=$ any $(!) \quad$ and $)=$ any |

$$
\begin{aligned}
& \text { negate }{ }^{\sharp}(\text { neg })=\text { pos } \\
& \text { negate } \\
& (\text { zero })=\text { zero }
\end{aligned}
$$

$$
\text { negate }^{\sharp}(p o s)=\text { neg }
$$

$$
\text { negate }{ }^{\sharp}(\text { any })=\text { any }
$$

For the abstract data-test sets, zero, neg, pos, we calculate: $\{$ zero \mapsto pos, pos \mapsto pos, neg $\mapsto a n y\}$. The last result arises because $\operatorname{succ}^{\sharp}(n e g)=$ any and filterNeg $(a n y)=$ neg (good!) but filterNonNeg $(a n y)=$ any (bad — we need zero \vee pos!), so we cannot ensure the success of the else-arm.

A Galois connection formalizes the abstraction

$$
\begin{array}{ll}
\gamma: \text { Sign } \rightarrow \mathcal{P}(\text { Int }) & \alpha: \mathcal{P}(\text { Int }) \rightarrow \text { Sign } \\
\gamma(\text { none })=\{ \}, \quad \gamma(\text { any })=\text { Int } & \alpha(S)=\sqcap\{a \mid \gamma(a) \subseteq \text { S }\} \\
\gamma(\text { neg })=\{\cdots,-3,-2,-1\} & \text { e.g., } \alpha\{2,4,6,8, \ldots\}=\text { pos } \\
\gamma(\text { zero })=\{0\}, \quad \gamma(\text { pos })=\{1,2,3, \cdots\} & \alpha\{-1,0\}=\text { any }, \alpha\{0\}=\text { zero }
\end{array}
$$

$(\mathcal{P}(\operatorname{Int}), \subseteq)\langle\alpha, \gamma\rangle($ Sign,$\sqsubseteq)$ is a Galois connection:

$$
\alpha(S) \sqsubseteq a \text { iff } S \subseteq \gamma(a) .
$$

γ interprets the elements in Sign, and α maps each data-test set in $\mathcal{P}($ Int $)$ to the property that best describes the set [CousotCousot77] .

An abstract operation is monotone and sound

$f^{\sharp}: A \rightarrow A$ is sound for $f: C \rightarrow$ PC iff $\alpha \circ f^{*} \sqsubseteq f^{\sharp} \circ \alpha$ (iff $\mathrm{f}^{*} \circ \gamma \sqsubseteq \gamma \circ \mathrm{f}^{\sharp}$):

α and γ act as semi-homomorphisms.

Example: The succ ${ }^{\sharp}$ function seen earlier is sound for succ, e.g., for succ: : Int $\rightarrow \mathcal{P}($ Int $), \operatorname{succ}^{*}(0)=\{1\}$, and $\operatorname{succ}^{\sharp}($ zero $)=$ pos.
f^{\sharp} is a postcondition transformer. $\mathrm{S} \subseteq \gamma(\mathrm{a})$ implies $f^{*}(S) \subseteq \gamma\left(f^{\sharp}(a)\right)$ where $f^{*}(S)=U_{c \in S} f(c)$.
$f_{\text {best }}^{\sharp}=\alpha \circ f^{*} \circ \gamma$ is the strongest (liberal) postcondition transformer.
Definition: f^{\sharp} is γ-complete ("forwards complete") for f iff $f^{*} \circ \gamma=\gamma \circ f^{\sharp}$ [Giacobazzi01]. f^{\sharp} is α-complete ("backwards complete") for f iff $\alpha \circ f^{*}=f^{\sharp} \circ \alpha$ [Cousots00].

An aggregate, e.g., Var \rightarrow C, can be abstracted pointwise or relationally

Sign: $[\mathrm{x} \mapsto \geq 0][\mathrm{y} \mapsto \geq 0]$

$$
\left\{\begin{array}{l}
x \geq 0 \\
y \geq 0
\end{array}\right.
$$

Interval: $[\mathrm{x} \mapsto[3,27]][\mathrm{y} \mapsto[4,32]]$

Polyhedron: $\bigwedge_{i}\left(\left(\sum_{j} a_{i j} \cdot x_{i j}\right) \leq b_{i}\right)$

$$
\left\{\begin{array}{l}
3 \leq x \leq 27 \\
x+y \leq 88 \\
4 \leq y \leq 32 \\
x-y \leq 61
\end{array}\right.
$$

diagrams from Abstract Interpretation: Achievements and Perspectives by Patrick Cousot, Proc. SSGRR 2000.

Three codings (a)-(c) of a relationally abstracted store based on the octagon abstract domain:

$$
\text { (a) }\left\{\begin{array}{lr}
V_{2}-V_{1} \leq 4 \tag{b}\\
V_{1}-V_{2} \leq & -1 \\
V_{3}-V_{1} \leq & 3 \\
V_{1}-V_{3} \leq & -1 \\
V_{2}-V_{3} \leq & 1
\end{array}\right.
$$

(c)

Figure 2. A potential constraint conjunction (a), its corresponding DBM m (b), potential graph $\mathcal{G}(\mathbf{m})$ (c), and potential set concretization $\gamma^{P o t}(\mathbf{m})$ (d).
diagram from The octagon abstract domain, by Antoine Miné, J. Symbolic and
Higher-Order Computation 2006

Predicate abstraction uses a relational domain based on the predicates in the goal and program

Example: prove that $z \geq x \wedge z \geq y$ at p_{3} :
$p_{0}:$ if $x<y$
$p_{1}: \quad$ then $z=y$
$p_{2}: \quad$ else $z=x$
$p_{3}:$ exit

The store is abstracted to a relational domain that denotes the values of these predicates:

$$
\phi_{1}=\mathrm{x}<\mathrm{y} \quad \phi_{2}=\mathrm{z} \geq \mathrm{x} \quad \phi_{2}=\mathrm{z} \geq \mathrm{y}
$$

The predicates are evaluated at the program's points as one of $\{t, f, ?\}$. (Read? as $t \vee f$.)

At all occurrences of p_{3} in the abstract trace, $\phi_{2} \wedge \phi_{3}$ holds.

When a goal is undecided, domain refinement becomes necessary

Prove $\phi_{0} \equiv \mathrm{x} \geq \mathrm{y}$ at p_{4} :

$$
\begin{aligned}
p_{0}: & \text { if }!(\mathrm{x}>=\mathrm{y}) \\
p_{1}: & \text { then }\{\mathrm{i}=\mathrm{x} ; \\
p_{2}: \mathrm{x} & =\mathrm{y} ; \\
p_{3}: \mathrm{y} & =\mathrm{i} ;
\end{aligned}
$$

To decide the goal, we refine the abstract domain by adding a new predicate: $\mathfrak{w p}(\mathrm{y}=\mathrm{i}, \mathrm{x} \geq \mathrm{y})=(\mathrm{x} \geq \mathrm{i}) \equiv \phi_{1}$. We add ϕ_{1} and try again:

But incremental predicate refinement cannot synthesize many interesting loop invariants. For this example:

$$
\begin{aligned}
& p_{0}: \mathrm{i}=\mathrm{n} ; \mathbf{x}=0 ; \\
& p_{1}: \text { while } \mathrm{i}!=0 \quad \mathfrak{l} \\
& p_{2}: \mathbf{x}=\mathrm{x}+1 ; \quad \mathrm{i}=\mathrm{i}-1 ; \\
& \mathrm{\}} \\
& p_{3}: \text { goal }: \mathrm{x}=\mathrm{n}
\end{aligned}
$$

The initial predicate set, $\mathrm{P}_{0} \equiv\{\mathrm{i}=0, \mathrm{x}=\mathfrak{n}\}$, does not validate the loop body.

