Principles and applications of
abstract-interpretation-based

static analysis

David Schmidt
Kansas State University

www.cis.ksu.edu/ schmidt

Outline

Static analysis is property extraction from formal systems.

Abstract interpretation is a foundation for static analysis based
on Galois connections, semi-homomorphisms, and fixed-point
calculation. In this talk, we

¢ Introduce abstract interpretation

¢ apply it to static analyses of program semantics
(state-transition systems, equationally specified definitions,
rule-based relational definitions)

¢ survey applications of static analysis
¢ develop the correspondence of properties to propositions

¢ consider approaches to modular, “scalable” analyses

Background: abstract
Interpretation

An abstract domain defines properties

A formal system uses

{21012,) ~~—

values from set C, and | oy , / e
we wish to determine ~ ————<— e L \
properties of the C- """ o [------- 008
values that might arise - A pass) e

during computation.

Define an abstract domain, A: a partially ordered set of properties,
closed under meet (I'1). See example, Sign, above.

Define a monotone concretization map, v : A — PC, where PC is the
powerset of C, ordered by C, so that y(a) defines those elements that
“have property a.”

vy must preserve meets —for T C A, y(11T) =) .7 v(a) —so that an
Inverse function, o : PC — A, can be defined.

Operations f are abstracted to f* to compute on A

readInt (x) readSign(x)
x = succ(x) Q:is the output pos? x = succ(x)
if x < 0 : if (filterNeg(x):

A: abstractly interpret

_ _ x =negatef(x))
iInput domain Int by

(filterNonNeg(x):
x =succi(x)) fi

x = negate(x)

else:

x = succ(x) Sign =

{neg, zero, pos, any, none}:

writeInt (x) writeSign(x)
succh(pos) = pos negatef(neg) = pos
succh(zero) = pos negate?(zero) = zero
where succl(neg) = any (1) and negate’(pos) = neg
succt(any) = any negatef(any) = any

For the abstract data-test sets, zero, neg, pos, we calculate:
{zero +— pos, pos — pos, neg — any}. The last result arises because
succ?(neg) = any and filterNeg(any) = neg (good!) but filterNonNeg(any) = any

(bad — we need zero V pos!), so we cannot ensure the success of the else-arm.

A Galois connection formalizes the abstraction

{—2—1012}

.23,
| /

04 passy

v : Sign — P(Int) «:P(Int) — Sign
v(none) ={}, v(any) = Int x(S) =Mal|vy(a) CS}
v(neg) ={---,—3,—2,—1} e.g., «{2,4,6,8,...} = pos,

Y(ZGT’O) — {O}> Y(pOS) — {1>2) 3» o } CX{—1 y O} — any, OC{O} — €70

(P(Int), C){«x,v)(Sign,C) is a Galois connection:
x(S)C aiff S Cy(a).

v Interprets the elements in Sign, and « maps each data-test set in
P(Int) to the property that best describes the set [CousotCousot77] .

An abstract operation is monotone and sound

ffe A > Alissoundforf: C - PCiff cxof*C ffoux
(iff oy C vofl):

* f*

F*[S] Y(a)———= o

S

al I o ¢ L] « and y act as
a(s) f#__ T ya f# f;@(z) semi-homomorphisms.

Example: The succ? function seen earlier is sound for succ, e.g., for

succ : Int — P(Int), succ*(0) ={1}, and succt(zero) = pos.

f* is a postcondition transformer: S C y(a) implies
f(S) C v(ff(a)) where f*(S) = Ucesf(c).

]cﬂ

best — x0T 0oy IS the strongest (liberal) postcondition transformer.

Definition: f* is y-complete (“forwards complete”) for f iff
f* oy =y o f* [Giacobazzi01] . f* is x-complete ("backwards
complete”) for f iff x o f* = f* o & [Cousots00] .

An aggregate, e.q., Var — C, can be abstracted
pointwise or relationally

Interval lly — [4,32]]

yE[ai 32

Polyhedron: A;((3_; ayj - i) < by)

Sign: [x — >0][y — >0]

r >
¥ =

Octagon: A;(+x; £ y; < ci)

':'":'

3 <o <27

H r+y = 58 y
4 <y <32 Tr 4 3ly < 325
T —y = 61 x4+ Ty =0

diagrams from Abstract Interpretation: Achievements and Perspectives by Patrick

Cousot, Proc. SSGRR 2000.

