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Abstract

Motivated by Dennis Dams’s studies of over- and underapproximation of state-
transition systems, we define a logical-relation calculus for Galois-connection build-
ing. The calculus lets us define overapproximating Galois connections in terms of
lower powersets and underapproximating Galois connections in terms of upper pow-
ersets. Using the calculus, we synthesize Dams’s most-precise over- and underap-
proximating transition systems and obtain proofs of their soundness and best preci-
sion as corollaries of abstract-interpretation theory. As a bonus, the calculus yields
a logic that corresponds to the variant of Hennessy-Milner logic used in Dams’s re-
sults. Following from a corollary, we have that Dams’s most-precise approximations
soundly validate the most properties that hold true for the corresponding concrete
system. These results bind together abstract interpretation to abstract model check-
ing, as intended by Dams.

Galois-connection-based abstract interpretation underlies most static analyses
of programs [9,30,36]; it supplies machinery for synthesizing sound, abstract
computation functions from a program’s concrete computation functions and
demonstrating when the abstract functions are as precise as possible [19,40].

Abstract interpretation is well suited to static analyses that must validate
universally quantified properties (e.g., for all execution paths, there is ab-
sence of arithmetic overflow [3]). Such analyses must be overapproximating. In
contrast, nondeterministic and reactive systems possess existential properties
(e.g., there exists a path to a reset state [33]), and their validation requires an
underapproximating analysis [20,38].

In his thesis and related work [13,15], Dams studied simultaneous over- and
underapproximating analyses of reactive systems, where a Galois connection
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defines the relation between a concrete system’s states and the abstract states
to be used in an abstract system. Dams noted a duality between over- and
underapproximation and used it to define an algorithm that constructs overap-
proximating and underapproximating systems based on the Galois connection.
Remarkably, he proved that his “mixed” over-underapproximation preserves
the most temporal-logic properties true of the original reactive system ([15],
Theorem 4.1.2).

Dams’s results were impressive, but unfinished, for they did not employ the
usual abstract-interpretation theory for synthesizing the abstract system from
the concrete one and the Galois connection, nor did they yield their expres-
sivity results from the usual corollaries of abstract-interpretation theory. In
this paper, we provide the missing link between Dams’s systems and abstract
interpretation.

The key is using appropriate powerset domains for abstracting the codomains
of the transition functions of a nondeterministic reactive system: We use
lower powersets [24,26,39] to model overapproximation and upper powersets
[24,26,39,46] to model underapproximation. We develop the theory within a
calculus of logical relations on base types, function tyes, and upper and lower
powerset types, which lets us build the over- and underapproximations in
small, well understood steps. As a bonus, the logical-relations calculus yields
a natural logic that matches the one Dams used in his work, and we obtain
his expressivity results for free.

The paper is structured as follows. Section 1 surveys the problem area: It re-
views Galois connections and state-transition systems, explains the difficulties
in defining underapproximations, and describes an approach based on lower
and upper powersets. Transition systems and Dams’s mixed-transition sys-
tems are reviewed in Sections 2 and 3, and Section 3.1 surveys our approach
to proving Dams’s results with Galois-connection theory.

The formal development begins in Section 4, where Galois connections are
characterized as U-GLB-L-LUB-closed binary relations between concrete and
abstract domains. The lower and upper powerset constructions are carefully
developed in Section 5, preparing the way in Section 6 for a calculus of logical
relations that utilizes powerset types.

Generation and preservation of closure properties within the calculus are
proved in Section 7, and Sections 8 and 9 apply the results to synthesizing
Dams’s most-precise over- and underapproximating analyses. Finally, Section
10 extracts a validation logic from the logical relations and shows that the
most-precise approximations preserve the most properties in the logic.
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Fig. 1. Overapproximation by parity

1 Galois Connections

Let C be the set of concrete states that appear during execution, and let
A be a set of abstract states that model the states in C. A typical static
analysis begins from a function, γ : A → IP(C), that maps each a ∈ A to
those γ(a) ⊆ C that a models. (We use IP(·) to denote the set-of-all-subsets
construction.) To ensure termination of the static analysis [10,23], we require
that A is a complete lattice and γ is monotone.

It is useful to have an inverse to γ, and a suitable inverse exists when γ is the
upper adjoint of a Galois conection: For complete lattices, (PC,⊆) and (A,v),
a pair of monotone maps, α : PC → A and γ : A → PC, define a Galois
connection, written PC〈α, γ〉A, iff idPC vPC→PC γ ◦ α and α ◦ γ vA→A idA

[9,16]. γ is the upper adjoint and α is the lower adjoint.

An example of a Galois connection is approximation of sets of numbers by
their parity — see Figure 1, where γ : Parity → IP(Nat) is

γ(none) = {} γ(even) = {2n | n ∈ Nat}

γ(any) = Nat γ(odd) = {2n + 1 | n ∈ Nat}

The lower adjoint, αo : IP(Nat) → Parity , must be defined as

αo(S) =







































none if S = ∅

even else if S ⊆ {2n | n ∈ Nat}

odd else if S ⊆ {2n + 1 | n ∈ Nat}

any otherwise

Galois connections possess many useful properties; the ones used in this paper
most often are:

• For a fixed γ : A → PC, there is exactly one lower adjoint: for S ∈ PC,
α(S) = u{a | S ⊆ γ(a)}. Similarly, every lower adjoint, α, has exactly one
upper adjoint, γ(a) = ∪{S | α(S) v a}.

• γ is the upper adjoint of a Galois connection iff it preserves meets: for all
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T ⊆ A, γ(uT ) = ∩a∈T γ(a). Similarly, α is a lower adjoint iff it preserves
joins.

Abstract-interpretation theory [9,10] provides these results: for Galois con-
nection, PC〈α, γ〉A, concrete computation function, f : PC → PC, and f ’s
approximation, f ] : A → A:

• f ] is sound for f iff α ◦ f vPC→A f ] ◦ α iff f ◦ γ vA→PC γ ◦ f ].
• The function, f

]
best = α ◦ f ◦ γ, is sound for f and is also most precise: for

all g : A → A that are sound for f , f
]
best vA→A g.

Galois connections compose, and they can be lifted to products and function
spaces of complete lattices [12]; we develop these constructions later.

One construction worth reviewing now is disjunctive completion [10,12,19]:
Given Galois connection, PC〈α, γ〉A, define IP ↓(A) to be the down-closed
subsets of A, where a set, T ⊆ A, is down closed iff for all a, a′ ∈ A, a′ v
a and a ∈ T imply a′ ∈ T . We can partially order the down-closed sets by
subset containment and define the Galois connection, PC〈α′, γ′〉IP↓(A), where
γ′(T ) = ∪a∈T γ(a). We have that γ ′ preserves both meets and joins. In addition,
we can use disjunctive completion on both PC and A, generating a Galois con-
nection of form, IP ↓(PC)〈α′′, γ′′〉IP↓(A) [7]. Both forms of Galois connection
play key roles in this paper.

1.1 Over- and underapproximation as duals

A typical static analysis begins with a Galois connection, IP(C)〈αo, γ〉A, and
employs f ] : A → A to soundly approximate f : IP(C) → IP(C). This
makes f ] overapproximating because it overestimates f ’s answer set: f(S) ⊆
γ(f ](αo(S))), for all S ⊆ C. Equivalently, we say that S is overapproximated
by a ∈ A iff S ⊆ γ(a). The example Galois connection for parities in Figure 1
is overapproximating.

Abstract values assert program properties. For example, a static analysis that
computes a program’s output to be even ∈ Parity asserts the universal prop-
erty, “∀even” — all the program’s outputs are even-valued numbers, that is,
the program’s concrete output must be a set, S, such that S ⊆ γ(even):

{ 2n | n

∋

Nat }

even
{0,2}

γ

{ }

ρ{0}

{2,4,8,16,...}

{2}
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Fig. 2. Underapproximation by parity

We write S ρ a to assert that S is (over)approximated by a: S ρ a iff S ⊆ γ(a),
and trivially, γ(a) = ∪{S | S ρ a} identifies the largest such set. The previous
diagram shows sets that are approximated by even.

1.2 Underapproximation as an order-theoretic dual

The traditional way to define an underapproximating Galois connection is to
invert the concrete and abstract domains, giving IP(C)op〈αu, γ〉A

op, where
IP(C)op = (IP(C),⊇) and Aop = (A,wA). So, the best underapproximation of
f : IP(C) → IP(C) is f [ = αu ◦ f ◦ γ. Figure 2 presents the dual of the parity
example: S ⊆ C is underapproximated by a ∈ A iff S ⊇ γ(a).

Here, even ∈ Parityop asserts that all even numbers are included in the pro-
gram’s outputs — a strong assertion. Also, we may reuse γ : A → IP(C) as the
upper adjoint from Aop to IP(C)op iff γ preserves joins in (A,vA) — another
strong demand.

An unfortunate consequence of the dualization is that the underapproximation
interpretation of a language’s constants is often “nothing.” For example, we
might define the semantics of a programming language by means of an induc-
tively defined interpretation function, [[ · ]] : Expression → Environment →
Nat . For constant symbol, 2, we define its concrete semantics, [[2]]e = 2;
then, we are forced to define the parity-underapproximation interpretation,
[[ · ]][ : Expression → Environment [ → Parity , as [[2]][e = none, because we re-

quire γ([[2]][e) ⊆ {2} = {[[2]]γ(e)}. Thus, many program phrases are interpreted
to nothing as well, e.g., the interpretation of x+2 goes

[[x+2]][e = add[([[x]][e, [[2]]
[
e) = add[(e(x), none) = none

where e ∈ Environment[ = V ar → Parity , even though x+2 preserves the
parity of x. If we try to repair this example, say by including all constants,
n ∈ Nat, in Parityop, then to ensure that γ preserves meets, we must expand
Parityop into IP(Nat)op!
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1.3 Underapproximation as existential quantification

Fortunately, there is an alternative view of underapproximation: a ∈ Aop as-
serts an existential property — there exists an output with property a. For
example, if the overapproximating even ∈ Parity asserts “∀even,” then the
underapproximating even ∈ Parityop should assert “∃even” — there exists
an even number in the program’s outputs. That is, the program’s output is
a set, S, such that S ∩ γ(even) 6= ∅. Let ρu ⊆ IP(C)op × Aop denote this
underapproximation relationship, and for A = Parity we have

? opParity

oddeven

none

any

γu

ρu

P(Nat)op

{5,7,9,12}
{2}

?