The first refinement suggests we add $P_{1} \equiv\{i=1, x=n-1\}$ to the program state, but this fails to validate a loop that iterates more than once.

Refinement stage j adds predicates $P_{j} \equiv\{i=j, x=n-j\}$; the refinement process continues forever!

The loop invariant is $\mathrm{x}=\mathrm{n}-\mathrm{i} \quad$:-)

Mechanics of static analysis: abstracting small-step and big-step semantics definitions

The most basic static analysis is trace generation

Note: p_{i}, v abbreviates $p_{i},\langle x: v\rangle$

For
Parity $=\{$ none, even, odd, any $\}$, the loop's operations, f, are abstracted to f^{\sharp}. The abstract trace is a static analysis of those concrete executions with an even-valued input.
Traces are used in model checking.
Two concrete traces:

\downarrow	\downarrow
$p_{0}, 4$	$p_{0}, 6$
$p_{1}, 4$	$p_{1}, 6$
$p_{2}, 4$	$p_{2}, 6$
\downarrow	\downarrow
$p_{0}, 2$	$p_{0}, 3$
$p_{1}, 2$	$p_{1}, 3$
$p_{2}, 2$	$p_{2}, 3$
\downarrow	\downarrow
$p_{0}, 1$	$p_{0}, 10$
$p_{4}, 1$	\ldots
$y\}$,	\downarrow
	$p_{4}, 1$

Data-flow analysis collects the abstract trace into a map, ProgramPoint $\rightarrow A$

The abstract value "attached" to program point p_{i} is defined by the first-order equational pattern,

$$
p_{i} \text { Store }=\bigsqcup_{p_{j} \in \operatorname{pred}\left(\mathfrak{p}_{i}\right)} f_{j}^{\#}\left(p_{j} \text { Store }\right)
$$

Flow equations for previous example:

$$
\begin{aligned}
& \text { init }=\langle x: \text { even }\rangle \quad \text { init }
\end{aligned}
$$

$$
\begin{aligned}
& p_{2} \text { Store }=f_{1 \mathrm{t}}^{\sharp}\left(\mathrm{p}_{1} \text { Store }\right) \\
& p_{3} \text { Store }=f_{1 f}^{\sharp}\left(p_{1} \text { Store }\right) \\
& p_{4} \text { Store }=f_{0 f}^{\sharp}\left(p_{0} \text { Store }\right)
\end{aligned}
$$

We solve the flow equations by calculating approximate solutions in stages until the least fixed point is reached.

Note: \perp is the same as $\langle\mathrm{x}: \perp\rangle$

stage	p_{0} Store	p_{1} Store	p_{2} Store	p_{3} Store	p_{4} Store
0	\perp	\perp	\perp	\perp	\perp
1	$\langle\mathrm{x}:$ even \rangle	\perp	\perp	\perp	\perp
2	$\langle\mathrm{x}:$ even \rangle	$\langle\mathrm{x}:$ even \rangle	\perp	\perp	\perp
3	$\langle\mathrm{x}:$ even \rangle	$\langle\mathrm{x}:$ even \rangle	$\langle\mathrm{x}:$ even \rangle	\perp	\perp
4	$\langle\mathrm{x}:$ any \rangle	$\langle\mathrm{x}:$ even \rangle	$\langle\mathrm{x}:$ even \rangle	\perp	\perp
5	$\langle\mathrm{x}$:any \rangle	$\langle\mathrm{x}:$ any \rangle	$\langle\mathrm{x}:$ even \rangle	\perp	$\langle\mathrm{x}$:odd \rangle
6	$\langle\mathrm{x}$:any \rangle	$\langle\mathrm{x}:$ any \rangle	$\langle\mathrm{x}:$ even \rangle	$\langle\mathrm{x}:$ odd \rangle	$\langle\mathrm{x}:$ odd \rangle

A faster algorithm uses a worklist that remembers exactly which equations should be recalculated at each stage.

Termination: Array-bounds checking reviewed

Integer variables might receive values from the interval domain,

$$
I=\{[i, j] \mid i, j \in \operatorname{Int} \cup\{-\infty,+\infty\}\}
$$

We define $[a, b] \sqcup\left[a^{\prime}, b^{\prime}\right]=\left[\min \left(a, a^{\prime}\right), \max \left(b, b^{\prime}\right)\right]$.

$$
\begin{aligned}
& \text { int a = new int[10]; }
\end{aligned}
$$

$$
\begin{aligned}
& \text { while (i < 10) } \underset{\ldots}{\ldots} \ldots p_{1}-i=[0,0] \sqcap[-\infty, 9]=[0,0] \\
& \ldots a[i] \ldots-i=[0,0] \sqcup[1,1] \sqcap[-\infty, 9]=[0,1] \\
& \text { \} } \\
& i=i+1 ; \\
& \begin{aligned}
& p_{2}-i=[1,1] \\
&-i=[1,1] \sqcup[2,2]=[1,2] \\
& \ldots
\end{aligned}
\end{aligned}
$$

This example terminates: i's ranges are

```
at p
at \(p_{2}:\) [1..10]
```

at loop exit : $[1 . .10] \sqcap[10,+\infty]=[10,10]$

But others might not, because the domain is not finite height:

$$
\begin{aligned}
& i=0 ;<\ldots-\cdots \cdot[0,0] \\
& \text { while true } \underset{-}{\mathbb{1}}{ }_{-}-\mathrm{i}=[0,0] \bigsqcup[1,1] \bigsqcup[2,2] \ldots \\
& i=i+1 ; \quad \text { infinite limit is }[0,+\infty] \\
& <\cdots-\cdots-1=[] \quad \text { (dead code) }
\end{aligned}
$$

The analysis generates the infinite sequence of stages, $[0,0],[0,1], \ldots,[0, i], \ldots$ as i's value in the loop's body.

The domain of intervals, where $[i, j] \sqsubseteq\left[i^{\prime}, j^{\prime}\right]$ iff $i \leq j$ and $j \leq j^{\prime}$, has infinitely ascending chains.

