Principles and applications of abstract-interpretation-based static analysis

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

Outline

Static analysis is property extraction from formal systems.

Abstract interpretation is a foundation for static analysis based on Galois connections, semi-homomorphisms, and fixed-point calculation. In this talk, we

- introduce abstract interpretation
- apply it to static analyses of program semantics (state-transition systems, equationally specified definitions, rule-based relational definitions)
- survey applications of static analysis
- develop the correspondence of properties to propositions
- consider approaches to modular, "scalable" analyses

Background: abstract interpretation

An abstract domain defines properties

A formal system uses values from set *C*, and we wish to determine properties of the *C*values that might arise during computation.

Define an *abstract domain*, A: a partially ordered set of properties, closed under meet (\Box). See example, *Sign*, above.

Define a monotone *concretization map*, $\gamma : A \rightarrow PC$, where PC is the powerset of C, ordered by \subseteq , so that $\gamma(a)$ defines those elements that "have property a."

 γ must *preserve meets* – for $T \subseteq A$, $\gamma(\sqcap T) = \bigcap_{a \in T} \gamma(a)$ – so that an inverse function, $\alpha : PC \to A$, can be defined.

Operations f are abstracted to f[#] to compute on A

readInt(x)		readSign(x)
x = succ(x)	Q:is the output pos?	$x = succ^{\sharp}(x)$
if $x < 0$:		if (filterNeg(x):
x = negator	(x) A: abstractly interpret input domain Int by	$x = negate^{\sharp}(x)$)
else:	Sign =	(filterNonNeg(x):
x = succ(x)) $\frac{Sign}{\{neg, zero, pos, any, none\}}$	$x = succ^{\sharp}(x)$ fi
writeInt(x)	$\{neg, zero, pos, ung, none\}$	writeSign (x)
		$e^{\sharp}(neg) = pos$
	(zero) = pos negate	$e^{\sharp}(zero) = zero$
where suc	(neg) = any (!) and negated	$e^{\sharp}(pos) = neg$
suc	(any) = any negate	$e^{\sharp}(any) = any$

For the abstract data-test sets, zero, neg, pos, we calculate: $\{zero \mapsto pos, pos \mapsto pos, neg \mapsto any\}$. The last result arises because $succ^{\ddagger}(neg) = any$ and filterNeg(any) = neg (good!) but filterNonNeg(any) = any(bad — we need zero $\lor pos$!), so we cannot ensure the success of the else-arm.

A Galois connection formalizes the abstraction

 $(\mathcal{P}(\operatorname{Int}), \subseteq) \langle \alpha, \gamma \rangle (Sign, \sqsubseteq)$ is a Galois connection: $\alpha(S) \sqsubseteq \alpha$ iff $S \subseteq \gamma(\alpha)$.

 γ interprets the elements in *Sign*, and α maps each data-test set in $\mathcal{P}(Int)$ to the property that best describes the set [CousotCousot77].

An abstract operation is monotone and sound

 $f^{\sharp}: A \to A \text{ is sound for } f: C \to PC \text{ iff } \alpha \circ f^{*} \sqsubseteq f^{\sharp} \circ \alpha$ $(\text{iff } f^{*} \circ \gamma \sqsubseteq \gamma \circ f^{\sharp}):$

 α and γ act as semi-homomorphisms.

Example: The succ[#] function seen earlier is sound for succ, e.g., for succ : $Int \rightarrow \mathcal{P}(Int)$, succ^{*}(0) = {1}, and succ[#](zero) = pos.

 $\label{eq:fproduct} \begin{array}{l} \mathsf{f}^{\sharp} \text{ is a postcondition transformer. } S \subseteq \gamma(\mathfrak{a}) \text{ implies} \\ \mathsf{f}^{\ast}(S) \subseteq \gamma(\mathsf{f}^{\sharp}(\mathfrak{a})) \ \text{ where } \mathsf{f}^{\ast}(S) = \cup_{c \in S} \mathsf{f}(c). \end{array}$

 $f_{best}^{\sharp} = \alpha \circ f^* \circ \gamma$ is the strongest (liberal) postcondition transformer.

Definition: f^{\sharp} is γ -complete ("forwards complete") for f iff $f^* \circ \gamma = \gamma \circ f^{\sharp}$ [Giacobazzi01]. f^{\sharp} is α -complete ("backwards complete") for f iff $\alpha \circ f^* = f^{\sharp} \circ \alpha$ [Cousots00].

An aggregate, e.g., $Var \rightarrow C$, can be abstracted pointwise or relationally

Sign: $[\mathbf{x} \mapsto \geq 0] [\mathbf{y} \mapsto \geq 0]$

Interval: $[x \mapsto [3, 27]][[y \mapsto [4, 32]]$

Octagon: $\bigwedge_{i} (\pm x_{i} \pm y_{i} \le c_{i})$

Polyhedron: $\bigwedge_{i} ((\sum_{j} a_{ij} \cdot \mathbf{x}_{ij}) \leq b_{i})$

diagrams from *Abstract Interpretation: Achievements and Perspectives* by Patrick Cousot, Proc. SSGRR 2000.

Three codings (a)-(c) of a relationally abstracted store based on the octagon abstract domain:

Figure 2. A potential constraint conjunction (a), its corresponding DBM m (b), potential graph G(m) (c), and potential set concretization γ^{Pot}(m) (d).
 diagram from The octagon abstract domain, by Antoine Miné, J. Symbolic and Higher-Order Computation 2006

Predicate abstraction uses a relational domain based on the predicates in the goal and program

Example: prove that $z \ge x \land z \ge y$ at p_3 :

The store is abstracted to a relational domain that denotes the values of these predicates:

 $\varphi_1 = x < y \qquad \varphi_2 = z \ge x \qquad \varphi_2 = z \ge y$

The predicates are evaluated at the program's points as one of $\{t, f, ?\}$. (Read ? as $t \lor f$.)

At all occurrences of p_3 in the abstract trace, $\phi_2 \wedge \phi_3$ holds.

