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Abstract. We study the underapproximation of the predicate trans-
formers used to give semantics to the modalities in dynamic and tempo-
ral logic. Because predicate transformers operate on state sets, we define
appropriate powerdomains for sound approximation. We study four such
domains — two are based on “set inclusion” approximation, and two are
based on “quantification” approximation — and we apply the domains
to synthesize the most precise, underapproximating p̃re and pre trans-
formers, in the latter case, introducing a focus operation. We also show
why the expected abstractions of post and p̃ost are unsound, and we use
the powerdomains to guide us to correct, sound underapproximations.

1 Introduction

When we prove a property, φ, of a program, P , we typically employ an abstrac-
tion on P ’s and φ’s concrete domain, C, so that we overapproximate P to P ]

and underapproximate φ to φ[, where P ] and φ[ are stated within an abstract
domain, A. If we show P ] has property φ[, then we conclude P has φ as well.

This approach quickly becomes complicated: Although C might be a set,
A is usually partially ordered. For example, when C is Int and A is Sign, we
have orderings like isPositive vSign isNotNegative, because γ(isPositive) ⊆
γ(isNotNegative), where γ : Sign → P(Int) concretizes signs. Even when A is
a set, e.g., a set of state partitions, computing least- and greatest fixed points of
state-transition functions and recursively defined assertions requires a powerset
of the state partitions, partially ordered by subset inclusion [25].

Next, a logical property, φ, is interpreted as a set, [[φ]] ∈ P(C). When the

property is abstracted to φ[, which is itself a set, [[φ]]
A ∈ P(A), A’s ordering

affects P(A)’s, and denotational semantics indicates there are a variety of pow-

erdomains that one might use [18, 24] to establish soundness, i.e., [[φ]] ⊇ γ∗[[φ]]
A
.

The situation becomes more complex when program P ’s concrete transition
function is nondeterministic, f : C → P(C), meaning its abstraction should be
f ] : A → P(A). What powerdomain should be used for f ]’s codomain? Is it the

same one as that used to define [[φ]]
A
?

Yet another complication is that properties, φ, can be expressed by the pred-
icate transformers, p̃re , pre , post , and p̃ost . The four predicate transformers
behave differently with respect to a given f ] : A → P(A). Fortunately, for an
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The Collatz state-transition function, f : Nat → Nat :

f(n) = div2(n), if n mod2 = 0
f(n) = 3n + 1, if n mod2 = 1

The function’s graph:
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Fig. 1. Collatz program and its state-transition graph

overapproximating f ], p̃ref] [[φ]]
A

underapproximates p̃ref [[φ]], meaning we can
soundly calculate abstract preconditions like those in ACTL [3, 7].

But pref] is not well behaved for f ], and the situations for post and p̃ost are
even less clear.

This paper’s primary contribution is its systematic study of the powerdo-
mains and Galois connections necessary for sound underapproximation of all
four of the classic predicate transformers. The transformers operate on state
sets, and we will require four powerdomains for sound approximation: two are
based on “set inclusion” approximation, and two are based on “quantification”
approximation. The first two are applied to abstract a logic; the latter two are
applied to abstract state-transition functions. Our study of pre ’s abstraction ex-
poses its fundamental incompleteness, which is repaired by means of a focussed
abstraction. We also see why the expected abstractions of post f and p̃ostf are
unsound, and we use the powerdomains to define correct, sound underapproxi-
mations (which must be expressed in terms of pref−1 and p̃ref−1 , respectively).

The guiding principle throughout our investigation is that property sets,
[[φ]]A, are downwards-closed subsets of A. We tailor the abstractions of the four
predicate transformers so that their answers are always downwards-closed sets,
and in two cases, this requires that the abstract transition function, f ] : A →
P(A), used by the predicate transformer must calculate answer sets that are
upwards closed. We select the appropriate Galois connection with the appropriate
powerdomain to abstract f to the appropriate f ].

2 Background

Say that a program’s semantics is defined by (the least fixpoint of) a state-
transition function, f : C → C. Figure 1 shows a coding of the Collatz function
and its state-transition semantics, drawn as a graph. When f ⊆ C × C is a
non-functional state-transition relation, we model it by f : C → P(C), and we
use this format hereon.

For calculating postconditions, we lift f to f ∗ : P(C) → P(C) in the usual
way: f∗(S) = ∪c∈Sf(c). For example, for odd = {2n + 1 | n ≥ 0}, the strongest
f -postcondition from Figure 1 is f∗(odd ) = {4, 10, 16, 22, · · ·}.



{0,1,2,3,...}

{0,2,4,...} {1,3,5,...}

{}

UI

even
odd

any

none

γ

α

P(Nat) Parity γ(even) = {0, 2, 4, · · ·}
γ(none) = ∅, etc.

