
Principles and applications of
abstract-interpretation-based
static analysis

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

(-: / 1

Outline

Static analysis is property extraction from formal systems.

Abstract interpretation is a foundation for static analysis based
on Galois connections, semi-homomorphisms, and fixed-point
calculation. In this talk, we

� introduce abstract interpretation

� apply it to static analyses of program semantics
(state-transition systems, equationally specified definitions,
rule-based relational definitions)

� survey applications of static analysis

� develop the correspondence of properties to propositions

� consider approaches to modular, “scalable” analyses

(-: / 2

Background: abstract
interpretation

(-: / 3

An abstract domain defines properties

A formal system uses

values from set C, and

we wish to determine

properties of the C-

values that might arise

during computation.

γ

pos

zero

none

any

neg

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}

P(Int) Sign

Define an abstract domain, A: a partially ordered set of properties,

closed under meet (⊓). See example, Sign, above.

Define a monotone concretization map, γ : A → PC, where PC is the

powerset of C, ordered by ⊆, so that γ(a) defines those elements that

“have property a.”

γ must preserve meets – for T ⊆ A, γ(⊓ T) =
⋂

a∈T γ(a) – so that an

inverse function, α : PC → A, can be defined.

(-: / 4

Operations f are abstracted to f♯ to compute on A

readInt(x)

x = succ(x)

if x < 0 :

x = negate(x)

else:

x = succ(x)

writeInt(x)

Q:is the output pos?

A: abstractly interpret

input domain Int by

Sign =

{neg , zero, pos , any ,none}:

readSign(x)

x = succ♯(x)

if (filterNeg(x):

x = negate♯(x))

(filterNonNeg(x):

x = succ♯(x)) fi

writeSign(x)

where

succ♯(pos) = pos

succ♯(zero) = pos

succ♯(neg) = any (!)
succ♯(any) = any

and

negate♯(neg) = pos

negate♯(zero) = zero

negate♯(pos) = neg

negate♯(any) = any

For the abstract data-test sets, zero,neg , pos , we calculate:
{zero 7→ pos , pos 7→ pos , neg 7→ any}. The last result arises because

succ♯(neg) = any and filterNeg(any) = neg (good!) but filterNonNeg(any) = any

(bad — we need zero ∨ pos!), so we cannot ensure the success of the else-arm.

(-: / 5

A Galois connection formalizes the abstraction

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}

pos

zero

none

any

neg

α

P(Int) Sign

γ : Sign → P(Int)

γ(none) = {}, γ(any) = Int

γ(neg) = {· · · ,−3,−2,−1}

γ(zero) = {0}, γ(pos) = {1, 2, 3, · · ·}

α : P(Int) → Sign

α(S) = ⊓{a | γ(a) ⊆ S}

e.g., α{2, 4, 6, 8, ...} = pos ,
α{−1, 0} = any , α{0} = zero

(P(Int),⊆)〈α, γ〉(Sign,⊑) is a Galois connection:

α(S)⊑a iff S ⊆ γ(a).

γ interprets the elements in Sign, and α maps each data-test set in

P(Int) to the property that best describes the set [CousotCousot77] .

(-: / 6

An abstract operation is monotone and sound

f♯ : A → A is sound for f : C → PC iff α ◦ f∗ ⊑ f♯ ◦ α

(iff f∗ ◦ γ ⊑ γ ◦ f♯):

α
f #α(S)

f*[S]S
f*

α
a

(a)

f #
f #(a)

f*

γγ
γ

α and γ act as

semi-homomorphisms.

Example: The succ♯ function seen earlier is sound for succ, e.g., for

succ : Int → P(Int), succ∗(0) = {1}, and succ♯(zero) = pos.

f♯ is a postcondition transformer: S ⊆ γ(a) implies
f∗(S) ⊆ γ(f♯(a)) where f∗(S) = ∪c∈Sf(c).

f
♯
best = α ◦ f∗ ◦ γ is the strongest (liberal) postcondition transformer.

Definition: f♯ is γ-complete (”forwards complete”) for f iff
f∗ ◦ γ = γ ◦ f♯ [Giacobazzi01] . f♯ is α-complete (”backwards
complete”) for f iff α ◦ f∗ = f♯ ◦ α [Cousots00] .

(-: / 7

An aggregate, e.g., Var → C, can be abstracted
pointwise or relationally

Sign: [x 7→ ≥0][y 7→ ≥0] Interval: [x 7→ [3, 27]][[y 7→ [4, 32]]

Octagon:
∧

i(±xi ± yi ≤ ci) Polyhedron:
∧

i((
∑

jaij · xij) ≤ bi)

diagrams from Abstract Interpretation: Achievements and Perspectives by Patrick

Cousot, Proc. SSGRR 2000.

(-: / 8

Three codings (a)-(c) of a relationally abstracted
store based on the octagon abstract domain:

diagram from The octagon abstract domain, by Antoine Miné, J. Symbolic and

Higher-Order Computation 2006

(-: / 9

Predicate abstraction uses a relational domain
based on the predicates in the goal and program

Example: prove that z ≥ x ∧ z ≥ y at p3:

p1 :
p0 :

p2 :
p3 :

if x < y
then z = y;
else z = x;

exit

p1, 〈t, ?, ?〉

p3, 〈t, t, t〉

p0, 〈?, ?, ?〉

p2, 〈f, ?, ?〉

p3, 〈f, t, t〉

The store is abstracted to a relational domain that denotes the values

of these predicates:

φ1 = x < y φ2 = z ≥ x φ2 = z ≥ y

The predicates are evaluated at the program’s points as one of {t, f, ?}.

