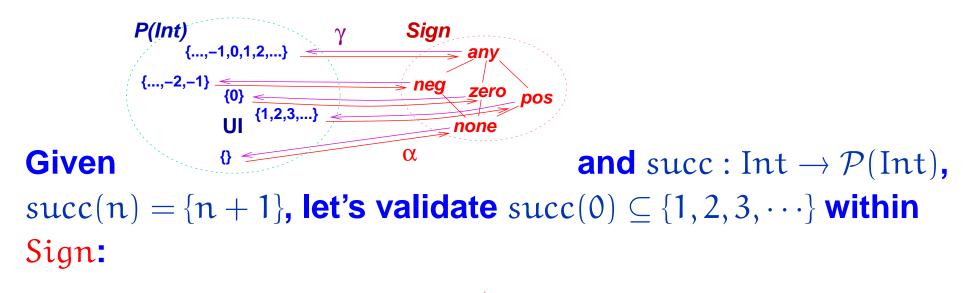
Underapproximating Predicate Transformers

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt



- 1. We approximate succ by $\operatorname{succ}_{best}^{\sharp} = \alpha \circ \operatorname{succ}^* \circ \gamma$, and we approximate 0 by $\alpha\{0\} = \operatorname{zero}$.
- 2. We approximate $\{1, 2, 3, \dots\}$ by $\alpha\{1, 2, 3, \dots\} = \text{pos}(*)$
- 3. We check that $\operatorname{succ}_{\operatorname{best}}^{\sharp}(\operatorname{zero}) \sqsubseteq \operatorname{Sign} \operatorname{pos.}$ (It does.)

(*) Step 2 is sound only if the property, $S \subseteq Int$, is *exact*: $S = \gamma(\alpha(S))$.

For example, $\alpha\{-2,0\} = any$, but $\gamma(any) \neq \{-2,0\}$. Therefore, $succ_{best}^{\sharp}(zero) \sqsubseteq_{Sign} any does not imply succ(0) \in \{-2,0\}.$

A logic whose assertions are exact

For Galois connection, $(\mathcal{P}(C), \subseteq) \langle \alpha, \gamma \rangle (A, \sqsubseteq)$, define this logic:

 $\varphi ::= a \, | \, \varphi_1 \Box \varphi_2$, where $a \in A$

Each ϕ is interpreted as $\llbracket \phi \rrbracket = \gamma(\phi)$, so that a $\sqsubseteq \phi$ implies $\gamma(a) \subseteq \llbracket \phi \rrbracket$. That is, the sets, $\gamma(\phi)$, are exact.

This makes $f_{best}^{\sharp} : A \to A$ the strongest postcondition transformer for $f : C \to \mathcal{P}(C)$ in "logic" A:

 $f^*\llbracket \varphi \rrbracket \subseteq \llbracket \varphi' \rrbracket \text{ iff } f^{\sharp}_{best}(\varphi) \sqsubseteq \varphi'$

That is, $\{\phi\} f \{f_{best}^{\sharp}(\phi)\}$ is a sound and complete Hoare-triple for f [Cousot78].

But such logics are rare

 $\phi ::= \operatorname{neg} |\operatorname{zero}| \operatorname{pos} | \phi_1 \wedge \phi_2 | \phi_1 \vee \phi_2$

 $\llbracket \operatorname{neg} \rrbracket = \gamma(\operatorname{neg}) \qquad \llbracket \operatorname{zero} \rrbracket = \gamma(\operatorname{zero}) \qquad \llbracket \operatorname{pos} \rrbracket = \gamma(\operatorname{pos})$ $\llbracket \varphi_1 \land \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket \cap \llbracket \varphi_2 \rrbracket$ $\llbracket \varphi_1 \lor \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket \cup \llbracket \varphi_2 \rrbracket$

