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Abstract. Abstract parsing is a static-analysis technique for a program
that, given a reference LR(k) context-free grammar, statically checks
whether or not every dynamically generated string output by the pro-
gram conforms to the grammar. The technique operates by applying an
LR(k) parser for the reference language to data-flow equations extracted
from the program, immediately parsing all the possible string outputs to
validate their syntactic well-formedness.
In this paper, we extend abstract parsing to do semantic-attribute pro-
cessing and apply this extension to statically verify that HTML docu-
ments generated by JSP or PHP are always valid according to the HTML
DTD. This application is necessary because the HTML DTD cannot be
fully described as an LR(k) grammar. We completely define the HTML
4.01 Transitional DTD in an attributed LALR(1) grammar, carry out ex-
periments for selected real-world JSP and PHP applications, and expose
numerous HTML validation errors in the applications. In the process,
we experimentally show that semantic properties defined by attribute
grammars can also be verified using our technique.
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1 Introduction

Most HTML documents viewed from the web are dynamically generated by
scripts that mix dynamic input with static structure. As a result, many dynami-
cally generated documents are grammatically malformed, and some even contain
user-supplied attacks that exploit the malformedness [18, 19]. HTML validation
tools are provided at the W3C site, but the tools are impractical or impossible
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to use with scripts that dynamically generate HTML. Therefore, our goal is to
validate, in advance of execution, the syntactic and semantic properties of the
HTML documents generated dynamically by an application.

Since HTML-document structure is context-sensitive, we wish to employ
parsing theory and semantic-analysis techniques from compiling theory to do
validation. Abstract parsing does this [7, 8]: It extracts from a script a set of flow
equations that overapproximate the documents (strings) that the script might
generate, and it solves the equations in the domain of LR-parse stacks, which
encodes the documents’ context-free structure.

In this paper, we explain how we employ abstract parsing to validate JSP
and PHP scripts. When our implementation is applied to a standard suite of
JSP and PHP programs, we found it to be sound, precise (it yields very few
false positives — false indications of errors), and reasonably e�cient.

1.1 Motivating examples

We show two HTML-generated PHP scripts, the first generating syntactically
invalid HTML, the second generating semantically invalid HTML:

Validating syntactic structure The following code shows a portion of a PHP
program that generates one of two di↵erent HTML pages depending on the value
of a conditional expression isset($ POST["mode"]) determined at run-time.

<body>
<table>

<tr><th>
...

<?php
if (isset($_POST["mode"])) {

echo "<tr>";
$result = DB_query(...);
while($fruit = DB_fetch_array($result) {

echo "<td>" . $fruit . "</td>";
}
echo "</table>";

}
?>

...

If the conditional evaluates to true, the program always generates a syntactically
valid page. <table> is required to be paired with </table>, which is the case in
the generated page. It is acceptable that <tr> has no matching </tr>, because
the HTML definition allows that </tr> be omitted. However, if the conditional
evaluates to false, </table> is missing in the generated page, making the page
syntactically invalid.

Validating semantic properties The following PHP program fetched from
DiscountCategories.php in WEBERP always generates a form element if the
conditional in the first line is true. In the form, a table is built using data
retrieved from a database and contains a submit button.



if (isset($_POST[’selectchoice’])) {
echo ’<form id="update" method="post" action=" ... "’;
echo ’<div>’; echo ’<input type="hidden" name="FormID" value="...">’’;
$sql = "SELECT DISTINCT discountcategory FROM stockmaster WHERE discountcategory <>’’";
$result = DB_query($sql, $db);
if (DB_num_rows($result) > 0) {

echo ’<table class="selection"><tr><td>’;
echo ’<select name="DiscCat" onchange="ReloadForm(update.select)">’;
while ($myrow = DB_fetch_array($result)){

echo ’... <option selected="selected" value="..."> ...’;
}
echo ’</select></td>’;
echo ’<td><input type="submit" name="select" value="’._(’Select’).’" /></td>

</tr></table><br />’;
}
echo ’</div></form>’;

}

However, when nothing is retrieved from the database, the second conditional is
false, no submit button is generated, and the result is a useless form that never
transmits data. (When there is nothing to submit, no form should be generated.)

Our abstract-parsing technique will analyze and detect both forms of errors
— both the syntax and semantics of the dynamically generated documents can
be predicted prior to run-time.

1.2 Contributions

The contributions of this paper are

– We extend abstract-parsing with an implementation of semantic-attribute
processing, which makes it amenable to a wide range of static-analysis prob-
lems on document-generating scripts.

– We define a complete LALR(1) attribute grammar for the HTML 4.01 DTD
Transitional definition, a nontrivial task.

– We statically validate JSP and PHP programs that dynamically generate
HTML documents, by submitting the HTML attributed grammar to the ab-
stract parser equipped with semantic processing. The implementation stati-
cally validates all the features that W3C HTML Validator does dynamically,
as well as semantic properties. Our earlier work shown in [7] was only able
to validate a subset of HTML, essentially XHTML, the part definable in
LALR(1) grammar.

The paper’s next section summarizes abstract-parsing methodology (c.f. [7]),
and Section 3 explains semantic processing, extending earlier work [8]. Section 4
explains the di�culties and our achievement of defining precisely an attributed
grammar for the HTML DTD. Sections 5 and 6 present our work and our re-
sults of validating syntactic and semantic properties of scripts that dynamically
generate HTML. Section 7 examines related research in the field, and Section 8
concludes.



r = ’]’

x = ’[’ . r

while ...

x = ’[’ . x . r

print x

R = ]

X0 = [ ·R
X1 = X0 tX2
X2 = [ ·X1 ·R
X3 = X1 · !

(Read . as an infix string-append operation.)