(Read ? as t∨ f.)

At all occurrences of p3 in the abstract trace, φ2 ∧ φ3 holds.

(-: / 10

When a goal is undecided, domain refinement
becomes necessary

Prove φ0 ≡ x ≥ y at p4:

p0 :
p1 :

p2 :
p3 :

p4 :

if !(x >= y)
then { i = x;

x = y;
y = i;

}

p1, 〈f〉
p2, 〈f〉
p3, 〈t〉
p4, 〈?〉

p0, 〈?〉

p4, 〈t〉

To decide the goal, we refine the abstract domain by adding a new

predicate: wp(y = i, x ≥ y) = (x ≥ i) ≡ φ1. We add φ1 and try again:

p1, 〈f, ?〉
p2, 〈f, t〉
p3, 〈t, t〉
p4, 〈t, t〉

p0, 〈?, ?〉

p4, 〈t〉
because x 6≥ y and x ≥ i

imply y > i implies xnew ≥ i

(-: / 11

But incremental predicate refinement cannot synthesize many
interesting loop invariants. For this example:

p0 :
p1 :

p2 :

p3 :

i = n; x = 0;
while i != 0 {

x = x + 1; i = i − 1;

}
goal: x = n

The initial predicate set, P0 ≡ {i = 0, x = n}, does not validate the
loop body.

The first refinement suggests we add P1 ≡ {i = 1, x = n− 1} to the
program state, but this fails to validate a loop that iterates more than
once.

Refinement stage j adds predicates Pj ≡ {i = j, x = n− j}; the
refinement process continues forever!

The loop invariant is x = n − i :-)

(-: / 12

Mechanics of static analysis:
abstracting small-step and
big-step semantics definitions

(-: / 13

The most basic static analysis is trace generation

p2 :

p0 :

p4 :

p1 :

p3 :

exit

while (x != 1) {
if Even(x)

then x = x div2;
else x = 3*x + 1;

}

p0, 4
p1, 4

p2, 4

p0, 2
p1, 2

p2, 2

p0, 1
p4, 1

p0, 6
p1, 6

p2, 6

p0, 3
p1, 3

p2, 3

p0, 10

p4, 1

· · ·

Two concrete traces:

Note: pi, v abbreviates pi, 〈x : v〉

even
even
even

p1,
p0,

p1, any

p3, odd

p0, any

p4, odd

p2,
For

Parity = {none, even, odd , any},

the loop’s operations, f, are ab-

stracted to f♯. The abstract trace is a

static analysis of those concrete ex-

ecutions with an even-valued input.

Traces are used in model checking.
(-: / 14

Data-flow analysis collects the abstract trace
into a map, ProgramPoint → A

The abstract value “attached” to program point pi is defined by the

first-order equational pattern,

piStore =
⊔

pj∈pred(pi)

f
#
j (pjStore)

Flow equations for previous example:

init = 〈x: even〉

p0Store = init ⊔ f♯2(p2Store) ⊔ f
♯
3(p3Store)

p1Store = f
♯
0t(p0Store)

p2Store = f
♯
1t(p1Store)

p3Store = f
♯
1f(p1Store)

p4Store = f
♯
0f(p0Store)

init

1f = (!Even(x))#f#1t = (Even(x))#

0t = (x!=1)#f#

3 = (x= 3x+1)#f#2 = (x= x div2)#f#

0f = (x=1)#f#

p0

p1

p2 p3

p4

f#

(-: / 15

We solve the flow equations by calculating approximate solutions in

stages until the least fixed point is reached.

Note: ⊥ is the same as 〈x:⊥〉

stage p0Store p1Store p2Store p3Store p4Store

0 ⊥ ⊥ ⊥ ⊥ ⊥

1 〈x:even〉 ⊥ ⊥ ⊥ ⊥

2 〈x:even〉 〈x:even〉 ⊥ ⊥ ⊥

3 〈x:even〉 〈x:even〉 〈x:even〉 ⊥ ⊥

4 〈x:any〉 〈x:even〉 〈x:even〉 ⊥ ⊥

5 〈x:any〉 〈x:any〉 〈x:even〉 ⊥ 〈x:odd〉

6 〈x:any〉 〈x:any〉 〈x:even〉 〈x:odd〉 〈x:odd〉

A faster algorithm uses a worklist that remembers exactly which

equations should be recalculated at each stage.

(-: / 16

Termination: Array-bounds checking reviewed

Integer variables might receive values from the interval domain,

I = {[i, j] | i, j ∈ Int ∪ {−∞,+∞}}.

We define [a, b] ⊔ [a ′, b ′] = [min(a, a ′),max(b, b ′)].

oo[− ,9]

oo[− ,9]

i = [0,0] = [0,0]

i = [0,0] [1,1] = [0,1]

i = [1,1]

i = [1,1] [2,2] = [1,2]

1p

p2

... a[i] ...
while (i < 10) {
i = 0;
int a = new int[10];

i = i + 1;
}

i = [0,0]

...

...

This example terminates: i’s ranges are
at p1 : [0..9]

at p2 : [1..10]

at loop exit : [1..10] ⊓ [10,+∞] = [10, 10]

(-: / 17

But others might not, because the domain is not finite height:

oo][0, +

i = [0,0] [1,1] [2, 2] ...

infinite limit is

i = [] (dead code)

while true {
i = 0;

i = i + 1;
...