Three codings (a)-(c) of a relationally abstracted
store based on the octagon abstract domain:

(Va-Wi £ 4 j
Vi—¥ < -1 1 2 3

(@) { Va—-¥ < 3 (b) 1 |+o0 4 3
Vi—Vs < —1 il 2 —1 4o 4

Va—Vs < 1 3 |=1 1 %=

Va
(c) 7 =
i | E

Bt Va

Figure 2. A potential constramt conjunction (a), its corresponding DBM m (b),
potential graph G{m) (c), and potential set concretization ' “*{m) (d).

diagram from The octagon abstract domain, by Antoine Ming, J. Symbolic and

Higher-Order Computation 2006

Predicate abstraction uses a relational domain
based on the predicates in the goal and program

Example: provethatz > x/\z > y at ps:

< y Po, <?> ?a ?>
% f ter;ggzzi)s(/_; p1, (t, l ?) pz,f, 2,?)
Py exit p3, (t, 1, t) p3, (f, t,t)

The store is abstracted to a relational domain that denotes the values
of these predicates:

b1 =x<y ¢r=2z2>x Gr=z2>y

The predicates are evaluated at the program’s points as one of {t, f, ?}.
(Read 7as t \V f.)

At all occurrences of p; in the abstract trace, ¢, /\ ¢35 holds.

When a goal is undecided, domain refinement
becomes necessary

Prove ¢op = x > y at pu:

: p0><?>
R flix>=y)
P thendi=x; m,ﬁ \p4,<t>
D x=y par(f)
%' y=1 p3><t>
p4: } p4><?>

To decide the goal, we refine the abstract domain by adding a new
predicate: wp(y =i,x > y) = (x> i) = ¢1. We add ¢ and try again:

p0><?>?>
et
E; (f t>> ba <?/,,/’becausexzyandXZi
Ps) <t,t> e T imply y > i implies Xxpew > 1
pa, (t, t)

But incremental predicate refinement cannot synthesize many
Interesting loop invariants. For this example:

 1=n;Xx=0;
P while 11=0 {
P Xx=x+1 i1=1-1;

}
Py goal:x=n

The initial predicate set, Pp = {i = 0,x = n}, does not validate the
loop body.

The first refinement suggests we add P; ={i = 1,x =n — 1} to the
program state, but this fails to validate a loop that iterates more than
once.

Refinement stage j adds predicates P; ={i =j,x =n —j}; the
refinement process continues forever!

The loop invariantisx=n—1i :-)

Mechanics of static analysis:
abstracting small-step and
big-step semantics definitions

The most basic static analysis is trace generation

while (x 1= 1) { T'wo concrete traces:

p, : if Even(x) v V
P, then x =xdiv2; Po,4 Po, 6

. — . P1)4 P1, 6
; = 3*x +
} Py else x=3*%+1; pzf pzf
By - exit Po, 2 Po, 3
. - o p1,2 P1,3
Note: pi, v abbreviates pj, (x : v) pzf D)3
pO, even Po, | Po, 10
pl, even For Pa,] ce
p2,¢even Parity = {none, even, odd, any}, p4¢1
00, any the loop’s operations, f, are ab-
dd/ “a stracted to f!. The abstract trace is a
4, 1, . .
P 0 P, any static analysis of those concrete ex-
p3, odd ecutions with an even-valued input.

Traces are used in model checking.

Data-flow analysis collects the abstract trace
iInto a map, ProgramPoint — A

The abstract value “attached” to program point p; is defined by the
first-order equational pattern,

piStore = |_| f)# (p;Store)
pjEpred(pi)

Flow equations for previous example:

init = (x: even) init
. # 1)#
poStore = init L fﬁz(pZStore) | f%(pgStore) v of = 0EDF oy
P
p1Store - fj(j)t poStore) ftor = (XI=1)#

pl
) fty = (Even(x))#/ \L#lf = (IEven(x))#
p3Store = fj-j]f pi1Store) p2 p3
)

(
p2Store = fjj (p1Store

(

(f#o = (X=x div2)# f#g = (X= 3x+1)#

paStore = f

We solve the flow equations by calculating approximate solutions in
stages until the least fixed point is reached.