When a goal is undecided, domain refinement becomes necessary

Prove $\phi_0 \equiv \mathbf{x} \geq \mathbf{y}$ at p_4 : p_0 : if !($\mathbf{x} \geq \mathbf{y}$) p_1 : then { i = \mathbf{x} ; p_2 : $\mathbf{x} = \mathbf{y}$; p_3 : $\mathbf{y} = \mathbf{i}$; p_4 : } p_4 : }

To decide the goal, we refine the abstract domain by adding a new predicate: $wp(y = i, x \ge y) = (x \ge i) \equiv \phi_1$. We add ϕ_1 and try again:

But incremental predicate refinement cannot synthesize many interesting loop invariants. For this example:

The initial predicate set, $P_0 \equiv \{i = 0, x = n\}$, does not validate the loop body.

The first refinement suggests we add $P_1 \equiv \{i = 1, x = n - 1\}$ to the program state, but this fails to validate a loop that iterates more than once.

Refinement stage j adds predicates $P_j \equiv \{i = j, x = n - j\}$; the refinement process continues forever!

The loop invariant is x = n - i :-)

Mechanics of static analysis: abstracting small-step and big-step semantics definitions

The most basic static analysis is trace generation

Data-flow analysis *collects the abstract trace into a map,* $ProgramPoint \rightarrow A$

The abstract value "attached" to program point p_i is defined by the first-order equational pattern,

$$p_{i}Store = \bigsqcup_{p_{j} \in pred(p_{i})} f_{j}^{\#}(p_{j}Store)$$

Flow equations for previous example:

$$init = \langle x: even \rangle$$

$$p_0 Store = init \sqcup f_2^{\sharp}(p_2 Store) \sqcup f_3^{\sharp}(p_3 Store)$$

$$p_1 Store = f_{0t}^{\sharp}(p_0 Store)$$

$$p_2 Store = f_{1t}^{\sharp}(p_1 Store)$$

$$p_3 Store = f_{1f}^{\sharp}(p_1 Store)$$

$$p_4 Store = f_{0f}^{\sharp}(p_0 Store)$$

$$f_{0t}^{\sharp}(p_0 Store)$$

$$f_{0t}^{\sharp}(p_1 Store)$$

$$p_{1t}^{\sharp}(p_1 Store)$$

$$p_{2t}^{\sharp}(p_1 Sto$$

We **solve** the flow equations by calculating approximate solutions in stages until *the least fixed point* is reached.

Note: \perp is the same as \langle	$\langle \mathbf{x}: \perp \rangle$	\rangle
--	-------------------------------------	-----------

stage	p ₀ Store	p ₁ Store	p ₂ Store	p ₃ Store	p ₄ Store
0	\perp			\perp	\perp
1	$\langle x:even \rangle$	L		\perp	
2	$\langle x:even \rangle$	$\langle x:even \rangle$		L	
3	$\langle x:even \rangle$	$\langle x:even \rangle$	$\langle x:even \rangle$	L	
4	$\langle x:any \rangle$	$\langle x:even \rangle$	$\langle x:even \rangle$	L	
5	$\langle x:any \rangle$	$\langle x:any \rangle$	$\langle x:even \rangle$	L	$\langle {f x}: odd angle$
6	$\langle x:any \rangle$	$\langle x:any \rangle$	$\langle x:even \rangle$	$\langle { m x}: odd angle$	$\langle x: odd \rangle$

A faster algorithm uses a *worklist* that remembers exactly which equations should be recalculated at each stage.

Termination: Array-bounds checking reviewed

Integer variables might receive values from the *interval domain*,

 $I = \{[i, j] \mid i, j \in Int \cup \{-\infty, +\infty\}\}.$ We define $[a, b] \sqcup [a', b'] = [min(a, a'), max(b, b')].$

int a = new int[10];
i = 0;
$$< ------ i = [0,0]$$

while (i < 10) {
... a[i] ... $p_1 - i = [0,0] \square [-\infty,9] = [0,0]$
i = i + 1; ... $i = [0,0] \bigsqcup [1,1] \square [-\infty,9] = [0,1]$
... $p_2 - i = [1,1]$
i = [1,1] $\bigsqcup [2,2] = [1,2]$

This example terminates: i's ranges are

at $p_1 : [0..9]$ at $p_2 : [1..10]$ at loop exit : $[1..10] \sqcap [10, +\infty] = [10, 10]$ But others might not, because the domain is not finite height:

The analysis generates the infinite sequence of stages, [0,0], [0,1], ..., [0,i], ... as i's value in the loop's body.

The domain of intervals, where $[i, j] \sqsubseteq [i', j']$ iff $i \le j$ and $j \le j'$, has infinitely ascending chains.

To forcefully terminate the analysis, we can replace the \Box operation by ∇ , called a *widening operator*.

$$[]\nabla[i,j] = [i,j] \qquad [i,j]\nabla[i',j'] = \begin{cases} \text{if } i' < i \text{ then } -\infty \text{ else } i, \\ if j' > j \text{ then } +\infty \text{ else } j \end{cases}$$

The widening operator, which guarantees finite convergence for all increasing sequences on the interval domain, quickly terminates the example:

$$i = 0; < --- i = [0,0]$$
while true {
 ... < --- i = [0,0] ∇ [1,1] = [0, + ∞]
 i = i + 1;
}
<---- i = [] (dead code)

but in general, it can lose much precision:

For this reason, a complementary operation, \triangle , called a *narrowing operation*, can be used after ∇ gives convergence to recover some precision and retain a fixed-point solution.

We will not develop \triangle here, but for the interval domain, a suitable \triangle tries to reduce $-\infty$ and $+\infty$ to finite values. For the last example, the convergent value, $[0, +\infty]$, in the loop body would be narrowed to [0, 10], making i's value on loop exit [10, 10].

Another approach is to use multiple "thresholds" for widening, e.g. $-\infty$, $(2^{-31} - 1)$, 0, etc. for lower limits, and $(2^{31} - 1)$ and $+\infty$ for upper limits.