}

i = [0,0]

The analysis generates the infinite sequence of stages,
[0, 0], [0, 1], ..., [0, i], ... as i’s value in the loop’s body.

The domain of intervals, where [i, j] ⊑ [i ′, j ′] iff i ≤ j and j ≤ j ′, has
infinitely ascending chains.

To forcefully terminate the analysis, we can replace the ⊔ operation by
∇, called a widening operator:

[]∇[i, j] = [i, j] [i, j]∇[i ′, j ′] =
[if i ′ < i then − ∞ else i,

if j ′ > j then + ∞ else j]

(-: / 18

The widening operator, which guarantees finite convergence for all

increasing sequences on the interval domain, quickly terminates the

example:

oo][0, +i = [0,0] [1,1]

∆

=

i = [] (dead code)

while true {
i = 0;

i = i + 1;
...

}

i = [0,0]

but in general, it can lose much precision:

... a[i]
while (i < 10) {
i = 0;
int a = new int[10];

i = i + 1;
}

oo][0, +i = [0,0] [1,1]

∆

=

oo[10, +]i =

i = [0,0]

(-: / 19

For this reason, a complementary operation, △, called a narrowing

operation, can be used after ∇ gives convergence to recover some

precision and retain a fixed-point solution.

We will not develop △ here, but for the interval domain, a suitable △

tries to reduce −∞ and +∞ to finite values. For the last example, the

convergent value, [0,+∞], in the loop body would be narrowed to

[0, 10], making i’s value on loop exit [10, 10].

Another approach is to use multiple “thresholds” for widening, e.g.

−∞, (2−31 − 1), 0, etc. for lower limits, and (231 − 1) and +∞ for upper

limits.

(-: / 20

Structured static analysis on syntax trees

Given a block of statements, B, we might wish to calculate the
values that “enter” and “exit” from B. If B is coded in a
structured language, the static analysis can compute a
”structured transfer function” for B:

C ::= p : x = E | C | if E C1 C2 | while E C

A sample structured analysis that ignores tests: [[C]] : Ain → Aout

[[p : x = E]]in = f
♯
p(in) (the transfer function for p)

[[C]]in = [[C2]]([[C1]]in)

[[if E C1 C2]]in = [[C1]]in ⊔ [[C2]]in

[[while E C]]in = in ⊔ outC,

where outC =
⊔

i≥0outi,

and out0 = ⊥A and outi+1 = [[C]](in ⊔ outi)

(-: / 21

We annotate a syntax tree with the in-and out-data — here is a
reaching definitions data-flow analysis, which computes sets of
assignments that might reach future program points:

[[p : x = E]]in = in − killx ∪ {p}

[[C]]in = [[C2]]([[C1]]in)

[[if E C1 C2]]in = [[C1]]in ∪ [[C2]]in

[[while E C]]in = in ∪
S

i≥0
outi,

where out0 = {}

and outi+1 = [[C]](in ∪ outi)

{ }

{ } { p1 } { p1 } { p2 }

{ p1 }

p1 }{ XU

{ p1 ,p3 }

{ p1 ,p2 ,p3 }

{ p1 ,p2 ,p3 }

{ p3 }=X = X2{ p3 }=X1{ }=X0

p1: y = 1 ; (if y>x (p2: y = x) (while y!=x (p3: y = y+1)))

EC C E C

C

C

C

X

p1{ }

(-: / 22

Big-step relational semantics: derivation trees
σ⊢ p : x = E⇓ fp(σ)

σ⊢ C1⇓ σ1 σ1⊢ C2⇓ σ2

σ⊢ C1;C2⇓ σ2

fEt(σ)⊢ C1⇓ σ1 fEf(σ)⊢ C2⇓ σ2

σ⊢ if E C1 C2⇓ σ1 ⊔ σ2

fEt(σ)⊢ C⇓ σ ′ σ ′⊢ while E C⇓ σ ′′

σ⊢ while E C⇓ fEf(σ) ⊔ σ
′′ ⊥⊢ C⇓ ⊥

Recall that fp is a transfer function and that fEt and fEf ”filter” the store, e.g.,

fx>2t〈x : 4, y : 3〉 = 〈x : 4, y : 3〉, whereas fx>2t〈x : 0, y : 3〉 = ⊥.

An example: if Even(x) (x=0) (while x 6=3 (x = x+1))

⊥⊢ x = 0⇓ ⊥

〈x:1〉⊢ x = x + 1⇓ 〈x:2〉 〈x:2〉⊢ while x 6= 3...⇓ ⊥ ⊔ 〈x:3〉

〈x:3〉⊢ while x 6= 3...⇓ 〈x:3〉 ⊔ ⊥ = 〈x:3〉〈x:2〉⊢ x = x + 1⇓ 〈x:3〉

〈x:1〉⊢ while x 6= 3...⇓ ⊥ ⊔ 〈x:3〉

〈x:1〉⊢ if Even(x) (x = 0) (while x 6= 3 (x = x + 1))⇓ ⊥ ⊔ 〈x:3〉 = 〈x:3〉

⊥⊢ while x 6= 3...⇓ ⊥⊥⊢ x = x + 1⇓ ⊥

(-: / 23

An abstract big-step derivation tree

Using the same inference rules but with abstract transfer
functions for Parity = {⊥, even, odd,⊤}, we generate an
abstract tree that is infinite but regular:

〈x:odd〉⊢ x = x + 1⇓ 〈x:even〉 〈x:even〉⊢ while x 6= 3...⇓ ⊥ ⊔ X

〈x:odd〉⊢ while x 6= 3...⇓ X

⊥⊢ x = 0⇓ ⊥

〈x:odd〉⊢ if Even(x) (x = 0) (while x 6= 3 (x = x + 1))⇓ ⊥ ⊔ X

· · ·

〈x:even〉⊢ x = x + 1⇓ 〈x:odd〉

〈x:odd〉⊢ while x 6= 3...⇓ 〈x:odd〉 ⊔ X = X

Variable X denotes the answer from the repeated loop subderivation:

X = 〈x:odd〉 ⊔ X

The least solution sets X = 〈x:odd〉.