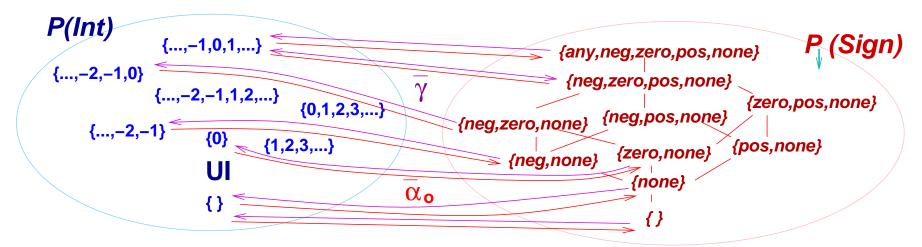
For $(\mathcal{P}(Int), \subseteq) \langle \alpha, \gamma \rangle$ (Sign, \sqsubseteq), disjunction is not exact, e.g.,

 $\llbracket \operatorname{neg} \lor \operatorname{zero} \rrbracket = \{\cdots, -2, -1, 0\} \subset \gamma(\alpha \{\cdots, -2, -1, 0\}) = \gamma(\operatorname{any}) = \operatorname{Int}.$

Therefore, we dare not approximate the assertion, [neg $\lor zero$], by α [neg $\lor zero$] = any \in Sign, because it is an *overapproximation*

Sometimes, we can complete the abstract domain

We construct the *disjunctive completion* [Cousots79,Giacobazzi00] :



 $(\mathcal{P}(\mathsf{int}),\subseteq)\langle\overline{\alpha_{o}},\overline{\gamma}\rangle(\mathcal{P}_{\downarrow}(\mathsf{Sign}),\subseteq)$

 $\overline{\gamma}(\mathsf{T}) = \cup_{\mathsf{a} \in \mathsf{T}} \gamma(\mathsf{a}) \qquad \overline{\alpha_o}(\mathsf{S}) = \downarrow \{ \alpha\{c\} \mid c \in \mathsf{S} \}$

Downclosed sets are needed for monotonicity of key functions on the sets.

We interpret properties, $S \subseteq Int$, as $\overline{\alpha_o}(S) \in \mathcal{P}_{\downarrow}(A)$ and functions, f: Int $\rightarrow \mathcal{P}(Int)$, as $f_{\text{best}}^{\sharp} = (\overline{\alpha_o} \circ f^* \circ \gamma) \in A \rightarrow \mathcal{P}_{\downarrow}(A)$.

Now, all assertions are exact: $\phi ::= neg | zero | pos | \phi_1 \land \phi_2 | \phi_1 \lor \phi_2$ E.g., $\overline{\alpha_o} [neg \lor zero] = \downarrow \{neg, zero\} = \{neg, zero, none\}.$

Sometimes, the completion is too expensive

For succ : Int $\rightarrow \mathcal{P}(Int)$, define the precondition assertion [succ] φ as

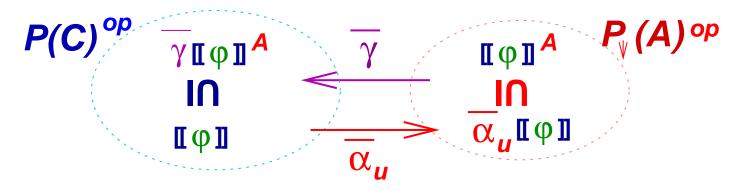
 $\llbracket[\operatorname{succ}]\varphi\rrbracket = \{n \mid \operatorname{succ}(n) \subseteq \llbracket\varphi\rrbracket\}$

Because zero \in Sign, the completion of Sign with respect to [succ]zero adds each and every negative integer, $-1, -2, \cdots$ to the abstract domain. (because we must make [succ]zero exact, and then make [succ][succ]zero exact, etc.)

As an alternative, we *underapproximate* nonexact assertions.

How do we underapproximate $\llbracket \cdot \rrbracket : \mathcal{L} \to \mathcal{P}(C)$?

Lift the original Galois connection, $\mathcal{P}(C)\langle \alpha, \gamma \rangle A$, to [Cousots00] :



The best abstraction of $[\phi]$ is merely

 $\llbracket \phi \rrbracket^{\mathsf{A}} = \overline{\alpha_{\mathsf{u}}} \llbracket \phi \rrbracket,$

because $\llbracket \varphi \rrbracket \supseteq \overline{\gamma}(\overline{\alpha_u}\llbracket \varphi \rrbracket)$.