{0,1}

{0}

{2,4,8,16,...}

Nat

That is, S ρu a iff S ∩ γ(a) 6= ∅. This interpretation permits a nontrivial un-

derapproximation of constants, e.g., [[2]][e = even, and expressions: [[x + 2]][e =
add[(e(x), even) = e(x). But we cannot define an upper adjoint, γu : Parityop →
IP(Nat)op, in the usual way — there is no best, minimal set that contains an
even number. Indeed, even’s concretization is not a single set — it must be a
set of sets:

γu(even) = {S ∈ IP(Nat)op | S ρu even}

This suggests we might lift both the concrete and abstract domains by powerset
constructions: the concrete domain becomes sets of sets of values, and the
abstract domain becomes sets of properties.

1.4 Sets of properties and their interpretations

We can generalize over- and underapproximation to multiple properties, e.g.,
a parity overapproximation analysis might calculate that a program’s outputs
fall in the set, {even, odd}. This would assert, ∀{even, odd} ≡ ∀(even ∨ odd)
— all the outputs are even- or odd-valued.

When we lift the Parity abstract domain to a powerset, its overapproximating
(universal) interpretation appears as in Figure 3. We use a lower powerset,
IP↓(Parity) (the elements are down-closed sets, ordered by ⊆), for the abstract
domain. The upper adjoint, γ, concretizes each set of abstract values to a set
of concrete sets.
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{ S | S has even numbers only }

{ S | S is a subset of Nat }

{ }

γ

(P(Nat))P P (Parity)

{ }

{even,none} {odd,none}
{none}

{even,odd,none}

{any,even,odd,none}

∀( even v odd )=

Fig. 3. Parity overapproximation by powerset

{ S | S is nonempty }

{ S | S is a subset of Nat }

{ S | S has an even }

{ S | S has an even and an odd }

{ }

op

γ

(P(Nat)    )P
P (Parity)

{any}

{ }

{even,odd,any}

{even,any} {odd,any}

{none,even,odd,any}

∃= even ∃ oddv

Fig. 4. Parity underapproximation by powerset

Frankly, the use of IP ↓(IP(Nat)) in place of IP(Nat) gives no new precision to
the example, 2 nor do the extra elements in IP ↓(Parity) give more expressivity.
But the dual construction yields something new: When we use sets of abstract
values in underapproximation analysis, an outcome like {even, odd} asserts
∃{even, odd} ≡ ∃even ∧∃odd — the output set includes an even value and an
odd value; see Figure 4.

Here, we must use an upper powerset, IP ↑(Parity) (upwards-closed sets, or-
dered by ⊇), for the abstract domain. The concrete domain must be lifted to
a lower powerset of an upper powerset; the reasons are explained later in the
paper.

The examples just developed play a crucial role in giving semantics to nonde-
terministic state-transition systems.

2 State-transition systems

A program’s semantics is often defined as a state-transition system, (C,RC),
where C is the state set and RC ⊆ C × C is the state-transition relation.
(c, c′) ∈ RC is drawn as c → c′. See Figure 5 for an example, where a state-
transition semantics is given for a two-process, “dining mathematician” pro-
gram that uses a global variable, n, to compute the Collatz function [13]. (In
the example, states of form (think , think , n) are initial.) Though the example is
deterministic, state-transition systems readily accommodate nondeterministic

2 Because, for IP(C)〈α′, γ′〉IP↓(A) and IP↓(IP(C))〈α′′, γ′′〉IP↓(A), we typically have
γ′′(T ) = {S | S ⊆ γ(T )} and also ∪γ ′′(T ) = γ′(T ).
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think

eat
n = 3n+1

odd(n)?

eat

think
even(n)?

n = n div 2

Process 1:Process 0:

Let C = {(s0, s1, n) | s0, s1 ∈ {think , eat}, n ≥ 0}. RC is defined as follows:

think, eat, 0

think, think, 0 think, think, 1

eat, think, 1

think, think, 2

think, eat, 2

think, think, 4

think, eat, 4eat, think, 3

think, think, 10

. . .

think, think, 3 . . .

Fig. 5. A Collatz-function program and its state-transition system

Let A = {(s0, s1, p) | s0, s1 ∈ {think , eat}, p ∈ Parity}. R
]
A is defined as

think, think, think, think, eventhink, think, odd

eat, think, odd

think, eat, even

Fig. 6. An overapproximating state-transition system

and reactive programs [33].

2.1 Overapproximating transitions

Given a Galois connection, IP(C)〈α, γ〉A, we can define a state-transition sys-
tem whose transition relation, R

]
A ⊆ A × A, overapproximates RC . Figure 6

presents an abstraction of Figure 5 by replacing numbers by parities. Only the
reachable states are shown; the transition system is nondeterministic.

The abstract states, {(s0, s1, p) | s0, s1 ∈ {think , eat}, p ∈ {even, odd}}, par-
tition the concrete-state set; when completed into a complete lattice (using ⊥
and >), the abstract-state lattice becomes a partitioning domain [40].

The formal relationship between the concrete and abstract systems is estab-
lished by a simulation [13,32,33,37]: Given ρ ⊆ C × A, say that RC is ρ-
simulated by R

]
A iff for all c ∈ C, a ∈ A, c ρ a and c → c′ imply there exists

a′ ∈ A such that a → a′ and c′ ρ a′.

We call R
]
A may-transitions, because the transitions predict concrete transi-

tions that may happen. This makes R
]
A an overapproximation of RC . It is easy
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think, think, 

think, eat,eat, think,

think, think, eventhink, think, odd

eat, think, odd

think, eat, even

Fig. 7. An underapproximating system

to check that the structure in Figure 5 is ργ-simulated by the one in Figure 6,
where (s0, s1, n) ργ (s′0, s

′
1, p) iff n ∈ γ(p), s0 = s′0, and s1 = s′1.

Given Galois connection IP(C)〈α, γ〉A and transition system (C,RC), Dams
([15], Definition 3.3.1) showed that one can define the minimal collection of
may-transitions, R

]
0 ⊆ A × A, as follows:

(a, α{c′}) ∈ R
]
0 iff c ∈ γ(a) and (c, c′) ∈ RC

The precise meaning of “minimal collection” is developed later. The relation
in Figure 6 is minimal. (To make a non-minimal relation, add any transitions
you please — the simulation property still holds.)

2.2 Underapproximating transitions

Given the difficulties in devising an appropriate underapproximating Galois
connection, it is a welcome surprise that an underapproximating transition
relation can be simply defined by means of a dual simulation [13,32]:

Transition relation RC is ρ-dually simulated by R[
A iff R[

A is ρ-simulated by
RC , that is, for all c ∈ C, a ∈ A, c ρ a and a → a′ imply there exists c′ ∈ C

such that c → c′ and c′ ρ a′.

We call R[
A must-transitions, because the transitions predict concrete transi-

tions that must appear in the concrete program. This makes R[
A an underap-

proximation of RC .

Using the same state sets and relation, ργ, as in Figure 6, Figure 7 presents a
transition system that dually simulates the one in Figure 5.

We can define the maximal collection of must transitions as follows [15,44]:

(a, a′) ∈ R[
0 iff for all c ∈ γ(a), {c′ | (c, c′) ∈ RC} ∩ γ(a′) 6= ∅

The relation in Figure 7 is maximal. (To make a non-maximal relation, remove
any transitions you please — the dual-simulation property still holds.)
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Although we can readily define from relation RC ⊆ C × C a state-transition
function, fR : C → IP(C), as fR(c) = {c′ | (c, c′) ∈ R}, it is unclear how to
define over- and underapproximation transition functions from R

]
A and R[

A —
the problem lies in preserving A’s ordering in the functions’ codomains so that
the functions are well defined and monotone. The solution presented later in
the paper uses the lower- and upper-powerset constructions seen earlier.

2.3 Kripke structures and logics

Given a transition system, (C,RC), and set of primitive properties, Prop, we
define a labelling function, LC : C → IP(Prop), that indicates the properties
possessed by each state. The transition system plus labelling function defines
a Kripke structure [8].

For the system in Figure 5, we might define Prop = Parity and then define
a ∈ LC(s0, s1, n) iff n ∈ γ(a), e.g., LC(think , think , 3) = {odd ,>}.

Here is a temporal logic, a variant of Hennessy-Milner logic [27], for stating
properties of Kripke structures; let p ∈ Prop:

φ ::= p | φ1 ∧ φ2 | φ1 ∨ φ2 | 2φ | 3φ

For c ∈ C, the logic’s judgements are defined as

c |= p iff p ∈ LC(c)

c |= φ1 ∧ φ2 iff c |= φ1 and c |= φ2

c |= φ1 ∨ φ2 iff c |= φ1 or c |= φ2

c |= 2φ iff for all c′ such that c → c′, c′ |= φ

c |= 3φ iff there exists c′ such that c → c′ and c′ |= φ

For example, the judgement (think , think , 4) |= 23even holds for the system
in Figure 5.

Say that RC is ρ-simulated by R
]
A; we can define LA(a) = ∩{LC(c) | c ρ a} and

apply the above judgement forms to states in A, using |=A to label the judge-
ments. Then, c ρ a and a |=A φ imply c |= φ provided that φ contains no occur-
rence of 3 [32]. (Counterexample: For Figure 6, (think , eat , 4) ργ (think , eat , even)
and (think , eat , even) |=A 3odd , but (think , eat , 4) 6|= 3odd .) Dually, when RC

is ρ-dual simulated by R[
A and LA is defined as before, then c ρ a and a |=A φ

imply c |= φ provided that φ contains no occurrence of 2 [13].
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think, think, 

eat, think, think, eat,

think, think, eventhink, think, odd

eat, think, odd

think, eat, even

Fig. 8. A mixed-transition system

3 Mixed-transition systems

In his thesis [13] and in subsequent work [15], Dams studied simultaneous
over- and underapproximation of state-transition systems, (C,RC). A mixed-
transition system is a triple, (A,R

]
A, R[

A). For ρ ⊆ C × A, (C,RC) is ρ-mixed
simulated by (A,R

]
A, R[

A) iff RC is ρ-simulated by R
]
A and ρ-dually simulated

by R[
A. Figure 8 shows (the reachable states of) the mixed-transition system

assembled from Figures 6 and 7.