(-: / 24

Interprocedural analysis

func f(x) local y; C. [x 7→ [[E]]σ][y 7→ ⊥]⊢ C⇓ σ ′

σ⊢ z = f(E)⇓ σ[z 7→ σ ′(y)]

where [[E]]σ denotes E’s value with σ, and x 7→ v assigns v to x.

Example: func g(x) local z; z = x+1.

a = g(2); b = g(a); a = a*b

〈a:⊥, b:⊥〉⊢ a = g(2); b = g(a); a = a ∗ b⇓ 〈a:even, b:even〉

〈a:⊥, b:⊥〉⊢ a = g(2)⇓ 〈a:odd, b:⊥〉

〈x:even, z:⊥〉⊢ z = x + 1⇓ 〈x:even, z:odd〉

〈a:odd, b:⊥〉⊢ b = g(a); a = a ∗ b⇓ 〈a:even, b:even〉

〈a:odd, b:even〉⊢ a = a ∗ b⇓ 〈a:even, b:even〉

〈a:odd, b:⊥〉⊢ b = g(a);⇓ 〈a:odd, b:even〉

〈x:odd, z:⊥〉⊢ z = x + 1⇓ 〈x:odd, z:even〉

The derivation tree naturally separates the calling contex ts.

(-: / 25

”Too many” calling contexts (*) force widening (!):

func fac(a) local b; if a = 0 (b = 1) (b = fac(a − 1); b = a ∗ b).

c = fac(3)

〈⊤, X.b〉⊢ b = a ∗ b⇓ 〈⊤,⊤ ∗ X.b〉

〈c : ⊥〉⊢ c = fac(3)⇓ 〈c : ⊤〉

〈3,⊥〉⊢ if a = 0 (b = 1)(b = fac(a − 1); b = a ∗ b)⇓ ⊥⊔〈⊤,⊤〉 = 〈⊤,⊤〉

〈3,⊥〉⊢ b = fac(a − 1); b = a ∗ b⇓ 〈⊤,⊤〉

〈3,⊥〉⊢ b = fac(a − 1)⇓ 〈3,⊤〉 3,⊤⊢ b = a ∗ b⇓ ⊤,⊤

〈3,⊥〉⊔〈2,⊥〉 = 〈⊤,⊥〉⊢ if a = 0 ...⇓ 〈0, 1〉⊔〈⊤,⊤ ∗ X.b〉 = X = 〈⊤,⊤〉

〈0,⊥〉⊢ b = 1⇓ 〈0, 1〉

⊥⊢ b = 1⇓ ⊥

〈⊤,⊥〉⊢ b = fac(a − 1)⇓ 〈⊤, X.b〉

〈⊤,⊥〉⊢ if a = 0 ...⇓ X

〈⊤,⊥〉⊢ b = fac(a − 1); b = a ∗ b⇓ 〈⊤,⊤ ∗ X.b〉

*

*

*!

X = 〈0, 1〉⊔〈⊤,⊤ ∗ X.b〉. The least solution sets X = 〈⊤,⊤〉.

(-: / 26

Standard applications of static
analysis

(-: / 27

Abstract testing and model generation

p0 :
p1 :

p2 :
p3 :

x = x div 2;
}
x = 4 * x;
exit

while isEven(x) {

p2, odd
p3, even

p0, even
p1, even
p0, any

p0, odd
p2, odd
p3, even

.

Each trace tree denotes an abstract “test” that covers a set of
concrete test cases, e.g., γ(even) = {...,−2, 0, 2, ...}.

Forms of abstract testing:
� Black box: For each test set, S ⊆ C, we abstractly interpret with
α(S) ∈ A. (Best precision: ensure that S = γ(α(S)).)

� White box: for each conditional, Bi, in the program, ensure there is
some ai ∈ A such that γ(ai) = {s | Bi holds for s}

Once we generate an abstract model, we can analyze it further
— ask questions of its paths and nodes — via model checking.

(-: / 28

Low-level safety checking

One example is type casting:

pi : ... ((Rational) x).ratValue()...

Object

Bool

Int

Rational{...ratValue...}

A static analysis calculates the abstract store arriving at the
cast at pi, a checkpoint:

� pi, 〈...x : Int...〉: no error possible — remove the run-time check
(because Int ⊑ Rational, hence γ(Int) ⊆ γ(Rational)).

� pi, 〈...x : Object...〉: possible error — retain run-time check (because
Object 6⊑ Rational)

� pi, 〈...x : Bool...〉: definite error, because Bool⊓Rational=⊥ (assuming
γ(⊥)={}).

(-: / 29

Two more examples of lo w-level safety checking:

Arra y-bounds and arithmetic over- and under-flow checks

� Analysis: interval analysis, where values have form, [i, j], i ≤ j.

� Checkpoints: for a[e] — e has value in range, [0, a.length];
for int x = e — e has value in range, [−231 − 1, +231 − 1]

Uninitialized variables, dead-code, and erroneous-state checks

� Analysis: constant propagation, where values are {k}, ⊥, or ⊤.