Example: for
$$\llbracket \phi_1 \lor \phi_2 \rrbracket = \llbracket \phi_1 \rrbracket \cup \llbracket \phi_2 \rrbracket$$
, we have
 $\llbracket \phi_1 \lor \phi_2 \rrbracket^{\text{Sign}} = \overline{\alpha_u} \llbracket \phi_1 \lor \phi_2 \rrbracket$
 $= \{ a \in \text{Sign} \mid \gamma(a) \subseteq \llbracket \phi_1 \rrbracket \cup \llbracket \phi_2 \rrbracket \}$

But this is not defined inductively on $\llbracket \phi \rrbracket^A$.

Define the abstract logic inductively

For assertion, $op_g(\phi_i)_{i < k}$, interpreted as $[op_g(\phi_i)_{i < k}] = g([\phi_i])_{i < k}$, where $g : \mathcal{P}(C)^k \to \mathcal{P}(C)$, interpret it abstractly as

 $\llbracket op_g(\phi_i)_{i < k} \rrbracket_{ind}^{A} = (\overline{\alpha_u} \circ g \circ \overline{\gamma}^k)(\llbracket \phi_i \rrbracket_{ind}^{A})_{i < k}$ We have $\overline{\alpha_u}\llbracket \phi \rrbracket \supseteq \llbracket \phi \rrbracket_{ind}^{A}$, and when ϕ is exact, \supseteq becomes =.

Example: $\llbracket \phi_1 \lor \phi_2 \rrbracket = \llbracket \phi_1 \rrbracket \cup \llbracket \phi_2 \rrbracket$ abstracts to $\llbracket \phi_1 \lor \phi_2 \rrbracket_{ind}^{\text{Sign}} = (\overline{\alpha_u} \circ \cup \circ \overline{\gamma}^2)(\llbracket \phi_1 \rrbracket_{ind}^{\text{Sign}}, \llbracket \phi_2 \rrbracket_{ind}^{\text{Sign}}).$

Can we eliminate concrete \cup from $\llbracket \phi_1 \lor \phi_2 \rrbracket_{ind}^{\text{Sign}}$? Try this: $\llbracket \phi_1 \lor \phi_2 \rrbracket^{\text{Sign}} = \llbracket \phi_1 \rrbracket^{\text{Sign}} \cup_{\mathcal{P}_{\downarrow}(\text{Sign})} \llbracket \phi_2 \rrbracket^{\text{Sign}}$. But $\cup_{\mathcal{P}_{\downarrow}(\text{Sign})} \neq (\overline{\alpha_u} \circ \cup \circ \overline{\gamma}^2)$ — we lose precision: $any \in \llbracket neg \lor zero \lor pos \rrbracket_{ind}^{\text{Sign}}$, yet $any \notin \llbracket neg \rrbracket^{\text{Sign}} \cup \llbracket zero \rrbracket^{\text{Sign}} \cup \llbracket pos \rrbracket^{\text{Sign}}$ A more difficult example — preconditions: for $f : C \to \mathcal{P}(C)$, $\begin{bmatrix} [f]\varphi \end{bmatrix} = \widetilde{pre}_{f} \llbracket \varphi \rrbracket,$ where $\widetilde{pre}_{f}(S) = \{c \mid f(c) \subseteq S\},$ we have $\begin{bmatrix} [f]\varphi \rrbracket_{ind}^{A} = (\overline{\alpha_{u}} \circ \widetilde{pre}_{f} \circ \overline{\gamma}) \llbracket \varphi \rrbracket_{ind}^{A}$ $= \{a \mid f^{*}[\gamma(a)] \subseteq \overline{\gamma} \llbracket \varphi \rrbracket_{ind}^{A}\}.$

Is this finitely computable? Can it be expressed compositionally as

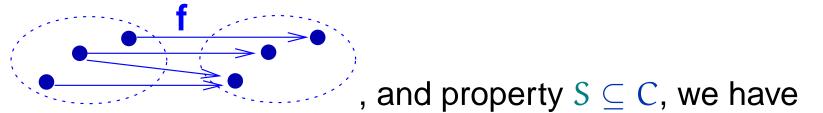
 $\llbracket [f] \varphi \rrbracket^{\mathsf{A}} = \widetilde{\mathsf{pre}}_{\mathsf{f}^{\sharp}} \llbracket \varphi \rrbracket^{\mathsf{A}}$