Fig. 1: Sample program and its data-flow equations

2 Fundamentals of abstract parsing

This section is a summary of [7], improved to support modular definitions. We
present abstract parsing with an example: Say that a script must generate an
output string that conforms to this grammar,

S ! [] | [S ] | S S

where S is the only nonterminal. (HTML, XML, and SQL are such bracket
languages.) The grammar can be di�cult to enforce even for simple programs,
like the one in Figure 1, left column. Say this program must print only well-
formed S-phrases.

Figure 1’s right column shows the data-flow equations extracted from the
program. Previous approaches have used type checking [3, 6, 17], regular expres-
sions [4, 5, 12, 13], and language inclusion [14, 16, 15, 17], but all of these fail
at some point to track precisely the context-free structure implicit in the string-
valued document. For example, a standard regular-expression analysis solves the
flow equations in the domain of regular expressions, determining that X3’s val-
ues conform to the regular expression, [⇤ · [ · ] · ]⇤, which does not validate the
demand. (It is possible to “jazz up” such an analysis [16, 15], but at some point,
context-free structure is lost.)

We validate the desired property by solving the flow equations in Figure 1
in the domain of LR-parse stacks — X3’s meaning is the set of parse stacks of
the strings that might be denoted by x. Our technique simultaneously unfolds
and LR-parses the strings defined by X3, computing parse stacks that express
structure in both the flow equations and the reference grammar. (Of course, a
script might generate infinitely many di↵erent strings, and therefore the analysis
might compute an infinite set of parse stacks. We finitely approximate an infinite
set of parse stacks by exploiting a key feature of LR-parse theory, described in
Section 2.2.)

First, let’s understand the parser for the example grammar: Figure 2 gives
the LALR(1)-parse-controller and parse of the string, [[][]]. The controller’s
transitions are coded as shift/reduce rewriting rules, which parse the string. The
current state, [si], of the parse appears at the top of the parse stack, s0 :: s1 ::
· · · :: [si]. Input symbols, i, are supplied to parse state s in the format, [i ,! s].
The parser starts from the stack, [s0] and consumes the input string symbol by
symbol, generating the parse in the Figure.



Input symbols label the transitions and ! denotes end of input:

]
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[

]
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[

[

Shift transitions:
[[ ,! s0] ) s0 :: [s1]
[[ ,! s1] ) s1 :: [s1]
[] ,! s1] ) s1 :: [s2]
[[ ,! s3] ) s3 :: [s1]
[] ,! s3] ) s3 :: [s4]
[[ ,! s6] ) s6 :: [s1]

Reduce transitions:
s

i

:: s
j

:: [` ,! s2] ) [` ,! S ,! s

i

]
s

i

:: s
j

:: s
k

:: [` ,! s4] ) [` ,! S ,! s

i

]
s

i

:: s
j

:: [` ,! s5] ) [` ,! S ,! s

i

]
s

i

:: [! ,! s6] ) s

i

:: finished
where ` 2 {[, ], !} and
[` ,! S ,! s0] ) s0 :: [` ,! s6]
[` ,! S ,! s1] ) s1 :: [` ,! s3]
[` ,! S ,! s3] ) s3 :: [` ,! s5]
[` ,! S ,! s6] ) s6 :: [` ,! s5]

parse stack input sequence
[s0] [[][]]!

[[ ,! s0] [][]]! (ready for shift transition)
s0 :: [s1] [][]]!

s0 :: [[ ,! s1] ][]]!

s0 :: s1 :: [s1] ][]]!

s0 :: s1 :: [] ,! s1] []]!

s0 :: s1 :: s1 :: [s2] []]!

s0 :: s1 :: s1 :: [[ ,! s2] ]]! (ready for reduce transition)
s0 :: [[ ,! S ,! s1] ]]! (reduce S ! [])
s0 :: s1 :: [[ ,! s3] ]]!

s0 :: s1 :: s3 :: [s1] ]]!

s0 :: s1 :: s3 :: [] ,! s1] ]!

s0 :: s1 :: s3 :: s1 :: [s2] ]!

s0 :: s1 :: s3 :: s1 :: [] ,! s2] !

s0 :: s1 :: [] ,! S ,! s3] ! (reduce S ! [])
s0 :: s1 :: s3 :: [] ,! s5] !

s0 :: [] ,! S ,! s1] ! (reduce S ! SS)
s0 :: s1 :: [] ,! s3] !

s0 :: s1 :: s3 :: [s4] !

s0 :: s1 :: s3 :: [! ,! s4]
[! ,! S ,! s0] (reduce S ! [S])
s0 :: [! ,! s6]
s0 :: finished

Fig. 2: Disambiguated LALR(1) parser for S ! [ ] |[S] |S S, where S S is made
left associative



Our abstract parsing technique will apply the shift/reduce transition rules
to the flow equations in the right column of Figure 1. To validate that the
program prints only S-structured phrases at X3, we must evaluate the start
stack, [s0], and (the string(s) denoted by) X3. We portray this as the function
call, X3[s0] — we treat the program-flow equations in Figure 1 as functions

defined in combinator notation, where we apply a function to the state used to
parse it.

Starting from X3[s0], we use the flow equation, X3 = X1, to generate this
calculation:

X3[s0] = (X1 · !)[s0]
= X1[s0]� !

The first line says that the value of X1 · ! must be parsed starting from [s0].
The second line says that the string value of X1 is parsed first and the resulting
parse stack, say, s0 :: si :: · · · :: [sj ], is then used to parse !. (This will be
s0 :: si :: · · · :: ![sj ]. The � operator is defined precisely below; for now, read
E1(s) � E2 as “E1(s) generates a parse stack whose top state is passed as the
argument to E2, which extends the stack.”)