For mixed-transition systems, Dams provided a sound semantics for all of
Hennessy-Milner logic, where in particular:

a |=A 2φ iff for all a′ such that (a, a′) ∈ R
]
A, a′ |=A φ

a |=A 3φ iff there exists a′ such that (a, a′) ∈ R[
A and a′ |=A φ

Now, when c ρ a and a |=A φ, then c |= φ. For example, from Figure 8, we can
prove (think , eat , even) |= 2(3odd ∨3even), implying that the same property
holds for all concrete states of form, (think , eat , 2n), n ≥ 0.

Given a Galois connection, (IP(C),⊆)〈α, γ〉(A,vA), Dams defined the mixed
transition system, M0 = (A,R

]
0, R

[
0), where R

]
0 is the minimal set of may-

transitions for A defined earlier, and R[
0 is the maximal set of must-transitions

for A defined earlier. With impressive work, he also proved best precision
([15], Theorem 4.1.2) — M0 proves the most sound properties of any sound
mixed transition system. That is, if we fix A and ρ, then if (C,RC) is ρ-mixed
simulated by some MA = (A,R

]
A, R[

A) and a |=MA
φ, then a |=M0 φ holds also.

3.1 Can we derive Dams’s results within abstract-interpretation theory?

Dams’s results are impressive but slightly ad-hoc, in that he relates concrete
and abstract states via a Galois connection, yet he does not use the Galois
connection to define systematically R

]
0 and R[

0 from R, nor does he employ
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the usual results from abstract-interpretation theory to show that R
]
0 and R[

0

are the most-precise over- and underapproximations of R. Indeed, it should
be possible to construct Dams’s results entirely within a framework of higher-
order Galois connections and gain new insights in the process. We do so in
this paper:

The key is to treat R ⊆ C × C as the function, R : C → IP(C). Then, we
treat R

]
A ⊆ A × A as R

]
A : A → IPL(A), where IPL(·) is a lower powerset

constructor. (An example of a lower powerset constructor is IP ↓(·), which was
used in Figure 3.)

Given Galois connection, IP(C)〈ατ , γτ 〉A, for the τ -typed state sets, C and A,
we define the usual relation, ρτ ⊆ C × A, as c ρτ a iff c ∈ γτ (a), and we “lift”
the Galois connection to IPL(IP(C))〈αIPL(τ), γIPL(τ)〉IPL(A), so that

(1) function R is ρτ -simulated by function R
]
A iff ext(R) ◦ γτ vA→IPL(IP(C))

γIPL(τ) ◦ R
]
A, which is abstract-interpretation soundness;

(2) the soundness of the judgement form, a |=A 2φ, follows from Item 1;
(3) R

]
best = αIPL(τ) ◦ ext(R) ◦ γτ , which is the abstract-interpretation most-

precise abstraction, preserves the most 2-properties and equals R
]
0.

Here, ext(R) : IP(C) → IPL(IP(C)) lifts R to operate on sets of states.

We prove similar results for underapproximations, R[
A, the judgement form for

3φ, and R[
best : A → IPU(A), where IPU(·) is an upper powerset constructor

(of which IP ↑(·) is an example from Figure 4).

3.2 Overview of the technical developments

The above-mentioned results follow from a careful reformulation of Galois
connections based on a logical-relation calculus and a simplified powerdomain
theory:

(1) We show how Galois connections are generated from U-GLB-L-LUB-
closed binary relations (cf. [11,34,43]) and show how to incrementally
build from an“unclosed” binary approximation relation on primitive type
to a U-GLB-L-LUB-closed one on higher type.

(2) We define lower and upper powerset constructions, which are weaker
forms of powerdomains appropriate for abstraction studies [12,24,39], and
we note that the appropriate approximation relations on powersets are
exactly the standard lower (“Hoare”) and upper (“Smyth”) orderings
[39].

(3) We insert upper- and lower-powerset types into a family of logical re-
lations, show when the logical relations preserve the closure properties
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in Item 1, and show that simulations can be constructed with logical
relations. We use the logical relations to build U-GLB-L-LUB-closed re-
lations on powerset types, and we prove that Dams’s most-precise over-
and underapproximating state-transition relations are the most-precise
abstract-computation functions defined from the concrete computation
functions and the Galois connections extracted from the U-GLB-L-LUB-
closed relations.

(4) We extract validation and refutation logics from the logical relations (cf.
[2]), state their relation to Hennessey-Milner logic [27], and obtain easy
proofs of soundness and best precision of the abstract state-transition
functions.

The remainder of the paper provides the technical development.

4 Closed binary relations generate Galois connections

The following results are assembled from [5,11,22,34,35,43,45]: Let C and A

be complete lattices, and let ρ ⊆ C ×A, where c ρ a means c is approximated
by a.

Definition 1 For all c, c′ ∈ C, for a, a′ ∈ A, for ρ ⊆ C × A, ρ is

(1) U-closed iff c ρ a and a vA a′ imply c ρ a′

(2) GLB-closed iff c ρ u{a | c ρ a}
(3) L-closed iff c ρ a and c′ vC c imply c′ ρ a

(4) LUB-closed iff t{c | c ρ a} ρ a.

U- and L-closure ensure the soundness of an approximation relation, ρ, and
GLB- and LUB-closure ensure the existence of most precise abstractions and
concretizations.

Proposition 2 For U-GLB-L-LUB-closed ρ ⊆ C×A, C〈αρ, γρ〉A is a Galois
connection, where αρ(c) = u{a | c ρ a} and γρ(a) = t{c | c ρ a}.

PROOF. αρ and γρ are monotone by L- and U-closure, respectively. We
compute γρ(αρ(c0)) = tG, where G = {c | c ρ αρ(c0)}. By GLB-closure,
c0 ρ αρ(c0), hence c ∈ G, implying that c0 vC tG. The proof for αρ(γρ(a0)) is
similar.
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Diagrammed, Proposition 2 looks like this:

ac
ρ

C A

{ c’ | c’ ρ a } = { a’ | c ρ= a’ }
c’

a’

Note that c ρ a iff c vC γρ(a) iff αρ(c) vA a.

Corollary 3 For Galois connection, C〈α, γ〉A, define ργ ⊆ C × A as
{(c, a) | c vC γ(a)}. Then, ργ is U-GLB-L-LUB-closed and 〈αργ

, γργ
〉 = 〈α, γ〉.

Hartmanis and Stearns [22] use the Corollary to assert that ραγ defines a pair
algebra.

Lemma 4 (1) If ρ is U-GLB-closed, and for all a ∈ T ⊆ A, c ρ a, then
c ρ u T .

(2) If ρ is L-LUB-closed, and for all c ∈ S ⊆ C, c ρ a, then tS ρ a.

PROOF. For (1), we have c ρ u {a | c ρ a}, by GLB-closure. Since T ⊆
{a | c ρ a}, u{a | c ρ a} v uT , implying c ρ u T , by U-closure. The proof for
(2) is similar.

4.1 Completing a U-GLB-closed ρ ⊆ C × A

Often one has a discretely ordered set, C, a complete lattice, A, and a natural
approximation relation, ρ ⊆ C×A. But there is no Galois connection between
C and A, because ρ lacks LUB-closure. We complete C to a powerset:

Proposition 5 For set C, complete lattice A, and ρ ⊆ C × A, define ρ ⊆
IP(C)×A as S ρ a iff for all c ∈ S, c ρ a. Then ρ is L-LUB-closed, and if ρ is
U-GLB-closed, then so is ρ.

PROOF. ρ is L-closed because IP(C) is ordered by ⊆; it is LUB-closed be-
cause tIP(C) is ∪. U-closure of ρ follows immediately from ρ’s U-closure. For
GLB-closure, we must show S ρ uG, where G = {a | S ρ a}. For each c0 ∈ S,
we have c0 ρ a, for all a ∈ G. By Lemma 4, we have c0 ρ uG; hence, S ρ uG.

Corollary 6 If ρ ⊆ C ×A is U-GLB-closed, then IP(C)〈αρ, γρ〉A is a Galois
connection, where γρ(a) = {c | c ρ a} and αρ(S) = u{a | S ρ a}.

Note that c ρ a iff c ∈ γρ(a) iff αρ{c} v a. The construction defined in Corol-
lary 6 is fundamental to static analysis; Figure 9 shows a typical application.
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Let Nat be the discretely ordered set of natural numbers.

ρ ⊆ Nat × Parity is

2n ρ even

2n + 1 ρ odd

n ρ any

{2m | m    Nat }
any

none

even odd

ρε
P(Nat) Parity ρ is U-GLB-closed

but not LUB-closed.
It is completed to
ρ ⊆ IP(Nat)×Parity .

Fig. 9. Completing ρ ⊆ Nat × Parity to ρ ⊆ IP(Nat) × Parity

There is a less-well known dual completion:

Proposition 7 For partially ordered set C, set A, and ρ ⊆ C × A, define
ρ+ ⊆ C × IP(A)op as c ρ+ T iff for all a ∈ T , c ρ a. Then ρ+ is U-GLB-closed,
and if ρ is L-LUB-closed, then so is ρ+.

The two completions can be combined to generate the classical polarity Galois
connection [17] between IP(C) and IP(A)op:

Corollary 8 For sets C and A and ρ ⊆ C × A, we have that ρ+ ⊆ IP(C) ×
IP(A)op defines the Galois connection where α

ρ+(S) = {a | for all c ∈ S, c ρ a}

and γ
ρ+(T ) = {c | for all a ∈ T, c ρ a}.

5 Powersets

When D is partially ordered, the naive set-of-all-subsets construction will not
suffice for the powerset of D. 3 We now introduce the form of powerset we
employ:

Definition 9 For a partially ordered set, D, a powerset of D is
P [D ] = (E ,vE , {| · |} : D → E , ] : E × E → E ), such that

• (E,vE) is a complete lattice
• {| · |}, the singleton operation, is monotone
• ] , the union operation, is monotone, absorptive, commutative, and asso-

ciative
• For every monotone f : D → M , where M is a complete lattice, there is

a monotone ext(f) : E → M such that ext(f){|d|} = f(d), for all d ∈ D.
(This implies ext(f)(E1)tMext(f)(E2) vM ext(f)(E1 ]E2).)