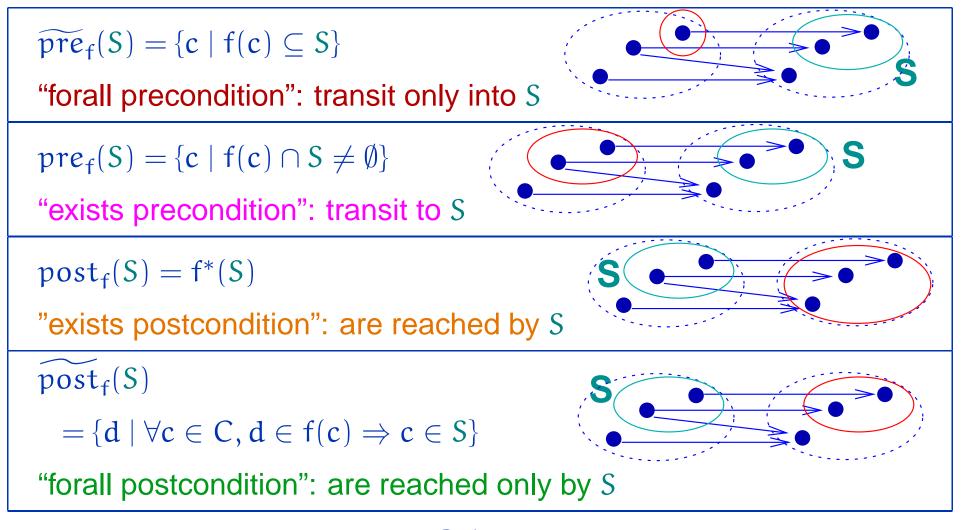
for some $f^{\sharp} : A \to \mathcal{P}(A)$? Do we lose precision?

This is the topic of the paper in the SAS'06 proceedings.

Defining sound underapproximations of predicate transformers used in dynamic and temporal logic

For nondeterministic state-transition function, $f : C \rightarrow \mathcal{P}(C)$,





pre, post are used for validation; pre, post are used for code improvement

The transformers interpret this logic

 $\phi ::= \mathbf{a} | \cdots | [\mathbf{f}] \phi | \langle \mathbf{f} \rangle \phi | \phi \overline{[\mathbf{f}]} | \phi \overline{\langle \mathbf{f} \rangle}$

as follows:

 $\llbracket [f] \varphi \rrbracket = \widetilde{pre}_{f} \llbracket \varphi \rrbracket \qquad \llbracket \varphi \overline{[f]} \rrbracket = \widetilde{post}_{f} \llbracket \varphi \rrbracket$ $\llbracket \langle f \rangle \varphi \rrbracket = pre_{f} \llbracket \varphi \rrbracket \qquad \llbracket \varphi \overline{\langle f \rangle} \rrbracket = post_{f} \llbracket \varphi \rrbracket$

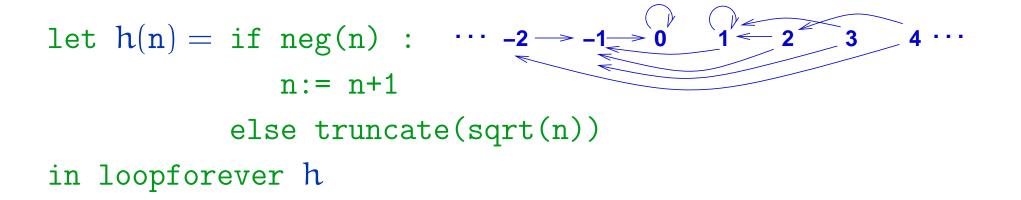
Although these are "single-step" assertions, we use recursion to define interesting properties, like those in *CTL*:

 $AG_f \varphi \equiv \nu Z. \varphi \wedge [f]Z$ for all f-transition sequences, φ holds