To forcefully terminate the analysis, we can replace the \sqcup operation by ∇, called a widening operator:

$$
[] \nabla[i, j]=[i, j] \quad[i, j] \nabla\left[i^{\prime}, j^{\prime}\right]=\begin{aligned}
& {\left[\text { if } i^{\prime}<i \text { then }-\infty \text { else } i,\right.} \\
& \text { if } \left.j^{\prime}>j \text { then }+\infty \text { else } j\right]
\end{aligned}
$$

The widening operator, which guarantees finite convergence for all increasing sequences on the interval domain, quickly terminates the example:

$$
\begin{aligned}
& i=0 ;<\cdots-\quad i=[0,0] \\
& \text { while true }\{ \\
& i=i+\underset{1 ;}{=}--i=[0,0] \nabla[1,1]=[0,+\infty] \\
& \text { \} } \\
& \leqslant-\cdots-\cdots \quad \mathrm{i}=[] \quad \text { (dead code) }
\end{aligned}
$$

but in general, it can lose much precision:

```
int a = new int[10];
i=0; <<-----i=[0,0]
while (i < 10) {
    ... a[i]<<-- - i=[0,0] \nabla[1,1]=[0,+\infty]
    i = i + 1;
}
    <<\cdots-\cdots--- i=[10,+\infty]
```

For this reason, a complementary operation, \triangle, called a narrowing operation, can be used after ∇ gives convergence to recover some precision and retain a fixed-point solution.

We will not develop \triangle here, but for the interval domain, a suitable \triangle tries to reduce $-\infty$ and $+\infty$ to finite values. For the last example, the convergent value, $[0,+\infty]$, in the loop body would be narrowed to $[0,10]$, making i's value on loop exit $[10,10]$.

Another approach is to use multiple "thresholds" for widening, e.g. $-\infty,\left(2^{-31}-1\right), 0$, etc. for lower limits, and $\left(2^{31}-1\right)$ and $+\infty$ for upper limits.

Structured static analysis on syntax trees

Given a block of statements, B, we might wish to calculate the values that "enter" and "exit" from B. If B is coded in a structured language, the static analysis can compute a "structured transfer function" for B:

$$
C::=p: x=E|C| \text { if } E C_{1} C_{2} \mid \text { while E C }
$$

A sample structured analysis that ignores tests: $\mathbb{C C \rrbracket}: A_{\text {in }} \rightarrow A_{\text {out }}$

$$
\begin{aligned}
& \llbracket p: x=E \rrbracket i n=f_{p}^{\sharp}(\mathfrak{i n}) \quad \text { (the transfer function for } p \text {) } \\
& \llbracket \mathbb{C} \rrbracket i n=\llbracket C_{2} \rrbracket\left(\llbracket C_{1} \rrbracket i n\right) \\
& \llbracket \text { if } E C_{1} C_{2} \rrbracket i n=\llbracket C_{1} \rrbracket i n \sqcup \llbracket C_{2} \rrbracket \text { in } \\
& \llbracket \text { while } E C \rrbracket i n=\text { in } \sqcup \text { out },
\end{aligned}
$$

$$
\text { where out }{ }_{C}=\bigsqcup_{i \geq 0} \text { out }_{i} \text {, }
$$

$$
\text { and out }{ }_{0}=\perp_{\mathrm{A}} \text { and out }{ }_{\text {i+1 }}=\llbracket \mathbb{C} \rrbracket\left(\text { in } \sqcup \text { out }_{\mathrm{i}}\right)
$$

We annotate a syntax tree with the in-and out-data - here is a reaching definitions data-flow analysis, which computes sets of assignments that might reach future program points:

```
    \(\llbracket p: x=E \rrbracket i n=i n-\operatorname{kill}_{\mathrm{x}} \cup\{p\}\)
    \(\llbracket C \rrbracket i n=\llbracket C_{2} \rrbracket\left(\llbracket C_{1} \rrbracket i n\right)\)
    \(\llbracket i f E C_{1} C_{2} \rrbracket i n=\llbracket C_{1} \rrbracket i n \cup \llbracket C_{2} \rrbracket i n\)
```

```
\llbracketwhile E C\rrbracketin =in \cup \bigcup \i\geq0 out i,
```

\llbracketwhile E C\rrbracketin =in \cup \bigcup \i\geq0 out i,
where outo ={}
where outo ={}
and outi+1 }=\llbracketC\rrbracket(in\cupouti

```
    and outi+1 }=\llbracketC\rrbracket(in\cupouti
```


Big-step relational semantics: derivation trees

$$
\begin{gathered}
\sigma \vdash p: x=E \Downarrow f_{p}(\sigma) \\
\frac{\sigma \vdash C_{1} \Downarrow \sigma_{1} \quad \sigma_{1} \vdash C_{2} \Downarrow \sigma_{2}}{\sigma \vdash C_{1} ; C_{2} \Downarrow \sigma_{2}} \quad \frac{f_{E t}(\sigma) \vdash C_{1} \Downarrow \sigma_{1}}{\sigma \vdash} f_{E f}(\sigma) \vdash C_{2} \Downarrow \sigma_{2} \\
\frac{f_{E t}(\sigma) \vdash C \Downarrow C_{1} C_{2} \Downarrow \sigma_{1} \sqcup \sigma_{2}}{\sigma \vdash \text { while } E C \Downarrow \sigma_{E f}(\sigma) \sqcup \sigma^{\prime \prime}}
\end{gathered}
$$

Recall that f_{p} is a transfer function and that $f_{E t}$ and $f_{E f}$ "filter" the store, e.g.,

$$
f_{x>2 t}\langle x: 4, y: 3\rangle=\langle x: 4, y: 3\rangle \text {, whereas } f_{x>2 t}\langle x: 0, y: 3\rangle=\perp
$$

An example: if Even (x) ($x=0$) (while $x \neq 3(x=x+1)$) $\langle x: 1\rangle \vdash$ if $\operatorname{Even}(x)(x=0)($ while $x \neq 3(x=x+1)) \downarrow \perp\langle x: 3\rangle=\langle x: 3\rangle$

$\langle\mathrm{x}: 1\rangle \vdash \mathrm{x}=\mathrm{x}+1 \Downarrow\langle\mathrm{x}: 2\rangle$
$\langle\mathrm{x}: 2\rangle \vdash \mathrm{x}=\mathrm{x}+1 \Downarrow\langle\mathrm{x}: 3\rangle$
$\perp \vdash \mathrm{x}=\mathrm{x}+1 \Downarrow \perp \quad\langle\mathrm{x}: 2\rangle \vdash$ while $\mathrm{x} \neq 3 \ldots \Downarrow \perp \downarrow\langle\mathrm{x}: 3\rangle$

An abstract big-step derivation tree

Using the same inference rules but with abstract transfer functions for Parity $=\{\perp$, even, odd, $T\}$, we generate an abstract tree that is infinite but regular:

Variable X denotes the answer from the repeated loop subderivation:

$$
X=\langle\mathrm{x}: o \mathrm{od}\rangle\rangle \sqcup X
$$

The least solution sets $X=\langle\mathrm{x}$:odd \rangle.

