
Underapproximating
Predicate Transformers

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

(-: / 1



Background

(-: / 2



Given

γ
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{0}

any

none

neg
poszero

P(Int) Sign

α and succ : Int → P(Int),
succ(n) = {n + 1}, let’s validate succ(0) ⊆ {1, 2, 3, · · ·} within
Sign:

1. We approximate succ by succ
♯
best = α ◦ succ∗ ◦ γ, and we

approximate 0 by α{0} = zero.

2. We approximate {1, 2, 3, · · ·} by α{1, 2, 3, · · ·} = pos (∗)

3. We check that succ
♯
best(zero) ⊑ Sign pos. (It does.)

(∗) Step 2 is sound only if the property, S ⊆ Int, is exact: S = γ(α(S)).

For example, α{−2, 0} = any, but γ(any) 6= {−2, 0}. Therefore,

succ
♯
best(zero) ⊑Sign any does not imply succ(0) ∈ {−2, 0}.
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A logic whose assertions are exact

For Galois connection, (P(C),⊆)〈α, γ〉(A, ⊑ ), define this logic:

φ ::= a | φ1⊓φ2 , where a ∈ A

Each φ is interpreted as [[φ]] = γ(φ), so that
a ⊑ φ implies γ(a) ⊆ [[φ]]. That is, the sets, γ(φ), are exact.

This makes f
♯
best : A → A the strongest postcondition

transformer for f : C → P(C) in “logic” A:

f∗[[φ]] ⊆ [[φ ′]] iff f
♯
best(φ) ⊑ φ ′

That is, {φ} f {f
♯
best(φ)} is a sound and complete Hoare-triple

for f [Cousot78] .
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But such logics are rare

φ ::= neg | zero | pos | φ1 ∧ φ2 | φ1 ∨ φ2

[[neg]] = γ(neg) [[zero]] = γ(zero) [[pos]] = γ(pos)

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]

For (P(Int),⊆)〈α, γ〉(Sign, ⊑ ), disjunction is not exact, e.g.,

[[neg ∨ zero]] = {· · · ,−2,−1, 0} ⊂ γ(α{· · · ,−2,−1, 0}) = γ(any) = Int.

Therefore, we dare not approximate the assertion, [[neg ∨ zero]], by

α[[neg ∨ zero]] = any ∈ Sign, because it is an overapproximation
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Sometimes, we can complete the abstract domain

We construct the disjunctive completion [Cousots79,Giacobazzi00] :

{0}

γ

{...,−1,0,1,...}

α

{...,−2,−1,1,2,...}
{0,1,2,3,...}

{ }

{1,2,3,...}
{...,−2,−1}

{...,−2,−1,0}

{neg,none}

{neg,pos,none}

{neg,zero,pos,none}

{ }

{none}

{zero,none}

{neg,zero,none}
{zero,pos,none}

{pos,none}

{any,neg,zero,pos,none}

o

P(Int)

UI

P (Sign)

(P(int),⊆)〈αo, γ〉(P↓(Sign),⊆)

γ(T) = ∪a∈Tγ(a) αo(S) =↓{α{c} | c ∈ S}

Downclosed sets are needed for monotonicity of key functions on the sets.

We interpret properties, S ⊆ Int, as αo(S) ∈ P↓(A) and functions,

f : Int → P(Int), as f
♯
best = (αo ◦ f∗ ◦ γ) ∈ A → P↓(A).

Now, all assertions are exact: φ ::= neg | zero | pos | φ1 ∧ φ2 | φ1 ∨ φ2

E.g., αo [[neg ∨ zero]] =↓{neg, zero} = {neg, zero, none}.
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Sometimes, the completion is too expensive

For succ : Int → P(Int), define the precondition assertion
[succ]φ as

[[[succ]φ]] = {n | succ(n) ⊆ [[φ]]}

Because zero ∈ Sign, the completion of Sign with respect to
[succ]zero adds each and every negative integer, −1,−2, · · · to
the abstract domain. (because we must make [succ]zero exact, and then

make [succ][succ]zero exact, etc.)

As an alternative, we underapproximate nonexact assertions.
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How do we underapproximate [[ · ]] : L → P(C)?