α{2, 6} = even

α{0, 1, 2, 3} = any , etc.

div2] : Parity → Parity

div2](even) = div2](odd )

= div2](any) = any

div2](none) = none

(3x + 1 )] : Parity → Parity

(3x + 1 )](odd) = even

(3x + 1 )](even) = odd

(3x + 1 )](p) = p, if p ∈ {none , any}

The abstracted Collatz function, f ] : Parity → Parity , is f ] = α ◦ f∗ ◦ γ, that is,

f ](none) = none

f ](even) = div2](even) = any

f ](odd) = (3x + 1 )](odd) = even

f ](any) = any

Fig. 2. Parity abstraction of natural numbers and the Collatz function

If a program’s state space is “too large,” we might abstract it. The abstraction
might be a state partitioning [2, 25], but more generally it is a complete lattice,
(A,v), such that there is a Galois connection of the form (P(C),⊆)〈α, γ〉(A,v):1

Figure 2 abstracts the concrete domain Nat in Figure 1 to the complete lattice
of parities, Parity , which is applied to abstracting the Collatz function.

Each set, S ⊆ C, is abstracted by α(S) ∈ A, and each a ∈ A models the set
γ(a) ⊆ C. The Galois connection overapproximates C, because for all S ⊆ C,
S ⊆ γ(α(S)).

f∗ : P(C) → P(C) is soundly abstracted by a monotone function, f ] : A → A,
iff α◦f∗ vP(C)→A f ]◦α iff f∗◦γ vA→P(C) γ◦f ] [7]. We work only with monotone
functions. The most precise, sound, abstraction of f ∗ is α ◦ f∗ ◦ γ — see Figure
2 for an example.

Complete lattice A possesses an “internal logic,” where γ(a) interprets the
“assertion” a ∈ A, and for c ∈ C, write c |= a iff c ∈ γ(a). This makes f ] : A → A

a sound postcondition transformer for f : if c |= a, then f(c) |= f ](a). Since γ

preserves meets in A,2 uA is “logical conjunction”: c |= a1 u a2 iff c |= a1 and
c |= a2. This logic forms the foundation for static analyses based on A.

There is no guarantee that γ preserves joins; see lattice Sign in Figure 3 and
consider 0 |= neg t pos , which holds even though 0 6|= neg and 0 6|= pos . We can
improve the situation by building the disjunctive completion [7] of A, which is

1 A Galois connection between two complete lattices, P and Q, written P 〈α, γ〉Q, is
a pair of monontonic functions, α : P → Q and γ : Q → P , such that idP→P v γ ◦α

and α ◦ γ v idQ→Q [7, 13]. Note that γ’s inverse, α, is uniquely defined as α(p) =
u{q | p vP γ(q)} and α’s inverse is γ(q) = t{p | α(p) vQ q}.

2 that is, for every T ⊆ A, ∩a∈T γ(a) = γ(uT ), which is necessary and sufficient for γ

to be the upper adjoint of a Galois connection



Example 1: Sign (γ does not preserve tSign ):

γ{...,−1,0,1,2,...}

{1,2,3,...}

{}

UI

{...,−2,−1}
{0}

any

none

neg
poszero

P(Int) Sign

The completed domain expresses more sets in P(Int), and γ preserves tP↓(Sign):

{...,−2,−1,0}

{0,1,2,3,...}

{1,2,3,...}
{...,−2,−1} {0}

{...,−1,0,1,...}

{...,−2,−1,1,2,...}

{ }

γ

UI

P (Sign)

{neg,none}

{neg,pos,none}

{neg,zero,pos,none}

{ }

{none}

{zero,none}

{neg,zero,none}
{zero,pos,none}

{pos,none}

{any,neg,zero,pos,none}
P(Int)

Example 2: Parity (the completion adds no new expressibility):

{1,3,5,...}

{ }

{0,1,2,3,...}

{0,2,4,...}

γ P (Parity)

{ }

{even,none} {odd,none}
{none}

{even,odd,none}

{any,even,odd,none}

UI

P(Nat)

Fig. 3. Two examples of disjunctive completion

(P↓(A),⊆), that is, all downclosed subsets of A, ordered by subset inclusion.3

Here is the resulting Galois connection:

(P(C),⊆)〈αo, γ〉(P↓(A),⊆), where
γ(T ) = γ∗(T ) = ∪a∈Aγ(a)
αo(S) = ∩{T | S ⊆ γ(T )} =↓{α{c} | c ∈ S}

See Figure 3. The downclosed sets ensure monotonicity of key functions, like
injection, {| · |} : A → P↓(A) (defined {|a|} =↓{a} so that a v a′ implies {|a|} ⊆
{|a′|}), without changing γ’s image: γ(↓S) = γ(S). Because γ : P↓(A) → P(C)
preserves both joins and meets, we have this useful internal logic for P↓(A):

φ ::= a | φ1 u φ2 | φ1 t φ2

c |= a iff c ∈ γ(a)
c |= φ1 u φ2 iff c |= φ1 and c |= φ2

c |= φ1 t φ2 iff c |= φ1 or c |= φ2

The Galois connection is overapproximating, and we can define a sound
abstraction of f : C → P(C) in the form, f ] : A → P↓(A); the most pre-

cise such abstraction is f
]
best = αo ◦ f∗ ◦ γ. (E.g., in Figure 3, Example 1,

3 P↓(A) = {↓T | T ⊆ A}, where ↓T = {a ∈ A | there exists a′ ∈ T , a vA a′}.



L 3 φ ::= a | [f ]φ | 〈f〉φ | φ1 ∧ φ2 | φ1 ∨ φ2

[[ · ]] : L → P(C)

[[a]] = γ(a)
[[[f ]φ]] = p̃ref [[φ]]
[[〈f〉φ]] = pref [[φ]]

[[φ1 ∧ φ2]] = [[φ1 ]] ∩ [[φ2 ]]
[[φ1 ∨ φ2]] = [[φ1 ]] ∪ [[φ2 ]]

Fig. 4. Precondition logic

succ]
best(neg) = {neg, zero,none} (successor), and in Example 2, div2]

best(even)
= {even, odd ,none}.)