Structured static analysis on syntax trees

Given a block of statements, B, we might wish to calculate the values that "enter" and "exit" from B. If B is coded in a structured language, the static analysis can compute a "structured transfer function" for B:

 $C ::= p : x = E \mid C \mid \texttt{if} E C_1 C_2 \mid \texttt{while} E C$

A sample structured analysis that ignores tests: $[C] : A_{in} \rightarrow A_{out}$

$$[p:x = E]$$
 in $= f_p^{\sharp}(in)$ (the transfer function for p)

 $[C]in = [C_2]([C_1]in)$

 $\llbracket \texttt{if } E \ C_1 \ C_2 \rrbracket \texttt{in} = \llbracket C_1 \rrbracket \texttt{in} \ \sqcup \ \llbracket C_2 \rrbracket \texttt{in}$

 $\llbracket while \ E \ C \rrbracket in = in \sqcup out_C,$

where $out_C = \bigsqcup_{i>0} out_i$,

and $out_0 = \bot_A$ and $out_{i+1} = \llbracket C \rrbracket (in \sqcup out_i)$

We annotate a syntax tree with the in-and out-data — here is a reaching definitions data-flow analysis, which computes sets of assignments that might reach future program points:

Big-step relational semantics: derivation trees

 $\sigma \vdash p : x = E \Downarrow f_p(\sigma)$

 $\begin{array}{cccc} \underline{\sigma \vdash C_1 \Downarrow \sigma_1 & \sigma_1 \vdash C_2 \Downarrow \sigma_2} & \underline{f_{Et}(\sigma) \vdash C_1 \Downarrow \sigma_1 & f_{Ef}(\sigma) \vdash C_2 \Downarrow \sigma_2} \\ \overline{\sigma \vdash c_1; C_2 \Downarrow \sigma_2} & \underline{\sigma \vdash if \ E \ C_1 \ C_2 \Downarrow \sigma_1 \sqcup \sigma_2} \\ \underline{f_{Et}(\sigma) \vdash C \Downarrow \sigma' & \sigma' \vdash \text{while} \ E \ C \Downarrow \sigma''} & \underline{\tau \vdash C \Downarrow \bot} \\ \overline{\sigma \vdash \text{while} \ E \ C \Downarrow f_{Ef}(\sigma) \sqcup \sigma''} & \underline{\tau \vdash C \Downarrow \bot} \end{array}$

Recall that f_p is a transfer function and that f_{Et} and f_{Ef} "filter" the store, e.g., $f_{x>2t}\langle x:4,y:3\rangle = \langle x:4,y:3\rangle$, whereas $f_{x>2t}\langle x:0,y:3\rangle = \bot$.

An example: if Even(x) (x=0) (while $x \neq 3$ (x = x+1)) $\langle x:1 \rangle \vdash if Even(x) (x = 0)$ (while $x \neq 3$ (x = x + 1)) $\downarrow \perp \downarrow \langle x:3 \rangle \neq \langle x:3 \rangle$ $\bot \vdash x = 0 \Downarrow \bot \quad \langle x:1 \rangle \vdash while x \neq 3... \Downarrow \bot \sqcup \langle x:3 \rangle$ $\langle x:1 \rangle \vdash x = x + 1 \Downarrow \langle x:2 \rangle \qquad \langle x:2 \rangle \vdash while x \neq 3... \Downarrow \bot \sqcup \langle x:3 \rangle$ $\langle x:2 \rangle \vdash x = x + 1 \Downarrow \langle x:3 \rangle \qquad \langle x:3 \rangle \vdash while x \neq 3... \Downarrow \langle x:3 \rangle \sqcup \bot = \langle x:3 \rangle$ $\bot \vdash x = x + 1 \Downarrow \bot \qquad \bot \vdash while x \neq 3... \Downarrow \bot$

An abstract big-step derivation tree

Using the same inference rules but with abstract transfer functions for $Parity = \{\bot, even, odd, \top\}$, we generate an abstract tree that is *infinite* but *regular*.

$$\begin{array}{l} \langle x:odd \rangle \vdash \text{ if Even}(x) \ (x = 0) \ (\text{while } x \neq 3 \ (x = x + 1)) \Downarrow \bot \sqcup X \\ \bot \vdash x = 0 \Downarrow \bot \quad \langle x:odd \rangle \vdash \text{ while } x \neq 3... \Downarrow \ \langle x:odd \rangle \sqcup X = X \\ \langle x:odd \rangle \vdash x = x + 1 \Downarrow \ \langle x:even \rangle \quad \langle x:even \rangle \vdash \text{ while } x \neq 3... \Downarrow \bot \sqcup X \\ \langle x:even \rangle \vdash x = x + 1 \Downarrow \ \langle x:odd \rangle \quad \langle x:odd \rangle \vdash \text{ while } x \neq 3... \Downarrow X \\ \end{array}$$

Variable X denotes the answer from the repeated loop subderivation:

 $X = \langle x: odd \rangle \sqcup X$

The least solution sets $X = \langle x: odd \rangle$.

Interprocedural analysis

$$\frac{\texttt{func } \texttt{f}(\texttt{x}) \texttt{ local } \texttt{y}; \texttt{C}. \quad [\texttt{x} \mapsto [\![\texttt{E}]\!]\sigma][\texttt{y} \mapsto \bot] \vdash \texttt{C} \Downarrow \sigma'}{\sigma \vdash \texttt{z} \ = \ \texttt{f}(\texttt{E}) \Downarrow \sigma[\texttt{z} \mapsto \sigma'(\texttt{y})]}$$

where $\llbracket E \rrbracket \sigma$ denotes E's value with σ , and $x \mapsto v$ assigns v to x.