Interprocedural analysis

$$
\frac{\text { func } \mathrm{f}(\mathrm{x}) \text { local } \mathrm{y} ; \mathrm{C} . \quad[\mathrm{x} \mapsto \llbracket \mathrm{E}] \sigma][\mathrm{y} \mapsto \perp] \vdash \mathrm{C} \Downarrow \sigma^{\prime}}{\sigma \vdash \mathrm{z}=\mathrm{f}(\mathrm{E}) \Downarrow \sigma\left[\mathrm{z} \mapsto \sigma^{\prime}(\mathrm{y})\right]}
$$

where $\llbracket \mathrm{E} \rrbracket \sigma$ denotes E 's value with σ, and $\mathrm{x} \mapsto v$ assigns v to x .
Example: func $g(x)$ local $z ; z=x+1$.

$$
a=g(2) ; b=g(a) ; a=a * b
$$

$$
\begin{gathered}
\langle\mathrm{a}: \perp, \mathrm{b}: \perp\rangle \vdash \mathrm{a}=\mathrm{g}(2) ; \mathrm{b}=\mathrm{g}(\mathrm{a}) ; \mathrm{a}=\mathrm{a} * \mathrm{~b} \Downarrow\langle\mathrm{a}: \text { even, } \mathrm{b}: \text { even }\rangle \\
\langle\mathrm{a}: \perp, \mathrm{b}: \perp\rangle \vdash \mathrm{a}=\mathrm{g}(2) \Downarrow\langle\mathrm{a}: \mathrm{odd}, \mathrm{~b}: \perp\rangle\langle\mathrm{a}: o d d, \mathrm{~b}: \perp\rangle \vdash \mathrm{b}=\mathrm{g}(\mathrm{a}) ; \mathrm{a}=\mathrm{a} * \mathrm{~b} \Downarrow\langle\mathrm{a}: \text { even, } \mathrm{b}: \text { even }\rangle \\
\langle\mathrm{x}: \text { even, } \mathrm{z}: \perp\rangle \vdash \mathrm{z}=\mathrm{x}+1 \Downarrow\langle\mathrm{x}: \text { even, } \mathrm{z}: \text { odd }\rangle\langle\mathrm{a}: o d d, \mathrm{~b}: \text { even }\rangle-\mathrm{a}=\mathrm{a} * \mathrm{~b} \Downarrow\langle\mathrm{a}: \text { even, } \mathrm{b}: \text { even }\rangle \\
\langle\mathrm{a}: \text { odd, } \mathrm{b}: \perp\rangle \vdash \mathrm{b}=\mathrm{g}(\mathrm{a}): \Downarrow\langle\mathrm{a}: \text { odd } \mathrm{b}: \text { even }\rangle \\
\langle\mathrm{x}: \text { odd, } \mathrm{z}: \perp\rangle \vdash \mathrm{z}=\mathrm{x}+1 \Downarrow\langle\mathrm{x}: \text { odd, } \mathrm{z}: \text { even }\rangle
\end{gathered}
$$

The derivation tree naturally separates the calling contexts.

"Too many" calling contexts (*) force widening (!):

func fac(a) local b; if $a=0(b=1)(b=f a c(a-1) ; b=a * b)$. $c=\mathrm{fac}(3)$

$$
\langle\mathrm{c}: \perp\rangle \vdash \underset{\mathrm{w}}{\mathrm{c}}=\mathrm{fac}(3) \Downarrow\langle\mathrm{c}: \top\rangle
$$

$$
*\langle 3, \perp\rangle \vdash \text { if } \mathrm{a}=0(\mathrm{~b}=1)(\mathrm{b}=\mathrm{fac}(\mathrm{a}-1) ; \mathrm{b}=\mathrm{a} * \mathrm{~b}) \Downarrow \perp \sqcup\langle T, T\rangle=\langle T, \top\rangle
$$

$$
\begin{aligned}
& \perp \vdash \mathrm{b}=1 \Downarrow \perp \quad\langle 3, \perp\rangle \vdash \mathrm{b}=\mathrm{fac}(\mathrm{a}-1) ; \mathrm{b}=\mathrm{a} * \mathrm{~b} \Downarrow\langle\top, \top\rangle \\
& \langle 3, \perp\rangle \vdash \mathrm{b}=\mathrm{fac}(\mathrm{a}-1) \Downarrow\langle 3, \top\rangle \quad 3, \top \vdash \mathrm{~b}=\mathrm{a} * \mathrm{~b} \Downarrow \top, \top
\end{aligned}
$$

$X=\langle 0,1\rangle \sqcup\langle\top, \top * X . b\rangle$. The least solution sets $X=\langle\top, \top\rangle$.

Standard applications of static analysis

Abstract testing and model generation

Each trace tree denotes an abstract "test" that covers a set of concrete test cases, e.g., $\gamma($ even $)=\{\ldots,-2,0,2, \ldots\}$.

Forms of abstract testing:

- Black box: For each test set, $S \subseteq C$, we abstractly interpret with $\alpha(S) \in$ A. (Best precision: ensure that $S=\gamma(\alpha(S))$.)
- White box: for each conditional, B_{i}, in the program, ensure there is some $a_{i} \in A$ such that $\gamma\left(a_{i}\right)=\left\{s \mid B_{i}\right.$ holds for $\left.s\right\}$
Once we generate an abstract model, we can analyze it further
- ask questions of its paths and nodes - via model checking.

Low-level safety checking

One example is type casting:

$$
p_{i}: \text {... ((Rational) x).ratValue()... }
$$

A static analysis calculates the abstract store arriving at the cast at p_{i}, a checkpoint:
$\checkmark p_{i},\langle\ldots x:$ Int... $\rangle:$ no error possible - remove the run-time check (because Int \sqsubseteq Rational, hence $\gamma($ Int $) \subseteq \gamma($ Rational $)$).

- $p_{i},\langle\ldots x:$ Object.... \rangle : possible error — retain run-time check (because Object \notin Rational)
$\left\langle p_{i},\langle\ldots x\right.$: Bool... \rangle : definite error, because Bool \cap Rational $=\perp$ (assuming $\gamma(\perp)=\{ \})$.

Two more examples of low-level safety checking:

Array-bounds and arithmetic over- and under-flow checks

- Analysis: interval analysis, where values have form, $[\mathrm{i}, \mathrm{j}], \mathrm{i} \leq \mathrm{j}$.
- Checkpoints: for a [e] — e has value in range, [0, a.length]; for int $x=e-e$ has value in range, $\left[-2^{31}-1,+2^{31}-1\right]$
Uninitialized variables, dead-code, and erroneous-state checks
- Analysis: constant propagation, where values are $\{\mathrm{k}\}, \perp$, or T.
- Checkpoints:
uninitialized variables: referenced variables have value $\neq \perp$; dead code: at program point p_{i}, arriving store has value $\neq \perp$; erroneous states: at program point p_{i} : Error, arriving store has value $=\perp$. (Note: This can be combined with a backwards analysis, starting from each p_{i} : Error with store T, working backwards to see if an initial state is reached.)