 $EF_f \phi \equiv \mu Z. \phi \lor \langle f \rangle Z$ there exists an f-transition sequence leading to ϕ

 $\phi \overline{EF}_f \equiv \mu Z. \phi \lor Z \overline{\langle f \rangle}$ there exists an f-transition sequence from ϕ to here

Example: *Transition function* $h : Int \rightarrow \mathcal{P}(int)$



Some properties of h:

 $\llbracket [h] neg \rrbracket = \widetilde{pre}_h \{\cdots, -2, -1\} = \{\cdots, -3, -2\} \text{ transit only into negatives}$ $\llbracket \langle h \rangle neg \rrbracket = pre_h \{\cdots, -2, -1\} = \{\cdots, -3, -2, 1, 2, 3, \cdots\} \text{ transit to a negative}$

 $[\![neg\langle h\rangle]\!]=post_h\{\cdots,-2,-1\}=\{\cdots,-2,-1,0\}$ are reached by negatives

 $\llbracket neg[h] \rrbracket = \widetilde{post}_h \{\cdots, -2, -1\} = \{\} \text{ are reached only by negatives }$

Underapproximating $\widetilde{pre}_{f}(S) = \{c \mid f(c) \subseteq S\}$

Theorem: $(\overline{\alpha_u} \circ \widetilde{pre}_f \circ \overline{\gamma}) = \widetilde{pre}_{f_{best}^{\sharp}}$, where $f_{best}^{\sharp} = \overline{\alpha_o} \circ f^* \circ \gamma$. Intuition: f^{\sharp} 's preimage overapproxes f's, and $[\![\varphi]\!]^A$ underapproxes $[\![\varphi]\!]$.

$$\llbracket [f] \varphi \rrbracket_{ind}^{\mathsf{A}} = (\overline{\alpha_{\mathsf{u}}} \circ \widetilde{\mathsf{pre}}_{\mathsf{f}} \circ \overline{\gamma}) \llbracket \varphi \rrbracket_{ind}^{\mathsf{A}} = \widetilde{\mathsf{pre}}_{\mathsf{f}_{\mathsf{best}}^{\sharp}} \llbracket \varphi \rrbracket_{ind}^{\mathsf{A}}$$

Example:
$$h = \cdots -2 \rightarrow -1 \rightarrow 0$$
 $1 \leftarrow 2 \rightarrow 3 \rightarrow 4 \cdots$

$$h_{best}^{\sharp} = \bigcirc neg \rightarrow zero \bigcirc pos \bigcirc$$

What must transit to zero ? $\llbracket[h]zero
rbracket = \{-1, 0\}$ The approximation is $\llbracket[h]zero
rbracket_{ind}^{Sign} = \downarrow \{zero\}$

The abstraction of \widetilde{pre}_{h} is the best we can do, but it loses precision.

Underapproximating $pre_f(S) = \{c \mid f(c) \cap S \neq \emptyset\}$

 $\llbracket \langle \mathsf{f} \rangle \varphi \rrbracket_{ind}^{\mathsf{A}} = (\overline{\alpha_{\mathsf{u}}} \circ \mathsf{pre}_{\mathsf{f}} \circ \overline{\gamma}) \llbracket \varphi \rrbracket_{ind}^{\mathsf{A}}$

But, for $f^{\sharp} : A \to \mathcal{P}_{\downarrow}(A)$, $pre_{f^{\sharp}}$ can be *unsound* ! Intuition: h^{\sharp} overestimates h's preimage, so there can be "false transitions."

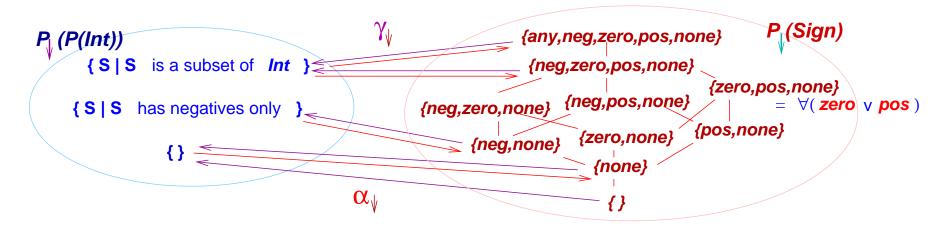
Example: $[\langle h \rangle neg] = pre_h[[neg]] = \{\cdots, -3, -2, 1, 2, 3\}$ transit to negatives. But $h_{best}^{\sharp} = \bigcirc neg \rightarrow zero \bigcirc pos \bigcirc$, and $pre_{h_{best}^{\sharp}} [[neg]] = \{neg, pos, any\}$ and $\overline{\gamma}\{neg, pos, any\} = Int !$