Example: func g(x) local z; z = x+1. a = g(2); b = g(a); a = a*b

$$\begin{array}{l} \langle a:\bot,b:\bot\rangle\vdash a=g(2);\ b=g(a);\ a=a*b\Downarrow \ \langle a:even,b:even\rangle \\ \langle a:\bot,b:\bot\rangle\vdash a=g(2)\Downarrow \ (a:odd,b:\bot\rangle \quad \langle a:odd,b:\bot\rangle\vdash b=g(a);\ a=a*b\Downarrow \ \langle a:even,b:even\rangle \\ \langle x:even,z:\bot\rangle\vdash z=x+1\Downarrow \ \langle x:even,z:odd\rangle \quad \langle a:odd,b:even\rangle\vdash a=a*b\Downarrow \ \langle a:even,b:even\rangle \\ \quad \langle a:odd,b:\bot\rangle\vdash b=g(a);\Downarrow \ \langle a:odd,b:even\rangle \\ \quad \langle a:odd,z:\bot\rangle\vdash z=x+1\Downarrow \ \langle x:odd,z:even\rangle \\ \end{array}$$

The derivation tree naturally separates the calling contexts.

"Too many" calling contexts (*) force widening (!):

func fac(a) local b; if a = 0 (b = 1) (b = fac(a - 1); b = a * b). c = fac(3)

$$\langle c: \bot \rangle \vdash c = fac(3) \Downarrow \langle c: \top \rangle$$

$$* \langle 3, \bot \rangle \vdash if a = 0 \ (b = 1)(b = fac(a - 1); b = a * b) \Downarrow \bot \sqcup \langle \top, \top \rangle = \langle \top, \top \rangle$$

$$\bot \vdash b = 1 \Downarrow \bot \qquad \langle 3, \bot \rangle \vdash b = fac(a - 1); b = a * b \Downarrow \langle \top, \top \rangle$$

$$\langle 3, \bot \rangle \vdash b = fac(a - 1) \Downarrow \langle 3, \top \rangle \qquad 3, \top \vdash b = a * b \Downarrow \top, \top$$

$$* \langle 3, \bot \rangle \sqcup \langle 2, \bot \rangle = \langle \top, \bot \rangle \vdash if a = 0 \dots \Downarrow \langle 0, 1 \rangle \sqcup \langle \top, \top * X.b \rangle = X = \langle \top, \top \rangle$$

$$\langle 0, \bot \rangle \vdash b = 1 \Downarrow \langle 0, 1 \rangle \qquad \langle \top, \bot \rangle \vdash b = fac(a - 1); b = a * b \Downarrow \langle \top, \top * X.b \rangle$$

$$\langle \top, \bot \rangle \vdash b = fac(a - 1) \Downarrow \langle \top, X.b \rangle \qquad \langle \top, X.b \rangle \vdash b = a * b \Downarrow \langle \top, \top * X.b \rangle$$

$$* ! (\langle \top, \bot) \vdash if a = 0 \dots \Downarrow X$$

 $X = \langle 0, 1 \rangle \sqcup \langle \top, \top * X.b \rangle.$ The least solution sets $X = \langle \top, \top \rangle.$

Standard applications of static analysis

Abstract testing and model generation

Each trace tree denotes an abstract "test" that covers a set of concrete test cases, e.g., $\gamma(even) = \{..., -2, 0, 2, ...\}$.

Forms of abstract testing:

- ♦ Black box: For each test set, $S \subseteq C$, we abstractly interpret with $\alpha(S) \in A$. (Best precision: ensure that $S = \gamma(\alpha(S))$.)
- White box: for each conditional, B_i, in the program, ensure there is some a_i ∈ A such that γ(a_i) = {s | B_i holds for s}

Once we generate an abstract model, we can analyze it further

— ask questions of its paths and nodes — via *model checking*.

Low-level safety checking

A static analysis calculates the abstract store arriving at the cast at p_i , a *checkpoint*.

- ♦ p_i , (...x : Int...): no error possible remove the run-time check (because Int \sqsubseteq Rational, hence γ (Int) $\subseteq \gamma$ (Rational)).
- ♦ p_i , $\langle ...x : Object... \rangle$: possible error retain run-time check (because Object ℤ Rational)
- ♦ p_i , $\langle ...x : Bool... \rangle$: definite error, because Bool⊓Rational=⊥ (assuming $\gamma(\bot)={}$).

Two more examples of low-level safety checking:

Array-bounds and arithmetic over- and under-flow checks

- Analysis: interval analysis, where values have form, [i, j], $i \leq j$.
- ♦ Checkpoints: for a[e] e has value in range, [0, a.length]; for int x = e — e has value in range, [-2³¹ - 1, +2³¹ - 1]

Uninitialized variables, dead-code, and erroneous-state checks

- Analysis: constant propagation, where values are $\{k\}$, \bot , or \top .
- Checkpoints:

uninitialized variables: referenced variables have value $\neq \bot$; *dead code:* at program point p_i , arriving store has value $\neq \bot$; *erroneous states:* at program point p_i : Error, arriving store has value = \bot . (*Note:* This can be combined with a *backwards* analysis, starting from each p_i : Error with store \top , working backwards to see if an initial state is reached.)

Program transformation: Constant folding

The analysis tells us to replace y at p_1 by 2: x = 1; y = 2; while (x < 2 + z) x = x + 1

Basic principle of program transformation:

If $a_i \in A$ arrives at point $p_i : S$, where $f_i : C \to C$ is the concrete transfer function, and there are some S', f' such that $f_i(c) = f'(c)$ for all $c \sqsubseteq_C \gamma(a_i)$, then S can be replaced by S' at p_i .

For constant folding, the transformation criteria are the abstract integers $\dots -1, 0, 1, \dots$ (but not \top).