The definition is weaker than that of Hennessy and Plotkin [26,39], who de-
mand that (E,vE, ]E) form a continuous semi-lattice and for all continuous
semi-lattices, (M,vM , ]M), that ext(f)(S ]ET ) = ext(f)(S)]Mext(f)(T ),

3 Due to monotonicity requirements: e.g., for a, b ∈ D, say that a v b. Then we
must have that {|a|} v {|b|} in D’s powerset, even though {a} 6⊆ {b}.
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Int

−1 1. . . . . .0

{ }

0 1−1

{ n | n<0 } { p | p>0 }

. . . . . .

Fig. 10. Complete lattice Int>⊥ and one possible join completion

where ext(f) must be uniquely defined. We omit these requirements because
we use monotone (rather than Scott-continuous) functions and because they
force E to have “too many” elements than what can be practically imple-
mented in a static analysis. (Of course, this makes ] less precise than true
set union, a feature seen in many static analyses.)

Here are examples from Cousot and Cousot [12] of our format of powerset:

• Down-set (order-ideal) completion: For d ∈ D, S ⊆ D, define ↓d =
{e ∈ D | e v d} and ↓S = ∪{↓d | d ∈ S}. Define IP ↓(D) = ({↓S | S ⊆
D},⊆, ↓,∪). For f : D → M , define ext(f)(S) = td∈Sf(d).

• Scott-closed-set completion: ({Cl(S) | S ⊆ D},⊆, ↓,∪), where Cl(S)
defines the Scott closure of S — S is downwards closed and closed under
least-upper bounds of chains in D. ext(f) is defined as just seen.

• Join completion (subsets of IP ↓(D)): (M ,⊆, ↓,tM ), where M ⊆ {↓
S |S ⊆ D} is a Moore family (that is, closed under all intersections). ext(f)
is defined as before.

Join completions “add new joins” to D; the trivial join completion is trivL(D) =
({↓d | d ∈ D},⊆, ↓, ↓◦tD), which is order-isomorphic to D, and the most de-
tailed join completion is IP ↓(D). The Scott-closed-set completion is a join
completion. Figure 10 presents an example join completion.

There exists a dual family of powersets based on superset ordering:

Up-set (filter) completion: For d ∈ D and S ⊆ D, define ↑ d = {e ∈
D | d v e} and ↑S = ∪{↑d | d ∈ S}. Define IP ↑(D) = ({↑S |S ⊆ D},⊇, ↑,∪).
For monotone f : D → M , let ext(f) : IP ↑(D) → M be ext(f)(S) = ud∈Sf(d).

Dual-join completion (subsets of IP ↑(D)): (M ,⊇, ↑,uM ), where M ⊆ {↑
S | S ⊆ D} is a Moore family. The trivial dual-join completion, trivU(D) =
({↑d | d ∈ D},⊇, ↑, ↑◦uD), is order-isomorphic to D.

The examples demonstrate that our definition of powerset is truly weak —
any complete lattice can be treated a powerset in terms of its trivial join- or
dual-join-completion. This weakness is deliberate, because it lets us develop a
dualizable theory of over- and underapproximation that applies to all abstract-
interpretation domains and not just to abstract domains generated from a
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sets-of-all-subsets construction.

5.1 Lower and strongly lower powersets

For powerset P [D ] = (E ,vE , {| · |}, ] ), S ∈ E and d ∈ D, we define d∈̃S iff
{|d|} ] S = S.

Definition 10 Powerset IPL(D) = (E,vE, {| · |}, ] ) is

(1) a lower powerset iff (S1 vE S2 if, for all x∈̃S1, there exists y∈̃S2 such
that x vD y).

(2) a strongly lower powerset iff (S1 vE S2 iff, for all x∈̃S1, there exists
y∈̃S2 such that x vD y).

The extension operation is defined ext(f)(S) = tM{f(x) | x∈̃S}, for mono-
tone f : D → M .

The definition of lower powerset is the starting point for powerdomain theory
for continuous functions [39], but we will see momentarily that in the category
of monotone functions, every lower powerset must be strongly lower. The lower
powerset ordering is also known as the “Hoare ordering” [39].

For a set, N , IP(N) (with subset ordering and the usual singleton and union
operations) is a lower powerset; more interesting examples are IP ↓(Parity) and
IP↓(IP(Nat)) from Figure 3.

Proposition 11 For lower powerset IPL(D) = (E,vE, {| · |}, ] ), S, T ∈ E,
define S⊆̃T iff S ] T = T ; thus, d∈̃S iff {|d|}⊆̃S. For all S, T ∈ E and d ∈ D,

(1) S vE S ] T

(2) S =E t{{|d|} | d∈̃S}
(3) S⊆̃T iff for all d∈̃S, then d∈̃T also
(4) d∈̃S iff {|d|} vE S

(5) S⊆̃T iff S vE T

(6) d vD e iff {|d|} vE {|e|}.

PROOF. Clause (1): for arbitrary d ∈ D, let d∈̃S, that is, {|d|} ] S = S.
Then {|d|} ] S ] T = S ] T , implying S v S ] T , by the definition of lower
powerset.

Clause (3): if: By the definition of lower powerset, S v T , hence S ] T v
T ] T = T , by (1) and the monotonicity of ] .
only if: Assume S ] T = T and say that {|d|} ] S = S. Then, T = S ] T =
{|d|} ] S ] T = {|d|} ] T .
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Clause(4): if: Assume {|d|} v S. By monotonicity, {|d|} ] S v S ] S = S, and
S v {|d|} ] S, by (1). Hence, {|d|} ] S = S.
only if: By (1), {|d|} v {|d|} ] S; but d∈̃S implies that {|d|} ] S = S.

Clause (5): if: S v T and monotonicity imply S ] T v T ] T = T . By (1),
T v S ] T , hence S ] T = T .
only if: By definition, S ] T = T , and by (1), S v S ] T .

Clause (2): Let M = {{|d|} | d∈̃S}.
v: For arbitrary d ∈ D, say that d∈̃S; then {|d|} v tM , implying d∈̃ tM , by
(4). By the definition of lower powerset, S v tM .
w: For every {|d|} ∈ M , {|d|} v {|d|} ] S = S. This implies tM v S.

Clause (6): only if: follows from the monotonicity of {| · |}.
if: Assume {|d|} vE {|e|}, and note for the identity function, id : D → D, that
ext(id){|x|} = id(x) = x, for all x ∈ D. Since ext(id) must be monotone, we
have ext(id){|d|} vD ext(id){|e|}, implying d vD e.

Corollary 12 Every lower powerset is strongly lower.

PROOF. For IPL(D) = (E,vE, {| · |}, ] ) and S, T ∈ E, say that S v T and
say that d∈̃S. By Clause 4 of Proposition 11, {|d|} v S v T , implying that
d∈̃T .

More surprising, monotonicity and the lower powerset ordering forces a lower
powerset’s ] to be its join and forces every lower powerset to be a join com-
pletion where ∈̃ is ∈:

Theorem 13 For every lower powerset, IPL(D) = (E,vE, {| · |}, ] ),

(1) ] = tE

(2) let M = ({Mem(S) | S ∈ E},⊆), where Mem(S) = {d ∈ D | d∈̃S}.
Then M is a join completion of D and isomorphic to E, and IPL(D) is
isomorphic to ({Mem(S) | S ∈ E},⊆, ↓,tM ), and ∈̃ is ∈ and uM is ∩.

PROOF. Clause (1): For S, T ∈ E, S ] T is an upper bound of both. To
see that it is least, consider any other upper bound, C: By Proposition 11(5),
we have S⊆̃C and T ⊆̃T . This means S ] C = C and T ] C = C, implying
S ] T ] C = C, giving S ] T ⊆̃C. By Proposition 11(5), we have S ] T v C.

Clause (2): For lower powerset, IPL(D) = (E,vE, {| · |}, ] ), we define the join
completion of D consisting of those subsets of D-elements expressed by E: For
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each S ∈ E, define Mem(S) = {d ∈ D | d∈̃S} and define

M = ({Mem(S) | S ∈ E},⊆),

which is order-isomorphic to (E,vE), where the order isomorphism is Mem(·),
which follows from Proposition 11(3). This structure is a join completion be-
cause we will show that each set, Mem(S) = {d ∈ D | d∈̃S} is down closed and
the sets form a Moore family. Down closure follows from Proposition 11(4):
for a, b ∈ D and S ∈ E, a vD b∈̃S implies {|a|} vE {|b|} vE S, implying a∈̃S.

To show that IPM (D) forms a Moore family, we show closure under arbitrary
insersections, that is, ∩i∈IMi ∈ M for every family, {Mi}i∈I ⊆ M . We do so
by proving ∩i∈IMi = Mem(ui∈ISi), where Mi = Mem(Si).

For ⊆, assume for d ∈ D and for all j ∈ I, that d ∈ Mem(Sj), that is, d∈̃Sj,
that is, {|d|} v Sj, by 11(4). This implies {|d|} t ui∈ISi v Sj, which implies
{|d|} t ui∈ISi v ui∈ISi. Next, ui∈ISi v {|d|} t ui∈ISi, and by the definition of
∈̃, we have d∈̃ ui∈I Si, and so then, ∩i∈IMi ⊆ Mem(ui∈ISi).

For ⊇, say that d ∈ Mem(ui∈ISi), that is, d∈̃ ui∈I Si. Since, for all j ∈ I,
d∈̃ ui∈I Si v Sj, we have d ∈ Mem(Sj), by 11(4). Thus, Mem(ui∈ISi) ⊆
∩i∈IMem(Si).

Next, we define IPM (D) = (M , ↓,tM ), and we show that the isomorphism,
Mem(·), preserves the singleton and union operations: For singleton, we must
show for all d ∈ D, that Mem({|d|}E) =↓ d. The left-hand side of the equation
equals {e ∈ D | e∈̃{|d|}E}. By Proposition 11(4) and (6), this equals {e ∈
D | e v d}. For union, we must show that a tM b = Mem(Mem−1(a) tE

Mem−1(b)), since ] E is tE, due to Clause (1) of this Theorem. But this
follows because M is order-isomorphic to (E,vE).