Note: L isthe same as (x: L)

stage || poStore | pi1Store | poStore | p3Store | p4Store
0 il il il il il

1 (x:even) | L 1 1 1

2 (x:even) | (x:even) | L 1 1

3 (x:even) | (x:even) | (x:even) | L 1

4 (x:any) | (x:even) | (x:even) | L 1

5 (x:any) | (x:any) | (x:even) | L (x:0dd)
6 (x:any) | (xiany) | (x:even) | (x:odd) | (x:0dd)

A faster algorithm uses a worklist that remembers exactly which
equations should be recalculated at each stage.

Termination: Array-bounds checking reviewed

Integer variables might receive values from the interval domain,

[={[i,j]|1,j € IntU{—0c0,+00}}.
We define [a,b] LI [a’,b’] = [min(a, a’), max(b, b’)].

inta =new intf10};, _ _ _ . i = [0,0]
=0, —=-----""" ’
while (i < 10) { ~ = _ —
a[|] = - — _ _ F_)-I-_‘ ' [050.”_‘[(D,Q] [050]
i=i+ 1 h l=[0!0]u1'1!1]’_‘[-(Dlg]=[051]
} D L IEY (R

~i=[11]| | [22]=[1,2]

This example terminates: i’s ranges are
atpj :[0..9]
atpo : [1..10]
at loop exit: [1..10] 11 [10, +o00] = [10, 10]

But others might not, because the domain is not finite height:

i=0: = 1=10,0]

whllefllrue{ — T i=[0,0]] |[1,1]] |[22]..

} i=i+1; ~ infinite limitis [0, + @]
~------ i=[] (dead code)

The analysis generates the infinite sequence of stages,
0,0],10,1],...,10,1], ... as i’s value in the loop’s body.

The domain of intervals, where [1,j] C [i’,j'] iff 1 <j and j <j’, has
Infinitely ascending chains.

To forcefully terminate the analysis, we can replace the LI operation by
V, called a widening operator:
if i’ <ithen — oo else 1,

LIV, =1[i,]] 11V, i =
if j” > j then + co else j]

The widening operator, which guarantees finite convergence for all
Increasing sequences on the interval domain, quickly terminates the
example:

i=0;, —=----1i=[0,0]
while true {

- - - |=[050]V[151]=[0!+CD]
} =1+ 1;

~- - ------ i=[] (dead code)

but in general, it can lose much precision:

Int a = new int[10];

i =0; —<-----" i =[0,0]

while (i < 10) {
... a[i] < ---i=[0,00V[1,1] =[0,+ @]
1=1+1;

R i=[10,+@]

=

For this reason, a complementary operation, A, called a narrowing
operation, can be used after V gives convergence to recover some
precision and retain a fixed-point solution.

We will not develop A here, but for the interval domain, a suitable A
tries to reduce —oo and +oo to finite values. For the last example, the
convergent value, [0, +oco], in the loop body would be narrowed to

[0, 10], making i’s value on loop exit [10, 10].

Another approach is to use multiple “thresholds” for widening, e.qg.
—o00, (2731 —1), 0, etc. for lower limits, and (23" — 1) and +oo for upper

limits.

Structured static analysis on syntax trees

Given a block of statements, B, we might wish to calculate the
values that “enter” and “exit” from B. If B is coded in a
structured language, the static analysis can compute a
"structured transfer function” for B:

Cio=p:x =E|C|if ECy Cy|whileE C
A sample structured analysis that ignores tests: [C] : Ain — Aout

[p:x =EJin = f]ﬁg(m) (the transfer function for p)
[Clin = [C2l([Cq]in)
[if E C7 CoJin = [Cq]in U [Colin

[while E CJin = in U outc,
where outc = | |;» youty,

and outy = L A and outi,; = [C](in U outy)

We annotate a syntax tree with the in-and out-data — here is a
reaching definitions data-flow analysis, which computes sets of
assignments that might reach future program points:

[p:x =E]in =1in — killy U {p} [while E Clin =in U {J;5, outi,
[Clin = [C21([Cq]in) where outy = {}
[if E C; Co]in =[Cqi]in U [Ca]in and outiy 1 = [Cl(in U outy)

v A

(1 C {bl,pz,g}

{p1} C.{ pl,p3}
{} c{p1} 7 {pl)C{p2) 7 {pl}UxC X

pl:y=1; (ify>x (p2:y=x) (while y!'=x (p3:y =y+1)))
X0 ={} X1 ={p3} X=X2={p3}

Big-step relational semantics: derivation trees
o-p:x =Ll f,(0)

o Cill o1 01 Coll 02 fee(o)F Cill o1 fef(o)- Coll o2
o C1;Coll oo o if E C1 Coll o1 U oo

fee(o)F Cll o' o' while E C|l o”
o while E C| fge(o) Ll o”

Recall that f,, is a transfer function and that fe+ and fg+ "filter” the store, e.g.,

1-Cl L

frsot(x 14,y :3) = (x:4,y:3), whereas fy=2t(x: 0,y :3) = L.