3 Preconditions

For state-transition function, f : C → P(C), S’s postcondition is f ∗(S), but
when f is nondeterministic, there are two useful preconditions:

p̃ref (S) = {c | for all c′ ∈ C, c′ ∈ f(c) implies c′ ∈ S} = {c | f(c) ⊆ S}
pref (S) = {c | there exists c′ ∈ f(c), c′ ∈ S} = {c | f(c) ∩ S 6= ∅}.

The first computes those states whose f -image lies entirely in S (where the f -
image might be empty); the second defines those states whose f -image has at
least one state in S. We study the two preconditions in their standard logical
representations; Figure 4 gives the syntax and interpretation of the logic. We
write c |= φ iff c ∈ [[φ]], e.g., both 12 |= [div2]even and 12 |= 〈div2〉even .

It is important to note that the logic in Figure 4 is not an internal logic of
P↓(A) — we have no guarantee that γ preserves either p̃ref] or pref] .4 To check

c |= φ within P↓(A), we must abstract each [[φ]] ∈ P(C) to a sound [[φ]]A ∈ P↓(A):
that is, for all φ ∈ L, a ∈ A, we require

a ∈ [[φ]]
A

implies c ∈ [[φ]], for all c ∈ γ(a)

which is equivalent to requiring that γ[[φ]]A ⊆ [[φ]]. We can insert the latter
requirement into the following adjunction situation:

αu

opP (A)

UI[[ ]]ϕ A

[[ ]]ϕ

[[ ]]ϕ Aγ UI

opP(C)

αu
[[ ]]ϕ

γ

Since γ : P↓(A) → P(C) preserves joins as well as meets, we realize the adjunc-
tion as the Galois connection, P(C)op〈αu, γ〉P↓(A)op:5 where γ(T ) = ∪a∈Aγ(a),

4 Giacobazzi, Ranzato, and their colleages have intensively studied this problem, which
is connected to the backwards completeness of f [15, 17, 25, 26].

5 where (P,vP )op is (P,wP )



as before, and

αu(S) = ∪{T | S ⊇ γ(T )} = {a | γ(a) ⊆ S}.

This is an underapproximating Galois connection, because S ⊇ γ(αu(S)). We
can use it to define this most precise abstraction of [[φ]] ∈ P(C):

[[φ]]
A

= αu[[φ]].

But such a definition is not finitely computable, and we desire an inductive defi-
nition of [[·]]A. For each logical connective, opk, interpreted by gk : P(C)arity(k) →
P(C) in the form,

[[opk(φi)i<arity(k) ]] = gk([[φi ]])i<arity(k)

its most precise, inductively defined underapproximation is

[[opk(φi)i<arity(k) ]]
A

= gk
[
best([[φi ]]

A
)i<arity(k), where gk

[
best = αu ◦ gk ◦ γarity(k)

Since gk
[
best as stated is not finitely computable, we search for a sound ap-

proximation that is. For example, for logical disjunction we settle for

[[φ1 ∨ φ2 ]]
A

= [[φ1 ]]
A ∪ [[φ2 ]]

A

as a sound underapproximation of

∪[
best([[φ1 ]]

A
, [[φ2 ]]

A
), where ∪[

best = αu ◦ ∪P(C) ◦ (γ × γ).

Note that [[φ1 ∨ φ2 ]]
A 6= αu[[φ1 ∨ φ2 ]]: For example, any ∈ αu[[even ∨ odd ]]

but any 6∈ [[even ∨ odd ]]
A
, where [[even ]]

A
= αu(γ(even)) = {even,none} (and

similarly for [[odd ]]
A
).

3.1 Abstracting p̃ref

We apply the above-stated techniques to p̃ref (S) = {c | f(c) ⊆ S} and its logical
depiction,

[[[f ]φ]] = p̃ref [[φ]].

Using the Galois connections at our disposal, we define (p̃ref )
[

best
= αu ◦ p̃ref ◦γ

and compute:

[[[f ]φ]]A = (p̃ref )[

best
[[φ]]A

= {a | γ(a) ⊆ p̃ref (γ[[φ]]
A
)}

= {a | f∗[γ(a)] ⊆ γ[[φ]]
A}.

The definition is not finitely computable, so we propose p̃ref] as a sound under-

approximation — since f ] : A → P↓(A) overapproximates f ’s transitions, f ]’s
preimages will correspond to supersets of f ’s preimages. This gives the standard
result [8]:



Proposition 1. If f ] : A → P↓(A) is overapproximating sound (that is, α ◦
f vP(C)→A f ] ◦ α), then p̃ref] is underapproximating sound: αu(p̃ref (S)) ⊇
p̃ref](αu(S)).

We also have this pleasing result, which shows that the preimage of the best
overapproximation equals the best underapproximation of the preimage:

Theorem 2. p̃ref]
best

= (p̃ref )
[

best
, where f

]
best = αo ◦ f∗ ◦ γ.