For f : D → M , we define ext(f)M : M → M as merely ext(f)M (M) =
Mem(ext(f)E(Mem−1(M))). Finally, we establish that d∈̃ES iff d ∈ Mem(S)
iff d∈̃Mem(S): The first equivalence is immediate; for the second, we have
d∈̃Mem(S) iff {|d|}⊆̃Mem(S) iff {|d|} ⊆ Mem(S) iff ↓ d ⊆ Mem(S) iff d ∈
Mem(S). We finish by noting that u in IPM (D) is ∩ because IPM (D) is a
Moore family.

Theorem 13 lets us generalize Proposition 5 so that it performs completions
with lower powersets:

Theorem 14 For complete lattices C and A, let ρ ⊆ C×A and let IPL(C) =
(E,⊆, {| · |}, ] ) be a lower powerset that is a join completion. Recall that
ρ ⊆ IPL(C) × A is defined S ρ a iff for all c ∈ S, c ρ a. For any choice of
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IPL(C):

(1) ρ is L-closed.
(2) If ρ is U-GLB-closed, then ρ is U-GLB-closed.
(3) If for all a ∈ A, {c | c ρ a} ∈ E, then ρ is LUB-closed.

The resulting Galois connection defines γρ(a) = {c | c ρ a}.

PROOF. Clause (1): L-closure follows because vE is ⊆.

Clause(2): U-closure of ρ follows immediately from the U-closure of ρ. For
GLB-closure, we must show that S ρ u MS, where MS = {a | S ρ a}, that is,
for all c ∈ S, c ρ uMS. Since MS ⊆ {a | c ρ a}, the result follows from Lemma
4(1).

Clause (3): To prove LUB-closure, for a ∈ A, define Ma = {S ∈ E | S ρ a};
we will prove that {c | c ρ a} = tMa. Say that S ′ ∈ Ma, that is, for all c′ ∈ S ′,
c′ ρ a. Then, S ′ ⊆ {c | c ρ a}, making {c | c ρ a} an upper bound of Ma. But
{c | c ρ a} belongs to Ma, meaning that it equals uMa.

Corollary 15 If ρ ⊆ C × A is L-U-GLB-closed, then IP ↓(C)〈αρ, γρ〉A is a
Galois connection.

PROOF. Since ρ is L-closed, all sets {c | c ρ a} are downwards closed and
belong to IP ↓(C).

Finally, we note that “completing” a relation that already has L-LUB closure
maintains the existing precision:

Proposition 16 If ρ ⊆ C × A is L-LUB-closed, then for ρ ⊆ IPL(C) × A,
S ∈ IPL(C), and a ∈ A, S ρ a iff (tS) ρ a.

PROOF. only if: S ρ a iff for all c ∈ S, c ρ a. Because ρ is L-LUB-closed,
Lemma 4 implies tSc ρ a.

if: tS ρ a implies c ρ a by L-closure, for all c ∈ S.

The Proposition explains why IP ↓(IP(Nat)) was no more expressive than
IP(Nat) as the concrete domain in the Galois connections for the parity ex-
ample in Figure 3.
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From this point onwards, we use the notation, IPL(D), to denote any lower
powerset. When a specific instance of a lower powerset is required (e.g., IP ↓(D)
or trivL(D)), we will clearly indicate this.

5.2 Upper powersets

Definition 17 Powerset IPU(D) = (E,vE, {| · |}, ] ) is an upper powerset iff
(S1 vE S2 if, for all y∈̃S2, there exists x∈̃S1 such that x vD y). The extension
operation is defined ext(f)(S) = uL{f(x) | x∈̃S}, for monotone f : D → M .

The upper powerset ordering is also known as the “Smyth ordering” [39].

For a set, N , IP(N)op (with superset ordering and the usual singleton and
union operations) is an upper powerset; a more interesting example is IP ↑(Parity)
in Figure 4.

The results proved for lower powersets dualize without complication:

Proposition 18 For upper powerset IPU(D) = (E,vE, {| · |}, ] ), S, T ∈ E,
define S⊆̃T iff S ] T = T ; thus d∈̃S iff {|d|}⊆̃S. For all S, T ∈ E and d ∈ D,

(1) S ] T vE S

(2) S =E u{{|d|} | d∈̃S}
(3) S⊆̃T iff for all d∈̃S, then d∈̃T also
(4) d∈̃S iff S vE {|d|}
(5) S⊆̃T iff T vE S

(6) d vD e iff {|d|} vE {|e|}

Corollary 19 Every upper powerset is strongly upper: for IPU(D) = (E,vE,{| · |},] )
and S1, S2 ∈ E, S1 vE S2 iff for all y∈̃S2, there exists x∈̃S1 such that x vD y.

Theorem 20 For every upper powerset, IPU(D) = (E,vE, {| · |}, ] ),

(1) ] = uE; and
(2) let M = ({Mem(S) | S ∈ E},⊇), where Mem(S) = {d ∈ D | d∈̃S}. Then

M is a dual-join completion of D and isomorphic to E, and IPU(D) is
isomorphic to ({Mem(S) | S ∈ E},⊇, ↑,uM ), and ∈̃ is ∈ and tM is ∩.

Theorem 21 For complete lattices C and A, let ρ ⊆ C×A and let IPU(A) =
(E,⊆, {| · |}, ] ) be an upper powerset that is a dual-join completion. Define
ρ+ ⊆ C × IPU(A) as c ρ+ T iff for all a ∈ T , c ρ a. For any choice of IPU(A):

(1) ρ+ is U-closed.
(2) If ρ is L-LUB-closed, then so is ρ+.
(3) If for all c ∈ C, {a | c ρ a} ∈ E, then ρ+ is LUB-closed.
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The resulting Galois connection defines αρ+(c) = {a | c ρ a}.

From this point onwards, we use the notation, IPU(D), to denote any upper
powerset. When a specific instance of upper powerset is required (e.g., IP ↑(D)
or trivU(D)), we will clearly indicate this.

6 Logical relations

Approximation relations on higher types are naturally defined by logical rela-
tions. We employ base types, function types, lower and upper powerset types,
and the “completion type” from Theorem 14:

τ ::= b | τ1 → τ2 | L(τ) | U(τ) | τ

We use L(τ) to abbreviate the type, IPL(τ), and U(τ) to abbreviate IPU(τ).
Only typing τ is nonstandard; it is a special case of L(τ) that we retain for
convenience, because it appears so often in practice (cf. Figure 9).

We attach the typings to concrete and abstract domains, D, as follows:

Db is given

Dτ1→τ2 are the monotone functions from Dτ1 to Dτ2 , ordered pointwise

DL(τ) is a lower powerset generated from Dτ

DU(τ) is an upper powerset generated from Dτ

Since ρ ⊆ IPL(C) × A is the completion of ρ ⊆ C × A (cf. Theorem 14), we
define

Cτ is CL(τ), for concrete domain Cτ

Aτ is Aτ , for abstract domain Aτ

Here are examples: Both Nat and Parity in Figure 9 have the same base
type — call it N . Then, IP(Nat) in the same Figure has type N . This means
domain Parity also has type N .

Next, we see that IP ↓(Parity) in Figure 3 has type L(N) and its concrete
counterpart, IP ↓(IP(Nat)), has type L(N) (as well as L(N) and L(L(N))).
IP↑(Parity) in Figure 4 has type U(N), and IP ↓(IP(Nat)op), has type U(N).
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The typings are important to defining the family of logical relations, ρτ ⊆
Cτ × Aτ :

ρb is given, for base type b (e.g., ρN ⊆ Int × Parity in Figure 9)

f ρτ1→τ2 f ] iff for all c ∈ Cτ1 , a ∈ Aτ1 , c ρτ1 a implies f(c) ρτ2 f ](a)

S ρL(τ) T iff for all c∈̃S, there exists a∈̃T such that c ρτ a

S ρU(τ) T iff for all a∈̃T, there exists c∈̃S such that c ρτ a

S ρτ a iff for all c ∈ S, c ρτ a

The definitions read as expected, e.g., f ρτ1→τ2 f ] asserts that f is approx-
imated by f ] because arguments related by approximation map to answers
related by approximation.

S ρL(τ) T defines an overapproximation relationship: S is overapproximated
by T because every element of S has an approximant in T . Dually, S ρU(τ) T

defines an underapproximation relationship, because every element in T is
witnessed by a concrete element in S.

The definition of S ρτ a uses ∈ (rather than ∈̃) to emphasize that Cτ is (a
lower powerset treated as) a join completion. Indeed, when ρτ is U-closed,
then ρτ ⊆ IPL(Cτ ) × Aτ is merely an instance of ρL(τ) ⊆ IPL(Cτ ) × trivL(A):

Proposition 22 Recall that trivL(D) = ({↓d | d ∈ D},⊆, ↓, ↓◦tD) ≈ D.
When ρτ ⊆ C×A is U-closed, then ρτ = ρL(τ), for ρL(τ) ⊆ IPL(Cτ )×trivL(A).

PROOF. We freely use the isomorphism, ↓: A → trivL(A):

⊆: Assume S ρτ a; then for all c ∈ S, c ρτ a. This implies S ρL(τ) ↓ a.

⊇: Assume S ρL(τ) ↓ a; this gives for all c∈̃S, there exists a′ ∈↓ a such that
c ρτ a′. By U-closure, we have c ρτ a, hence, S ρτ a.

Returning to the examples, relation ρ in Figure 9 is more precisely defined as
the typed relation, ρN ⊆ Nat×Parity ; this makes ρ̄ typed as ρN ⊆ IP(Nat)×
Parity , which induces the Galois connection, IP(Nat)〈αρ

N
, γρ

N
〉,Parity .

Similarly, underlying γ in Figure 4 is the logical relation, ρ
U(N) ⊆ IP↓(IP(Nat)op)×

IP↑(Parity). The γ in Figure 3 is generated from ρ
L(N) ⊆ IP↓(IP(Nat)) ×

IP↓(Parity). The details are spelled out in a later section.
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6.1 Simulations are logical relations

Two state-transition relations are related by a simulation. The standard defi-
nition goes as follows:

Definition 23 For ρ ⊆ C × A and transition relations, R ⊆ C × C, R] ⊆
A × A, R] ρ-simulates R, written R ¢ρ R], iff for all c, c′ ∈ C, a ∈ A, c ρ a

and (c, c′) ∈ R imply there exists a′ ∈ A such that (a, a′) ∈ R] and c′ ρ a′.