An example: if Even(x) (x=0) (while x#3 (x = x+1))
(x:1)F if Even(x) (x =0) (whilex #3 (x=x+ 1)) L (x:3)

(N x=x+ 1iL/<:<:2> /<X\2>F wge X?“’miu-
(x:2)Fx=x+ 1] (x:3) /<X33>|_ while x # 3.1 (x:3) L J_

IFx=x+1] L I+ while x #3... L

An abstract big-step derivation tree

Using the same inference rules but with abstract transfer
functions for Parity = {_L, even,odd, T}, we generate an
abstract tree that is infinite but regular:

(x:0dd)F if Even(x) (x =0) (whilex#3 (x=x+1)) L UX
IFx=0{ L (x:0dd)F while x # 3...] < ---------
(x:odd)F x =x + 1]} (x:even) (x:even)t while x # 3...{} L U X

(x:even) x =x + 1ﬂéodd> k{:c{iﬂ— while x # 3@

Variable X denotes the answer from the repeated loop subderivation:
X = (x:odd) UX

The least solution sets X = (x:odd).

Interprocedural analysis

func £(x) localy; C. [x+— [E]olly — L] Cl o
oz = £(E)| olz— o'(y)]

where [E]o denotes E’s value with o, and x +— v assigns v to x.

Example: func g(x) local z; z = x+1.
a=g(2); b=ga); a=axb

a: 1, b:1)-a=g(2); b=g(a); a=axbl (aieven,b:even
g \
(a: 1, b: 1) a=g(2)l :J_> (a:odd,b: L) b =g(a); a=axbl (a:even,b:even)

(x:even,zz)Fz=x+1] (X:evezodd, b:eve}% a = ax bl (azeven,b:even)
(a:odd,b: L) b =g(a);l (a:od
(x:0dd, Z:J_ﬁz =x+ 1 <X20d>

The derivation tree naturally separates the calling contex ts.

"Too many” calling contexts (*) force widening (!):

func fac(a) localb; ifa=0(b = 1) (b = fac(a—1);b = a * b).
c¢ = fac(3)

* 3, L)Fifa=0(b=1)(b=facla—1);b=axb)l| LL(T,T)=(T,T)

lFb=1]71 (3, L)F b=fac(a—1); b=ax*bl (T, T)

4

(3, L)k b=facla— 1) (3, T) 3 TEb=ax*xbl T,T

x

31302, L Cifa=0..0 (O DT, T«Xb)=X=(T T

(3, Lt f\o 40, THr() (T, T)

(0, L)Fb=1] (0, 1) (T, L)Fb=fac(a—1); b=axbl (T, T x X.b)
AN

(T, L)Fb= fac(a— 1 (T, X.b) (T, X.b)Fb=axbl (T, T *X.b)

*' 1fa—O A X

X = (0, Hu(T, T *x X.b). The least solution sets X = (T, T).

Standard applications of static
analysis

Abstract testing and model generation

qy: while isEven(x) {) !
. x=xdiv 2; Po, even Po,odd
} D1, evern p2,0dd
pZ: X:4*X; po,aTUD P3,even
Dy exit pz)/odd
p3, even

Each trace tree denotes an abstract “test” that covers a set of
concrete test cases, e.g., y(even) ={...,—2,0,2, ...}

Forms of abstract testing:
¢ Black box: For each test set, S C C, we abstractly interpret with

x(S) € A. (Best precision: ensure that S = vy(«(S)).)
¢ White box: for each conditional, B, in the program, ensure there is
some a; € A such thaty(a;) = {s | B; holds for s}

Once we generate an abstract model, we can analyze it further
— ask questions of its paths and nodes — via model checking,.