Precondition checking and assertion synthesis

A backwards analysis synthesizes precondition assertions that ensure achievement of a postcondition:

$$x:\downarrow \top \cap \downarrow notneg = \downarrow notneg$$
$$x:\downarrow \top \land \stackrel{p_0}{\frown} \times x:\downarrow notneg$$
$$f_{=0}^{\#-1}, \stackrel{r}{\frown} \stackrel{r}{\frown} x:\downarrow notneg$$
$$x:\downarrow notneg \qquad x:\downarrow pos$$
$$p_1 \qquad p_2 \qquad p_2$$
$$f_{x+1}^{\#-1} p_3 - f_{x-1}^{\#-1}$$
Goal: $x:\downarrow notneg$

where

$$f_{=0}^{\sharp}(a) = a \sqcap zero = \alpha \circ f_{=0} \circ \gamma$$

$$f_{\neq 0}^{\sharp} = \alpha \circ f_{\neq 0} \circ \gamma, \text{ e.g., } f_{\neq 0}^{\sharp}(notneg) = pos;$$

$$f_{\neq 0}^{\sharp}(zero) = \bot; f_{\neq 0}^{\sharp}(\top) = \top$$

$$f_{+1}^{\sharp} = \alpha \circ f_{+1} \circ \gamma, \text{ e.g., } f_{+1}^{\sharp}(notneg) = pos$$

The inverse functions compute on sets:

$$\downarrow a = \{a' \in A \mid a' \sqsubseteq a\}$$

$$f^{\#-1}(S) = \{a \in A \mid f^{\#}(a) \in S\}$$

The entry condition can be used with a forwards analysis to generate postconditions that sharpen the assertions:

The forwards-backwards analyses can be repeatedly alternated.

The "internal logic" of an abstract domain

Abstract values = logical propositions

Read properties like neg ∈ Sign as logical propositions, "isNegative", etc.

For $S \subseteq C$, $a, a' \in A$, $\gamma : A \rightarrow PC$, define

- $\blacklozenge S \models a \text{ iff } S \subseteq \gamma(a) \quad \text{ e.g., } \{-3, -1\} \models \textit{neg}$
- ♦ $a \vdash a'$ iff $a \sqsubseteq a'$ e.g., $neg \vdash any$

For $f : C \to PC$, $f^{\sharp} : A \to A$ is sound iff $f^* \circ \gamma \sqsubseteq \gamma \circ f^{\sharp}$ iff $\alpha \circ f^* \sqsubseteq f^{\sharp} \circ \alpha$ This makes $f^{\sharp} a$ postcondition transformer.

Proposition: $S \models a$ implies $f^*(S) \models f^{\sharp}(a)$.

 $f_{best}^{\sharp} = \alpha \circ f^* \circ \gamma$ is the strongest liberal postcondition transformer for f.

A has an internal logic that γ preserves

First, treat all $a \in A$ as primitive propositions (*isNeg*, *isPos*, etc.).

A has conjunction when

 $S \models \phi_1 \sqcap \phi_2$ iff $S \models \phi_1$ and $S \models \phi_2$, for all $S \subseteq C$.

That is, $\gamma(\phi \sqcap \psi) = \gamma(\phi) \cap \gamma(\psi)$, for all $\phi, \psi \in A$.

Proposition: When $\gamma : A \to PC$ is an upper adjoint, then A has conjunction.

Proposition: When $\gamma(\varphi \sqcup \psi) = \gamma(\varphi) \cup \gamma(\psi)$, then A has *disjunction*: $S \models \varphi \sqcup \psi$ iff $S \models \varphi$ or $S \models \psi$.

Sign lacks disjunction: $\gamma(zero) \models neg \sqcup pos$, because $neg \sqcup pos = any$, but $\gamma(zero) \not\models neg$ and $\gamma(zero) \not\models pos$.

Sometimes, we can implement a domain's disjunctive completion [Cousots79,Giacobazzi00] :

$$(\mathcal{P}(\text{int}), \subseteq) \langle \overline{\alpha_{o}}, \overline{\gamma} \rangle (\mathcal{P}_{\downarrow}(Sign), \subseteq)$$
$$\overline{\gamma}(\mathsf{T}) = \cup_{\mathsf{a} \in \mathsf{T}} \gamma(\mathsf{a}) \qquad \overline{\alpha_{o}}(\mathsf{S}) = \downarrow \{ \alpha \{ c \} \mid c \in \mathsf{S} \}$$

Downclosed sets are needed for monotonicity of key functions on the sets.

Now, $\overline{\gamma}$ preserves \cap *and* \cup . Properties, $a \in A$, are interpreted in $\mathcal{P}_{\downarrow}(A)$ as $\overline{\alpha_o}(\gamma(a)) = \downarrow \{a\}$.

For $A = \mathcal{P}_{\downarrow}(Sign)$, these assertions are exact:

 $\phi ::= neg | zero | pos | \phi_1 \land \phi_2 | \phi_1 \lor \phi_2$

Complete lattice A is *distributive* if $a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c)$, for all $a, b, c \in A$. When \sqcap is Scott-continuous, then

 $\varphi \Rightarrow \psi \equiv \bigsqcup \{ a \in A \mid a \sqcap \varphi \sqsubseteq \psi \}$

satisfies the property, $a \vdash \phi \Rightarrow \psi$ iff $a \sqcap \phi \vdash \psi$.

Proposition: If A is a distributive complete lattice, \sqcap is Scott-continuous, and upper adjoint γ is 1-1, then A has *Heyting implication*, $\phi \Rightarrow \psi$, such that

 $S \models \phi \Rightarrow \psi \text{ iff } \gamma(\alpha(S)) \cap \gamma(\phi) \subseteq \gamma(\psi).$

That is, $\gamma(\phi \Rightarrow \psi) = \bigcup \{S \in \gamma[A] \mid S \cap \gamma(\phi) \subseteq \gamma(\psi)\}.$

Heyting implication is weaker than classical implication, where $S \models \phi \Rightarrow \psi$ iff $S \cap \gamma(\phi) \subseteq \gamma(\psi)$ iff for all $c \in S$, if $\{c\} \models \phi$, then $\{c\} \models \psi$.

The POS domain for groundness analysis of logic programs uses Heyting implication [Cortesi91,Marriott93].