The call, X1[s0], generates this equation:

X1[s0] = X0[s0] [X2[s0]

That is, the union of the parses of strings at X0 and X2 from s0 must be
computed. (Important: this computes a set of parse stacks, which must be finitely
approximated in the implementation.) We consider first X0[s0]:

X0[s0] = ([ ·R)[s0] = [[s0]�R = [[ ,! s0]�R

= (s0 :: [s1])�R = s0 :: (R[s1])

and R[s1] = ][s1] = [] ,! s1] = {s1 :: [s2]}
so, X0[s0] = s0 :: (R[s1]) = {s0 :: s1 :: [s2]}

That is, the parse of [ · R from [s0] generates the stack, s0 :: s1 :: [s2], which
is one transition step from reducing S ! [] (which occurs when the next input
symbol is encountered and is verified in S’s follow set).

The � is a “continuation operator”: For parse stack, st, and combinator
expression, E, define st � E = tail(st) :: E[head(st)]. That is, stack st’s top
state feeds to E. (More generally, for a set of stacks, S, define S�E = {tail(st) ::
E[head(st)] | st 2 S}.)

Next,
X2[s0] = ([ ·X1 ·R)[s0] = [[ ,! s0]� (X1 ·R)

= (s0 :: [s1])� (X1 ·R) = s0 :: (X1 ·R)[s1]
= s0 :: (X1[s1]�R)

The call to parse X1’s string from [s1] generates X1[s1] = X0[s1] [ X2[s1]
which in turn generates calls to X0[s1] and X2[s1]. Here is the list of residual
equations generated from the initial call, X3[s0]:

X3[s0] = X1[s0]� !

X1[s0] = X0[s0] [X2[s0]
X0[s0] = {s0 :: s1 :: [s2]}
R[s1] = {s1 :: [s2]}

X2[s0] = s0 :: (X1[s1]�R)
X1[s1] = X0[s1] [X2[s1]
X0[s1] = {s1 :: s1 :: [s2]}
X2[s1] = s1 :: (X1[s1]�R)



These equations will be solved by a least-fixed point calculation in the domain
of sets of parse stacks. (That is, the meaning of each Xi[sj ] computes to a set of
stacks.)

More equations can and will be generated, in demand-driven fashion, during
the fixed-point calculation. To show how this proceeds, we will solve the mutually
recursive equations for X1[s0], X2[s0], X1[s1], and X2[s2], in stages:

X10[s0] = X20[s0] = X10[s1] = X20[s1] = ;

X11[s0] = {s0 :: s1 :: [s2]}
X21[s0] = ;
X11[s1] = {s1 :: s1 :: [s2]}
X21[s1] = s1 :: (X11[s1]�R)

= s1 :: s1 :: s1 :: R[s2]
where R[s2] = [] ,! s2]
= s1 :: s1 :: s1 :: [] ,! s2]
= s1[] ,! S ,! s1]
= s1 :: s1 :: [] ,! s3]
= {s1 :: s1 :: s3 :: [s4]}

X22[s0] = s0 :: (X11[s1]�R)
= s0 :: s1 :: s1 :: R[s2]
= {s0 :: s1 :: s3 :: [s4]}

X12[s1] = {s1 :: s1 :: [s2], s1 :: s1 :: s3 :: [s4]}
X22[s1] = s1 :: (X12[s1]�R)

= {s1 :: s1 :: s1 :: R[s2],
s1 :: s1 :: s1 :: s3 :: R[s4]}

= {s1 :: s1 :: s3 :: [s4]}
X13[s0] = {s0 :: s1 :: [s2], s0 :: s1 :: s3 :: [s4]}
X23[s0] = s0 :: (X12[s1]�R)

= {s0 :: s1 :: s3 :: [s4]}

At this point, the equations converge. Note that

X1[s0] = {s0 :: s1 :: [s2], s0 :: s1 :: s3 :: [s4]}

signifying that the parses of the value of x in the loop body come either from
[] or from [ · S · ], where S represents a parse of some S-structured string. For
this reason, we have

X3[s0] = X1[s0]� !

= {s0 :: s1 :: ![s2], s0 :: s1 :: s3 :: ![s4]}
= {s0 :: finished}

This validates that the strings printed at the hot spot must be S-phrases.
The algorithm that generates the residual equations and simultaneously solves
them is a worklist algorithm like those used for demand-driven data-flow analysis
[2, 9, 11].

2.1 Simplifying the calculation: Higher-order parse states

It is disappointing that the calculation of X0[s0] yields {s0 :: s1 :: [s2]} and not
the nonterminal, S, since the assignment x = ’[’ . r assigns the string, ’[]’,
to x. The issue, of course, is that a lookahead symbol, `, is required to validate
the reduction of ’[]’ to S. This is formalized in the transitions stated in Figure
2:

si :: sj :: [` ,! s2] ) [` ,! S ,! si], if ` 2 {[, ], !}
[` ,! S ,! s0] ) s0 :: [` ,! s6]

If we make the current parse state “higher order” by parameterizing it on the
lookahead symbol, we can simplify the situation — we use this variation of the
above reduction transition:

si :: sj :: [s2] ) [S
F

,! si],where F = {[, ], !}



Conditional reduce transitions:
s

i

:: s
j

:: [s2] ) [S
F

,! s

i

]
s

i

:: s
j

:: s
k

:: [s4] ) [S
F

,! s

i

]
s

i

:: s
j

:: [s5] ) [S
F

,! s

i

]
where F = {[, ], !}

Lookahead application transitions:
[` ,! S

F

,! s0] ) s0 :: [` ,! s6] if ` 2 F
[` ,! S

F

,! s1] ) s1 :: [` ,! s3] if ` 2 F
[` ,! S

F

,! s3] ) s3 :: [` ,! s5] if ` 2 F
[` ,! S

F

,! s6] ) s6 :: [` ,! s5] if ` 2 F

Reworked abstract parse of example program:

X0[s0] = {s0 :: s1 :: [s2]} = {[S
F

,! s0]}
R[s1] = {s1 :: [s2]}
R[s2] = {[] ,! s2]}
R[s4] = {[] ,! s4]}
X1[s0] = X1[s0]� ! = {s0 :: s1 :: [s2], s0 :: s1 :: s3 :: [s4]} = {[S