Low-level safety checking

One example is type casting: " Object
. Bool Rational {...ra\t“\i,/alue... }
pi: ... ((Rational) x).ratValue()... \ In|t ‘:

A static analysis calculates the abstract store arriving at the
cast at pi, a checkpoint:

¢ pi, (...x:Int...): no error possible — remove the run-time check
(because Int C Rational, hence y(Int) C y(Rational)).

¢ pi, (...x: Object...): possible error — retain run-time check (because
Object [Z Rational)

¢ pi, (...x:Bool...): definite error, because BoollMRational=1 (assuming

v(L)={).

Two more examples of lo w-level safety checking:
Array-bounds and arithmetic over- and under-flow checks

¢ Analysis: interval analysis, where values have form, [i,j], 1 <j.

¢ Checkpoints: for ale] — e has value in range, [0, a.length];
for int x = e — e has value in range, [—23" — 1, +231 —1]

Uninitialized variables, dead-code, and erroneous-state checks

¢ Analysis: constant propagation, where values are {k}, 1, or T.

¢ Checkpoints:
uninitialized variables: referenced variables have value # 1

dead code: at program point pi, arriving store has value # 1
erroneous states: at program point p; : Error, arriving store has
value = 1. (Note: This can be combined with a backwards analysis, starting

from each p; : Error with store T, working backwards to see if an initial state is

reached.)

Program transformation: Constant folding

T, 0T
P Fb
B x=1y=2 PW”L%Tg\\ 4%$‘
e while (x <y + z) { w210 (\pl 145
}pZ' X=x+1; \\ // 0, ToT ’T
Py exit S T’Q’T

The analysis tells us to replace y at p; by 2:
x =1; y =2; while (x <2+ z) x=x+1

Basic principle of program transformation:

If a; € A arrives at point p; : S, where f; : C — C Is the concrete transfer
function, and there are some S’, f/ such that fi(c) = f’(c) forall c C¢c vy(ay),
then S can be replaced by S’ at p;.

For constant folding, the transformation criteria are the abstract
integers ... — 1,0, 1, ... (but not T).

Precondition checking and assertion synthesis

A backwards analysis synthesizes precondition assertions that
ensure achievement of a postcondition:

Po: 1f x=0 a”
p1:then x = x+1 S/;gns RN

notpos notneg
P2 :else x = x-1

p3:halt (x:| notneg) ”eg\ ZT’O pos
) none
x:l TN nogneg —| notneg Where
! f2,(a) =aMzero =oof_goy
x:] Ty P0\x:| notneg ; ;
o N " fff_] f,o=aofroy, €9, (notneg) = pos;
— / \ O
x| pbtneg x| pos fﬁ#o(zem) — J_;fio(_l_) =T
Pl < //7]92 fL =xofyio0y, e.g.,fil(notneg) = pos
25 ps T T

The inverse functions compute on sets:
Goal: x:| nbtneg la={a"€eA|a’'C al
f#=1(S)={a e A|f?(a) €S}

The entry condition can be used with a forwards analysis to
generate postconditions that sharpen the assertions:

. T al
(x :notneg) po: if x=0 S”[gns N
p1ix = x+1 / notpos notneg
P2:x = x-1 neg \zero/ \pos
p3: halt ‘\,\\no‘ne
X :notneg
px £ fhzo(a) = allzero = xof_goy
=0 -7 “~ o

\\‘\if . pos fiéo =xofyyovy, e.g., fio(notneg) = pos;

: = L (M) =T
]31#\\ //];2 where 1,4 (zero) T (T)
[MAN 7 f 4 fL —xofyy07y, e.gq., fil(notneg) = pos

X: pos\ pg// X : notneg
I
x :pos LUnotneg = notneg

The forwards-backwards analyses can be repeatedly alternated.

The “internal logic” of an abstract
domain

Abstract values = logical propositions

Read properties like
N neg € Sign as logical
I R ropositions,

{1’4}/{2,4\,6,8,...} -\ / ‘r‘) p . ”
i ISNegative”, etc.

271012,

ForS C C,a,a’ € A,v:A — PC, define
¢ SEaliff S C Y((l) e.g.,{—3,—1} & neg
¢ aradiffaCa’ eqg., negt any

Forf: C — PC,f': A — Alissoundifff*oy Cyoft iff
x o f* C f* o & This makes f a postcondition transformer:

Proposition: S = a implies *(S) = f#(a).

fiest — o f* oy is the strongest liberal postcondition transformer for f.