Program transformation: Constant folding

```
po: x = 1; y = 2;
pl}: while (x < y + z) {\
    p
    }
p3: exit
```


The analysis tells us to replace y at p_{1} by 2 :
$\mathrm{x}=1$; $\mathrm{y}=2$; while ($\mathrm{x}<2+\mathrm{z}$) $\mathrm{x}=\mathrm{x}+1$
Basic principle of program transformation:
If $a_{i} \in A$ arrives at point $p_{i}: S$, where $f_{i}: C \rightarrow C$ is the concrete transfer function, and there are some S^{\prime}, f^{\prime} such that $f_{i}(c)=f^{\prime}(c)$ for all $c \sqsubseteq_{c} \gamma\left(a_{i}\right)$, then S can be replaced by S^{\prime} at p_{i}.

For constant folding, the transformation criteria are the abstract integers ... - 1, 0, $1, \ldots$ (but not T).

Precondition checking and assertion synthesis

A backwards analysis synthesizes precondition assertions that ensure achievement of a postcondition:

$$
\begin{aligned}
& p_{0}: \text { if } x=0 \\
& \\
& p_{1}: \text { then } x=x+1 \\
& p_{2}: \text { else } x=x-1 \\
& p_{3}:
\end{aligned}
$$

$\mathrm{x}: \downarrow T \cap \downarrow$ notneg $=\downarrow$ notneg

where

$$
\begin{aligned}
& f_{=0}^{\sharp}(a)=a \sqcap \text { zero }=\alpha \circ f_{=0} \circ \gamma \\
& f_{\neq 0}^{\sharp}=\alpha \circ f_{\neq 0} \circ \gamma, \text { e.g., } f_{\neq 0}^{\#}(\text { notneg })=\text { pos; } \\
& \quad f_{\neq 0}^{\sharp}(\text { zero })=\perp ; f_{\neq 0}^{\#}(T)=\top \\
& f_{+1}^{\sharp}=\alpha \circ f_{+1} \circ \gamma, \text { e.g., } f_{+1}^{\sharp}(\text { notneg })=\text { pos }
\end{aligned}
$$

The inverse functions compute on sets:
$\downarrow \mathrm{a}=\left\{\mathrm{a}^{\prime} \in A \mid \mathrm{a}^{\prime} \sqsubseteq \mathrm{a}\right\}$

$$
\mathrm{f}^{\#-1}(\mathrm{~S})=\left\{\mathrm{a} \in A \mid \mathrm{f}^{\#}(\mathrm{a}) \in \mathrm{S}\right\}
$$

The entry condition can be used with a forwards analysis to generate postconditions that sharpen the assertions:

$$
\begin{aligned}
& \langle x: \operatorname{notneg}\rangle p_{0}: \text { if } \\
& \qquad \begin{array}{l}
x=0 \\
\\
p_{1}: x=x+1 \\
\end{array} \quad x=x-1
\end{aligned}
$$

p_{3} : halt

The forwards-backwards analyses can be repeatedly alternated.

The "internal logic" of an abstract domain

Abstract values = logical propositions

Read properties like neg \in Sign as logical propositions, "isNegative", etc.

For $S \subseteq C, a, a^{\prime} \in A, \gamma: A \rightarrow P C$, define

- $S \models \mathrm{a}$ iff $\mathrm{S} \subseteq \gamma(\mathrm{a}) \quad$ e.g., $\{-3,-1\} \models$ neg
- $a \vdash a^{\prime}$ iff $a \sqsubseteq a^{\prime} \quad$ e.g., neg \vdash any

For $f: C \rightarrow P C, f^{\sharp}: A \rightarrow A$ is sound $\mathrm{iff} f^{*} \circ \gamma \sqsubseteq \gamma \circ f^{\sharp} \quad$ iff $\alpha \circ f^{*} \sqsubseteq f^{\sharp} \circ \alpha$ This makes f^{\sharp} a postcondition transformer.

Proposition: $S \models a \operatorname{implies} f^{*}(S) \models f^{\sharp}(a)$.
$f_{b e s t}^{\#}=\alpha \circ f^{*} \circ \gamma$ is the strongest liberal postcondition transformer for f.

A has an internal logic that γ preserves

First, treat all $a \in A$ as primitive propositions (isNeg, isPos, etc.).
A has conjunction when

$$
S \models \phi_{1} \sqcap \phi_{2} \text { iff } S \models \phi_{1} \text { and } S \models \phi_{2} \text {, for all } S \subseteq C \text {. }
$$

That is, $\gamma(\phi \sqcap \psi)=\gamma(\phi) \cap \gamma(\psi)$, for all $\phi, \psi \in \mathcal{A}$.
Proposition: When $\gamma: A \rightarrow P C$ is an upper adjoint, then A has conjunction.

Proposition: When $\gamma(\phi \sqcup \psi)=\gamma(\phi) \cup \gamma(\psi)$, then \mathcal{A} has disjunction:
$S \models \phi \sqcup \psi$ iff $S \models \phi$ or $S \models \psi$.
Sign lacks disjunction: $\gamma(z e r o) \models$ neg \sqcup pos, because neg \sqcup pos $=a n y$, but
$\gamma($ zero $) \not \models$ neg and $\gamma($ zero $) \not \models$ pos.

Sometimes, we can implement a domain's disjunctive completion [Cousots79,Giacobazzioo]:

Downclosed sets are needed for monotonicity of key functions on the sets.
Now, $\bar{\gamma}$ preserves \cap and \cup. Properties, $a \in A$, are interpreted in $\mathcal{P}_{\downarrow}(A)$ as $\overline{\alpha_{o}}(\gamma(a))=\downarrow\{a\}$.

For $A=\mathcal{P}_{\downarrow}($ Sign $)$, these assertions are exact:

$$
\phi::=\text { neg } \mid \text { zero } \mid \text { pos }\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \vee \phi_{2}
$$

Complete lattice A is distributive if $a \sqcap(b \sqcup c)=(a \sqcap b) \sqcup(a \sqcap c)$, for all $a, b, c \in A$. When \sqcap is Scott-continuous, then

$$
\phi \Rightarrow \psi \equiv \bigsqcup\{a \in A \mid a \sqcap \phi \sqsubseteq \psi\}
$$

satisfies the property, $a \vdash \phi \Rightarrow \psi$ iff $a \sqcap \phi \vdash \psi$.
Proposition: If A is a distributive complete lattice, \sqcap is Scott-continuous, and upper adjoint γ is $1-1$, then A has Heyting implication, $\phi \Rightarrow \psi$, such that

$$
S \models \phi \Rightarrow \psi \text { iff } \gamma(\alpha(S)) \cap \gamma(\phi) \subseteq \gamma(\psi) .
$$

That is, $\gamma(\phi \Rightarrow \psi)=\bigcup\{S \in \gamma[A] \mid S \cap \gamma(\phi) \subseteq \gamma(\psi)\}$.
Heyting implication is weaker than classical implication, where $S \models \phi \Rightarrow \psi$ iff $\mathrm{S} \cap \gamma(\phi) \subseteq \gamma(\psi)$ iff for all $\mathbf{c} \in \mathrm{S}$, if $\{\mathrm{c}\} \models \phi$, then $\{\mathrm{c}\} \models \psi$.

The POS domain for groundness analysis of logic programs uses Heyting implication [Cortesi91,Marriott93] .