Lift the original Galois connection, P(C)〈α, γ〉A, to [Cousots00] :

γ

αu

opP (A)

UI[[ ]]ϕ A

[[ ]]ϕ

[[ ]]ϕ Aγ UI

opP(C)

[[ ]]ϕαu

The best abstraction of [[φ]] is merely

[[φ]]
A

= αu[[φ]],

because [[φ]] ⊇ γ(αu[[φ]]).

Example: for [[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]] , we have

[[φ1 ∨ φ2]]
Sign = αu[[φ1 ∨ φ2]]

= {a ∈ Sign | γ(a) ⊆ [[φ1]] ∪ [[φ2]]}.

But this is not defined inductively on [[φ]]A.
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Define the abstract logic inductively

For assertion, opg(φi)i<k, interpreted as

[[opg(φi)i<k]] = g([[φi]])i<k, where g : P(C)k → P(C),

interpret it abstractly as

[[opg(φi)i<k]]
A
ind = (αu ◦ g ◦ γk)([[φi]]

A
ind)i<k

We have αu [[φ]] ⊇ [[φ]]Aind , and when φ is exact, ⊇ becomes =.

Example: [[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]] abstracts to

[[φ1 ∨ φ2]]
Sign
ind = (αu ◦ ∪ ◦ γ2)([[φ1]]

Sign
ind , [[φ2]]

Sign
ind ).

Can we eliminate concrete ∪ from [[φ1 ∨ φ2]]
Sign
ind ? Try this:

[[φ1 ∨ φ2]]
Sign = [[φ1]]

Sign ∪P↓(Sign) [[φ2]]
Sign.

But ∪P↓(Sign) 6= (αu ◦ ∪ ◦ γ2) — we lose precision:

any ∈ [[neg ∨ zero ∨ pos]]
Sign
ind

, yet any 6∈ [[neg]]
Sign∪[[zero]]

Sign∪[[pos]]
Sign
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A more difficult example — preconditions : for f : C → P(C),

[[[f]φ]] = p̃ref[[φ]],

where p̃ref(S) = {c | f(c) ⊆ S},

we have
[[[f]φ]]Aind = (αu ◦ p̃ref ◦ γ)[[φ]]Aind

= {a | f∗[γ(a)] ⊆ γ[[φ]]Aind }.

Is this finitely computable? Can it be expressed compositionally as

[[[f]φ]]
A

= p̃ref♯ [[φ]]
A

for some f♯ : A → P(A)? Do we lose precision?

This is the topic of the paper in the SAS’06 proceedings.
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Defining sound
underapproximations of predicate
transformers used in dynamic and
temporal logic
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For nondeterministic state-transition function, f : C → P(C),
f

, and property S ⊆ C, we have

p̃ref(S) = {c | f(c) ⊆ S}

“forall precondition”: transit only into S
S

pref(S) = {c | f(c) ∩ S 6= ∅}

“exists precondition”: transit to S

S

postf(S) = f∗(S)

”exists postcondition”: are reached by S

S

p̃ostf(S)

= {d | ∀c ∈ C,d ∈ f(c) ⇒ c ∈ S}

“forall postcondition”: are reached only by S

S

gpre, post are used for validation; pre, p̃ost are used for code improvement
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The transformers interpret this logic

φ ::= a | · · · | [f]φ | 〈f〉φ | φ[f] | φ〈f〉

as follows:
[[[f]φ]] = p̃ref[[φ]]

[[〈f〉φ]] = pref[[φ]]

[[φ[f]]] = p̃ostf[[φ]]

[[φ〈f〉]] = postf[[φ]]

Although these are “single-step” assertions, we use recursion to
define interesting properties, like those in CTL:

AGfφ ≡ νZ.φ ∧ [f]Z for all f-transition sequences, φ holds

EFfφ ≡ µZ.φ ∨ 〈f〉Z there exists an f-transition sequence leading to φ

φEFf ≡ µZ.φ ∨ Z〈f〉 there exists an f-transition sequence from φ to here
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Example : Transition function h : Int → P(int)

let h(n) = if neg(n) :

n:= n+1

else truncate(sqrt(n))

in loopforever h

. . .−2 −1 0 1 2 3 4. . .