F

,! s0]}
X2[s0] = s0 :: (X1[s1]�R) = {s0 :: s1 :: s3 :: [s4]} = {[S

F

,! s0]}
X1[s1] = X0[s1] [X2[s1] = {[S

F

,! s1]}
X2[s1] = s1 :: (X1[s1]�R) = {[S

F

,! s1]}
X3[s0] = X1[s0]� ! = ![S

F

,! s0] = [! ,! S

F

,! s0] = {s0 :: [! ,! s6]}
= {s0 :: finished}

Fig. 3: Reformatted transition rules and reworked example

[S
F

,! si] is actually an abbreviation for �` 2 F . [` ,! S ,! si].
The new rule reduces s0 :: s1 :: [s2] before the lookahead symbol arrives,

conditionally on the value of the lookahead. The accompanying transition rule
does application and validation:

[` ,! S

F

,! s0] ) s0 :: [` ,! s6], if ` 2 F

Using the new rules, we calculate that

X0[s0] = {[S
F

,! s0]}

That is, X0 generates an “S-typed” string and supplies it to s0, conditional on
the arrival of the lookahead symbol.

Figure 3 presents the higher-order variants of the reduction rules from Figure
2 and recalculates the abstract parse of the example program, producing more
intuitive answers.

2.2 Finite convergence by stack folding

The previous example converged in finitely many calculation steps, but in gen-
eral, an infinite set of parse stacks can be computed, e.g.,

x = ’[’
while ...
x = x . ’[’

x = x . ’]’

X0 = [
X1 = X0 tX2
X2 = X1 · [
X3 = X1 · ] · !



At conclusion, x holds zero or more left brackets and an S-phrase. The analysis
confirms this:

X0[s0] = s0 :: [s1]
X1[s0] = {s0 :: si1 :: [s1] | i � 0}
X2[s0] = {s0 :: si1 :: [s1] | i > 0}
X3[s0] = {(s0 :: si1 :: [s1])� ]� ! | i � 0}

= {s0 :: si1 :: [! ,! s2] | i � 0}
= {[! ,! S ,! s0]} [ {s0 :: si1 :: [! ,! S ,! s1] | i � 0}
= {s0 :: finished} [ {s0 :: sj1 :: [! ,! s3] | j > 0}

Since we want a finitely convergent analysis, we bound the infinite sets by
“folding” their stacks so that no state repeats in a stack. Thus, the worklist
algorithm calculates

X0[s0] = s0 :: [s1]
X1[s0] = {s0 :: s⇤1 :: [s1]}
X2[s0] = {s0 :: s+1 :: [s1]}
X3[s0] = {s0 :: finished , s0 :: s⇤1 :: [! ,! s3]}

Since the set of parse-state names is finite, folding produces a finite set of
finite-sized stacks (that contain cycles). This works because each parse stack is
a finite path through the LR-parser’s finite-state controller, and folding a parse
stack generates a (smallest) subgraph of the automaton that covers the path.
Indeed, the subgraph can be represented by a regular expression, because it is a
viable prefix [10] of the LR-parse.

Stack folding lets us generalize the abstract-parsing technique to arbitrary
LALR(k) grammars with good success in practice.

3 Abstract semantic-processing

We now build on the proposal in [8] to implement a useful form of semantic pro-
cessing. Since we can parse dynamically generated strings, we can predict their
semantics as well by incorporating syntax-directed-translation (synthesized-attribute)
techniques from compiling theory. For the bracket language,

S ! [ ] | [S] | S S

we might wish to track the depth at each point in a string as well as the height

of each completed S-phrase. For example, for (↵)[[(�)][]], the depth at ↵ is
0, the depth at � is 2, the height of [] is 1, and the height of the entire string is
2. The depth and height attributes typify the semantical information one must
collect to validate HTML semantic properties, so we develop this example in
detail.

Figure 4 gives a Madsen-Watt-style attribute grammar that defines depth
and height, along with modified transition rules that compute the attributes,
and also a calculation of the example string. All parse states are annotated



Semantic attributes : depth, d (inherited), annotates all parse states;
height, h (synthesized), annotates s3, s5, s6.

attributes rules :
! # 0 S " d

# d S " 1 ! [ ]

# d S " h+ 1 ! [ # d S " h ]

# d S " max(h, h0) ! # d S " h # d S " h

0

Attributed Shift transitions:
[[ ,! s

d

0] ) s

d

0 :: [sd+1
1 ]

[[ ,! s

d

1] ) s

d

1 :: [sd+1
1 ]

[] ,! s

d

1] ) s

d

1 :: [sd�1
2 ]

[[ ,! s

d

3] ) s

d

3 :: [sd+1
1 ]

[] ,! s

d

3] ) s

d

3 :: [sd�1
4 ]

[[ ,! s

d

6] ) s

d

6 :: [sd+1
1 ]

Attributed reduce transitions:
s

i

:: s
j

:: [l ,! s2] ) [l ,! S

1
,! s

i

]
s

i

:: s
j

:: sh
k

:: [l ,! s4] ) [l ,! S

h+1
,! s

i

]

s

i

:: sh
j

:: [l ,! s

h

0
5 ] ) [l ,! S

max(h,h0)
,! s

i

]
s

i

:: [! ,! s

h

6 ] ) s

h

i

:: finished
where l 2 {[, ], !} and
[l ,! S

h

,! s

d

0] ) s

d

0 :: [l ,! s

d,h

6 ]
[l ,! S

h

,! s

d

1] ) s

d

1 :: [l ,! s

d,h

3 ]
[l ,! S

h

,! s

d

3] ) s

d

3 :: [l ,! s

d,h

5 ]
[l ,! S

h

,! s

d

6] ) s

d

6 :: [l ,! s

d,h

5 ]
(Read ! as symbol of end of string)

parse stack (top lies at right) input sequence (front lies at left)

[s00] [[][]]!