If $\gamma(\perp_A) = \emptyset \in \mathcal{P}(\Sigma)$, we have falsity (\perp); this yields the logic,

 $\phi ::= \mathbf{a} | \phi_1 \sqcap \phi_2 | \phi_1 \sqcup \phi_2 | \phi_1 \Rightarrow \phi_2 | \bot$

In particular, $\neg \phi$ abbreviates $\phi \Rightarrow \bot$ and defines the *refutation* of ϕ within A, as done in the TVLA analyzer [Sagiv02].

 $\gamma : A \rightarrow PC$ is the interpretation function for the internal logic:

$$\begin{split} \gamma(\mathfrak{a}) &= \mathsf{given} \\ \gamma(\varphi \sqcap \psi) &= \gamma(\varphi) \cap \gamma(\psi) \\ \gamma(\varphi \sqcup \psi) &= \gamma(\varphi) \cup \gamma(\psi) \\ \gamma(\varphi \Rightarrow \psi) &= \bigcup \{ S \in \gamma[A] \mid S \cap \gamma(\varphi) \subseteq \gamma(\psi) \} \\ \gamma(\bot) &= \emptyset \end{split}$$

γ -completeness characterizes the internal logic

The interpretation for conjunction, $\gamma(\phi \sqcap \psi) = \gamma(\phi) \cap \gamma(\psi)$, shows that γ -completeness is *exactly* the criterion for determining the connectives in A's internal logic:

Proposition: For $f : C^n \to PC$, A's logic includes connective f^{\sharp} iff f^{\sharp} is γ -complete for f^* :

 $\gamma(f^{\sharp}(\phi_1,\phi_2,\cdots)) = f^*(\gamma(\phi_1),\gamma(\phi_2),\cdots)$

Example: For $Sign = \{none, neg, zero, pos, any\}$, negate^{\$\$\$} is γ -complete for negate(S) = $\{-n \mid n \in S\}$ (where negate^{\$\$\$}(pos) = neg, negate^{\$\$\$\$}(neg) = pos, negate^{\$\$\$\$}(zero) = zero, etc.):

 $\phi ::= a | \phi_1 \sqcap \phi_2 | negate^{\sharp}(\phi)$

We can state "negate" assertions, e.g., $pos \models negate^{\ddagger}(neg \sqcap any)$.

Post-image (left-to-right) abstraction of relations

f : C \rightarrow PC defines a relation in C \times C, e.g., {1,3}[[succ]]{2,4}. f's left-to-right (post) image, $post_f : PC \rightarrow PC$, is

 $post_{f}(S) = \bigcup_{c \in S} f(c).$

For Galois connection, $PC\langle \overline{\alpha_o}, \overline{\gamma} \rangle \mathcal{P}_{\downarrow}(A)$, and $f^{\sharp} : A \to \mathcal{P}_{\downarrow}(A)$,

- for $T \in \mathcal{P}_{\downarrow}(A)$, define $post_{f^{\sharp}}(T) = \sqcup_{a \in T} f^{\sharp}(a) = \bigcup_{a \in T} f^{\sharp}(a)$.
- ♦ use *post*_{f[#]} to compute left-to-right (over)approximations of f, e.g., {*neg*}[[succ[‡]]]{*neg*, *zero*}, that is, *neg* ∨ *zero*.

Proposition: For $f_{\text{best}}^{\sharp} = \overline{\alpha_o} \circ f^* \circ \gamma$, $(post_f)_{\text{best}}^{\sharp} = \overline{\alpha_o} \circ post_f \circ \overline{\gamma} = post_{f_{\text{best}}^{\sharp}}$

Corollary: If f is γ -complete, then $(post_{f_{best}^{\sharp}} \phi)$ is in $\mathcal{P}_{\downarrow}(A)$'s logic.

Given $PC(\alpha, \gamma)A$, we have two relevant Galois connections between PC and $\mathcal{P}_{\downarrow}(A)$

Recall that $\overline{\gamma}(T) = \bigcup_{\alpha \in T} \gamma(\alpha)$ and that $\overline{\gamma}$ preserves both unions and intersections on $\mathcal{P}_{\downarrow}(A)$. Therefore, $\overline{\gamma}$ is an upper adjoint in *two* different ways:

PC^{op}

γ**7**

IN

S

Overapproximating abstraction:

$$\begin{split} \overline{\alpha_o}(S) &= \bigcap \{ \mathsf{T} \mid S \subseteq \overline{\gamma}(\mathsf{T}) \} \\ &= \mathop{\downarrow} \{ \alpha \{ c \} \mid c \in S \} \end{split}$$

where

 $\downarrow T = \{ a \mid \text{exists } a' \in T, a \sqsubseteq a' \}.$

Underapproximating abstraction: $\overline{\alpha_{u}}(S) = \bigcup \{T \mid \overline{\gamma}(T) \subseteq S\}$ $= \{a \mid \gamma(a) \subseteq S\}$ where $(D, \sqsubseteq_{D})^{op} \text{ is } (D, \sqsupseteq_{D}).$

 $\overline{\alpha}_{\mu}$

P_{\|} (A)^{pp}

 $\frac{1}{\alpha_{u}}$ S

Pre-image (right-to-left) abstraction of relations

 $f: C \rightarrow PC$ defines a relation $\subseteq C \times C$, e.g., $\{0, 1, 3\}$ [succ] $\{1, 2, 4\}$.

f's right-to-left (pre) image, $\widetilde{pre}_{f} : PC \rightarrow PC$, is

 $\widetilde{\textit{pre}}_{f}(S) = \cup \{S' \subseteq C \mid f^{*}(S') \subseteq S\} = \{c \mid f(c) \subseteq S\}$

For Galois connection, $PC^{op}\langle \overline{\alpha_u}, \overline{\gamma} \rangle \mathcal{P}_{\downarrow}(A)^{op}$ and $f^{\sharp} : A \to \mathcal{P}_{\downarrow}(A)$,

- for $T \in \mathcal{P}_{\downarrow}(A)$, define $\widetilde{pre}_{f^{\sharp}} = \{ a \mid f^{\sharp}(a) \subseteq T \}$
- ♦ use pre_f[#] to compute right-to-left (under)approximations of f, e.g.,
 zero ∨ pos[[succ[‡]]] pos and none[[succ[‡]]] zero (!)