Computational approximation with downclosed sets is incorrect for pre:

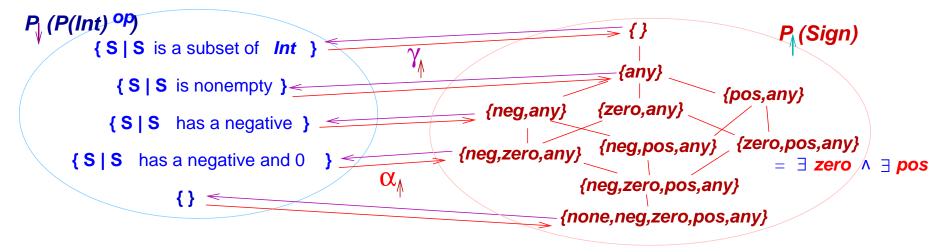
Theorem: For every $f^{\sharp} : A \to \mathcal{P}_{\downarrow}(A)$ and $T \in \mathcal{P}_{\downarrow}(A)$, $pre_{f^{\sharp}}(T) \in \mathcal{P}_{\uparrow}(A)$!

Under*approximate* $f: C \to \mathcal{P}(C)$ *by* $f^{\flat} : A \to \mathcal{P}_{\uparrow}(A)$

Down-closed-set interpretation: \downarrow {zero, pos} asserts \forall {zero, pos} $\equiv \forall$ (zero \lor pos) — all outputs are zero or positive :



Up-closed-set interpretation: $\{zero, pos\}$ asserts $\exists \{zero, pos\}$ $\equiv \exists zero \land \exists pos - there exist 0 and a positive in the output:$

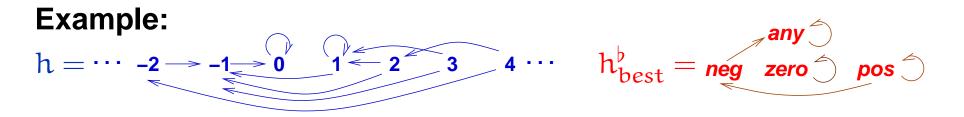


Underapproximating $pre_f(S) = \{c \mid f(c) \cap S \neq \emptyset\}$

Use $\mathcal{P}_{\uparrow}(A)$ to define $f_{best}^{\flat} : A \to \mathcal{P}_{\uparrow}(A)$ as

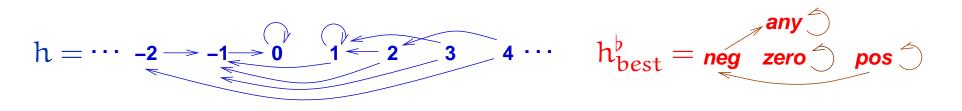
$$\begin{aligned} f^{\flat}_{\text{best}}(a) &= (\alpha_{\uparrow} \circ (\{ \cdot \} \circ f^{*}) \circ \gamma)(a) \\ &= \{a' \mid \forall c \in \gamma(a), f(c) \cap \gamma(a') \neq \emptyset \} \\ \end{aligned}$$
and define $[\langle f \rangle \varphi]^{A} = pre_{f^{\flat}_{\text{best}}} [\![\varphi]]^{A}$

Proposition: (soundness) $\operatorname{pre}_{f_{best}^{\flat}}(\mathsf{T}) \subseteq (\overline{\alpha_u} \circ \operatorname{pre}_f \circ \overline{\gamma})(\mathsf{T}).$



We have $[\langle h \rangle (neg \lor zero \lor pos)] = pre_h(Int) = Int and$ $[\langle h \rangle (neg \lor zero \lor pos)]^A = pre_{h_{best}^{\flat}} \{neg, zero, pos\} = \downarrow \{zero, pos\}.$

