
Underapproximating
Predicate Transformers

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

(-: / 1

Background

(-: / 2

Given

γ
{...,−1,0,1,2,...}

{1,2,3,...}

{}

UI

{...,−2,−1}
{0}

any

none

neg
poszero

P(Int) Sign

α and succ : Int → P(Int),
succ(n) = {n + 1}, let’s validate succ(0) ⊆ {1, 2, 3, · · ·} within
Sign:

1. We approximate succ by succ
♯
best = α ◦ succ∗ ◦ γ, and we

approximate 0 by α{0} = zero.

2. We approximate {1, 2, 3, · · ·} by α{1, 2, 3, · · ·} = pos (∗)

3. We check that succ
♯
best(zero) ⊑ Sign pos. (It does.)

(∗) Step 2 is sound only if the property, S ⊆ Int, is exact: S = γ(α(S)).

For example, α{−2, 0} = any, but γ(any) 6= {−2, 0}. Therefore,

succ
♯
best(zero) ⊑Sign any does not imply succ(0) ∈ {−2, 0}.

(-: / 3

A logic whose assertions are exact

For Galois connection, (P(C),⊆)〈α, γ〉(A, ⊑), define this logic:

φ ::= a | φ1⊓φ2 , where a ∈ A

Each φ is interpreted as [[φ]] = γ(φ), so that
a ⊑ φ implies γ(a) ⊆ [[φ]]. That is, the sets, γ(φ), are exact.

This makes f
♯
best : A → A the strongest postcondition

transformer for f : C → P(C) in “logic” A:

f∗[[φ]] ⊆ [[φ ′]] iff f
♯
best(φ) ⊑ φ ′

That is, {φ} f {f
♯
best(φ)} is a sound and complete Hoare-triple

for f [Cousot78] .

(-: / 4

But such logics are rare

φ ::= neg | zero | pos | φ1 ∧ φ2 | φ1 ∨ φ2

[[neg]] = γ(neg) [[zero]] = γ(zero) [[pos]] = γ(pos)

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]

For (P(Int),⊆)〈α, γ〉(Sign, ⊑), disjunction is not exact, e.g.,

[[neg ∨ zero]] = {· · · ,−2,−1, 0} ⊂ γ(α{· · · ,−2,−1, 0}) = γ(any) = Int.

Therefore, we dare not approximate the assertion, [[neg ∨ zero]], by

α[[neg ∨ zero]] = any ∈ Sign, because it is an overapproximation

(-: / 5

Sometimes, we can complete the abstract domain

We construct the disjunctive completion [Cousots79,Giacobazzi00] :

{0}

γ

{...,−1,0,1,...}

α

{...,−2,−1,1,2,...}
{0,1,2,3,...}

{ }

{1,2,3,...}
{...,−2,−1}

{...,−2,−1,0}

{neg,none}

{neg,pos,none}

{neg,zero,pos,none}

{ }

{none}

{zero,none}

{neg,zero,none}
{zero,pos,none}

{pos,none}

{any,neg,zero,pos,none}

o

P(Int)

UI

P (Sign)

(P(int),⊆)〈αo, γ〉(P↓(Sign),⊆)

γ(T) = ∪a∈Tγ(a) αo(S) =↓{α{c} | c ∈ S}

Downclosed sets are needed for monotonicity of key functions on the sets.

We interpret properties, S ⊆ Int, as αo(S) ∈ P↓(A) and functions,

f : Int → P(Int), as f
♯
best = (αo ◦ f∗ ◦ γ) ∈ A → P↓(A).

Now, all assertions are exact: φ ::= neg | zero | pos | φ1 ∧ φ2 | φ1 ∨ φ2

E.g., αo [[neg ∨ zero]] =↓{neg, zero} = {neg, zero, none}.

(-: / 6

Sometimes, the completion is too expensive

For succ : Int → P(Int), define the precondition assertion
[succ]φ as

[[[succ]φ]] = {n | succ(n) ⊆ [[φ]]}

Because zero ∈ Sign, the completion of Sign with respect to
[succ]zero adds each and every negative integer, −1,−2, · · · to
the abstract domain. (because we must make [succ]zero exact, and then

make [succ][succ]zero exact, etc.)

As an alternative, we underapproximate nonexact assertions.

(-: / 7

How do we underapproximate [[·]] : L → P(C)?

Lift the original Galois connection, P(C)〈α, γ〉A, to [Cousots00] :

γ

αu

opP (A)

UI[[]]ϕ A

[[]]ϕ

[[]]ϕ Aγ UI

opP(C)

[[]]ϕαu

The best abstraction of [[φ]] is merely

[[φ]]
A

= αu[[φ]],

because [[φ]] ⊇ γ(αu[[φ]]).