Proof. First, (p̃ref )
[

best
(T ) = {a | f∗(γ(a)) ⊆ γ(T )}, and next, p̃ref]

best
(T ) =

{a | αo◦f∗◦γ(a) ⊆ T}. Assume f∗(γ(a)) ⊆ γ(T ); then αo ◦f∗◦γ(a) ⊆ αo◦γ(T ).
Since αo(γ(T )) ⊆ T , we are finished. 2

Function f
]
best : A → P↓(A) has been intensively studied:

f
]
best(a) = (αo ◦ f∗ ◦ γ)(a) = ↓{α{c′} | c ∈ γ(a), c′ ∈ f(c)}.

Cleaveland, Iyer, and Yankelevich [4] and Dams [9] showed that f
]
best proves the

most [f ]-properties in the logic in Figure 4.

3.2 Abstracting pref

Recall that pref (S) = {c | f(c) ∩ S 6= ∅}. The concrete semantics,

[[〈f〉φ]] = pref [[φ]]

defines those states that have a successor state in [[φ]]. We must underapproxi-

mate this set, and we define (pref )
[

best
= αu ◦ pref ◦ γ. This gives us

[[〈f〉φ]]
A

= (pref )
[

best
[[φ]]

A

= {a | for every c ∈ γ(a), f(c) ∩ γ(T ) 6= ∅}.

We search for an approximation of (pref )[

best
expressed in the form, preg .

Clearly, pref] , for f ] : A → P↓(A), is unsound, because f ](a) overestimates a’s

successors.6 To underapproximate f : C → P(C), we might try f [
u(a) = (αu ◦

f∗ ◦γ)(a) = {a′ | γ(a′) ⊆ f∗[γ(a)]}. This looks reasonable, but the consequences
are surprising:

Proposition 3. For g : A → P↓(A), for T ∈ P↓(T ), preg(T ) is an upwards-
closed set and is not necessarily downwards closed.

Proof. We first show, if T 6= ∅, then preg(T ) = {a | g(a) 6= ∅}: For a ∈ A,
let g(a) 6= ∅. Then ⊥A ∈ g(a), because the set is downwards closed. Since T is
downwards closed and nonempty, ⊥A ∈ T as well. This set is upclosed (because
g is monotonic) but need not be downclosed (e.g., when g(⊥A) = ∅, where
γ(⊥A) = ∅). When T = ∅, preg(T ) = ∅, which is upclosed. 2

6 For example, div2]
best(even) =↓{even , odd}, hence even ∈ pre

div2
]
best

↓{even}, yet

6 ∈ γ(even) and div2(6) = {3}.



The result goes against our intuition that propositions are interpreted as down-
closed subsets of A. To make preg(T ) into a downclosed set, it is necessary that
a vA a′ implies g(a) ⊇ g(a′), that is, g’s codomain must be partially ordered by
⊇. In such a codomain, we must ensure that set injection is monotonic, that is,
a0 vA a1 implies {|a0|} ⊇ {|a1|}, which forces {|a|} =↑{a}.

For these reasons, we define underapproximating transition functions of arity,
f [ : A → P↑(A), where (P↑(A),⊇) is all upclosed subsets of A, ordered by
superset inclusion.7 The following section provides some intuition.

3.3 Interpreting Downclosed and Upclosed Sets

When we use an overapproximating Galois connection, like P(Nat)〈α, γ〉Parity ,
to analyze a program and we compute that the program’s output is even, we are
asserting, “∀even” — all the program’s concrete outputs are even-valued. The
upper adjoint, γ : Parity → P(Nat), selects the largest set modelled by even ,

Nat }

even
{0,2}

{0} {2}

{2,4,8,16,...}

γ

{ }

{ 2n | nP(Nat) ∋

but the program’s output set might be any S ⊆ Nat such that S ⊆ γ(even).
This reading applies also to the Galois connection, P(Nat)〈αo , γ〉P↓(Parity),

where a downclosed set like {even, odd ,none} asserts ∀{even, odd ,none} ≡
∀(even ∨ odd ∨ none) ≡ ∀(even ∨ odd ) — all outputs are even- or odd-valued.
The program’s output might be any S ⊆ Nat such that S ⊆ γ{even, odd ,none}.

What is the dual of an overapproximating “universal assertion”? In the previ-
ous section, we tried using the Galois connection, P(Nat)op〈αu , γ〉P↓(Parity)op ,
to underapproximate a program’s outputs, but the results were disappointing8

and dubious (cf. Proposition 3).
The desired dual is an “existential assertion”: If an overapproximating even ∈

Parity asserts “∀even,” then an underapproximating even should assert “∃even”
— there exists an even number in the program’s outputs. Now, a function like
3x + 1 : Nat → P(Nat) can be underapproximated such that (3x + 1 )[(odd ) =
{even} — there exists an even number in the function’s output.

This idea extends to compound “existential assertions”: an upclosed set like
{even, odd , any} asserts ∃{even, odd , any} ≡ ∃even∧∃odd∧∃any ≡ ∃even∧∃odd
— there exist both even- and odd-valued numbers in the output set.