From this definition of simulation, we gain immediately this important result:

Proposition 24 For ρb ⊆ Cb × Ab, if R : Cb → IPL(Cb) and R] : Ab →
IPL(Ab) are monotone, then

R¢ρb
R] iff R ρb→L(b) R].

A dual simulation, R[
¢ρ−1

b
R, is beautifully characterized as R ρb→U(b) R[.

For an example, consider Figures 5 and 6: Let state sets C and A have base
type, State, and define

(s0, s1, n) ρState (s′0, s
′
1, p) iff s0 = s′0, s1 = s′1, and p ∈ γ(n)

for γ : Parity → IP(Nat) in Figure 1. The concrete transition relation in Fig-
ure 5 is coded as the function, R : CState → IP(CState), and the abstract transi-
tion relation in Figure 6 is encoded by a function, R] : AState → IP↓(AState).

4

We have that R¢ρState
R].

Similarly, for the underapproximating transition relation in Figure 7, we have
that R[

¢ρ−1
State

R, where R : CState → IP(CState)
op and R[ : AState → IP↑(AState).

The simulations hold even when AState is not a complete lattice, but it is easy
to complete AState and preserve the results.

We will employ these characterizations of simulation and dual-simulation to
construct optimal over- and underapproximating transition relations from Ga-
lois connections generated from closed, logical relations.

7 Closure properties of logical relations

Many closure properties are preserved by the type constructors, and a few are
generated new:

4 When (s0, s1, p) ∈ R](a), then (s0, s1,⊥) ∈ R](a) also. This causes no harm.
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Proposition 25 For ρτ ⊆ Cτ × Aτ ,

(1) ρL(τ), ρU(τ), and ρτ are L-closed; if ρτ is L-closed, then so is ρτ ′→τ .
(2) ρL(τ) and ρU(τ) are U-closed; if ρτ is U-closed, then so are ρτ ′→τ and ρτ .
(3) If ρτ is U-GLB-closed, then so are ρτ ′→τ , ρL(τ), and ρτ .
(4) If ρτ is L-LUB-closed, then so are ρτ ′→τ and ρU(τ).

PROOF. Clause (1): To show L-closure for ρL(τ), we use IPL(Cτ )’s join-
closure representation, due to Theorem 13, where vIPL(Cτ ) is ⊆. Given S ′ ⊆
S ρL(τ) T , we see that for all c′ ∈ S ′, c′ ∈ S as well, and there exists a∈̃T

such that c′ ρτ a. The proof of L-closure for ρτ , where IPL(Cτ ) is also a join
completion, is the same.

For ρU(τ), we use IPU(Cτ )’s dual-join-closure representation, due to Theorem
20, where vIPU (Cτ ) is ⊇. Given S ′ ⊇ S ρU(τ) T , we see that for every a∈̃T ,
there exists c ∈ S such that c ρτ a, and c ∈ S ′ as well.

For ρτ ′→τ , assume that f ′ v f ρτ ′→τ f ]; if c ρτ1 a, then f(c) ρτ2 f ](a). Since
f ′(c) v f(c), the result comes from the L-closure of ρτ2 .

Clause (2): Similar to (1), but recall from Proposition 22 that U-closure is not
ensured for ρτ .

Clause (3): For ρτ ′→τ , we must show f ρτ ′→τ uF , where F = {f ] | f ρτ ′→τ f}.
Assume that c ρτ a; for all f ] ∈ F , we have f(c) ρτ ′ f ](a). By Lemma 4, we
have that f(c) ρτ ′ u {f ](a) | f ] ∈ F}, and by the definition of meet in the
complete lattice of monotone functions, we have u{f ](a) | f ] ∈ F} = (uF )(a).

For ρL(τ), we must show S ρL(τ) u M , where M = {T | S ρL(τ) T}. For every
c ∈ S, for each Ti ∈ M , there is some ai∈̃Ti such that c ρτ ai. By Lemma 4,
we have c ρτ uj aj, where j indexes the sets in M .

Since ai∈̃Ti implies {|ai|} v Ti, for all Ti ∈ M , we have {| uj aj|} v Ti, also.
Hence, {|uj aj|} v uM , implying {|uj aj|}∈̃uM , by Proposition 11. The proof
for ρτ is similar.

Clause (4): Similar to (3).

Missing are assurances of LUB-closure preservation for ρL(τ) and GLB-closure
preservation for ρU(τ), which depend on the specific powersets used. 5 The
following subsections explore these issues.

5 This difficulty is foreshadowed by Backhouse and Backhouse [5], whose results
are summarized in Section 11.
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7.1 Lower powersets: ρL(τ) ⊆ IPL(Cτ ) × IPL(Aτ )

Let ρτ ⊆ C × A. As noted by Proposition 22, when ρτ is U-closed, then
ρτ ⊆ IPL(Cτ ) × Aτ is an instance of ρL(τ) ⊆ IPL(Cτ ) × IPL(Aτ ). Closure-
preservation properties of ρτ are documented by Theorem 14.

In the case when IPL(Aτ ) is an arbitrary lower powerset, one can always
employ IP↓(C) to obtain LUB-closure:

Proposition 26 For all ρτ ⊆ Cτ × Aτ , for any choice of IPL(Aτ ), ρL(τ) ⊆
IP↓(Cτ ) × IPL(Aτ ) is LUB-closed.

PROOF. In IP ↓(Cτ ), join is set union, meaning that c ∈ t{S | S ρL(τ) T} iff
there is some S ′ such that c ∈ S ′ and S ′ ρL(τ) T .

In the general case, preservation of LUB-closure is delicate. For example,
for the lower powerdomain construction, IPScott(D) = ({Scott(S) | S ⊆
D},⊆,↓,Scott ◦ ∪), where Scott(S) is the closure of S in D’s Scott-topology,
there exist U-L-LUB closed relations, ρτ ⊆ C ×A, where ρL(τ) ⊆ IPScott(C)×
IPScott(A) is not LUB-closed. But we do have:

Proposition 27 If ρτ ⊆ Cτ ×Aτ is U-GLB-L-LUB-closed, then so is ρL(τ) ⊆
IPScott(Cτ ) × IPScott(Aτ ).

PROOF. In showing LUB-closure, the only interesting case is when c ∈ tS,
where S = t{S ∈ IPScott(C) | S ρL(τ) T} and c is the least-upper bound of a
chain, {c0, c1, · · · , ci, · · ·} ⊆ ∪S, for T ∈ IPScott(A).

In this situation, for all i ≥ 0, ci ρτ ai, for some ai ∈ T . By L-GLB-closure,
each ci ρτ u {aj | i ≤ j}, for all i ≥ 0, and the u{aj | i ≤ j}’s form a chain,
for i ≥ 0. The least-upper bound of this chain falls in T , because it is Scott-
closed, and by U-LUB closure (which implies Scott-inclusivity), we have that
c is related to this least-upper bound.

7.2 Upper powersets: ρU(τ) ⊆ IPU(Cτ ) × IPU(Aτ )

Here, GLB-closure is not guaranteed, but we have the following:

Proposition 28 Recall that IP ↑(A) = ({↑D |D ⊆ A},⊇, ↑,∪). Then ρU(τ) ⊆
IPU(C) × IP ↑(A), is GLB-closed, for all choices of upper powersets, IPU(C).
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PROOF. In IP ↑(A), meet is set union, which gives GLB-closure.

And as suggested by Proposition 27, if ρτ ⊆ Cτ ×Aτ is U-GLB-L-LUB-closed,
then ρU(τ) ⊆ IPSmyth(Cτ ) × IPSmyth(Aτ ), is GLB-closed, where IPSmyth(D) is
the upper (“Smyth”) powerdomain of D [39,46].

7.3 Function spaces: ρτ1→τ2 ⊆ (Cτ1 → Cτ2) × (Aτ1 → Aτ2)

The following result, crucial to the rest of the paper, equates Galois-connection-
based soundness to the logical relation between functions:

Proposition 29 Let ρτi
⊆ Cτi

× Aτi
, for i ∈ 1..2, be U-GLB-L-LUB-closed.

so that there are the Galois connections, Cτi
〈αρτi

, γρτi
〉Aτi

, i ∈ 1..2. For f :

Cτ1 → Cτ2, f ] : Aτ1 → Aτ2,

f ρτ1→τ2 f ] iff αρτ2
◦ f vC1→A2 f ] ◦ αρτ1

iff f ◦ γρτ1
vA1→C2 γρτ2

◦ f ].

PROOF. If: Assume c ρτ1 a, implying ατ1(c) v a. By monotonicity, f ](ατ1(c)) v
f ](a). Using the assumption, we deduce ατ2(f(a)) v f ](a), implying f(a) ρτ2 f ](a).

Only if: By definition, for all c ∈ Cτ1 , c ρτ1 ατ1(c). By assumption, we obtain
f(c) ρτ2 f ](ατ1(c)), which by definition, gives αρτ2

(f(c)) v f ](αρτ1
(c)).

The remaining equivalence follows from the definition of Galois-connection-
based soundness.

As a corollary, f ρτ1→τ2 f ]
best, where f ]

best(a) = αρτ2
◦ f ◦ γρτ1

.

Starting again with ρτi
⊆ Cτi

× Aτi
, i ∈ 1..2, if we have that ρτ2 is not

LUB-closed, then we might complete it to ρτ2 ⊆ IP↓(C2) × A2 and generate
ρτ1→τ2 ⊆ (C1 → IP↓(C2)) × (A1 → A2). Or, we might generate the relation,
ρτ1→τ2 ⊆ IP↓(C1 → C2) × (A1 → A2); in this latter case, the Galois connec-
tion is IP ↓(C1 → C2)〈α

φ, γφ〉(A1 → A2), where γφf ] = {f | f ρτ1→τ2 f ]} =
{f | for all c ∈ C1, f(c) vC2 γτ2(f

](ατ1(c)))}. These and other interesting
Galois connections generated from relations on functions can be found in [12].
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8 Synthesizing a most-precise simulation

With the logical-relations machinery in hand, we address Dams’s problem
of synthesizing a most precise simulation (overapproximation) of a concrete
transition relation.