Example: for [[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]] , we have

[[φ1 ∨ φ2]]
Sign = αu[[φ1 ∨ φ2]]

= {a ∈ Sign | γ(a) ⊆ [[φ1]] ∪ [[φ2]]}.

But this is not defined inductively on [[φ]]A.
(-: / 8

Define the abstract logic inductively

For assertion, opg(φi)i<k, interpreted as

[[opg(φi)i<k]] = g([[φi]])i<k, where g : P(C)k → P(C),

interpret it abstractly as

[[opg(φi)i<k]]
A
ind = (αu ◦ g ◦ γk)([[φi]]

A
ind)i<k

We have αu [[φ]] ⊇ [[φ]]Aind , and when φ is exact, ⊇ becomes =.

Example: [[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]] abstracts to

[[φ1 ∨ φ2]]
Sign
ind = (αu ◦ ∪ ◦ γ2)([[φ1]]

Sign
ind , [[φ2]]

Sign
ind).

Can we eliminate concrete ∪ from [[φ1 ∨ φ2]]
Sign
ind ? Try this:

[[φ1 ∨ φ2]]
Sign = [[φ1]]

Sign ∪P↓(Sign) [[φ2]]
Sign.

But ∪P↓(Sign) 6= (αu ◦ ∪ ◦ γ2) — we lose precision:

any ∈ [[neg ∨ zero ∨ pos]]
Sign
ind

, yet any 6∈ [[neg]]
Sign∪[[zero]]

Sign∪[[pos]]
Sign

(-: / 9

A more difficult example — preconditions : for f : C → P(C),

[[[f]φ]] = p̃ref[[φ]],

where p̃ref(S) = {c | f(c) ⊆ S},

we have
[[[f]φ]]Aind = (αu ◦ p̃ref ◦ γ)[[φ]]Aind

= {a | f∗[γ(a)] ⊆ γ[[φ]]Aind }.

Is this finitely computable? Can it be expressed compositionally as

[[[f]φ]]
A

= p̃ref♯ [[φ]]
A

for some f♯ : A → P(A)? Do we lose precision?

This is the topic of the paper in the SAS’06 proceedings.

(-: / 10

Defining sound
underapproximations of predicate
transformers used in dynamic and
temporal logic

(-: / 11

For nondeterministic state-transition function, f : C → P(C),
f

, and property S ⊆ C, we have

p̃ref(S) = {c | f(c) ⊆ S}

“forall precondition”: transit only into S
S

pref(S) = {c | f(c) ∩ S 6= ∅}

“exists precondition”: transit to S

S

postf(S) = f∗(S)

”exists postcondition”: are reached by S

S

p̃ostf(S)

= {d | ∀c ∈ C,d ∈ f(c) ⇒ c ∈ S}

“forall postcondition”: are reached only by S

S

gpre, post are used for validation; pre, p̃ost are used for code improvement

(-: / 12

The transformers interpret this logic

φ ::= a | · · · | [f]φ | 〈f〉φ | φ[f] | φ〈f〉

as follows:
[[[f]φ]] = p̃ref[[φ]]

[[〈f〉φ]] = pref[[φ]]

[[φ[f]]] = p̃ostf[[φ]]

[[φ〈f〉]] = postf[[φ]]

Although these are “single-step” assertions, we use recursion to
define interesting properties, like those in CTL:

AGfφ ≡ νZ.φ ∧ [f]Z for all f-transition sequences, φ holds

EFfφ ≡ µZ.φ ∨ 〈f〉Z there exists an f-transition sequence leading to φ

φEFf ≡ µZ.φ ∨ Z〈f〉 there exists an f-transition sequence from φ to here

(-: / 13

Example : Transition function h : Int → P(int)

let h(n) = if neg(n) :

n:= n+1

else truncate(sqrt(n))

in loopforever h

. . .−2 −1 0 1 2 3 4. . .

Some properties of h:

[[[h]neg]] = p̃reh{· · · ,−2,−1} = {· · · ,−3,−2} transit only into negatives

[[〈h〉neg]] = preh{· · · ,−2,−1} = {· · · ,−3,−2, 1, 2, 3, · · ·} transit to a

negative

[[neg〈h〉]] = posth{· · · ,−2,−1} = {· · · ,−2,−1, 0} are reached by

negatives

[[neg[h]]] = p̃osth{· · · ,−2,−1} = {} are reached only by negatives

(-: / 14

Underapproximating p̃ref(S) = {c | f(c) ⊆ S}

Theorem: (αu ◦ p̃ref ◦ γ) = p̃re
f
♯
best

, where f
♯
best = αo ◦ f∗ ◦ γ.