But there is a problem: How do we concretize an underapproximating set like
{even} into P(Nat)op? There is no minimal set that contains an even number:

7 P↑(A) = {↑T | T ⊆ A}, where ↑T = {a ∈ A | there exists a′ ∈ T , a′ vA a}.
8 For example, 3x + 1 : Nat → P(Nat) is approximated by (3x + 1 )[

best =
αu ◦ (3x + 1 )∗ ◦ γ. Then, (3x + 1 )[

best(odd ) = αu((3x + 1 )∗{1, 3, 5, · · ·} =
αu{4, 10, 16, 22, · · ·} = {none} (!)



Universal (over-approximating) interpretation: {even , odd} asserts ∀{even , odd} ≡
∀(even ∨ odd ) — all outputs are even- or odd-valued; use downclosed sets:

{ S | S is a subset of Nat }

{ S | S has even numbers only }

{ }

γ

P (Parity)

{ }

{even,none} {odd,none}
{none}

{even,odd,none}

{any,even,odd,none}

(P(Nat))P

∀( even v odd )=

Existential (under-approximating) interpretation: {even , odd} asserts
∃{even , odd} ≡ ∃even ∧ ∃odd — there exists an even- valued and an odd-
valued output; use upclosed sets:

{ S | S is nonempty }

{ S | S is a subset of Nat }

{ S | S has an even }

{ S | S has an even and an odd }

{ }

op

γ

P (Parity)

{any}

{ }

{even,odd,any}

{even,any} {odd,any}

{none,even,odd,any}

(P(Nat)    )P

∃= even ∃ oddv

Fig. 5. Powersets for the Parity abstraction

?

{2,4,8,16,...}

Nat

{0,1}
{0}

{ even }

P(Nat)

{5,7,9,12}
{2}

op

Indeed, {even}’s concretization is not a single set — it must be a set of sets:

γ′{even} = {S ∈ P(Nat) | S ∩ γ(even) 6= ∅}.

3.4 Upper and Lower Powerset Constructions

To interpret downclosed sets (“universal assertions”) and upclosed sets (“ex-
istential assertions”) we use concrete domains that are sets of sets. Figure 5
displays the universal and existential interpretations of sets of parities.

The universal interpretation is developed as follows: For Galois connection,
P(C)〈α, γ〉A, define ρ↓ ⊆ P(C) ×P↓(A) as

S ρ↓ T iff for all c ∈ S, there exists a ∈ A such that c ∈ γ(a).

This is the lower (“Hoare”) powerdomain ordering, used in denotational seman-
tics [24]. Note that S ρ↓ T iff S ⊆ γ(T ). Next, define this Galois connection:

P↓(P(C))〈α↓, γ↓〉P↓(A) where
γ↓(T ) = {S | S ρ↓ T}
α↓(S) = ∩{T | for all S ∈ S, S ρ↓ T}



γ↓(T ) concretizes T to all the sets covered by T — It is an overapproximation
of an overapproximation:

γ

α

...

UI

...

UI

P (P(C)) P (A)

Because S ρ↓ T iff S ⊆ γ(T ), no new expressibility is gained by using the new

Galois connection over P(C)〈αo, γ〉P↓(A): for all f : C → P(C), f
]
best : A →

P↓(A) is α↓ ◦ ({| · |}◦f)∗ ◦γ = αo ◦f∗ ◦γ [30, 31]. But we might argue nonetheless
that this Galois connection “truly defines” the sound overapproximation of f .

On the other hand, the existential interpretation is truly new; it uses the
Smyth-powerdomain ordering from denotational semantics [24]: Define ρ↑ ⊆
P(C) ×P↑(A) as

S ρ↑ T iff for all a ∈ T , there exists c ∈ S such that c ∈ γ(a).

That is, every a ∈ T is a witness to some c ∈ S. Note that S ρ↑ T iff for all
a ∈ T , γ(a) ∩ S 6= ∅. Next, define this Galois connection:

P↓(P(C)op)〈α↑, γ↑〉P↑(A) where
γ↑(T ) = {S | S ρ↑ T}
α↑(S) = ∪{T | for all S ∈ S, S ρ↑ T}

γ↑(T ) concretizes T to all sets that T “witnesses” — It is an overapproximation
of an underapproximation:

γ

α

...

UI
...

UI

. .

P (P(C)  )op
P (A)

Figure 6 summarizes the Galois connections developed so far.

3.5 Properties of pref[

We underapproximate f : C → P(C) by a sound f [ : A → P↑(A). We define
f [

best : A → P↑(A) as

f [
best(a) = (α↑ ◦ ({| · |} ◦ f)∗ ◦ γ)(a)

=↑{α(S) | for all c ∈ γ(a), f(c) ∩ S 6= ∅}
= {a′ | for all c ∈ γ(a), f(c) ∩ γ(a′) 6= ∅}

We have that pref[
best

(T ) is downclosed and also that

Proposition 4. pref[
best

is sound: pref[
best

(T ) ⊆ (αu ◦ pref ◦ γ)(T ).