� Checkpoints:
uninitialized variables: referenced variables have value 6= ⊥;
dead code: at program point pi, arriving store has value 6= ⊥;
erroneous states: at program point pi : Error, arriving store has
value = ⊥. (Note: This can be combined with a backwards analysis, starting

from each pi : Error with store ⊤, working backwards to see if an initial state is

reached.)

(-: / 30

Program transformation: Constant folding

p1 :
p2 :

p3 :

p0 :

x = x + 1;
}

while (x < y + z) {
x = 1; y = 2;

exit

0 1−1 2

Const

p0

p1 p3

, ,

1,2,

2,2,
p2 1,2,

,2,

,2,

1,2,

,2,

The analysis tells us to replace y at p1 by 2:
x = 1; y = 2; while (x < 2 + z) x = x + 1

Basic principle of program transformation:

If ai ∈ A arrives at point pi : S, where fi : C → C is the concrete transfer

function, and there are some S ′, f ′ such that fi(c) = f ′(c) for all c ⊑C γ(ai),

then S can be replaced by S ′ at pi.

For constant folding, the transformation criteria are the abstract
integers ...− 1, 0, 1, ... (but not ⊤).

(-: / 31

Precondition checking and assertion synthesis

A backwards analysis synthesizes precondition assertions that
ensure achievement of a postcondition:

p0: if x=0

p1 : then x = x+1

p2 : else x = x-1

p3 : halt 〈x :↓ notneg〉 neg poszero

all

notpos notneg

none

Signs

f
#−1

6=0

x :↓ notneg

x :↓ notneg

x :↓ ⊤

p3

∩

x :↓ ⊤∩ ↓ notneg =↓ notneg

f
#−1
x+1

Goal:

x :↓ notneg
p2p1

f
#−1
=0

f
#−1
x−1

x :↓ pos

p0

where

f
♯
=0

(a) = a⊓ zero = α ◦ f=0 ◦ γ

f
♯
6=0

= α ◦ f 6=0 ◦ γ, e.g., f♯6=0
(notneg) = pos ;

f
♯
6=0

(zero) = ⊥; f
♯
6=0

(⊤) = ⊤

f
♯
+1

= α ◦ f+1 ◦ γ, e.g., f♯+1
(notneg) = pos

The inverse functions compute on sets:

↓a = {a ′ ∈ A | a ′ ⊑ a}

f#−1(S) = {a ∈ A | f#(a) ∈ S}

(-: / 32

The entry condition can be used with a forwards analysis to
generate postconditions that sharpen the assertions:

〈x : notneg〉 p0: if x=0

p1 : x = x+1

p2 : x = x-1

p3 : halt

neg poszero

all

notpos notneg

none

Signs

p1

p0

p3

p2

x : notneg

f
#

6=0
f
#
=0

x : pos x : notneg

f
#
x−1

x : zero x : pos

f
#
x+1

x : pos ⊔ notneg = notneg

where

f
♯
=0

(a) = a⊓zero = α ◦ f=0 ◦ γ

f
♯
6=0

= α ◦ f 6=0 ◦ γ, e.g., f♯6=0
(notneg) = pos ;

f
♯
6=0

(zero) = ⊥; f
♯
6=0

(⊤) = ⊤

f
♯
+1

= α ◦ f+1 ◦ γ, e.g., f♯+1
(notneg) = pos

The forwards-backwards analyses can be repeatedly alternated.

(-: / 33

The “internal logic” of an abstract
domain

(-: / 34

Abstract values = logical propositions

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}

pos

zero

none

any

neg

α

P(Int) Sign

Read properties like
neg ∈ Sign as logical
propositions,
“isNegative”, etc.

For S ⊆ C, a, a ′ ∈ A, γ : A → PC, define

� S |= a iff S ⊆ γ(a) e.g., {−3,−1} |= neg

� a ⊢ a ′ iff a⊑a ′ e.g., neg ⊢ any

For f : C → PC, f♯ : A → A is sound iff f∗ ◦ γ ⊑ γ ◦ f♯ iff

α ◦ f∗ ⊑ f♯ ◦ α This makes f♯ a postcondition transformer:

Proposition: S |= a implies f∗(S) |= f♯(a).

f
♯
best = α ◦ f∗ ◦γ is the strongest liberal postcondition transformer for f.

(-: / 35

A has an internal logic that γ preserves

First, treat all a ∈ A as primitive propositions (isNeg, isPos, etc.).

A has conjunction when

S |= φ1⊓φ2 iff S |= φ1 and S |= φ2, for all S ⊆ C.

That is, γ(φ⊓ψ) = γ(φ) ∩ γ(ψ), for all φ,ψ ∈ A.

Proposition: When γ : A → PC is an upper adjoint, then A has

conjunction.

Proposition: When γ(φ⊔ψ) = γ(φ) ∪ γ(ψ), then A has disjunction:

S |= φ⊔ψ iff S |= φ or S |= ψ.

Sign lacks disjunction: γ(zero) |= neg ⊔ pos, because neg ⊔ pos = any , but

γ(zero) 6|= neg and γ(zero) 6|= pos.