[[ ,! s

0
0] [][]]! (ready for shift transition)

s

0
0 :: [s11] [][]]!

s

0
0 :: [[ ,! s

1
1] ][]]!

s

0
0 :: s11 :: [s21] ][]]!

s

0
0 :: s11 :: [] ,! s

2
1] []]!

s

0
0 :: s11 :: s21 :: [s12] []]!

s

0
0 :: s11 :: s21 :: [[ ,! s

1
2] ]]! (ready for reduce transition)

s

0
0 :: [[ ,! S

1
,! s

1
1] ]]! (reduce S ! [])

s

0
0 :: s11 :: [[ ,! s

1,1
3 ] ]]!

s

0
0 :: s11 :: s1,13 :: [s21] ]]!

s

0
0 :: s11 :: s1,13 :: [] ,! s

2
1] ]!

s

0
0 :: s11 :: s1,13 :: s21 :: [s12] ]!

s

0
0 :: s11 :: s1,13 :: s21 :: [] ,! s

1
2] !

s

0
0 :: s11 :: [] ,! S

1
,! s

1,1
3 ] ! (reduce S ! [])

s

0
0 :: s11 :: s1,13 :: [] ,! s

1,1
5 ] !

s

0
0 :: [] ,! S

1
,! s

1
1] ! (reduce S ! SS)

s

0
0 :: s11 :: [] ,! s

1,1
3 ] !

s

0
0 :: s11 :: s1,13 :: [s14] !

s

0
0 :: s11 :: s1,13 :: [! ,! s

1
4]

[! ,! S

2
,! s

0
0] (reduce S ! [S])

s

0
0 :: [! ,! s

0,2
6 ]

s

0,2
0 :: finished

Fig. 4: S ! [ ] | [S] | S S, annotated with depth and height concrete semantic
attributes



with a depth attribute, d, since all parse points within the string possess depth.
Nonterminals, S, are annotated with a height attribute, h, since a well-formed S-
phrase has height: the height attributes are attributes of parse states, s3, s5, s6,
since these states are reached by transitions labelled by S.

As noted earlier, an LR(1) state has form, [`1 ,! `0 ,! s], where s is the parser
state, `0 the input, and `1 the lookahead. When a reduce transition occurs, the
corresponding semantic rule is computed. For the example bracket language,
[[][]], the computed result is height = 2, as expected.

Of course, precision of semantic attributes can be a↵ected by stack folding,
but as demonstrated in the following sections, loss of precision has not been a
significant problem in practice.

4 Attributed LR(1) grammar for the HTML DTD

The W3C recommends every HTML document be validated according to the
DTD (Document Type Definition). But the commonly used standard, HTML
4.01 Transitional DTD [1], cannot be defined in LALR(1); indeed, some parts
are not LR(k) and are even ambiguous. We now review trouble spots in the
HTML DTD and explain how we handled them with a synthesized-attribute-
based LALR(1)-grammar.

4.1 Unordered occurrences of elements

In a HEAD element, its contents, TITLE, ISINDEX and BASE, may appear in any
order, with the restrictions that TITLE must appear once, and ISINDEX and BASE
may appear once or none:

<!ELEMENT HEAD O O (%head.content;) +(%head.misc;) >
<!ENTITY % head.content "TITLE & ISINDEX? & BASE?">
<!ENTITY % head.misc "SCRIPT|STYLE|META|LINK|OBJECT" -- repeatable head elements -->
<!ELEMENT TITLE - - (#PCDATA) -(%head.misc;) -- document title -->
<!ELEMENT ISINDEX - O EMPTY -- single line prompt -->
<!ELEMENT BASE - O EMPTY -- document base URI -->

The tag inclusion +(%head.misc;) indicates that elements in head.misc can
appear in HEAD. However, the declarations of TITLE, ISINDEX, and BASE prevent
elements in head.misc from propagating inside head.content. The TITLE ele-
ment excludes head.misc, and the ISINDEX and BASE elements have their bodies
empty. Due to the unorderedness of head.content, a LALR(1)-grammatical ex-
pansion would grow exponentially, so we utilized synthesized attributes instead:
An attribute tag for each of three elements counts the occurrences of its ele-
ment and checks if the number of occurrences falls within the boundaries. The
synthesized-attribute LALR(1) grammar is defined in Figure 5.

4.2 Tag inclusion and exclusion

Tag inclusion, +(A), which is an SGML feature, signifies that element A may
appear anywhere within its defining element. There are only two occurrences of
tag inclusion in HTML DTD, one of which is the following:



production semantic rules

head ! head�
?

contents { (t, b, i) = contents.count;
check t == 1 ^ 0  b  1 ^ 0  i  1; }

head•
?

contents ! contents1

content { contents.count = contents1.count +++ content.count }
contents ! content { contents.count = content.count }
content ! title { content.count = (1,0,0) }
content ! base { content.count = (0,1,0) }
content ! isindex { content.count = (0,0,1) }
content ! misc { content.count = (0,0,0) }

where the attribute count is (t,b,i):
head� is start tag of HEAD element
head• is end tag of HEAD element

t is the number of TITLE elements
b is the number of BASE elements
i is the number of ISINDEX elements

and (t1, b1, i1)+++(t2, b2, i2) = (min(2, t1 + t2),min(2, b1 + b2),min(2, i1 + i2))

Fig. 5: Attribute grammar for head elements

<!ELEMENT BODY O O (%flow;)* +(INS|DEL) >
<!ELEMENT (INS|DEL) - - (%flow;)* -- inserted text, deleted text -->

That is, INS and DEL elements may appear anywhere in BODY element. This is
not directly definable in LALR(1), so we manually expanded the grammar by
adding production rules for INS and DEL to every nested element.