A has an internal logic that y preserves

First, treat all a € A as primitive propositions (isNeg, isPos, etc.).

A has conjunction when
SEOMNbIfSEd;and S = &y, forall S C C.

Thatis, y(¢) =v(d)nyb), forall b, € A.

Proposition: When vy : A — PC is an upper adjoint, then A has
conjunction.

Proposition: When y(¢p UYp) =v(d) Uy(), then A has disjunction:
SEOUYIFFSE PorS E.

Sign lacks disjunction: y(zero) = neg LI pos, because neg LI pos = any, but

Y(zero) £ neg and y(zero) ¥ pos.

Sometimes, we can implement a domain’s
disjunctive completion [Cousots79,Giacobazzi00]

P(Int) :
{..-1,0.1,..} w{any,neg,z?m,pos,none} % (Sign)
{..-2,-1,0} + {neg,zero,pos,none} __
{..-2-112,..} _— | {zero,pos,none}

{neg,pos,nong} |

{...,_2,_1} {O} \ ’
{1,2,3,...} | {zero,none} {pos,none}
{neg,none} /

o %{none}
W |
{} 0

Y(T) =Uaetvla) &o(S) =lHedcilceS)

Downclosed sets are needed for monotonicity of key functions on the sets.

Now, ¥ preserves N and U. Properties, a € A, are interpreted in
P (A) as &, (v(a)) = [{a}.
For A ="P|(Sign), these assertions are exact:

¢ == neg|zero|pos| 1 NP2 d1V P2

Complete lattice A is distributive if am (buUc) = (alb) U (allc), for
all a,b,c € A. When 11 is Scott-continuous, then

b=V = [HacAland P}
satisfies the property, at- =1V iff arid .

Proposition: If A is a distributive complete lattice, 1M Is
Scott-continuous, and upper adjoint y is 1-1, then A has
Heyting implication, ¢ = 1, such that

SEO=Viffy(x(S)) Ny(d) Cv(U).
Thatis, v(¢ =) =S € YIAl | SNy(d) Cyv()}.

Heyting implication is weaker than classical implication, where S = ¢ = iff
SNy(d) Cvyp)iffforallc €S, if{c} = ¢, then{c} = .

The POS domain for groundness analysis of logic programs uses Heyting implication
[Cortesi91,Marriott93] .

Ifv(La) =0 e P(X), we have falsity (_L); this yields the logic,
G = aldiMb2| U2 1= 2| L

In particular, —¢ abbreviates ¢ = 1 and defines the refutation of ¢
within A, as done in the TVLA analyzer [Sagiv02] .

v : A — PC is the interpretation function for the internal logic:

=v($) Uy()
d=1V)=U{S evIAl| SNny(d) Cv()}

v-completeness characterizes the internal logic

The interpretation for conjunction, v(¢ M) =v(¢) Ny(h),
shows that v-completeness is exactly the criterion for
determining the connectives in A’s internal logic:

Proposition: For f: C™ — PC, A’s logic includes connective f*
iff f* is y-complete for f*:

"}/(fﬁ(d)],(l)z, o)) — f*(Y(d)1),Y(d)2), o)

Example: For Sign = {none, neg, zero, pos, any}, negate! is
v-complete for negate(S) = {—n | n € S} (where negate’(pos) = neg,
negatef(neg) = pos, negate!(zero) = zero, etc.):

¢ = ald1Mdalnegatet (¢)

We can state “negate” assertions, e.g., pos = negate?(neg M any).

Post-image (left-to-right) abstraction of relations

f: C — PC defines a relation in C x C, e.g., {1, 3}[succl{2,4].
f's left-to-right (post) image, post;: PC — PC, IS
post(S) = Uees f(c).
For Galois connection, PC(o,,Yy)P (A), and fi.A > P (A),
¢ for T € P(A), define post ¢ (T) = U qet fF(a) = Uaet ().

¢ use post; to compute left-to-right (over)approximations of f, e.g.,
(neg}[succt{neg, zero}, that is, neg \V zero.

Proposition: For fiest = 0,0 f oy,

(postf)iest = ™o O posts oY = post

best

Corollary: If f is y-complete, then (post: ¢)isin P (A)’s logic.

best

Given PC(x,v)A, we have two relevant

Galois connections between

PC and PL(A)

Recall that ¥(T) = Ugset v(a) and that ¥ preserves both unions and
intersections on P (A). Therefore, y is an upper adjoint in two

different ways:

PC vt Y TPV(A)
u = U
S o. aos

Overapproximating
abstraction:

o6(S) =TS CHy(T)]
= odet|c e S}

where

IT={a|existsa’ € T,aC a’l.