Intuition: f♯’s preimage overapproxes f’s, and [[φ]]
A underapproxes [[φ]].

[[[f]φ]]Aind = (αu ◦ p̃ref ◦ γ)[[φ]]Aind = p̃re
f
♯
best

[[φ]]Aind

Example: h = . . .−2 −1 0 1 2 3 4. . .

h
♯
best = poszero

any

neg

What must transit to zero ? [[[h]zero]] = {−1, 0}

The approximation is [[[h]zero]]
Sign
ind =↓{zero}

The abstraction of gpreh is the best we can do, but it loses precision.

(-: / 15

Underapproximating pref(S) = {c | f(c) ∩ S 6= ∅}

[[〈f〉φ]]Aind = (αu ◦ pref ◦ γ)[[φ]]Aind

But, for f♯ : A → P↓(A), pref♯ can be unsound ! Intuition: h♯ overestimates

h’s preimage, so there can be “false transitions.”

Example: [[〈h〉neg]] = preh[[neg]] = {· · · ,−3,−2, 1, 2, 3} transit to

negatives.
But h

♯
best = poszero

any

neg , and

pre
h

♯
best

[[neg]] = {neg, pos, any} and γ{neg, pos, any} = Int !

Computational approximation with downclosed sets is incorrect
for pre:

Theorem: For every f♯ : A → P↓(A) and T ∈ P↓(A),
pref♯(T) ∈ P↑(A) !

(-: / 16

Under approximate f : C → P(C) by f♭ : A → P↑(A)

Down-closed-set interpretation: ↓{zero, pos} asserts
∀{zero, pos} ≡ ∀(zero ∨ pos) — all outputs are zero or positive :

}Intis a subset of

{ }

has negatives only }

{ S | S

{ S | S

{neg,none}

{neg,pos,none}

{neg,zero,pos,none}

{ }

{none}

{zero,none}

{neg,zero,none}
{zero,pos,none}

{pos,none}

{any,neg,zero,pos,none}

α

γ(P(Int))P

∀(zero= v pos)

P (Sign)

Up-closed-set interpretation: ↑{zero, pos} asserts ∃{zero, pos}

≡ ∃zero ∧ ∃pos — there exist 0 and a positive in the output:

{ S | S is a subset of Int

op

}

{ S | S has a negative }

{ S | S }has a negative and 0

{ }

is nonempty }{ S | S

{zero,pos,any}

{neg,zero,pos,any}

{none,neg,zero,pos,any}

γ

α

P (Sign)(P(Int))P

∃= zero v

∃ pos

{ }

{any}

{neg,any} {zero,any}
{pos,any}

{neg,zero,any} {neg,pos,any}

(-: / 17

Underapproximating pref(S) = {c | f(c) ∩ S 6= ∅}

Use P↑(A) to define f♭
best : A → P↑(A) as

f♭
best(a) = (α↑ ◦ ({| · |} ◦ f∗) ◦ γ)(a)

= {a ′ | ∀c ∈ γ(a), f(c) ∩ γ(a ′) 6= ∅}

and define [[〈f〉φ]]
A

= pref♭
best

[[φ]]
A

Proposition: (soundness) pref♭
best

(T) ⊆ (αu ◦ pref ◦ γ)(T).

Example:
h = . . .−2 −1 0 1 2 3 4. . . h♭

best = neg zero pos

any

We have [[〈h〉(neg ∨ zero ∨ pos)]] = preh(Int) = Int and

[[〈h〉(neg ∨ zero ∨ pos)]]A = preh♭
best

↓{neg, zero, pos} =↓{zero, pos}.

(-: / 18

Improving precision with focus

h = . . .−2 −1 0 1 2 3 4. . . h♭
best = neg zero pos

any

For preh[[neg ∨ zero ∨ pos]] = Int,

we lose precision: pref♭
best

[[neg ∨ zero ∨ pos]]A =↓{zero, pos}.

But (αu ◦ pref ◦ γ)[[neg ∨ zero ∨ pos]]Aind =↓any = Sign !

Many analysis tools (e.g., TVLA [SagivRepsWilhelm02]) use a cases

analysis, called focus, to recover lost precision:

f♭
best(neg) = {any}

f♭
best(any) = {any}

But any decomposes to the cases,
neg, zero, pos. For each case, p,
p ∈ [[neg ∨ zero ∨ pos]]A.