The tag exclusion, -(A), which is another SGML feature, signifies that the
element A cannot appear in the defining element. For example, consider the
following declaration of anchor element A:

<!ELEMENT A - - (%inline;)* -(A)>

-(A) indicates that the element A cannot be nested. A simple-minded construc-
tion of LALR(1) grammar for tag exclusion results in an exponentially large
number of productions, and thus we chose to use synthesized attributes in Fig-
ure 6.

4.3 Validation of attributes in an HTML element

Attributes1 in each HTML element have to be validated according to the ATTLIST
declaration, where for each attribute, defined are its name, its type, and whether
it is required or implied. We employed synthesized-attribute semantic processing
to validate attributes in an HTML element. A global environment for attributes
are constructed from element declarations. We get the necessary information
about the attributes from the global environment as follows:

– defined(n�) : the set of all attribute names in n�

1 The reader should be careful not to confuse HTML “attributes” with the synthesized
attributes used by the abstract parser.



production semantic rules

a ! a�
inlines { check name(a�) /2 inlines.names }
a• { a.names = { name(a�) } [ inlines.names }

inlines ! inlines1

inline { inlines.names = inlines1.names [ inline.names }
inlines ! inline { inlines.names = inline.names }

n ! n�
some { n.names = { name(n�) } [ some.names }
n•

?

name(a�) : element name of a� = a

Fig. 6: Attribute grammar for Tag exclusion

– well-typed(a,n�) : the value of attribute a in n� is well-typed
– required(n�) : the set of all required attribute names in n�, where 8n�. required(n�)

✓ defined(n�)

For example, consider the following attribute definition of PARAM:

<!ELEMENT PARAM - O EMPTY>
<!ATTLIST PARAM

id ID #IMPLIED
name CDATA #REQUIRED
value CDATA #IMPLIED
valuetype (DATA|REF|OBJECT) DATA
type %ContentType; #IMPLIED>

– defined(param�) = {id,name,value,valuetype,type}
– well-typed(valuetype,param�) = true

if the value of valuetype in param� is among {DATA,REF,OBJECT}
– required(param�) = {name}

Semantic rules for validating attributes in an element are defined as follows:

production semantic rules

n ! n� { check 8a 2 parsed(n�). a 2 defined(n�);
check 8a 2 parsed(n�). well-typed(a,n�);
check 8a 2 required(n�). a 2 parsed(n�) ; }
where parsed(n�) is the set of parsed attribute names in n�

Each semantic rule for the production n ! n� asserts the following for attributes
in n�:

– every parsed attribute name is declared
– every parsed attribute value is well-typed
– every required attribute is present

5 Experiments: Static HTML validation

Applying abstract parsing enhanced with attribute grammars, we implemented
a static validator for JSP and PHP scripts. The architecture of our platform is



Fig. 7: Architecture of static HTML validator

shown in Figure 7. Java Servlets, JSP pages and PHP scripts are converted to sets
of flow equations, and the LALR(1) grammar for HTML 4.01 Transitional DTD
is given to ocamlyacc, generating its parsing table. A lexical specification is given
to ocamllex, generating a scanner. Semantic rules are given to the semantic-
action generator, emitting semantic actions. All of these are forwarded to the
static validator, which is a generic abstract parser equipped with a semantic-
attribute processor. The static validator analyzes all the documents generated
by the input program. When a validation error occurs, the original position of
the source that causes the error is returned. The entire implementation is written
in Objective Caml.

We experimented with our static validator on a suite of JSP programs (the
same one as Møller and Schwarz [15]) and PHP programs. The experiment was
done with Mac OS X 10.8.2 Mountain Lion with Intel Core 2 Duo processor
(2.56GHz) and 8GB memory. The results are summarized in Table 1.

The execution time measured is the total time used to validate each set of
valid programs after all errors found are fixed manually. The average running
time for each program is approximately one second except one case (WebChess,
in PHP) averaged close to 5 seconds. Building the LALR(1) parse table takes
only a few seconds and is not counted in the analysis time.

The details of detected errors are summarized in Table 2. The errors are
classified into three groups: tag matching, misplaced element, and attributes.
There are some false positives (only in PHP programs) that are all due to the
lack of path-sensitive analysis. The number of false positives is shown inside
parentheses.

5.1 Tag matching

Missing matched tag errors are abundant. Examples are <strong> with no
matching </strong> (unmatched start/end tag) and <h3> followed by </h2>
(mismatched tags). More serious errors are “improperly nested tags” as follows:



program Files SLOC Errors FP Time

JSP

Pebble 117 41,893 36 0 118.0s
Bookstore1 6 919 8 0 6.2s
Bookstore2 7 532 5 0 7.0s
Bookstore3 11 753 5 0 11.0s
Bookstore4 6 279 3 0 6.0s
Bookstore5 7 249 6 0 7.1s
Bookstore6 8 1,960 1 0 7.9s
JSP Chat 14 920 21 0 16.1s
JPivot 7 635 0 0 7.0s

JSTL Book 53 1,457 18 0 52.7s

PHP

Schoolmate 65 6,470 149 0 62s
FaqForge 19 940 68 0 10s
WebChess 24 2,906 11 2 106s

HGB 20 645 92 0 27s
WEBERP 572 183,511 600 54 590s

Table 1: Summary of experimental results

categories errors
JSP PHP

A B C D E total F G H I J total

tag
matching

unmatched start/end tag 3 16 2 2 0 23 4 57 2(2) 14 145(16) 268(18)
mismatched tags 0 0 1 0 0 1 0 0 0 0 1 3

improperly nested tags 0 9 6 2 0 17 0 0 0 0 4 38

misplaced
element

no TITLE in HEAD 0 0 0 0 0 0 0 0 0 2 38 40
misplaced </head> 0 0 0 0 0 0 0 0 0 1 2 3
misplaced <body> 0 0 0 0 0 0 1 0 0 0 4 5
misplaced </body> 0 0 0 0 0 0 1 0 0 0 2 3
misplaced </html> 0 0 0 0 0 0 0 0 0 0 2 2