Given the set of concrete states, C, transition relation R ⊆ C × C, and a
Galois connection IP(C)〈α, γ〉A, Dams [13,15] proved that the most precise,
sound, abstract transition relation R

]
0 ⊆ A × A is

R
]
0(a, a′) iff a′ ∈ {α(Y ) | Y ∈ min{S ′ | R∃∃(γ(a), S ′)}}

where R∃∃(M,N) holds iff there exist m ∈ M and n ∈ N such that (m,n) ∈ R.
Recoded as a function, R

]
0 : A → IP(A), and simplified, this reads

R
]
0(a) = {α{c′} | ∃c ∈ γ(a), c′ ∈ R(c)}

because the sets, min{S ′ | R∃∃(γ(a), S ′)}, are singletons.

Dams’s notions of soundness and best precision were stated in terms of prop-
erties in Hennessy-Milner logic: Soundness meant that logical properties true
of R

]
0 also held for R, and best precision meant that R

]
0 preserved the most

properties of all sound abstractions of R.

By using Galois-connection techniques, we can derive soundness and best pre-
cision in a logic-independent, model-theoretic sense. Later we introduce the
temporal logic and gain Dams’s expressivity results for free.

Given U-GLB-closed ρb ⊆ C × A and transition function R : C → IP(C),
we generate the L-LUB-U-GLB-closed relations, ρb ⊆ IP(C) × A and ρL(b) ⊆
IP(C) × IPL(A), and their corresponding Galois connections, IP(C)〈αb, γb〉A
and IP(C)〈αL(b), γL(b)〉IPL(A). These give us the domain and codomain of the

abstract transition function, R
]
best : A → IPL(A), which we define by means of

abstract interpretation [10]:

R
]
best(a) = (αL(b) ◦ ext b(R) ◦ γb)(a)

= u{T ∈ IPL(A) | (ext b(R)(γb ( a)))ρL(b)T}

(Note that ext b(R) : IP(C) → IP(C) is ext b(R)(S) = ∪c∈SR(c).) When we
choose IP↓(A) for IPL(A), we can prove that the above equals

t{{|αb{c
′}|} | ∃c ∈ γb(a), c′ ∈ R(c)} = ∪ {↓ αb{c

′} | ∃c ∈ γb(a), c′ ∈ R(c)}

This is Dams’s definition, when one takes into account the partial ordering on

28



A so that operations on IP ↓(A) are monotone. 6 Appealing to the standard

results [10], we have that R
]
best is sound (cf. Proposition 29) with respect to

R and is the most precise sound abstraction (that is, the meet of all sound
abstractions) in domain A → IPL(A).

Figure 6 presents R
]
best for the Collatz function, R, in Figure 5. (Transitions

involving ⊥ are omitted from the Figure.)

8.1 Lifting the concrete domain

In unpublished work [14], Dams justified his definition of R
]
0 in terms of the

Galois connections synthesized in the previous subsection. But as noted in
Sections 1.4 and 3.1, we can justify R

]
0 with a concrete domain whose elements

are sets of sets of states: Given concrete-state set, C, and the transition relation
R ⊆ C×C, we retain the Galois connection, IP(C)〈αb, γb〉A, for the domain of
the abstract transition function, but the Galois connection for the codomain
is generated from U-GLB-L-LUB-closed ρ

L(b) ⊆ IP↓(IP(C)) × IPL(A):

. . .

. . . . . .

. . . . .
P (A)LP (P(C))

τL( )
ρ

The diagram reminds us that a set of abstract values, T ∈ IPL(A) concretizes
to the set, S, such that for every S ∈ S, S is overapproximated by T . The
Galois connection is IP ↓(IP(C))〈α

L(b), γL(b)〉IPL(A). We define R
]
best2 : A →

IPL(A) as

R
]
best2 = α

L(b) ◦ R∗ ◦ γb

where R∗(S) = (ext b({| · |} ◦ R))(S) = t{{|R(c)|} | c ∈ S}

Here, {| · |} : IP(C) → IP ↓(IP(C)) is {|S|} =↓ {S} = {S ′ | S ′ ⊆ S}, so
R∗(S) =↓{R(c) | c ∈ S}, showing that R∗ maps a set of arguments to all
subsets of R-successor sets. By calculation, we can show that R

]
best2 equals

R
]
best. An example of the construction is seen in Figure 3.

This redevelopment of R
]
best is notational overkill, but there is an important

point: Simulation equivalence is preserved when a concrete transition function

6 Dams does not address the monotonicity issue, but no harm is done: For all a ∈ A,
R

]
0(a) ≡ R

]
best(a) with respect to the lower-powerset equivalence in Definition 10.
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is lifted to a function that maps a set of arguments to a set of answer sets:

Proposition 30 Let R : C → IP(C) and R] : A → IPL(A). Then the follow-
ing are equivalent:

(1) R¢ρ R]

(2) R ρb→L(b) R]

(3) ext b(R) ρb→L(b) R], assuming ρL(b) is LUB-closed

(4) R∗ ρ
b→L(b) R], assuming ρ

L(b) is LUB-closed

PROOF. Recall that ext b(R)(S) = t{R(c) | c ∈ S} and R∗(S) = t{{|R(c)|} | c ∈
S}.

(1) is equivalent to (2) by Proposition 24.

(3) implies (2): Assume c ρba ; this implies {c} ρb a, which implies that R(c) =
ext b(R){c} ρL(b) R](a).

(4) implies (3): Assume S ρb a. By assumption, we have t{{|R(c)|} | c ∈
S} ρ

L(b) R](a). So, for all c ∈ S, we have {|R(c)|} ρ
L(b) R](a), which implies

R(c) ρL(b) R](a). The result follows from the LUB-closure of ρL(b) and the
definition of ext b(R).

(2) implies (4): Assume S ρb a. For every c ∈ S, we have R(c) ρL(b) R](a),
by assumption. By Proposition 11(4) and (6), we know that S ′ ∈ {|R(c)|} iff
S ′ v R(c). By L-closure of ρL(b), this means {|R(c)|} ρ

L(b) R](a). The result
follows from LUB-closure of ρ

L(b) and the definition of R∗.

Similar equivalences will prove useful with underapproximations.

9 Synthesizing a most-precise dual simulation

An underapproximation analysis uses an abstract transition function, R[ :
A → IPU(A), and it is tempting to try constructing a Galois connection of the
form, IP(C)op〈αU(b), γU(b)〉IPU(A). But this requires ρU(b) ⊆ IP(C)op × IPU(A)
be LUB-closed, which is difficult to achieve. 7 Fortunately, we can apply the

7 Recall the example in Section 1.3: ρU(N) ⊆ IP(Nat)op × IP↑(Parity). What is the
least set of numbers that “witnesses” {even, any}? {0}? {2}? LUB-closure fails.
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approach seen in the previous Section and define a sound, overapproximation
of underapproximations in terms of ρ

U(τ) ⊆ IP↓(IPU(C)) × IPU(A):

. . .

. . . . . .

. . . . .
opP (P(C)    )

P (A)U
τU( )

ρ

A set of abstract values, T ∈ IPU(A), abstracts the set of sets, S ∈ IPL(IP(C)op),
iff T underapproximates each S ∈ S.

We can incrementally construct ρ
U(τ):

(1) Begin with a U-GLB-closed ρb ⊆ C × A;
(2) Lift it to a U-L-GLB-closed ρU(b) ⊆ IP(C)op × IP↑(A); 8

(3) Complete it to a U-GLB-L-LUB-closed ρ
U(b) ⊆ IP↓(IP(C)op) × IP↑(A).

The resulting Galois connection, IP ↓(IP(C)op)〈α
U(b), γU(b)〉IP↑(A), is defined

γ
U(b)(T ) = {S | S ρU(τ) T}

α
U(τ)S = u{T ∈ IPU(A) | for all S ∈ S, S ρU(b) T}

An example of the construction is seen in Figure 4.

Recall that Dams proved, for Galois connection IP(C)〈α, γ〉A and transition
relation R ⊆ C×C, that the most precise, sound, underapproximating abstract
transition relation, R[

0 ⊆ A × A is

R[
0(a, a′) iff a′ ∈ {α(Y ) | Y ∈ min{S ′ | R∀∃(γ(a), S ′)}}

where R∀∃(M,N) holds iff for all m ∈ M , there exists n ∈ N such that
(m,n) ∈ R. Dams noted, for some a ∈ A, that min{S ′ | R∀∃(γ(a), S ′)} might
be empty [15]; in such a case he decreed that R[

0 is undefined, min should be
removed, and the following definition should be used instead:

R[
1(a, a′) iff a′ ∈ {α(Y ) | Y ∈ {S ′ | R∀∃(γ(a), S ′)}}

This always yields a sound and most-precise R[
1 (but with larger cardinality

than R[
0, when the latter exists). We study this anomaly momentarily.

8 C is a set, so IP(C)op, ordered by ⊇, is an upper powerset.
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Recoded as a function and simplified, R[
1 reads

R[
1(a) = {α(Y ) | for all c ∈ γ(a), R(c) ∩ Y 6= {} }

The Galois-connection machinery gives us the same result: given transition
function, R : C → IP(C), we use the Galois connection, IP(C)〈αb, γb〉A, to
generate the domain, and we use IP ↓((IP(C)op))〈α

U(b), γU(b)〉IP↑(A), which was
derived at the beginning of this section, to generate the codomain of the
abstract transition function, R[

best : A → IP ↑(A):

R[
best = α

U(b) ◦ R∗ ◦ γb, where R∗ = ext b({| · |} ◦ R)

Now, {| · |} ◦ R : C → IP ↓(IP(C)op) is ({| · |} ◦ R)(c) =↓IP(C)opR(c) = {S ′ | S ′ ⊇
R(c)}. This makes R∗ = ext b({| · |} ◦ R) : IP(C) → IP ↓(IP(C)op) equal to
R∗(S) = tc∈S{S

′ | S ′ ⊇ R(c)} = ∪c∈S{S
′ | S ′ ⊇ R(c)} = {S ′ ⊇ R(c) | c ∈ S}.