If $\gamma\left(\perp_{A}\right)=\emptyset \in \mathcal{P}(\Sigma)$, we have falsity (\perp); this yields the logic,

$$
\phi::=a\left|\phi_{1} \sqcap \phi_{2}\right| \phi_{1} \sqcup \phi_{2}\left|\phi_{1} \Rightarrow \phi_{2}\right| \perp
$$

In particular, $\neg \phi$ abbreviates $\phi \Rightarrow \perp$ and defines the refutation of ϕ within A, as done in the TVLA analyzer [Sagiv02] .
$\gamma: A \rightarrow P C$ is the interpretation function for the internal logic:

$$
\begin{aligned}
& \gamma(\mathrm{a})=\text { given } \\
& \gamma(\phi \sqcap \psi)=\gamma(\phi) \cap \gamma(\psi) \\
& \gamma(\phi \sqcup \psi)=\gamma(\phi) \cup \gamma(\psi) \\
& \gamma(\phi \Rightarrow \psi)=\bigcup\{S \in \gamma[\mathcal{A}] \mid S \cap \gamma(\phi) \subseteq \gamma(\psi)\} \\
& \gamma(\perp)=\emptyset
\end{aligned}
$$

γ-completeness characterizes the internal logic

The interpretation for conjunction, $\gamma(\phi \sqcap \psi)=\gamma(\phi) \cap \gamma(\psi)$, shows that γ-completeness is exactly the criterion for determining the connectives in A's internal logic:
Proposition: For $f: C^{n} \rightarrow P C, A$'s logic includes connective f^{\sharp} iff f^{\sharp} is γ-complete for f^{*} :

$$
\gamma\left(f^{\sharp}\left(\phi_{1}, \phi_{2}, \cdots\right)\right)=f^{*}\left(\gamma\left(\phi_{1}\right), \gamma\left(\phi_{2}\right), \cdots\right)
$$

Example: For Sign $=\{$ none, neg, zero, pos, any $\}$, negate ${ }^{\sharp}$ is γ-complete for negate $(S)=\{-\mathfrak{n} \mid n \in S\}$ (where negate ${ }^{\sharp}($ pos $)=$ neg, negate ${ }^{\sharp}($ neg $)=$ pos, negate $^{\sharp}($ zero $)=$ zero, etc. $)$:

$$
\phi::=\mathrm{a}\left|\phi_{1} \sqcap \phi_{2}\right| \text { negate }^{\sharp}(\phi)
$$

We can state "negate" assertions, e.g., pos \models negate ${ }^{\sharp}(n e g \sqcap a n y)$.

Post-image (left-to-right) abstraction of relations

$f: C \rightarrow P C$ defines a relation in $C \times C$, e.g., $\{1,3\} \llbracket$ succ $\rrbracket\{2,4\}$. f's left-to-right (post) image, post ${ }_{f}: P C \rightarrow P C$, is

$$
\operatorname{post}_{f}(S)=\cup_{c \in S} f(c)
$$

For Galois connection, $\mathrm{PC}\left\langle\overline{\alpha_{\mathrm{o}}}, \bar{\gamma}\right\rangle \mathcal{P}_{\downarrow}(A)$, and $\mathrm{f}^{\sharp}: A \rightarrow \mathcal{P}_{\downarrow}(A)$,

- for $T \in \mathcal{P}_{\downarrow}(\mathcal{A})$, define post $_{f \sharp}(T)=\sqcup_{a \in T} f^{\sharp}(a)=\cup_{a \in T} f^{\sharp}(a)$.
- use post $_{f \sharp}$ to compute left-to-right (over)approximations of f, e.g., $\{n e g\} \llbracket$ succ ${ }^{\sharp} \rrbracket\{$ neg, zero $\}$, that is, neg \vee zero.
Proposition: For $f_{\text {best }}^{\sharp}=\overline{\alpha_{o}} \circ f^{*} \circ \gamma$,

$$
\left(\text { post }_{\mathrm{f}}\right)_{\mathrm{best}}^{\#}=\overline{\alpha_{\mathrm{o}}} \circ \text { post }_{\mathrm{f}} \circ \bar{\gamma}=\text { post }_{\mathrm{f}_{\mathrm{b} \text { est }}}
$$

Corollary: If f is γ-complete, then (post $_{f_{\text {best }}^{\#}} \phi$) is in $\mathcal{P}_{\downarrow}(\mathcal{A})$'s logic.

Given $\mathrm{PC}\langle\alpha, \gamma\rangle A$, we have two relevant Galois connections between PC and $\mathcal{P}_{\downarrow}(\mathcal{A})$

Recall that $\bar{\gamma}(\mathrm{T})=\cup_{\mathrm{a} \in \mathrm{T}} \gamma(\mathrm{a})$ and that $\bar{\gamma}$ preserves both unions and intersections on $\mathcal{P}_{\downarrow}(A)$. Therefore, $\bar{\gamma}$ is an upper adjoint in two different ways:

Overapproximating abstraction:

$$
\begin{aligned}
\overline{\alpha_{o}}(S) & =\bigcap\{T \mid S \subseteq \bar{\gamma}(T)\} \\
& =\downarrow\{\alpha\{c\} \mid c \in S\}
\end{aligned}
$$

where
$\downarrow T=\left\{a \mid\right.$ exists $\left.a^{\prime} \in T, a \sqsubseteq a^{\prime}\right\}$.

Underapproximating

 abstraction:$$
\begin{aligned}
\overline{\alpha_{u}}(S) & =\bigcup\{T \mid \bar{\gamma}(T) \subseteq S\} \\
& =\{a \mid \gamma(a) \subseteq S\}
\end{aligned}
$$

where
$\left(\mathrm{D}, \sqsubseteq_{\mathrm{D}}\right)^{\mathrm{op}}$ is $\left(\mathrm{D}, \exists_{\mathrm{D}}\right)$.

Pre-image (right-to-left) abstraction of relations

$f: C \rightarrow P C$ defines a relation $\subseteq C \times C$, e.g., $\{0,1,3\} \llbracket$ succ $\rrbracket\{1,2,4\}$. f's right-to-left (pre) image, $\widetilde{p r e}_{f}: P C \rightarrow P C$, is

$$
\widetilde{p r e}_{f}(S)=\cup\left\{S^{\prime} \subseteq C \mid f^{*}\left(S^{\prime}\right) \subseteq S\right\}=\{c \mid f(c) \subseteq S\}
$$

For Galois connection, $\mathrm{PC}^{\mathrm{op}}\left\langle\overline{\alpha_{\mathrm{u}}}, \bar{\gamma}\right\rangle \mathcal{P}_{\downarrow}(A)^{\mathrm{op}}$ and $\mathrm{f}^{\sharp}: A \rightarrow \mathcal{P}_{\downarrow}(A)$,

- for $T \in \mathcal{P}_{\downarrow}(A)$, define $\widetilde{p r e}_{f \sharp}=\left\{a \mid f^{\sharp}(a) \subseteq T\right\}$
- use $\widetilde{p r e}_{f \sharp}$ to compute right-to-left (under)approximations of f, e.g., zero \vee pos \llbracket succ $^{\ddagger} \rrbracket$ pos and none \llbracket succ $^{\ddagger} \rrbracket$ zero (!)
Theorem: $\left(\widetilde{p r e}_{f}\right)_{b e s t}^{\#}=\overline{\alpha_{\mathfrak{u}}} \circ \widetilde{p r e}_{f} \circ \bar{\gamma}=\widetilde{p r e}_{f}^{f}{ }_{\text {best }}$.
Because $\widetilde{p r e}_{f \sharp} \phi$ always underapproximates $\widetilde{p r e}_{f}(\bar{\gamma}(\phi))$, it can be added to $\mathcal{P}_{\downarrow}(A)$'s logic.