PC® vy _ Y 1 RMAX
N P IN
S ___?,Eus

Underapproximating
abstraction:

oau(S) =UTI¥(T) €S}

={a|vy(a) C S}
where
(D,Ep)°Pis (D, dp).

Pre-image (right-to-left) abstraction of relations

f: C — PC defines arelation C C x C, e.g., {0, 1,3}[succ|{T1, 2,4}.
f's right-to-left (pre) image, pre; : PC — PC, is
preg(S) =U{S" C C|1*(S) C S} ={c|f(c) C S}
For Galois connection, PC°P (o, V)P (A)°P and fi.A > PL(A),
¢ for T € P|(A), define preq: = {a | ff(a) C T}

¢ use preg to compute right-to-left (under)approximations of f, e.g.,

zero V pos[succt]pos and none[succ?]zero (1)

Theorem: (pre;)i . = &u 0 preg oy = pre

best

Because pre ¢ always underapproximates pre(v(¢)), it can
be added to P, (A)’s logic.

Indeed, we can always define an
underapproximating external logic

For each concrete property of interest, [¢] C C, define

[¢p]A ={a e Aly(a) C [$]}
Then, assert a - ¢ iff a € [d]A.

This definition follows from the underapproximating Galois connection:

V(D =Ulv(a)[aeT} PC® vimr vV 11~ PA)P

Thatis, [¢]* = &[],

The inverted ordering gives underapproximation: [¢] 2 V([$d]14). This
form of external logic is standard in “abstract model checking.”

The inductively defined underapproximation to o, [$]:

[a] 4 4 = &ul(v(a))

[b1 A P2l fg = [P115,a N [d2l4 4

[b1V b2l = [d1]5,q YU [d2] g

[[f1p]4 o = Dreg [b]4 qa—1a €Al fi(a) € [$p]] ind

Entailment and provability are as expected: a = ¢ iff y(a) C [¢], and
ab ¢iffa e [b]4

ind:

Soundness (- implies =) is immediate, and completeness (= implies
-) follows when o, o [-] = [-]4 ;. This is called logical best
preservation or logical @x-completeness [Cousots00,Schmidt06] .

Scaling upwards

Analyzing large (100K+ LOC) programs

¢ engineered as a one-pass analysis, like static data-type checking

¢ flow-insensitive (ignores control-test expressions, loop iterations,
distinct procedure-call points).

¢ "whole-program analysis”: examines entire source-code base

The standard example is pointer analysis on C programs, where properties are
stated, “var x may-point-to vars {y, z, ...}."” A set of equations are generated in one
program pass and solved in some small bound of iterations [Andersen94,
Steensgaard96, HeintzeTardieu04] .

Advantages: simple, fast, complete code coverage, no
hand-extracted “abstract model” (as required for model-checking)
[Engler04]

Drawbacks: properties are simple, too many “false alarms” (inability
to verify desired property)

Modular analysis

¢ A program unit is abstracted and analyzed to a summary
structure or assume-guarantee relation, where properties of the
unit’s free variables/inputs are associated/mapped to properties of
the unit/outputs.

¢ When units are linked, so are their summaries, generating a
composite summary. We don’t reanalyze the units.

¢ Practical (better than linear-time) speedups are obtained when
fixed points are solved locally within each unit (and not at link
time) [CousotCousot02] .

There is no ideal approach, especially for the last item, so we survey
some techniques (summaries, frontiers, symbolic evaluation) using
the classic example of abstracting a higher-order function definition.

Example: higher-order normalization
(“strictness™) analysis

B ={L, T}, where T means "might normalize” and . means "does not
normalize”.

B—>B .
B. - _ B— B—B
| [2] = AX.X 2l
L 1
[1] =AX._L 2]
[1] l,
where {21]] T = [m] [1] ,_aﬁd %nm]] 1 = [n]

Example: Fmn = if (m=0) (n) (F (m+1) n)
FF =Aa:B.Ab:B.am(bU (Ff a b))

graph(F)={L s 1l— 1, 1Tl Tol—1l T—T—T.