Improving precision with focus



For $pre_h[neg \lor zero \lor pos] = Int$,

we lose precision: $\operatorname{pre}_{f_{best}^{\flat}} [\operatorname{neg} \lor \operatorname{zero} \lor \operatorname{pos}]^{A} = \downarrow \{\operatorname{zero}, \operatorname{pos}\}.$ But $(\overline{\alpha_{u}} \circ \operatorname{pre}_{f} \circ \overline{\gamma}) [\operatorname{neg} \lor \operatorname{zero} \lor \operatorname{pos}]^{A}_{ind} = \downarrow \operatorname{any} = \operatorname{Sign} !$

Many analysis tools (e.g., TVLA [SagivRepsWilhelm02]) use a cases analysis, called focus, to recover lost precision:

 $f_{best}^{\flat}(neg) = \{any\}$ $f_{best}^{\flat}(any) = \{any\}$ But any decomposes to the cases, neg, zero, pos. For each case, p, $p \in [neg \lor zero \lor pos]^A$.

Theorem: When $\gamma : A \to \mathcal{P}(A)$ preserves joins, then $pre_{f_{best}^{b}}^{focus} = (\overline{\alpha_{u}} \circ pre_{f} \circ \overline{\gamma}).$

Underapproximating post and post

$$\begin{split} & \text{post}_f(S) = f^*(S) \\ & \widetilde{\text{post}}_f(S) &= \{d \mid \forall c \in C, d \in f(c) \Rightarrow c \in S\} \end{split}$$

Proposition: Let $f : D \to \mathcal{P}_{\delta}(D)$, where $\delta \in \{\downarrow, \uparrow\}$. Let $\tilde{\downarrow} = \uparrow$ and $\tilde{\uparrow} = \downarrow$. Then, for all $S \in \mathcal{P}(D)$,

- ♦ $\widetilde{pre}_{f}(S) \in \mathcal{P}_{\delta}(D)$ ♦ $post_{f}(S) \in \mathcal{P}_{\delta}(D)$
- ♦ $pre_f(S) \in \mathcal{P}_{\delta}(D)$ ♦ $\widetilde{post}_f(S) \in \mathcal{P}_{\delta}(D)$.

So, $\text{post}_{f^{\flat}} : A \to \mathcal{P}_{\uparrow}(A)$ and $\widetilde{\text{post}}_{f^{\sharp}} : A \to \mathcal{P}_{\uparrow}(A)$ are unsound.

Even worse, there is no nontrivial overapproximating $f^{\sharp} : A \to \mathcal{P}_{\uparrow}(A)$ to use with \widetilde{post} because, for all $f^{\sharp}(\mathfrak{a}) \neq \emptyset$, upclosure implies that $\top_{A} \in f^{\sharp}(\mathfrak{a})$, implying that $\overline{\gamma}(f^{\sharp}(\mathfrak{a})) = C$. A similar problem arises for a nontrivial underapproximating $f^{\flat} : A \to \mathcal{P}_{\downarrow}(A)$.

What can we do ?

Solution: *Invert* $f : C \to \mathcal{P}(C)$ *to* $f^{-1} : C \to \mathcal{P}(C)$

If
$$f: C \to \mathcal{P}(C)$$
 is $a \downarrow \downarrow \downarrow \downarrow \downarrow$
 $a \downarrow \downarrow \downarrow \downarrow \downarrow$
then $f^{-1}: C \to \mathcal{P}(C)$ is $a \downarrow \downarrow \downarrow$
 $a \downarrow \downarrow$

That is, $f^{-1}(c) = \{d \mid c \in f(d)\}.$

Proposition: [Loiseaux95]: $(f^{-1})^{-1} = f$, $post_f = pre_{f^{-1}}$, and $\widetilde{post}_f = \widetilde{pre}_{f^{-1}}$.

Proposition: For $f : A \to \mathcal{P}_{\delta}(A)$, $\delta \in \{\downarrow, \uparrow\}$, $f^{-1} : A \to \mathcal{P}_{\tilde{\delta}}(A)$ is well defined and monotonic.