illegal appearance of blocks in P 16 0 0 0 0 16 0 0 3 0 5 40
illegal appearance of blocks in FONT 0 0 0 0 0 0 0 0 0 3 0 3

illegal appearance of NOFRAMES 0 0 1 0 0 1 0 0 0 0 0 2
illegal appearance of LINK 0 0 0 0 0 0 0 0 2 0 0 2
illegal appearance of META 0 0 0 0 0 0 0 0 0 0 7 7
improperly closed FORM 0 0 0 0 0 0 1 3 0 5 4 13

illegal appearance of HTML before HTML 0 0 0 0 0 0 0 0 0 0 1 1
illegal appearance of TABLE before BODY 0 0 0 0 0 0 0 1 0 0 0 1

no TR in TABLE 0 1 1 0 0 2 0 0 0 0 0 4
missing TR outside TD or TH 2 0 0 0 0 2 0 0 0 3 13(6) 20(6)

missing TD or TH in TR 4 0 1 0 0 5 0 1 0 0 13(3) 24(3)
missing both TR and TD(or TH) 0 0 0 0 0 0 1 1 0 6 41 49
improperly missing <tbody> 4 1 0 0 0 5 0 0 0 0 0 10

no OPTIONs in SELECT 0 0 0 0 0 0 31 0 1 0 282(29) 314(29)
nonstandard element name 0 0 0 2 0 2 20 0 1 0 0 25

attributes
missing required attributes 5 1 6 9 0 21 24 3 1 6 14 90
using undefined attributes 1 0 3 3 0 7 15 1 0 26 2 58

misc. lexical errors 1 0 0 0 0 1 0 2 0 0 10 14
total 36 28 21 18 0 103 98 69 10(2) 66 590(54) 1039(56)

A = Pebble, B = Bookstore, C = JSP Chat, D = JSTP Book, E = JPivot,
F = Schoolmate, G = FaqForge, H = WebChess, I = HGB, J = WEBERP.

m(n) means that n of m errors are false positives
blocks = block-level elements

Table 2: Classification of errors in JSP and PHP programs



– <p><strong> ... </p></strong>
– <tr><form><td> ... </td></form><tr>

These should have been generated respectively as follows:

– <p><strong> ... </strong></p>
– <tr><td><form> ... </form></td><tr>

5.2 Misplaced element

Block-level elements, such as TABLE, FORM, DIV, and UL, in P element are detected
as errors, e.g., <p><table> ... </table></p>.

Errors related to TABLE elements are also found. According to TABLE DTD, a
TABLE element should contain at least one TBODY or TR element and a TR element
should contain at least one TD or TH element. The followings are the detected
example patterns that violate the DTD:

– <table> text : both TR and TD are missing
– <table><td> text : TR is missing
– <table><tr> text : TD is missing

The correct pattern should have been: <table><tr><td> text. The requirement
is: If TABLE element contains either THEAD or TFOOT, TBODY element cannot be
omitted. Errors in Pebble 2.6.2 have the following common pattern:

– <table><thead> ... </thead> <tr> ... </table>

which should have been written as follows:

– <table><thead> ... </thead> <tbody> <tr> ... </table>

According to the HTML DTD, a SELECT element must contain at least one
OPTION. The following program excerpted from WEBERP violates this when
the loop is not executed:

$result = execute_query("SELECT ... ");

echo "<select>";

while($result) {

... echo "<option> ...";

}

echo "</select>"

Some programs carefully avoid this by filtering out empty data as follows:

if (DB_num_rows($result) == 0) then {

...

} else {

echo "<select>";

while($result) {

... echo "<option> ...";

}

echo "</select>"

}



Our tool falsely decides this situation is an error due to its ignorance of condi-
tional expressions.

5.3 Attributes in HTML elements

Our tool detected multiple misuses of attributes in HTML elements. The TD
element has an undefined attribute background as follows:

– <td class=’b’ width=10 background=’./images/left.gif’>

The TEXTAREA has no required attributes rows and cols:

– <textarea name=’task’>

6 Static validation of semantic properties

Additional semantic requirements, beyond those described in the DTD, are abun-
dant in the HTML specification and listed in natural language. We carefully
chose several critical semantic properties and specified them in an attributed
LALR(1) grammar and then supplied the grammar to our static analyzer based
on attributed-abstract parsing.

The semantic errors found are classified in Table 3. False positives here are
also due to the lack of path-sensitive analysis. We examine the table in detail in
the following subsections.

errors WebChess HGB WEBERP total
non-unique id attribute 0 8 1(1) 9(1)

unmatched id and name in a single element 0 0 4 4
href or hrefs refer undefined identifier 0 0 0 0

unsubmittable FORM field 10(7) 4(4) 26 40(11)

Table 3: Classification of semantic errors in PHP programs

6.1 Properties of element identifiers

According to the HTML 4.01 Specification, element identifiers must have the
following properties:

– the value of id attribute must be unique in a document
– the values of id and namemust be the same when both appear in an element’s

start tag
– the values of href and hrefs attributes should refer to defined identifiers in

the same document



production semantic rules

element ! element� { if element�(id) is given then
check element�(id) /2 element.idset(id);
if element�(name) is given then

check element�(id) == element�(name);
element.idset = element.idset [ {element�(id)};

if element�(href) is given then
element.hrefset = element.hrefset [ {element�(href)};

if element�(hrefs) is given then
element.hrefset = element.hrefset [ element�(hrefs); }

contents

element•
?

document ! { html.idset = ;; html.hrefset = ;; }
html

{ check 8id 2 html.hrefset, id 2 html.idset }

Fig. 8: attribute grammar for checking properties of element indentifiers

Figure 8 shows an attribute grammar for checking the above properties.
Errors found in HGB are all from header.php originate from eight redundant

uses of the same value, tl, as follows:

// hgb/header.php
<?php if($block === false){ ?>
<div align=center>
<a id=tl href="./admin.php">Admin HOME</a> || <a id=tl href="filter.php">Spam Filter</a> ||
<a id=tl href="ipblock.php">IP Blocker</a> || <a id=tl href="passwrd.php">Change Password</a> ||
<a id=tl href="about.php?out=signout">Sign out</a><br>
<a id=tl href="url.php">Properties</a> || <a id=tl href="about.php">About</a> ||
<a id=tl href="readme.php">Read me</a> || <a id=tl target="_blank" ...