Domain B can be applied to analyses that predict the outcome of a
boolean predicate/invariant ("predicate abstraction™).

A higher-order, module-like example

Define:

FF=A:B — (B — B).Ax:B. (x,f-x)

The function’s graph (summary table) has 12 entries:

graph(F) ={

11— Lo (L, 1),

= T = (T,1),

1
1

2] L (L, 1),
2
1

= T = (T,T),

[l L= (L,T),

[3

3]H—|—H(—|—,—|—) }

B—>B
BT Bl=axT - 577 BfB
- [2] = Axx
L b
CEAxL
where H,r]‘] T = [m]
and 0l | = qn

It's model-checking-like
and feasible to implement!

NG W

RRE BN

Partial summary/graph: frontier [Clack&PeytonJonesss]

Assemble the graph in increments and retain only useful ("frontier”)
entries, as based on these conseguences of monotonicity:

¢ if a— b € frontier(F¥),then (i) foralla’ C a, a’— bis
sound; (ii) forall b’ £ b, a+— b’ is sound.

¢ if a — T & frontier(F¥), then forall a’ J a, a’ — T is
sound.

¢ If ay +— b], a, — by € frontier(Fﬁ), then (I) ailla,— biMby
is sound; (i) if F¥ preserves L (holds when F¥’s domain is a
disjunctive completion), then a; LI a, — by LI b, IS sound.

Example frontier: for F=Af:B — (B — B).Ax: B. (x,f - x),

(ST Lo (L, 12D), [5] 9= T e (T, 120),
frontier(F*) = { h

(71— T = (T,3])

Example inferences based on the frontier

For FF=Af:B — (B — B).Ax:B. (x,f-x),
frontier(F) ={

— W NN

2l L (L, (2]
|— T (T,

= T — (T,I[3]

we can conclude

N W = N WWw —= N

=T (T,
| — T (T,[3])is sound (because |
=T = (T,

=T (T,]

3

3
2]
3

) 1S sound (because |

) IS sound (because |

1) 1s sound (because |

N W = N = W =N

B—>B
SBIEMT

[2] = AX.X

[1] = Ax._L

]

I

[m]

where [n] - T = [m]

and 0l | = fnj

- (N
| S—
N—

J, Tmapto (T,[3]))

]

]

NG &

- BE BN

Integrating symbolic evaluation with frontiers

For FF=Af:B — (B — B).Ax:B. (x,f-x),

B—>B

symbolicFrontier(F*) = { 5 o B>B—B E
2 O REmx Bl
51— aw(a,a), oy AR ¥
3 3 [1] = AX._L 2]
[T1—=am(a,[]]-a), — .
where {nm] T = [m] [1]

f—a— (a,f-a) } m)

and i 1= m
¢ Starting from a purely symbolic formulation (the third line), the

frontier expands with useful instances.

¢ At any point, we can replace symbolic arguments by T to "close”
the frontier, generating a “worst case analysis.”

¢ We can apply algebraic techniques to solve local fixed points.

Solving local fixed points (intuition)

Example: F x =if (...) (g x) (h(F{ x))

Fo = Aa.L

F*=||.,Fi, where
|_|120 Fi.1 =Aa.(g a) U (h(F(f a)))

By inductive reasoning,

Fi R(g(f a))

0j<i ™™ flt=fofo-.-.-of, itimes
C Ho<j<i W(9(f* a)) where £ = |y
= h(g(f* a)) -

Each occurrence of f* is solved locally, cheaply. The reasoning
IS Implemented with regular tree/expression techniques,
precision Is traded for speed-up [CousotCousot02,Moeller03] .

References

1. This talk: santos.cis.ksu.edu/schmidt/SLS13.pdf

2. B. Blanchet, P. Cousot, et al. A static analyzer for large safety-critical
software. ACM PLDI 2003.

3. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs. ACM POPL 1977.

4. Patrick Cousot, Radhia Cousot: Modular Static Program Analysis. CC
2002, Springer LNCS 2304.

5. F Nielson, H.R. Nielson, C. Hankin. Principles of Program Analysis.
Springer 2010.

6. D. Schmidt. Trace-Based Abstract Interpretation of Operational
Semantics. J. Lisp and Symbolic Computation 10 (1998).

7. D. Schmidt. Internal and External Logics of Abstract Interpretations.
VMCAI 2008, Springer LNCS 4905.