Theorem: $(\widetilde{pre}_{f})_{best}^{\sharp} = \overline{\alpha}_{u} \circ \widetilde{pre}_{f} \circ \overline{\gamma} = \widetilde{pre}_{f_{best}^{\sharp}}.$

Because $\widetilde{pre}_{f^{\sharp}} \phi$ always underapproximates $\widetilde{pre}_{f}(\overline{\gamma}(\phi))$, it can be added to $\mathcal{P}_{\downarrow}(A)$'s logic.

Indeed, we can always define an underapproximating external logic

For each concrete property of interest, $[\![\varphi]\!] \subseteq C$, define

 $\llbracket \Phi \rrbracket^{\mathcal{A}} = \{ \mathfrak{a} \in \mathcal{A} \mid \gamma(\mathfrak{a}) \subseteq \llbracket \phi \rrbracket \}$

Then, assert $\mathbf{a} \vdash \mathbf{\phi}$ iff $\mathbf{a} \in \llbracket \mathbf{\phi} \rrbracket^{\mathcal{A}}$.

This definition follows from the underapproximating Galois connection:

That is, $\llbracket \phi \rrbracket^A = \overline{\alpha_{11}} \llbracket \phi \rrbracket$.

The inverted ordering gives *underapproximation*: $\llbracket \varphi \rrbracket \supseteq \overline{\gamma}(\llbracket \varphi \rrbracket^{\mathcal{A}})$. This form of external logic is standard in "abstract model checking."

The inductively defined underapproximation to $\overline{\alpha_u}[\phi]$:

$$\begin{split} \llbracket a \rrbracket_{\text{ind}}^{\mathcal{A}} &= \overline{\alpha_{u}}(\gamma(a)) \\ \llbracket \phi_{1} \wedge \phi_{2} \rrbracket_{\text{ind}}^{\mathcal{A}} &= \llbracket \phi_{1} \rrbracket_{\text{ind}}^{\mathcal{A}} \cap \llbracket \phi_{2} \rrbracket_{\text{ind}}^{\mathcal{A}} \\ \llbracket \phi_{1} \vee \phi_{2} \rrbracket_{\text{ind}}^{\mathcal{A}} &= \llbracket \phi_{1} \rrbracket_{\text{ind}}^{\mathcal{A}} \cup \llbracket \phi_{2} \rrbracket_{\text{ind}}^{\mathcal{A}} \\ \llbracket \llbracket f \rrbracket \phi \rrbracket_{\text{ind}}^{\mathcal{A}} &= \widetilde{pre}_{f^{\sharp}} \llbracket \phi \rrbracket_{\text{ind}}^{\mathcal{A}} = \{a \in \mathcal{A} \mid f^{\sharp}(a) \in \llbracket \phi \rrbracket_{\text{ind}}^{\mathcal{A}} \} \end{split}$$

Entailment and provability are as expected: $a \models \phi$ iff $\gamma(a) \subseteq \llbracket \phi \rrbracket$, and $a \vdash \phi$ iff $a \in \llbracket \phi \rrbracket^{\mathcal{A}}_{ind}$.

Soundness (\vdash implies \models) is immediate, and completeness (\models implies \vdash) follows when $\overline{\alpha_{u}} \circ [\cdot] = [\cdot]_{ind}^{\mathcal{A}}$. This is called *logical best preservation* or *logical* $\overline{\alpha}$ *-completeness* [Cousots00,Schmidt06].

Scaling upwards

Analyzing large (100K+ LOC) programs

- engineered as a one-pass analysis, like static data-type checking
- flow-insensitive (ignores control-test expressions, loop iterations, distinct procedure-call points).
- ♦ "whole-program analysis": examines entire source-code base

The standard example is pointer analysis on C programs, where properties are stated, *"var x may-point-to vars* {y, z, ...}." A set of equations are generated in one program pass and solved in some small bound of iterations [Andersen94, Steensgaard96, HeintzeTardieu04].

Advantages: simple, fast, complete code coverage, no hand-extracted "abstract model" (as required for model-checking) [Engler04]

Drawbacks: properties are simple, too many "false alarms" (inability to verify desired property)

Modular analysis

- A program unit is abstracted and analyzed to a *summary structure* or *assume-guarantee relation*, where properties of the unit's free variables/inputs are associated/mapped to properties of the unit/outputs.
- When units are linked, so are their summaries, generating a composite summary. We don't reanalyze the units.
- Practical (better than linear-time) speedups are obtained when fixed points are solved locally within each unit (*and not at link time*) [CousotCousot02].

There is no ideal approach, especially for the last item, so we survey some techniques (*summaries, frontiers, symbolic evaluation*) using the classic example of abstracting a higher-order function definition.

Example: higher-order normalization ("strictness") analysis

 $B = \{\bot, \top\}$, where \top means "might normalize" and \bot means "does not normalize".

Example: F m n = if (m=0) (n) (F (m+1) n)

 $F^{\sharp} = \lambda a: B. \lambda b: B. a \sqcap (b \sqcup (F^{\sharp} a b))$

 $graph(F^{\sharp}) = \{ \bot \mapsto \bot \mapsto \bot, \bot \mapsto \top \mapsto \bot, \top \mapsto \bot \mapsto \bot, \top \mapsto \top \mapsto \top \}.$

Domain B can be applied to analyses that predict the outcome of a boolean predicate/invariant ("predicate abstraction").