(-: / 36

Sometimes, we can implement a domain’s
disjunctive completion [Cousots79,Giacobazzi00] :

{0}

γ

{...,−1,0,1,...}

α

{...,−2,−1,1,2,...}
{0,1,2,3,...}

{ }

{1,2,3,...}
{...,−2,−1}

{...,−2,−1,0}

{neg,none}

{neg,pos,none}

{neg,zero,pos,none}

{ }

{none}

{zero,none}

{neg,zero,none}
{zero,pos,none}

{pos,none}

{any,neg,zero,pos,none}

o

P(Int)

UI

P (Sign)

(P(int),⊆)〈αo, γ〉(P↓(Sign),⊆)

γ(T) = ∪a∈T γ(a) αo(S) =↓{α{c} | c ∈ S}

Downclosed sets are needed for monotonicity of key functions on the sets.

Now, γ preserves ∩ and ∪. Properties, a ∈ A, are interpreted in
P↓(A) as αo(γ(a)) = ↓{a}.

For A = P↓(Sign), these assertions are exact:

φ ::= neg | zero | pos | φ1 ∧ φ2 | φ1 ∨ φ2

(-: / 37

Complete lattice A is distributive if a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c), for
all a, b, c ∈ A. When ⊓ is Scott-continuous, then

φ⇒ψ ≡
⊔

{a ∈ A | a⊓φ⊑ψ}

satisfies the property, a ⊢ φ⇒ψ iff a⊓φ ⊢ ψ.

Proposition: If A is a distributive complete lattice, ⊓ is
Scott-continuous, and upper adjoint γ is 1-1, then A has
Heyting implication, φ⇒ψ, such that

S |= φ⇒ψ iff γ(α(S)) ∩ γ(φ) ⊆ γ(ψ).

That is, γ(φ⇒ψ) =
⋃

{S ∈ γ[A] | S ∩ γ(φ) ⊆ γ(ψ)}.

Heyting implication is weaker than classical implication, where S |= φ⇒ψ iff

S ∩ γ(φ) ⊆ γ(ψ) iff for all c ∈ S, if {c} |= φ, then {c} |= ψ.

The POS domain for groundness analysis of logic programs uses Heyting implication

[Cortesi91,Marriott93] .

(-: / 38

If γ(⊥A) = ∅ ∈ P(Σ), we have falsity (⊥); this yields the logic,

φ ::= a | φ1⊓φ2 | φ1⊔φ2 | φ1 ⇒φ2 | ⊥

In particular, ¬φ abbreviates φ⇒⊥ and defines the refutation of φ

within A, as done in the TVLA analyzer [Sagiv02] .

γ : A → PC is the interpretation function for the internal logic:

γ(a) = given

γ(φ⊓ψ) = γ(φ) ∩ γ(ψ)

γ(φ⊔ψ) = γ(φ) ∪ γ(ψ)

γ(φ⇒ψ) =
⋃

{S ∈ γ[A] | S ∩ γ(φ) ⊆ γ(ψ)}

γ(⊥) = ∅

(-: / 39

γ-completeness characterizes the internal logic

The interpretation for conjunction, γ(φ⊓ψ) = γ(φ) ∩ γ(ψ),
shows that γ-completeness is exactly the criterion for
determining the connectives in A’s internal logic:

Proposition: For f : Cn → PC, A’s logic includes connective f♯

iff f♯ is γ-complete for f∗:

γ(f♯(φ1, φ2, · · ·)) = f∗(γ(φ1), γ(φ2), · · ·)

Example: For Sign = {none,neg , zero, pos , any}, negate♯ is

γ-complete for negate(S) = {−n | n ∈ S} (where negate♯(pos) = neg ,

negate♯(neg) = pos , negate♯(zero) = zero, etc.):

φ ::= a | φ1⊓φ2 | negate♯(φ)

We can state “negate” assertions, e.g., pos |= negate♯(neg ⊓ any).

(-: / 40

Post-image (left-to-right) abstraction of relations

f : C → PC defines a relation in C× C, e.g., {1, 3}[[succ]]{2, 4}.

f’s left-to-right (post) image, postf : PC → PC, is

postf(S) = ∪c∈S f(c).

For Galois connection, PC〈αo, γ〉P↓(A), and f♯ : A → P↓(A),

� for T ∈ P↓(A), define postf♯(T) = ⊔ a∈T f
♯(a) = ∪a∈T f

♯(a).

� use postf♯ to compute left-to-right (over)approximations of f, e.g.,

{neg}[[succ♯]]{neg , zero}, that is, neg ∨ zero.

Proposition: For f♯best = αo ◦ f
∗ ◦ γ,

(postf)
♯
best = αo ◦ postf ◦ γ = post

f
♯
best

Corollary: If f is γ-complete, then (post
f
♯
best
φ) is in P↓(A)’s logic.

(-: / 41

Given PC〈α, γ〉A, we have two relevant
Galois connections between PC and P↓(A)

Recall that γ(T) = ∪a∈T γ(a) and that γ preserves both unions and

intersections on P↓(A). Therefore, γ is an upper adjoint in two

different ways:

Tγ

αo

P (A)γT
UI
S

PC

UI
αo S

Overapproximating
abstraction:
αo(S) =

⋂
{T | S ⊆ γ(T)}

= ↓{α{c} | c ∈ S}

where

↓T = {a | exists a ′ ∈ T, a ⊑ a ′}.

Tγ

αu

γTUI
S

opP (A)opPC

αu S

UI

Underapproximating
abstraction:
αu(S) =

⋃
{T | γ(T) ⊆ S}

= {a | γ(a) ⊆ S}

where

(D,⊑D)op is (D,⊒D).