Theorem: When γ : A → P(A) preserves joins, then
pre

focus

f♭
best

= (αu ◦ pref ◦ γ).

(-: / 19

Underapproximating post and p̃ost

postf(S) = f∗(S)

p̃ostf(S) = {d | ∀c ∈ C,d ∈ f(c) ⇒ c ∈ S}

Proposition: Let f : D → Pδ(D), where δ ∈ {↓, ↑}. Let ↓̃ =↑ and
↑̃ =↓. Then, for all S ∈ P(D),

� p̃ref(S) ∈ Pδ(D)

� pref(S) ∈ Pδ̃(D)

� postf(S) ∈ Pδ(D)

� p̃ostf(S) ∈ Pδ̃(D).

So, postf♭ : A → P↑(A) and p̃ostf♯ : A → P↑(A) are unsound.

Even worse, there is no nontrivial overapproximating f♯ : A → P↑(A)

to use with p̃ost because, for all f♯(a) 6= ∅, upclosure implies that ⊤A ∈ f♯(a),

implying that γ(f♯(a)) = C. A similar problem arises for a nontrivial
underapproximating f♭ : A → P↓(A).

What can we do ?
(-: / 20

Solution: Invert f : C → P(C) to f−1 : C → P(C)

If f : C → P(C) is
b c d

a b c d

a ,

then f−1 : C → P(C) is
b c d

a b c d

a .

That is, f−1(c) = {d | c ∈ f(d)}.

Proposition: [Loiseaux95] : (f−1)−1 = f, postf = pref−1 , and
p̃ostf = p̃ref−1 .

Proposition: For f : A → Pδ(A), δ ∈ {↓, ↑}, f−1 : A → Pδ̃(A) is
well defined and monotonic.

(-: / 21

Underapproximating postf and p̃ostf

[[φ〈f〉]] = postf[[φ]] = pref−1 [[φ]],

where f : C → P(C)

The inductively defined underapproximation is

[[φ〈f〉]]Aind = (αu ◦ pref−1 ◦ γ)[[φ]]
A
.

This is soundly underapproximated by

[[φ〈f〉]]A = pre(f−1)♭
best

[[φ]]
A
,

where (f−1)♭
best : A → P↑(A)

is (f−1)♭
best = α↑ ◦ ({| · |} ◦ f−1)∗ ◦ γ.

(-: / 22

The same development applied to p̃ostf yields

[[φ[f]]] = p̃ostf[[φ]] = p̃ref−1 [[φ]].

The most precise underapproximation is

[[φ〈f〉]]Aind = (αu ◦ p̃ref−1 ◦ γ)[[φ]]Aind = p̃re
(f−1)

♯
best

[[φ]]Aind ,

where (f−1)
♯
best : A → P↓(A)

is (f−1)
♯
best = αo ◦ (f−1)∗ ◦ γ.

Computing abstract postconditions as preconditions of inverted
state-transition relations is implemented in Steffen’s fixpoint
analysis machine [Steffen95] .

(-: / 23

Summary

� We reviewed how to use exact assertions with an
overapproximating Galois connection and how to apply domain
completions to make assertions exact.

� When it is impractical to make assertions exact, we employed the
underapproximation Galois connection on assertion sets.

� We proved that the forall-precondition transformer, p̃ref, is best
underapproximated by p̃re

f
♯
best

.

� We used a powerdomain of up-closed sets to define f♭
best and

underapproximated pref by pref♭
best

.

� We formalized a focussed version of pref♭
best

and proved it is the
best approximation of pref when γ preserves joins.

� We inverted f to f−1 and applied the above machinery to
underapproximate postf and p̃ostf.

(-: / 24

References This talk: www.cis.ksu.edu/̃ schmidt/papers

1. R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in abstractions of model
checking. SAS’95.

2. P. Cousot. PhD thesis, Genoble, 1978.

3. P. Cousot and R.Cousot. Systematic design of program analysis frameworks.
POPL’79.

4. P. Cousot and R.Cousot. Temporal abstract interpretation. POPL’00.

5. D. Dams, et al. Abstract interpretation of reactive systems. ACM TOPLAS
19(1997).

6. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations
complete. J. ACM 47(2000).

7. C. Loiseaux, et al. Property preserving abstractions for the verification of
concurrent systems. Formal Methods in System Design 6(1995).

8. D.A. Schmidt, A calculus of logical relations for over- and underapproximating
static analyses. SAS’04 and Science of Comp. Prog., in press.

9. B. Steffen, et al. The fixpoint analysis machine. CONCUR’95.

(-: / 25