Some properties of h:

[[[h]neg]] = p̃reh{· · · ,−2,−1} = {· · · ,−3,−2} transit only into negatives

[[〈h〉neg]] = preh{· · · ,−2,−1} = {· · · ,−3,−2, 1, 2, 3, · · ·} transit to a

negative

[[neg〈h〉]] = posth{· · · ,−2,−1} = {· · · ,−2,−1, 0} are reached by

negatives

[[neg[h]]] = p̃osth{· · · ,−2,−1} = {} are reached only by negatives
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Underapproximating p̃ref(S) = {c | f(c) ⊆ S}

Theorem: (αu ◦ p̃ref ◦ γ) = p̃re
f
♯
best

, where f
♯
best = αo ◦ f∗ ◦ γ.

Intuition: f♯’s preimage overapproxes f’s, and [[φ]]
A underapproxes [[φ]].

[[[f]φ]]Aind = (αu ◦ p̃ref ◦ γ)[[φ]]Aind = p̃re
f
♯
best

[[φ]]Aind

Example: h = . . .−2 −1 0 1 2 3 4. . .

h
♯
best = poszero

any

neg

What must transit to zero ? [[[h]zero]] = {−1, 0}

The approximation is [[[h]zero]]
Sign
ind =↓{zero}

The abstraction of gpreh is the best we can do, but it loses precision.
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Underapproximating pref(S) = {c | f(c) ∩ S 6= ∅}

[[〈f〉φ]]Aind = (αu ◦ pref ◦ γ)[[φ]]Aind

But, for f♯ : A → P↓(A), pref♯ can be unsound ! Intuition: h♯ overestimates

h’s preimage, so there can be “false transitions.”

Example: [[〈h〉neg]] = preh[[neg]] = {· · · ,−3,−2, 1, 2, 3} transit to

negatives.
But h

♯
best = poszero

any

neg , and

pre
h

♯
best

[[neg]] = {neg, pos, any} and γ{neg, pos, any} = Int !

Computational approximation with downclosed sets is incorrect
for pre:

Theorem: For every f♯ : A → P↓(A) and T ∈ P↓(A),
pref♯(T) ∈ P↑(A) !
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Under approximate f : C → P(C) by f♭ : A → P↑(A)

Down-closed-set interpretation: ↓{zero, pos} asserts
∀{zero, pos} ≡ ∀(zero ∨ pos) — all outputs are zero or positive :

}Intis a subset of

{ }

has negatives only }

{ S | S

{ S | S

{neg,none}

{neg,pos,none}

{neg,zero,pos,none}

{ }

{none}

{zero,none}

{neg,zero,none}
{zero,pos,none}

{pos,none}

{any,neg,zero,pos,none}

α

γ(P(Int))P

∀( zero= v pos )

P (Sign)

Up-closed-set interpretation: ↑{zero, pos} asserts ∃{zero, pos}

≡ ∃zero ∧ ∃pos — there exist 0 and a positive in the output:

{ S | S is a subset of Int

op

}

{ S | S has a negative }

{ S | S }has a negative and 0

{ }

is nonempty }{ S | S

{zero,pos,any}

{neg,zero,pos,any}

{none,neg,zero,pos,any}

γ

α

P (Sign)(P(Int)    )P

∃= zero v

∃ pos

{ }

{any}

{neg,any} {zero,any}
{pos,any}

{neg,zero,any} {neg,pos,any}
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Underapproximating pref(S) = {c | f(c) ∩ S 6= ∅}

Use P↑(A) to define f♭
best : A → P↑(A) as

f♭
best(a) = (α↑ ◦ ({| · |} ◦ f∗) ◦ γ)(a)

= {a ′ | ∀c ∈ γ(a), f(c) ∩ γ(a ′) 6= ∅}

and define [[〈f〉φ]]
A

= pref♭
best

[[φ]]
A

Proposition: (soundness) pref♭
best

(T) ⊆ (αu ◦ pref ◦ γ)(T ).

Example:
h = . . .−2 −1 0 1 2 3 4. . . h♭

best = neg zero pos

any

We have [[〈h〉(neg ∨ zero ∨ pos)]] = preh(Int) = Int and

[[〈h〉(neg ∨ zero ∨ pos)]]A = preh♭
best

↓{neg, zero, pos} =↓{zero, pos}.
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Improving precision with focus

h = . . .−2 −1 0 1 2 3 4. . . h♭
best = neg zero pos

any

For preh[[neg ∨ zero ∨ pos]] = Int,

we lose precision: pref♭
best

[[neg ∨ zero ∨ pos]]A =↓{zero, pos}.