Underapproximating $post_f$ **and** $\widetilde{post_f}$

$$\begin{split} \llbracket \varphi \overline{\langle f \rangle} \rrbracket &= \text{post}_{f} \llbracket \varphi \rrbracket &= \text{pre}_{f^{-1}} \llbracket \varphi \rrbracket, \\ \text{where } f : C \to \mathcal{P}(C) \end{split}$$

The inductively defined underapproximation is

$$\llbracket \varphi \overline{\langle f \rangle} \rrbracket_{ind}^{A} = (\overline{\alpha_{u}} \circ \operatorname{pre}_{f^{-1}} \circ \overline{\gamma}) \llbracket \varphi \rrbracket^{A}.$$

This is soundly underapproximated by

$$\begin{split} [\varphi \overline{\langle f \rangle}]^{A} &= \operatorname{pre}_{(f^{-1})_{best}^{\flat}} [\![\varphi]\!]^{A}, \\ \text{where } (f^{-1})_{best}^{\flat} : A \to \mathcal{P}_{\uparrow}(A) \\ \text{is } (f^{-1})_{best}^{\flat} &= \overline{\alpha_{\uparrow}} \circ (\{\![\cdot]\!] \circ f^{-1})^{*} \circ \gamma. \end{split}$$

The same development applied to \widetilde{post}_{f} yields

$$\llbracket \phi \overline{[f]} \rrbracket = \widetilde{\text{post}}_{f} \llbracket \phi \rrbracket = \widetilde{\text{pre}}_{f^{-1}} \llbracket \phi \rrbracket.$$

The most precise underapproximation is

$$\begin{split} \llbracket \varphi \overline{\langle f \rangle} \rrbracket_{ind}^{A} &= (\overline{\alpha_{u}} \circ \widetilde{pre}_{f^{-1}} \circ \overline{\gamma}) \llbracket \varphi \rrbracket_{ind}^{A} = \widetilde{pre}_{(f^{-1})_{best}^{\sharp}} \llbracket \varphi \rrbracket_{ind}^{A}, \\ \text{where } (f^{-1})_{best}^{\sharp} : A \to \mathcal{P}_{\downarrow}(A) \\ \text{is } (f^{-1})_{best}^{\sharp} &= \overline{\alpha_{o}} \circ (f^{-1})^{*} \circ \gamma. \end{split}$$

Computing abstract postconditions as preconditions of inverted state-transition relations is implemented in Steffen's fixpoint analysis machine [Steffen95].

Summary

- We reviewed how to use *exact assertions* with an overapproximating Galois connection and how to apply *domain completions* to make assertions exact.
- When it is impractical to make assertions exact, we employed the underapproximation Galois connection on assertion sets.
- We proved that the forall-precondition transformer, pref, is best underapproximated by prefterst.
- We used a *powerdomain of up-closed sets* to define f^b_{best} and underapproximated pre_f by pre_{f^b_{best}}.
- We formalized a *focussed* version of pre_{f^b_{best}} and proved it is the best approximation of pre_f when γ preserves joins.
- We inverted f to f⁻¹ and applied the above machinery to underapproximate post_f and post_f.

References This talk: www.cis.ksu.edu/~schmidt/papers

- 1. R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in abstractions of model checking. SAS'95.
- 2. P. Cousot. PhD thesis, Genoble, 1978.
- 3. P. Cousot and R.Cousot. Systematic design of program analysis frameworks. POPL'79.
- 4. P. Cousot and R.Cousot. Temporal abstract interpretation. POPL'00.
- 5. D. Dams, et al. Abstract interpretation of reactive systems. *ACM TOPLAS* 19(1997).
- 6. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. *J. ACM* 47(2000).
- 7. C. Loiseaux, et al. Property preserving abstractions for the verification of concurrent systems. *Formal Methods in System Design* 6(1995).
- 8. D.A. Schmidt, A calculus of logical relations for over- and underapproximating static analyses. SAS'04 and *Science of Comp. Prog.*, in press.
- 9. B. Steffen, et al. The fixpoint analysis machine. CONCUR'95.