A higher-order, module-like example

Define: $F^{\sharp} = \lambda f : B \to (B \to B) . \lambda x : B. (x, f \cdot x)$

The function's graph (summary table) has 12 entries:

```
graph(F^{\sharp}) = \{
 \begin{bmatrix}1\\1\end{bmatrix}\mapsto\bot\mapsto(\bot,\bot),
\begin{bmatrix}1\\1\end{bmatrix}\mapsto\top\mapsto(\top,\bot),
 \begin{bmatrix} 2\\1 \end{bmatrix} \mapsto \bot \mapsto (\bot, \bot),
 \begin{bmatrix} 2\\ 1 \end{bmatrix} \mapsto \top \mapsto (\top, \top),
 \begin{bmatrix} 3 \\ 3 \end{bmatrix} \mapsto \bot \mapsto (\bot, \top),
 \begin{bmatrix} 3 \\ 2 \end{bmatrix} \mapsto \top \mapsto (\top, \top)
```


It's model-checking-like and feasible to implement!

Partial summary/graph: frontier [Clack&PeytonJones85]

Assemble the graph in increments and retain only useful ("frontier") entries, as based on these consequences of monotonicity:

- ♦ if a → b ∈ frontier(F^{\$\$}), then (i) for all a' ⊆ a, a' → b is sound; (ii) for all b' ⊆ b, a → b' is sound.
- if $a \mapsto \top \in frontier(F^{\sharp})$, then for all $a' \sqsupseteq a$, $a' \mapsto \top$ is sound.
- ♦ if $a_1 \mapsto b_1, a_2 \mapsto b_2 \in \text{frontier}(F^{\ddagger})$, then *(i)* $a_1 \sqcap a_2 \mapsto b_1 \sqcap b_2$ is sound; *(ii)* if F^{\ddagger} preserves \sqcup (holds when F^{\ddagger} 's domain is a disjunctive completion), then $a_1 \sqcup a_2 \mapsto b_1 \sqcup b_2$ is sound.

Example frontier: for $F^{\sharp} = \lambda f : B \to (B \to B) . \lambda x : B. (x, f \cdot x),$

$$frontier(F^{\sharp}) = \left\{ \begin{array}{c} \binom{2}{2} \mapsto \bot \mapsto (\bot, [2]), \binom{2}{2} \mapsto \top \mapsto (\top, [2]), \\ \binom{3}{1} \mapsto \top \mapsto (\top, [3]) \end{array} \right\}$$

Example inferences based on the frontier

- For $F^{\sharp} = \lambda f : B \to (B \to B) . \lambda x : B. (x, f \cdot x),$ frontier(F^{\sharp}) = { $\begin{bmatrix} 2\\ 2 \end{bmatrix} \mapsto \bot \mapsto (\bot, [2]), \qquad B \longrightarrow B$ $\begin{bmatrix} 3 \end{bmatrix} = \lambda x$
 - $\begin{bmatrix} 2\\2 \end{bmatrix} \mapsto \top \mapsto (\top, [2]),$ $\begin{bmatrix} 3\\1 \end{bmatrix} \mapsto \top \mapsto (\top, [3]) \},$

we can conclude

 $\begin{bmatrix} 2\\1 \end{bmatrix} \mapsto \top \mapsto (\top, [3]) \text{ is sound (because } \begin{bmatrix} 2\\1 \end{bmatrix} \sqsubseteq \begin{bmatrix} 3\\1 \end{bmatrix})$ $\begin{bmatrix} 3\\3 \end{bmatrix} \mapsto \top \mapsto (\top, [3]) \text{ is sound (because } \begin{bmatrix} 3\\1 \end{bmatrix}, \top \text{ map to } (\top, [3]))$ $\begin{bmatrix} 2\\1 \end{bmatrix} \mapsto \top \mapsto (\top, [2]) \text{ is sound (because } \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix} \sqcap \begin{bmatrix} 3\\1 \end{bmatrix})$ $\begin{bmatrix} 3\\2 \end{bmatrix} \mapsto \top \mapsto (\top, [3]) \text{ is sound (because } \begin{bmatrix} 3\\2 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix} \sqcup \begin{bmatrix} 3\\1 \end{bmatrix})$

Integrating symbolic evaluation with frontiers

For $F^{\sharp} = \lambda f : B \to (B \to B) . \lambda x : B. (x, f \cdot x),$

- Starting from a purely symbolic formulation (the third line), the frontier expands with useful instances.
- ♦ At any point, we can replace symbolic arguments by ⊤ to "close" the frontier, generating a "worst case analysis."
- We can apply algebraic techniques to solve local fixed points.

Solving local fixed points (intuition)

Example: F x = if (...) (g x) (h(F(f x)))

$$F^{\sharp} = \bigsqcup_{i \ge 0} F_i$$
, where $\begin{array}{c} F_0 = \lambda a. \bot \\ F_{i+1} = \lambda a.(g \ a) \sqcup (h(F_i(f \ a))) \end{array}$

By inductive reasoning,

$$\begin{split} F_{i} &= \bigsqcup_{0 \leq j < i} h^{j}(g(f^{j} a)) \\ & \sqsubseteq \bigsqcup_{0 \leq j < i} h^{j}(g(f^{*} a)) \\ & \sqsubseteq h^{*}(g(f^{*} a)) \end{split} \ \ \ where \ \ f^{i} = f \circ f \circ \cdots \circ f, i \text{ times} \\ f^{*} = \bigsqcup_{j \geq 0} f^{j} \end{split}$$

Each occurrence of f* is solved locally, cheaply. The reasoning is implemented with regular tree/expression techniques; precision is traded for speed-up [CousotCousot02,Moeller03].

References

- 1. This talk: santos.cis.ksu.edu/schmidt/SLS13.pdf
- 2. B. Blanchet, P. Cousot, et al. A static analyzer for large safety-critical software. ACM PLDI 2003.
- 3. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs. ACM POPL 1977.
- 4. Patrick Cousot, Radhia Cousot: Modular Static Program Analysis. CC 2002, Springer LNCS 2304.
- 5. F. Nielson, H.R. Nielson, C. Hankin. *Principles of Program Analysis.* Springer 2010.
- D. Schmidt. Trace-Based Abstract Interpretation of Operational Semantics. J. Lisp and Symbolic Computation 10 (1998).
- D. Schmidt. Internal and External Logics of Abstract Interpretations. VMCAI 2008, Springer LNCS 4905.