But (αu ◦ pref ◦ γ)[[neg ∨ zero ∨ pos]]Aind =↓any = Sign !

Many analysis tools (e.g., TVLA [SagivRepsWilhelm02] ) use a cases

analysis, called focus, to recover lost precision:

f♭
best(neg) = {any}

f♭
best(any) = {any}

But any decomposes to the cases,
neg, zero, pos. For each case, p,
p ∈ [[neg ∨ zero ∨ pos]]A.

Theorem: When γ : A → P(A) preserves joins, then
pre

focus

f♭
best

= (αu ◦ pref ◦ γ).
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Underapproximating post and p̃ost

postf(S) = f∗(S)

p̃ostf(S) = {d | ∀c ∈ C,d ∈ f(c) ⇒ c ∈ S}

Proposition: Let f : D → Pδ(D), where δ ∈ {↓, ↑}. Let ↓̃ =↑ and
↑̃ =↓. Then, for all S ∈ P(D),

� p̃ref(S) ∈ Pδ(D)

� pref(S) ∈ Pδ̃(D)

� postf(S) ∈ Pδ(D)

� p̃ostf(S) ∈ Pδ̃(D).

So, postf♭ : A → P↑(A) and p̃ostf♯ : A → P↑(A) are unsound.

Even worse, there is no nontrivial overapproximating f♯ : A → P↑(A)

to use with p̃ost because, for all f♯(a) 6= ∅, upclosure implies that ⊤A ∈ f♯(a),

implying that γ(f♯(a)) = C. A similar problem arises for a nontrivial
underapproximating f♭ : A → P↓(A).

What can we do ?
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Solution: Invert f : C → P(C) to f−1 : C → P(C)

If f : C → P(C) is
b c d

a b c d

a ,

then f−1 : C → P(C) is
b c d

a b c d

a .

That is, f−1(c) = {d | c ∈ f(d)}.

Proposition: [Loiseaux95] : (f−1)−1 = f, postf = pref−1 , and
p̃ostf = p̃ref−1 .

Proposition: For f : A → Pδ(A), δ ∈ {↓, ↑}, f−1 : A → Pδ̃(A) is
well defined and monotonic.
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Underapproximating postf and p̃ostf

[[φ〈f〉]] = postf[[φ]] = pref−1 [[φ]],

where f : C → P(C)

The inductively defined underapproximation is

[[φ〈f〉]]Aind = (αu ◦ pref−1 ◦ γ)[[φ]]
A
.

This is soundly underapproximated by

[[φ〈f〉]]A = pre(f−1)♭
best

[[φ]]
A
,

where (f−1)♭
best : A → P↑(A)

is (f−1)♭
best = α↑ ◦ ({| · |} ◦ f−1)∗ ◦ γ.
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The same development applied to p̃ostf yields

[[φ[f]]] = p̃ostf[[φ]] = p̃ref−1 [[φ]].

The most precise underapproximation is

[[φ〈f〉]]Aind = (αu ◦ p̃ref−1 ◦ γ)[[φ]]Aind = p̃re
(f−1)

♯
best

[[φ]]Aind ,

where (f−1)
♯
best : A → P↓(A)

is (f−1)
♯
best = αo ◦ (f−1)∗ ◦ γ.

Computing abstract postconditions as preconditions of inverted
state-transition relations is implemented in Steffen’s fixpoint
analysis machine [Steffen95] .

(-: / 23



Summary

� We reviewed how to use exact assertions with an
overapproximating Galois connection and how to apply domain
completions to make assertions exact.

� When it is impractical to make assertions exact, we employed the
underapproximation Galois connection on assertion sets.

� We proved that the forall-precondition transformer, p̃ref, is best
underapproximated by p̃re

f
♯
best

.

� We used a powerdomain of up-closed sets to define f♭
best and

underapproximated pref by pref♭
best

.

� We formalized a focussed version of pref♭
best

and proved it is the
best approximation of pref when γ preserves joins.

� We inverted f to f−1 and applied the above machinery to
underapproximate postf and p̃ostf.
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