An error found in AccountGroups.php of WEBERP is a false positive: Two
conditional branches share the same value AccountGroups of id, but only one
branch of the two will be executed, i.e., if one is executed, the other isn’t. Since
our analyzer does not take into account the meaning of conditional, it announces
an error.

// WEBERP/AccountGroups.php
...

} elseif (isset($_GET[’delete’])) {
...
if ($myrow[’groups’]>0) {

echo ’... <br /><form method="post" id="AccountGroups"
action="’ . htmlspecialchars($_SERVER[’PHP_SELF’], ENT_QUOTES, ’UTF-8’) . ’"> ...’;

}
}
...
if (!isset($_GET[’delete’])) {

echo ’<form method="post" id="AccountGroups"
action="’ . htmlspecialchars($_SERVER[’PHP_SELF’], ENT_QUOTES, ’UTF-8’) . ’">’;

6.2 Submission of FORM fields

A FORM field only transfers its data when one of the following conditions is true:

– it contains at least one INPUT element whose type is submit or image,



– it contains one and only INPUT element whose type is text,
– it contains a BUTTON element whose name is submit.

Another way of transferring data is to use the submit() function of JavaScript.
An attribute grammar for validating FORM data submission is defined as follows:

production semantic rules

form ! form� { form.submittable = false; form.textcount = 0; }
contents

form• { check contents.submittable _ contents.textcount == 1 }
input ! input� { if input�(disabled) 6= true ^ input�(type) 2 { submit, image } then

input.submittable =true;
if input�(disabled) 6= true ^ input�(type) = text then

input.textcount = min(2, input.textcount + 1); }
button ! button� { if button�(disabled) 6= true ^ button�(type) = submit then

button.submittable =true; }
...

submittable is a synthesized attribute becoming true when one of the first and
third conditions above is true. textcount is also a synthesized attribute counting
the number of text elements. Note that the domain of these attribute values are
finite. The value of textcount is one of 0, 1, and 2.

Eleven errors are classified as false positives because all use JavaScript func-
tion submit() to submit FORM field data and JavaScript code itself is not ana-
lyzed by the tool. For instance,

print("<script language=’JavaScript’>
function schoolInfo() {

document.admin.page2.value=1;
document.admin.submit();

} ... </script>");
...

print("...
<form name=’admin’ action=’./index.php’ method=’POST’>

<a class=’menu’ href=’javascript: schoolInfo();’ ... >School</a>
...
<input type=’hidden’ name=’page2’ value=’$page2’>
<input type=’hidden’ name=’logout’>
<input type=’hidden’ name=’page’ value=’$page’>

</form> ...");

Three hidden input fields are submitted by function schoolInfo(), the first link
of A in FORM. However, if JavaScript is unsupported or disabled in a web browser,
the submission would not be working, hence they might well be classified as true
positives. An additional analysis of JavaScript would remedy this problem.

7 Related research

Because of the popularity of HTML-document generators there exist a variety
of approaches for static validation.

Minamide’s initial e↵orts used data-flow equations to approximate the doc-
uments generated from PHP programs and then treats the equations as a gram-
mar, matching it against an HTML/XHTML grammar [13]. However, since the



language inclusion problem for context-free grammar is undecidable, nesting
depth of elements must be bounded, making the approach miss errors.

Later, Minamide’s and Møller’s groups independently developed sound meth-
ods of validating dynamically generated XML documents based on balanced
grammars [12, 14], but their methods are di�cult to generalize to HTML fea-
tures such as tag omission and inclusion/exclusion. Some improvement has been
made by Nishiyama and Minamide, who translate a subclass of the SGML DTD
(including HTML) into a regular hedge grammar, avoiding undecidability [16].
However, this method does not support start tag omission and tag inclusion, and
the translation to support exclusion causes exponential blowup of the grammar.

Recently, Møller and Schwarz developed an HTML validation algorithm [15]
that is a generalization of the core algorithm for SGML parsing to work on
context-free-grammar representation of documents. The approach is stated sound,
precise, and e�cient, and handles tag omissions and inclusions/exclusions; it is
comparable to our work, limited to the extent of JSP validation. The compari-
son of JSP experimental results of ours and theirs (what is in the paper) reveals
that ours finds more errors in J2EE Bookstore. We also located errors (in 4 pages
from Bookstore 2) that are not mentioned in their paper, as follows:

– bookcashier.jsp : unmatched </strong> at line 32
– bookcatalog.jsp :

• improperly nested tag <p><strong> at line 62 and </p></strong> at line 66
• unmatched <strong> at 117 line

– booldetails.jsp : improperly nested tag <p><strong> at line 60 and </p></strong>

at line 73
– bookshowcart.jsp : unmatched </td> at line 143

Extending the SGML parsing algorithm to handle semantic-attribute processing
remains to be seen. Interestingly, our tool found no errors in JPivot, whereas
Møller and Schwarz’s tool found errors in 2 pages out of 3. The possible expla-
nation might be that our tool skipped one JSP page that generates documents
through XSL transformation, which our JSP-to-Java translator has yet to han-
dle.

8 Conclusion

We have demonstrated the utility of marrying parsing, semantic processing, and
data-flow analysis in the form of attributed abstract parsing, which can pre-
dict, parse, and semantically process with surprising accuracy the documents
dynamically generated by scripts. The application domain described here, JSP
and PHP scripts that generate HTML documents that conform with the HTML
4.01 Transitional DTD, demonstrates the feasibility of the approach.
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