Figure 7 shows the abstracted precondition logic. Cleaveland, Iyer, and Yankele-
vich [4], Dams, et al. [10], and Schmidt [30] showed that pref[

best
proves the most

sound 〈f〉-properties in the logic of Figure 4.



overapproximation underapproximation

set inclusion

P(C)〈αo, γ〉P↓(A)
where
γ(T ) = ∪a∈Aγ(a)
αo(S) =↓{α{c} | c ∈ S}

P(C)op〈αu, γ〉P↓(A)op

where
γ(T ) = ∪a∈Aγ(a)
αu(S) = {a | γ(a) ⊆ S}

quantification

P↓(P(C))〈α↓, γ↓〉P↓(A)
where
γ↓(T ) = {S | S ρ↓ T}

α↓(S) = ∩{T | for all S ∈ S,

S ρ↓ T}

P↓(P(C)op)〈α↑, γ↑〉P↑(A)
where
γ↑(T ) = {S | S ρ↑ T}

α↑(S) = ∪{T | for all S ∈ S,

S ρ↑ T}

where ρ↓ ⊆ P(C) ×P↓(A) is defined
S ρ↓ T iff for all c ∈ S, there exists a ∈ A such that c ∈ γ(a)

and ρ↑ ⊆ P(C) ×P↑(A) is defined
S ρ↑ T iff for all a ∈ T , there exists c ∈ S such that c ∈ γ(a).

Fig. 6. Summary of Galois connections derived from P(C)〈α, γ〉A

[[ · ]] : L → P↓(A)

[[a]]A = αu(γ(a))

[[[f ]φ]]A = p̃re
f

]
best

[[φ]]A

[[〈f〉φ]]A = pref[
best

[[φ]]A

[[φ1 ∧ φ2]]
A = [[φ1 ]]

A ∩ [[φ2 ]]
A

[[φ1 ∨ φ2]]
A = [[φ1 ]]

A ∪ [[φ2 ]]
A

Fig. 7. The abstracted precondition logic

3.6 Incompleteness and focus

Although f [
best is the most precise (maximal) sound underapproximation, there

is no guarantee that pref[
best

equals (pref )
[

best
= αu ◦ pref ◦ γ.

Here is a counterexample: Consider the Parity abstract domain and the as-
sertion, 〈div2〉(even ∨ odd ). This assertion holds for all c ∈ γ(even), and in-
deed, for the downclosed set, T 0 = {even, odd ,none}, we have that even ∈

(prediv2)
[
best(T 0). But div2[

best(even) = {any}, and any 6∈ T 0, implying that
even 6∈ prediv2[

best
(T 0).

The underlying issue is the well-known incompleteness of disjunction in ap-
proximation [8]; here, any 6∈ T 0, even though γ(any) ⊆ γ(T 0). The standard
repair is a focus operation, as used in the TVLA system [28], and in disjunc-
tive transition systems [11, 14, 20], and in tree automata [12], to “split” values
like any into more-precise cases that “cover” all of γ(any). For the example,
T 1 = {even, odd} is a focus set that covers any because γ(any) ⊆ γ(T 1). Since
both even ∈ T 0 and odd ∈ T 0, we conclude any “belongs” to T 0 as well.



The domain-theoretic connection is clear: A downclosed set, like T 0 = {even,

odd , none} should be read as the quantified disjunction, ∀(even ∨ odd ∨ none),
and a focus operation helps validate the disjunction.

Definition 5. For a ∈ A, define focus(a) = {U ⊆ A | γ(a) ⊆ γ(U)}, and define

pre focus

f[ (T ) = {a | there exist a′ ∈ f [(a) and U ∈ focus(a′) such that U ⊆ T}.

Evidently, pre focus

f[ (T ) = {a | exists a′ ∈ f [(a), T ∈ focus(a′)}. Definition 5

yields the expressivity and completeness results immediately below, but of course
the selection of a specific focus set is a critical pragmatic decision.9

Proposition 6. For all T ∈ P↓(A), pref[
best

(T ) ⊆ pre focus

f[
best

(T ) ⊆ (pref )[

best
(T ).

Proof. The first inclusion follows by choosing {a′} ∈ focus(a′). For the second
inclusion, assume there exists a′ ∈ f [

best(a) such that γ(a′) ⊆ γ(T ). Since a′ ∈
f [

best(a), this implies for all c ∈ γ(a), f(c) ∩ γ(a′) 6= ∅. Since γ(a′) ⊆ γ(T ), we
have the result. 2

Theorem 7. If γ : A → P(C) preserves joins, then pre focus

f[
best

(T ) = (pref )
[

best
(T ).

Proof. We have ⊆; to show ⊇, assume that some a0 ∈ (pref )[

best
(T ), that is, for

all c ∈ γ(a0), f(c) ∩ γ(T ) 6= ∅. We must show that there exists a′ ∈ f [
best(a0)

such that T ∈ focus(a′).
Define T a0

= {ac ∈ T | exists c ∈ γ(a0), f(c) ∩ γ(ac) 6= ∅}, and define
a′ = tT a0

. Immediately, we can conclude that a′ ∈ f [
best(a0). Now we must

show T ∈ focus(a′), that is, γ(a′) ⊆ γ(T ).
For each ac ∈ T a0

, we have that γ(ac) ⊆ γ(T ), hence (tac∈T a0
γ(ac)) ⊆ γ(T ).

Since γ preserves joins, we have that γ(a′) = γ(tT a0
) ⊆ γ(T ). 2

Partition domains [25] are the standard example where γ preserves joins:
given state set C, partition P , and δ : P → P(C) that maps each partition to
its members, the generated partition domain is (P(P ),⊆), where γ = δ∗.