Indeed, we can always define an underapproximating external logic

For each concrete property of interest, $\llbracket \phi \rrbracket \subseteq C$, define

$$
\llbracket \phi \mathbb{1}^{\mathcal{A}}=\{\mathbf{a} \in \mathcal{A} \mid \gamma(\mathrm{a}) \subseteq \mathbb{L} \phi\}
$$

Then, assert $a \vdash \phi$ iff $a \in \llbracket \phi \rrbracket^{\mathcal{A}}$.
This definition follows from the underapproximating Galois connection:

That is, $\llbracket \phi \rrbracket^{\mathcal{A}}=\overline{\alpha_{u}} \llbracket \phi \rrbracket$.
The inverted ordering gives underapproximation: $\llbracket \phi \rrbracket \supseteq \bar{\gamma}\left(\llbracket \phi \rrbracket^{\mathcal{A}}\right)$. This form of external logic is standard in "abstract model checking."

The inductively defined underapproximation to $\overline{\alpha_{u}} \llbracket \phi \rrbracket$:

$$
\begin{aligned}
& \llbracket a \rrbracket_{\text {ind }}^{\mathcal{A}}=\overline{\alpha_{\mathfrak{u}}}(\gamma(a)) \\
& \llbracket \phi_{1} \wedge \phi_{2} \rrbracket_{\text {ind }}^{\mathcal{A}}=\llbracket \phi_{1} \rrbracket_{\text {ind }}^{\mathcal{A}} \cap \llbracket \phi_{2} \rrbracket_{\text {ind }}^{\mathcal{A}} \\
& \llbracket \phi_{1} \vee \phi_{2} \rrbracket_{\text {ind }}^{\mathcal{A}}=\llbracket \phi_{1} \rrbracket_{\text {ind }}^{\mathcal{A}} \cup \llbracket \phi_{2} \rrbracket_{\text {ind }}^{\mathcal{A}} \\
& \llbracket[f] \phi \rrbracket_{\text {ind }}^{\mathcal{A}}=\widetilde{p r e_{\text {f }}} \llbracket \llbracket^{\mathcal{i n}} \rrbracket_{\text {ind }}^{\mathcal{A}}=\left\{a \in \mathcal{A} \mid f^{\sharp}(a) \in \llbracket \phi \rrbracket_{\text {ind }}^{\mathcal{A}}\right\}
\end{aligned}
$$

Entailment and provability are as expected: $\mathfrak{a} \models \phi$ iff $\gamma(\mathrm{a}) \subseteq \llbracket \phi \rrbracket$, and $a \vdash \phi$ iff $a \in \llbracket \phi \rrbracket_{\text {ind }}^{\mathcal{A}}$.
Soundness (\vdash implies \models) is immediate, and completeness (\models implies $\vdash)$ follows when $\overline{\alpha_{\mathfrak{u}}} \circ \llbracket \cdot \rrbracket=\llbracket \cdot \rrbracket_{\text {ind }}^{\mathcal{A}}$. This is called logical best preservation or logical $\bar{\alpha}$-completeness [Cousots00,Schmidt06] .

Scaling upwards

Analyzing large (100K+ LOC) programs

- engineered as a one-pass analysis, like static data-type checking
- flow-insensitive (ignores control-test expressions, loop iterations, distinct procedure-call points).
- "whole-program analysis": examines entire source-code base

The standard example is pointer analysis on C programs, where properties are stated, "var x may-point-to vars $\{y, z, \ldots\}$." A set of equations are generated in one program pass and solved in some small bound of iterations [Andersen94, Steensgaard96, HeintzeTardieu04].

Advantages: simple, fast, complete code coverage, no hand-extracted "abstract model" (as required for model-checking) [Engler04]

Drawbacks: properties are simple, too many "false alarms" (inability to verify desired property)

Modular analysis

- A program unit is abstracted and analyzed to a summary structure or assume-guarantee relation, where properties of the unit's free variables/inputs are associated/mapped to properties of the unit/outputs.
- When units are linked, so are their summaries, generating a composite summary. We don't reanalyze the units.
- Practical (better than linear-time) speedups are obtained when fixed points are solved locally within each unit (and not at link time) [CousotCousot02] .

There is no ideal approach, especially for the last item, so we survey some techniques (summaries, frontiers, symbolic evaluation) using the classic example of abstracting a higher-order function definition.

Example: higher-order normalization ("strictness") analysis

$B=\{\perp, \top\}$, where \top means "might normalize" and \perp means "does not normalize".

Example: $\mathrm{Fmn}=$ if ($\mathrm{m}=0$) (n) ($\mathrm{F}(\mathrm{m}+1) \mathrm{n}$)
$F^{\sharp}=\lambda a: B \cdot \lambda b: B \cdot a \sqcap\left(b \sqcup\left(F^{\sharp} a b\right)\right)$
$\operatorname{graph}\left(\mathrm{F}^{\sharp}\right)=\{\perp \mapsto \perp \mapsto \perp, \perp \mapsto \top \mapsto \perp, \top \mapsto \perp \mapsto \perp, \top \mapsto \top \mapsto \top\}$.
Domain B can be applied to analyses that predict the outcome of a boolean predicate/invariant ("predicate abstraction").

A higher-order, module-like example

Define: $\quad F^{\sharp}=\lambda f: B \rightarrow(B \rightarrow B) . \lambda x: B \cdot(x, f \cdot x)$
The function's graph (summary table) has 12 entries:

$$
\begin{aligned}
& \operatorname{graph}\left(\mathrm{F}^{\sharp}\right)=\{ \\
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mapsto \perp \mapsto(\perp, \perp),} \\
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mapsto \top \mapsto(T, \perp),} \\
& {\left[\begin{array}{l}
2 \\
1
\end{array}\right] \mapsto \perp \mapsto(\perp, \perp),} \\
& {\left[\begin{array}{l}
2 \\
1
\end{array}\right] \mapsto \top \mapsto(T, \top),} \\
& \ldots \\
& {\left[\begin{array}{l}
3 \\
3
\end{array}\right] \mapsto \perp \mapsto(\perp, \top),} \\
& \left.\left[\begin{array}{l}
3 \\
3
\end{array}\right] \mapsto \top \mapsto(T, \top)\right\}
\end{aligned}
$$

B	$B \rightarrow B$	$B \rightarrow B \rightarrow B \begin{aligned} & \text { [} \\ & {[3]} \\ & {[3]}\end{aligned}$	
$\xrightarrow{\text { B }}$	[2]		
	[1] $=\lambda x . x$		[${ }_{2}^{2}$
	$[1]=\lambda x . \perp$		[${ }_{[1]}$
	where $\left[\begin{array}{l}{[m]}\end{array}\right] \cdot T=[m]$		

It's model-checking-like and feasible to implement!