(-: / 42

Pre-image (right-to-left) abstraction of relations

f : C → PC defines a relation ⊆ C× C, e.g., {0, 1, 3}[[succ]]{1, 2, 4}.

f’s right-to-left (pre) image, p̃ref : PC → PC, is

p̃ref(S) = ∪{S ′ ⊆ C | f∗(S ′) ⊆ S} = {c | f(c) ⊆ S}

For Galois connection, PCop〈αu, γ〉P↓(A)op and f♯ : A → P↓(A),

� for T ∈ P↓(A), define p̃ref♯ = {a | f♯(a) ⊆ T }

� use p̃ref♯ to compute right-to-left (under)approximations of f, e.g.,

zero ∨ pos [[succ♯]]pos and none[[succ♯]]zero (!)

Theorem: (p̃ref)
♯
best = αu ◦ p̃ref ◦ γ = p̃re

f
♯
best

.

Because p̃ref♯φ always underapproximates p̃ref(γ(φ)), it can
be added to P↓(A)’s logic.

(-: / 43

Indeed, we can always define an
underapproximating external logic

For each concrete property of interest, [[φ]] ⊆ C, define

[[φ]]A = {a ∈ A | γ(a) ⊆ [[φ]]}

Then, assert a ⊢ φ iff a ∈ [[φ]]A.

This definition follows from the underapproximating Galois connection:

γ(T) =
⋃

{γ(a) | a ∈ T }

αu(S) = {a | γ(a) ⊆ S}

opγ UI

[[]]ϕ

[[]]ϕ Aγ UI

α

[[]]ϕ A

[[]]ϕα

PC P (A)
op

That is, [[φ]]A = αu[[φ]].

The inverted ordering gives underapproximation: [[φ]] ⊇ γ([[φ]]A). This

form of external logic is standard in “abstract model checking.”

(-: / 44

The inductively defined underapproximation to αu[[φ]]:

[[a]]Aind = αu(γ(a))

[[φ1 ∧ φ2]]
A
ind = [[φ1]]

A
ind∩ [[φ2]]

A
ind

[[φ1 ∨ φ2]]
A
ind = [[φ1]]

A
ind∪ [[φ2]]

A
ind

[[[f]φ]]Aind = p̃ref♯ [[φ]]Aind = {a ∈ A | f♯(a) ∈ [[φ]]Aind}

Entailment and provability are as expected: a |= φ iff γ(a) ⊆ [[φ]], and

a ⊢ φ iff a ∈ [[φ]]Aind.

Soundness (⊢ implies |=) is immediate, and completeness (|= implies

⊢) follows when αu ◦ [[·]] = [[·]]Aind. This is called logical best

preservation or logical α-completeness [Cousots00,Schmidt06] .

(-: / 45

Scaling upwards

(-: / 46

Analyzing large (100K+ LOC) programs

� engineered as a one-pass analysis, like static data-type checking

� flow-insensitive (ignores control-test expressions, loop iterations,
distinct procedure-call points).

� ”whole-program analysis”: examines entire source-code base

The standard example is pointer analysis on C programs, where properties are

stated, “var x may-point-to vars {y, z, ...}.” A set of equations are generated in one

program pass and solved in some small bound of iterations [Andersen94,

Steensgaard96, HeintzeTardieu04] .

Advantages: simple, fast, complete code coverage, no
hand-extracted “abstract model” (as required for model-checking)
[Engler04]

Drawbacks: properties are simple, too many “false alarms” (inability
to verify desired property)

(-: / 47

Modular analysis

� A program unit is abstracted and analyzed to a summary

structure or assume-guarantee relation, where properties of the

unit’s free variables/inputs are associated/mapped to properties of

the unit/outputs.

� When units are linked, so are their summaries, generating a

composite summary. We don’t reanalyze the units.

� Practical (better than linear-time) speedups are obtained when

fixed points are solved locally within each unit (and not at link

time) [CousotCousot02] .

There is no ideal approach, especially for the last item, so we survey

some techniques (summaries, frontiers, symbolic evaluation) using

the classic example of abstracting a higher-order function definition.

(-: / 48

Example: higher-order normalization
(“strictness”) analysis

B = {⊥,⊤}, where ⊤ means ”might normalize” and ⊥ means ”does not
normalize”.

B
>__B B

[3]

[1]

=

=

λx.

[2] = x.xλ

λx.

>__ >__B BB
[3]
[3]

[3]
[2]

[2]
[2]

[3]
[1]

[2]
[1]

[1]
[1]

[m]
[n]

. = [n]and[m]
[n]

.where = [m]

Example: F m n = if (m=0) (n) (F (m+1) n)

F♯ = λa:B. λb:B. a ⊓ (b ⊔ (F♯ a b))

graph(F♯) = {⊥ 7→ ⊥ 7→ ⊥, ⊥ 7→ ⊤ 7→ ⊥, ⊤ 7→ ⊥ 7→ ⊥, ⊤ 7→ ⊤ 7→ ⊤}.

Domain B can be applied to analyses that predict the outcome of a
boolean predicate/invariant (”predicate abstraction”).

(-: / 49

A higher-order, module-like example

Define: F♯ = λf : B → (B → B).λx : B. (x, f · x)

The function’s graph (summary table) has 12 entries:

graph(F♯) = {

[
1

1
] 7→ ⊥ 7→ (⊥,⊥),

[
1

1
] 7→ ⊤ 7→ (⊤,⊥),

[
2

1
] 7→ ⊥ 7→ (⊥,⊥),

[
2

1
] 7→ ⊤ 7→ (⊤,⊤),

· · ·

[
3

3
] 7→ ⊥ 7→ (⊥,⊤),

[
3

3
] 7→ ⊤ 7→ (⊤,⊤) }

and

>__B B
[3]

[1]

=

=

λx.