If γ preserves joins, then we know that the first inclusion in Proposition 6
can be proper (e.g., T 0 = {even, odd ,none}); if γ fails to preserve joins, there
can be a T that makes the first inclusion an equality and the second one proper,
because there is some c ∈ γ(T ) that cannot be “isolated” by a focus set [16].

4 Postconditions

Earlier, we noted that f∗ : P(C) → P(C), for f : C → P(C), defines f ’s postcon-
dition transformer and f ] : A → A is its sound overapproximation. For example,
succ∗{1, 3, 5, · · ·} = {2, 4, 6, · · ·} and succ]

best(odd ) = even , where succ]
best =

9 Focus sets are also known as must hyper transitions [32], and there is a dual notion of
may hyper transitions, which prove useful when γ : A → C is not the upper adjoint
of a Galois connection [33].



[[ · ]] : L → P(C)

[[a]] = γ(a)

[[[f ]φ]] = p̃ost f [[φ]]

[[〈f〉φ]] = post f [[φ]]

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2 ]]
[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2 ]]

Fig. 8. The postcondition logic

Available Expressions:

AE(p) =gfp

⋂
p′∈pred p

((AE(p′) ∩ notModified (p′)) ∪ Gen(p′))

isAvail(e) = νZ. [p]((Z ∧ ¬isModified(e)) ∨ isGen(e))

Live Variables:

LV (p) =lfp Used (p) ∪ (notModified (p) ∩ (
⋃

p′∈succ p
LV (p′)))

isLive(x) = µZ. isUsed (x) ∨ (¬isModified(x) ∧ (〈p〉Z))

Very Busy Expressions:

VBE(p) =gfp Used(p) ∪ (notModified (p) ∩ (
⋂

p′∈succ p′ VBE (p′))

isVBE(e) = νZ. isUsed(e) ∨ (¬isModified(e) ∧ [p]Z)

Reaching Definitions:

RD(p) =lfp

⋃
p′∈pred p

((RD(p′) ∩ notModified (p′)) ∪ Defined (p′))

isReaching(d) = µZ. 〈p〉((Z ∧ ¬isModified(d)) ∨ isDefined (d))

Fig. 9. Data-flow analyses and their encodings in logical form [29]

α ◦ succ∗ ◦ γ is the strongest postcondition transformer for Galois connection,
P(Nat)〈α, γ〉Parity . Similarly, from f : C → P(C) and P(C)〈αo, γ〉P↓(A), we

define f
]
best : A → P↓(A) as f

]
best = αo ◦ f∗ ◦ γ.

Since f : C → P(C) denotes a nondeterministic transition relation, there are
two variants of logical postcondition:

postf (S) = {d | there exists c ∈ S, d ∈ f(c)} = f ∗(S)

p̃ostf (S) = {d | for all c ∈ C, d ∈ f(c) implies c ∈ S}.

d ∈ postf (S) means that one of d’s immediate f -predecessors belongs to S;

d ∈ p̃ostf (S) means that all of d’s immediate f -predecessors belong to S. These
transformers have a natural place in a logic; see Figure 8.

Steffen [34] showed how to use the [f ]- and 〈f〉-modalities to define forwards
data-flow analyses, and Schmidt [29] applied Steffen’s ideas, as displayed in Fig-
ure 9, to write mu-calculus formulas [19] that define the naive but standard
forwards and backwards data-flow analyses on annotated control-flow graphs,
where p ∈ ProgramPoint .

For the purposes of program validation and code improvement, the abstrac-
tions of the two post -modalities must be underapproximating.10 Clearly, under-

10 For performing data-flow analysis, one usually abstracts a program, f , to its control-
flow graph, f

]
cfg . A naive application of the four analyses in Figure 9 to f

]
cfg gives



approximating the logical interpretation of the postcondition transformers is
different from overapproximating a transition function’s postcondition, and the
following proposition indicates how careful we must be:

Proposition 8. Let f : D → Pδ(D), where δ ∈ {↓, ↑}. Let ↓̃ =↑ and ↑̃ =↓.

Then, for all S ∈ P(D),
– p̃ref (S) ∈ Pδ(D)
– pref (S) ∈ Pδ̃(D)

– postf (S) ∈ Pδ(D)

– p̃ostf (S) ∈ Pδ̃(D).

Proof. Recall that f : D → Pδ(D). When reasoning about f , we use the no-
tation, ≤δ, to denote vD, when δ =↓, and wD, when δ =↑. We have that f is
monotonic iff c ≤δ d implies f(c) ⊆ f(d). Here are the four proofs:

p̃ref (S){c | f(c) ⊆ S} : If f(c) ⊆ S and d ≤δ c, then f(d) ⊆ f(c), by f ’s
monotonicity.

prefS = {c | f(c)∩S 6= ∅}: If f(c)∩ S 6= ∅ and c ≤δ d (that is, d ≤δ̃ c), then
f(c) ⊆ f(d), implying f(d) ∩ S 6= ∅.

postf (S) = {d | exists c ∈ S, d ∈ f(c)}: If there exists some c ∈ S such that
d ∈ f(c), and then d′ ≤δ d, then d′ ∈ f(c), because f ’s codomain is Pδ(D).

p̃ostfS = {d | for all c ∈ D, d ∈ f(c) implies c ∈ S}: Say that d ≤δ d′ (that

is, d′ ≤δ̃ d) and d ∈ p̃ostfS. For c′ ∈ D, say that d′ ∈ f(c′) — we must show
that c′ ∈ S, as well. Since d ≤δ d′, this means d ∈ f(c′), because f ’s codomain
is Pδ(D). This places c′ ∈ S. 2

The proposition confirms why p̃ref] and pref[ correctly underapproximated
p̃ref and pref – the abstract transformers generated downclosed sets as answers.