Partial summary/graph: frontier [Clack\&PeytonJones85]

Assemble the graph in increments and retain only useful ("frontier") entries, as based on these consequences of monotonicity:

- if $a \mapsto b \in$ frontier $\left(F^{\sharp}\right)$, then (i) for all $a^{\prime} \sqsubseteq a, a^{\prime} \mapsto b$ is sound; (ii) for $a l l b^{\prime} \sqsubseteq b, a \mapsto b^{\prime}$ is sound.
- if $a \mapsto T \in \operatorname{frontier}\left(F^{\sharp}\right)$, then forall $a^{\prime} \sqsupseteq a, a^{\prime} \mapsto T$ is sound.
- if $a_{1} \mapsto b_{1}, a_{2} \mapsto b_{2} \in \operatorname{frontier}\left(F^{\sharp}\right)$, then (i) $a_{1} \sqcap a_{2} \mapsto b_{1} \sqcap b_{2}$ is sound; (ii) if F^{\sharp} preserves \sqcup (holds when F^{\sharp} 's domain is a disjunctive completion), then $a_{1} \sqcup a_{2} \mapsto b_{1} \sqcup b_{2}$ is sound.

Example frontier: for $F^{\sharp}=\lambda f: B \rightarrow(B \rightarrow B) . \lambda x: B .(x, f \cdot x)$,
frontier $\left(F^{\sharp}\right)=\left\{\begin{array}{c}{\left[\begin{array}{c}2 \\ 2\end{array}\right] \mapsto \perp \mapsto(\perp,[2]),\left[\begin{array}{l}2 \\ 2\end{array}\right] \mapsto \top \mapsto(T,[2]), ~} \\ {\left[\begin{array}{l}3\end{array}\right]}\end{array}\right.$

$$
\left[\begin{array}{l}
3 \\
1
\end{array}\right] \mapsto T \mapsto(T,[3])
$$

Example inferences based on the frontier

For $F^{\sharp}=\lambda f: B \rightarrow(B \rightarrow B) . \lambda x: B .(x, f \cdot x)$, frontier $\left(F^{\sharp}\right)=\{$

$$
\begin{aligned}
& {\left[{ }_{2}^{2}\right] \mapsto \perp \mapsto(\perp,[2]),} \\
& {\left[{ }_{2}^{2}\right] \mapsto T \mapsto(T,[2]),} \\
& \left.\left[{ }_{1}^{3}\right] \mapsto T \mapsto(T,[3])\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \begin{array}{c}
{[\mathrm{m}]} \\
{[\mathrm{n}]}
\end{array} \cdot \top=[\mathrm{m}] \\
& \text { we can conclude } \\
& \text { and }[\mathrm{m}] \cdot \perp=[\mathrm{n}]
\end{aligned}
$$

$\left[\begin{array}{l}2 \\ 1\end{array}\right] \mapsto T \mapsto(T,[3])$ is sound (because $\left.\left[{ }_{1}^{2}\right] \sqsubseteq\left[{ }_{1}^{3}\right]\right)$
$\left[\begin{array}{l}3 \\ 3\end{array}\right] \mapsto T \mapsto(T,[3])$ is sound (because $\left[\begin{array}{l}3 \\ 1\end{array}\right]$, T map to $(T,[3])$)
$\left[\begin{array}{l}2 \\ 1\end{array}\right] \mapsto T \mapsto(T,[2])$ is sound (because $\left.\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 2\end{array}\right] \sqcap\left[\begin{array}{l}3 \\ 1\end{array}\right]\right)$
$\left[\begin{array}{l}3 \\ 2\end{array}\right] \mapsto T \mapsto(T,[3])$ is sound (because $\left.\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 2\end{array}\right] \sqcup\left[\begin{array}{l}3 \\ 1\end{array}\right]\right)$

Integrating symbolic evaluation with frontiers

For $F^{\sharp}=\lambda f: B \rightarrow(B \rightarrow B) . \lambda x: B .(x, f \cdot x)$,

$$
\begin{aligned}
& \text { where } \begin{array}{l}
{[\mathrm{m}]} \\
{[\mathrm{n}]}
\end{array} \cdot 丁=[\mathrm{m}] \\
& \text { and }[\mathrm{m}] \cdot \perp=[\mathrm{n}]
\end{aligned}
$$

- Starting from a purely symbolic formulation (the third line), the frontier expands with useful instances.
- At any point, we can replace symbolic arguments by T to "close" the frontier, generating a "worst case analysis."
- We can apply algebraic techniques to solve local fixed points.

Solving local fixed points (intuition)

Example: $\mathrm{F} x=\operatorname{if}(\ldots) \quad(\mathrm{g} x)(\mathrm{h}(\mathrm{F}(\mathrm{f} \mathrm{x}))$
$F^{\sharp}=\downarrow \quad F_{i} \quad$ where $\quad F_{0}=\lambda a . \perp$

$$
F_{i+1}=\lambda a .(g a) \sqcup\left(h\left(F_{i}(f a)\right)\right)
$$

By inductive reasoning,

$$
\begin{array}{rlr}
F_{i} & =\bigsqcup_{0 \leq j<i} h^{j}\left(g\left(f^{j} a\right)\right) \\
& \sqsubseteq \bigsqcup_{0 \leq j<i} h^{j}\left(g\left(f^{*} a\right)\right) \quad \text { where } \quad \begin{array}{l}
f^{i}=f \circ f \circ \cdots \circ f, i \text { times } \\
\\
\\
\sqsubseteq h^{*}\left(g\left(f^{*} a\right)\right)
\end{array} \quad f^{*}=\bigsqcup_{j \geq 0} f^{j}
\end{array}
$$

Each occurrence of f^{*} is solved locally, cheaply. The reasoning is implemented with regular tree/expression techniques; precision is traded for speed-up [CousotCousot02,Moeller03] .

References

1. This talk: santos.cis.ksu.edu/schmidt/SLS13.pdf
2. B. Blanchet, P. Cousot, et al. A static analyzer for large safety-critical software. ACM PLDI 2003.
3. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs. ACM POPL 1977.
4. Patrick Cousot, Radhia Cousot: Modular Static Program Analysis. CC 2002, Springer LNCS 2304.
5. F. Nielson, H.R. Nielson, C. Hankin. Principles of Program Analysis. Springer 2010.
6. D. Schmidt. Trace-Based Abstract Interpretation of Operational Semantics. J. Lisp and Symbolic Computation 10 (1998).
7. D. Schmidt. Internal and External Logics of Abstract Interpretations. VMCAI 2008, Springer LNCS 4905.