[2] = x.xλ

λx.

>__ >__B BB
[3]
[3]

[3]
[2]

[2]
[2]

[3]
[1]

[2]
[1]

[1]
[1]

B

[m]
[n]

.where = [m]

[m]
[n]

. = [n]

It’s model-checking-like
and feasible to implement!

(-: / 50

Partial summary/graph: frontier [Clack&PeytonJones85]

Assemble the graph in increments and retain only useful (”frontier”)
entries, as based on these consequences of monotonicity:

� if a 7→ b ∈ frontier(F♯), then (i) for all a ′ ⊑ a, a ′ 7→ b is
sound; (ii) for all b ′ ⊑ b, a 7→ b ′ is sound.

� if a 7→ ⊤ ∈ frontier(F♯), then forall a ′ ⊒ a, a ′ 7→ ⊤ is
sound.

� if a1 7→ b1, a2 7→ b2 ∈ frontier(F
♯), then (i) a1⊓ a2 7→ b1⊓ b2

is sound; (ii) if F♯ preserves ⊔ (holds when F♯’s domain is a
disjunctive completion), then a1 ⊔ a2 7→ b1 ⊔ b2 is sound.

Example frontier: for F♯ = λf : B → (B → B).λx : B. (x, f · x),

frontier(F♯) = {
[
2

2
] 7→ ⊥ 7→ (⊥, [2]), [

2

2
] 7→ ⊤ 7→ (⊤, [2]),

[
3

1
] 7→ ⊤ 7→ (⊤, [3])

}

(-: / 51

Example inferences based on the frontier

For F♯ = λf : B → (B → B).λx : B. (x, f · x),
frontier(F♯) = {

[
2

2
] 7→ ⊥ 7→ (⊥, [2]),

[
2

2
] 7→ ⊤ 7→ (⊤, [2]),

[
3

1
] 7→ ⊤ 7→ (⊤, [3]) },

and

>__B B
[3]

[1]

=

=

λx.

[2] = x.xλ

λx.

>__ >__B BB
[3]
[3]

[3]
[2]

[2]
[2]

[3]
[1]

[2]
[1]

[1]
[1]

B

[m]
[n]

.where = [m]

[m]
[n]

. = [n]we can conclude

[
2

1
] 7→ ⊤ 7→ (⊤, [3]) is sound (because [

2

1
] ⊑ [

3

1
])

[
3

3
] 7→ ⊤ 7→ (⊤, [3]) is sound (because [

3

1
], ⊤ map to (⊤, [3]))

[
2

1
] 7→ ⊤ 7→ (⊤, [2]) is sound (because [

2

1
] = [

2

2
] ⊓ [

3

1
])

[
3

2
] 7→ ⊤ 7→ (⊤, [3]) is sound (because [

3

2
] = [

2

2
] ⊔ [

3

1
])

(-: / 52

Integrating symbolic evaluation with frontiers

For F♯ = λf : B → (B → B).λx : B. (x, f · x),

symbolicFrontier(F♯) = {

[
2

2
] 7→ a 7→ (a, a),

[
3

1
] 7→ a 7→ (a, [

3

1
] · a),

f 7→ a 7→ (a, f · a) }
and

>__B B
[3]

[1]

=

=

λx.

[2] = x.xλ

λx.

>__ >__B BB
[3]
[3]

[3]
[2]

[2]
[2]

[3]
[1]

[2]
[1]

[1]
[1]

B

[m]
[n]

.where = [m]

[m]
[n]

. = [n]

� Starting from a purely symbolic formulation (the third line), the

frontier expands with useful instances.

� At any point, we can replace symbolic arguments by ⊤ to ”close”

the frontier, generating a “worst case analysis.”

� We can apply algebraic techniques to solve local fixed points.

(-: / 53

Solving local fixed points (intuition)

Example: F x = if (...) (g x) (h(F(f x))

F♯ =
⊔

i≥0Fi, where
F0 = λa.⊥

Fi+1 = λa.(g a) ⊔ (h(Fi(f a)))

By inductive reasoning,

Fi =
⊔

0≤j<ih
j(g(fj a))

⊑
⊔

0≤j<ih
j(g(f∗ a))

⊑ h∗(g(f∗ a))

where
fi = f ◦ f ◦ · · · ◦ f, i times

f∗ =
⊔

j≥0 f
j

Each occurrence of f∗ is solved locally, cheaply. The reasoning
is implemented with regular tree/expression techniques;
precision is traded for speed-up [CousotCousot02,Moeller03] .

(-: / 54

References

1. This talk: santos.cis.ksu.edu/schmidt/SLS13.pdf

2. B. Blanchet, P. Cousot, et al. A static analyzer for large safety-critical
software. ACM PLDI 2003.

3. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs. ACM POPL 1977.

4. Patrick Cousot, Radhia Cousot: Modular Static Program Analysis. CC
2002, Springer LNCS 2304.

5. F. Nielson, H.R. Nielson, C. Hankin. Principles of Program Analysis.
Springer 2010.

6. D. Schmidt. Trace-Based Abstract Interpretation of Operational
Semantics. J. Lisp and Symbolic Computation 10 (1998).

7. D. Schmidt. Internal and External Logics of Abstract Interpretations.
VMCAI 2008, Springer LNCS 4905.

(-: / 55