The proposition also makes clear that postf[ and p̃ostf] are unacceptable as
underapproximations, because they generate upclosed sets as answers:

for f [ : A → P↑(A), postf[ : P↓(A) → P↑(A)

for f ] : A → P↓(A), p̃ostf] : P↓(A) → P↑(A).

Unfortunately, starting from γ : A → P(C) and f : C → P(C), there is no non-
trivial overapproximating f ] : A → P↑(A) (because, for all f ](a) 6= ∅, upclosure
implies that >A ∈ f ](a), implying that γ(f ](a)) = C). A similar problem arises
in the search for a nontrivial underapproximating f [ : A → P↓(A).11 There is a
repair, however. If we draw

f : C → P(C) as
a b c d

a b c d
, then f−1 : C → P(C) is

a b c d

a b c d

.

underapproximating calculations of available expressions and very-busy expressions
and overapproximating calculations of reaching definitions and live variables (but
see [8] for clarification). The set-complements of the latter two calculations — “not-
reaching” and “not-live,” respectively — are used in practice.

11 In contrast, both postf] and p̃ostf[ are well defined overapproximations of the two
postcondition transformers!



That is, f−1(c) = {d | c ∈ f(d)}.

Proposition 9. [21]: (f−1)−1 = f , postf = pref−1 , and p̃ostf = p̃ref−1 .

Proposition 10. For f : A → Pδ(A), δ ∈ {↓, ↑}, f−1 : A → Pδ̃(A) is well
defined and monotonic.

Proof. f−1(a) = {a′ | a ∈ f(a′)}. We use ≤δ to denote vD, when δ =↓, and to
denote wD, when δ =↑. First, note that f : A → Pδ(A) is monotonic iff c ≤δ d

implies f(c) ⊆ f(d).

f−1’s image are δ̃-closed sets: Say that a′ ∈ f−1(a), that is, a ∈ f(a′) and
say that a′ ≤δ b′. We must show a ∈ f(b′) — this follows from f(a′) ⊆ f(b′).

f−1 is monotonic: Assume a ≤δ b; we must show f−1(a) vPδ̃(A) f−1(b).

First, we show that f−1(b) ⊆ f−1(a): Assume x ∈ f−1(b), that is, b ∈ f(x).
Then δb ⊆ f(x), because f(x) is a δ-closed set. This implies a ∈ f(x) as well,
that is, x ∈ f−1(a). The monotonicity of f−1 follows, because Pδ̃(A) uses the
inverse ordering used by Pδ(A). 2

4.1 Abstracting postf and p̃ostf

With Propositions 8, 9, and 10 in hand, we can define sound underapproxima-
tions for the two postcondition transformers. For post f , we have

[[〈f〉φ]] = postf [[φ]] = pref−1 [[φ]]

where f−1 : C → P(C). The inductively defined underapproximation is

[[〈f〉φ]]A = (αu ◦ pref−1 ◦ γ)[[φ]]A.

By Proposition 4, this is soundly underapproximated by

[[〈f〉φ]]
A

= pre(f−1)[
best

[[φ]]
A
,

where (f−1)[
best : A → P↑(A) is (f−1)[

best = α↑ ◦ ({| · |} ◦ f−1)∗ ◦ γ.

The same development applied to p̃ostf yields

[[[f ]φ]] = p̃ostf [[φ]] = p̃ref−1 [[φ]].

By Theorem 2, the most precise underapproximation is

[[〈f〉φ]]
A

= (αu ◦ p̃ref−1 ◦ γ)[[φ]]
A

= p̃re(f−1)]
best

[[φ]]
A
,

where (f−1)]
best : A → P↓(A) is (f−1)]

best = αo ◦ (f−1)∗ ◦ γ.

This approach of computing postconditions as preconditions of inverted state-
transition relations is implemented in Steffen’s fixpoint analysis machine [35].



5 Related Work

Abstraction of predicate transformers begin in Cousot’s thesis [5]; details were
spelled out in a subsequent series of papers by Cousot and Cousot [6–8] and
applied by Bourdoncle to abstract debugging [1], which was generalized by Massé
[22, 23]. Loiseaux, et al. [21] formalized underapproximation of p̃re .

Cleaveland, Iyer, and Yankelevich [4], Dams [9], and Dams’s colleagues [10]
were the first to study underapproximations of pre . Studies of precision of such
approximations were undertaken by Giacobazzi, Ranzato, and Scozzari [17],
who developed completeness properties, and by Ranzato and Tapparo [25–27],
who studied completeness of pre for state-partition abstract domains. The in-
completeness of pre has been addressed by Larsen and Xinxin [20], Dams and
Namjoshi [11, 12], and Shoham and Grumberg [32]. Steffen [34, 35] was the first
to connect data-flow analysis to forwards-backwards temporal-logic modalities,
and this connection provides the application area for the results in this paper.
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