That is, R∗ maps a set of arguments to all supersets of R-successor sets. We
simplify R[

best and obtain

R[
best(a) = u{T ∈ IP ↑(A) | {S ′ ⊇ R(c) | c ∈ γb(a)} ρ

U(b) T}

= u{T ∈ IP ↑(A) | {R(c) | c ∈ γb(a)} ρ
U(b) T}

= u{T ∈ IP ↑(A) | for all c ∈ γb(a), for all a′ ∈ T,R(c) ∩ γb(a
′) 6= {} }

because c′ ρb a′ iff c′ ∈ γb(a
′). We now show that R[

best = R[
1 = R[

0 (when the
last function exists). For a ∈ A, let

Di
a = R[

i(a), for i ∈ 0..1, and

Ba = {T ∈ IP ↑(A) | for all c ∈ γb(a), for all a′ ∈ T,R(c) ∩ γb(a
′) 6= {} },

so that R[
best(a) = uBa. We show that (i) Di

a ∈ Ba, and (ii) Di
a is a lower

bound of Ba. This gives the desired equalities.

For (i), consider s ∈ γb. For every αb(Y ) in Di
a, we have that R(s) ∩ Y 6= { }.

Since αb, γb form a Galois connection, we have that R(s) ∩ γb(αb(Y )) 6= { }.
Hence, Di

a ∈ Ba.

For (ii), we must show Di
a vIP↑(A) T , for all T ∈ Ba. That is, for all a ∈ T ,

there exists a′ ∈ Di
a such that a′ vA a. The definition of Ba tells us, for all

such T , for all s ∈ γρ
b
(a), that R(s) ∩ γρ

b
(a) 6= { }.

In the case for D1
a, its definition tells us that αρ

b
(γρ

b
(a)) ∈ D1

a, and the defi-

nition of Galois connection implies αρ
b
(γρ

b
(a)) vA a. In the case for D0

a, there
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is some minimal S ′ ⊆ γρ
b
(a) such that R(s) ∩ S ′ 6= { }. The result follows as

for D1
a.

This concludes the demonstration that R[
best = R[

1 = R[
0. The reasoning tacitly

assumes that Di
a is an element of IP ↑(A), that is, Di

a is upwards closed in A.
Although D0

a might not be upwards closed, it is equivalent to ↑A D0
a = D1

a

with respect to the upper-powerset equivalence defined in Definition 17. This
explains why both D0

a and D1
a are “the” greatest lower bound — they are the

same element in IP ↑(A). Figure 7 presents R[
best (that is, R[

1) for the Collatz
function, R, in Figure 5.

Finally, dual simulation lifts to sets of arguments:

Proposition 31 R[
¢ρ−1 R iff R ρb→U(b) R[ iff R∗ ρ

b→U(b) R[, assuming that
ρ

U(b) is LUB-closed.

PROOF. Similar to the proof of Proposition 30.

10 Validation and refutation logics

Hennessy and Milner proved that 23-propositions (Hennessy-Milner logic)
characterize transition relations up to bisimilarity [27]. Loiseaux, et al. [32],
proved that all 2-properties true of a sound overapproximating transition re-
lation are preserved in the corresponding concrete transition relation and that
when one overapproximating transition relation is more precise than another,
then the first preserves all the 2-properties of the second. Dams extended this
result to underapproximations and 3-properties and proved that his defini-
tions of R

]
best and R[

best possess the most 23-propositions of any sound, mixed
transition system.

In this section, we manufacture Hennessey-Milner logic from our family of
logical relations (cf. [2]) and obtain the above results as corollaries of abstract-
interpretation theory. Recall that these are the typings of the logical relations,

τ ::= b | τ1 → τ2 | L(τ) | U(τ) | τ

where τ is an instance of L(τ). For each of the first four typings, we extract
a corresponding assertion form that can be validated on elements with the
indicated typing. Here is the assertion language:

φ ::= p | f.φ | ∀φ | ∃φ

Primitive assertions, p, are validated on elements of base type. For function
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f of type τ1 → τ2, f.φ denotes an “application” property that holds for an
argument, d, of type τ1, exactly when φ holds for the answer, f(d), of type
τ2. ∀φ holds for set S of type IPL(τ) when φ holds for each of S’s τ -typed
elements. The dual property, ∃φ, is validated on IPU(τ)-typed sets.

We formalize these notions: Assume, for all types, τ , that the logical relations,
ρτ ⊆ Cτ × Aτ , are defined for fixed domains Cτ and Aτ . Assume also, for all
function symbols, f , typed τ1 → τ2, there are interpretations f \ : Cτ1 → Cτ2 ,
and f ] : Aτ1 → Aτ2 , such that f \ ρτ1→τ2 f ].

Definition 32 The semantics of the assertion language is defined by the fol-
lowing family of well-typed judgements; let Dτ denote either a concrete domain,
Cτ , or an abstract domain, Aτ :

d |=b p is given, for d ∈ Db

d |=τ1→τ2 f.φ iff f(d) |=τ2 φ, for d ∈ Dτ1 and f ∈ Dτ1→τ2

S |=L(τ) ∀φ iff for all d∈̃S, d |=τ φ, for S ∈ DL(τ)

S |=U(τ) ∃φ iff there exists d∈̃S such that d |=τ φ, for S ∈ DU(τ)

Since τ is an instance of IPL(τ), define

S |=τ φ iff for all c ∈ S, c |=τ φ for S ∈ CL(τ)

a |=τ φ iff a |=τ φ, for a ∈ Aτ

At the end of this section, we show how to dispense with |=τ .

We can abbreviate d |=τ→L(τ) R.∀φ by d |= ∀Rφ (as in description logic [4])
or by [R]φ (Hennessy-Milner logic [27]) or by 2φ when the system studied has
only one transition function, R : Dτ → IP(Dτ ). This hides the reasoning on
sets. Similarly, d |=τ→U(τ) R.∃φ can be abbreviated by d |= ∃Rφ or 〈R〉φ or
3φ.

The judgements for ∀Rφ and ∃Rφ employ R] and R[, respectively, to validate
the assertions, motivating Dams’s mixed transition systems. 9

9 For concrete set, Cτ , IP(Cτ ) is a lower powerset and IP(Cτ )
op is an upper powerset,

so we use the concrete transition function, R, to validate ∀φ and ∃φ-properties on
concrete sets.
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10.1 Soundness of judgements

Definition 33 For type τ , the typed judgement form, |=τ φ, is sound iff for
all c ∈ Cτ ′ and a ∈ Aτ ′, if c ρτ ′ a and a |=τ φ holds true, then c |=τ ′ φ holds
true. 10

Assume that |=b p is sound for each ρb ⊆ Cb × Ab.
11

Theorem 34 For all types, τ , all judgement forms, |=τ φ, are sound.

PROOF. The proof is an easy induction on the structure of τ . For example,
for τ = τ1 → τ2, say that c ρτ1 a and a |=τ1→τ2 f.φ. Then, f ](a) |=τ2 φ.
Since f \ ρτ1→τ2 f ], we have f \(c) ρτ2 f ](a), and by the induction hypothesis,
f \(c) |=τ2 φ.

10.2 Best precision of judgements

Say that a judgement form, |=τ ′ φ, is monotone if a |=τ ′ φ and a′ vτ a imply
a′ |=τ ′ φ, for all a, a′ ∈ Aτ .

12

We assume that all base-type judgements, |=b p, are monotone, and from this
it follows that all judgement forms are monotone. 13 As a consequence, we
have immediately Dams’s best-precision result:

Theorem 35 For a fixed family of logical relations and domains, concrete
transition function, R\ : Cb → IP(Cb), and Galois connection, IP(Cb)〈α, γ〉Ab,
we have that R

]
best : Ab → IPL(Ab) and R[

best : Ab → IPU(Ab) soundly prove
the most typed judgements, a |=τ φ, for all a ∈ Aτ ′.

PROOF. Given the domains, logical relations, and R\ : Cb → IP(Cb), say
that we have sound over- and underapproximation functions, R

]
0 : Ab →

IPL(Ab) and R[
0 : Ab → IPU(Ab) for interpreting the function symbol, R,

in the assertion language. Call the resulting family of typed judgements, |=0.

10 Judgement form |=τ1→τ2 f.φ shows that τ ′ need not be τ .
11 Example: Use elements a ∈ Ab as the base-typed assertions, define c |=b a iff
c ρb a, and then define a′ |=b a iff for all c ∈ Cb, c ρb a′ implies c |=b a.
12 The intuition is that γρτ (a′) ⊆ γρτ (a) ⊆ [[φ]] ⊆ Cτ , where [[φ]] = {c ∈ Cτ | c |=τ ′

φ}.
13 When ρb is U-closed and also (a |=b p iff for all c ρb a, c |=b p), then |=b p is
monotone.

35



Similarly, let |=best be the typed-judgement family when R is interpreted by
R

]
best and R[

best.

We must show, whenever a |=0
τ φ, that a |=best

τ φ as well. The result follows
by an induction on the structure of τ , and the only interesting case is the
judgement form, a |=0

b→τ ′ R.φ, for τ ′ ∈ {L(b), U(b)}. Consider τ ′ = L(b): By
hypothesis, R

]
0(a) |=0

L(b) φ. But R
]
best vAb→L(b)

R
]
0, by the definition of Galois

connection [10], and monotonicity tells us R
]
best(a) |=best

L(b) φ. Similar reasoning
holds for τ ′ = U(b).

Dams’s result was proved for a logic with conjunction and disjunction. So, we
define the connectives,

d |=τ φ1 ∧ φ2 iff d |=τ φ1 and d |=τ φ2

d |=τ φ1 ∨ φ2 iff d |=τ φ1 or d |=τ φ2

The definitions are sound and monotone. To revise Theorem 35 to include the
connectives, we must revise the proof so that it proceeds by induction on the
structure of the assertions, φ, rather than the types, τ , in |=τ φ. To do so,
it is simplest to discard the judgement form, |=τ φ, since Proposition 22 lets
us encode the “concrete judgement,” S |=τ φ, by S |=L(τ) ∀φ and encode the
“abstract judgement,” a |=τ φ, by ↓a |=L(τ) ∀φ when all base-typed relations,
ρb ⊆ Cb × Ab, are U-closed and monotone.

10.3 Validating ¬φ requires a refutation logic

For c ∈ C, we define c |=τ ¬φ iff c 6|=τ φ.

The logic developed so far validates properties, and we might have also a logic
that refutes them: Read a |=¬

τ ′ φ as “it is not possible that any value modelled
by a ∈ Aτ has property φ.” Here is the definition of a refutation logic:

a |=¬
b p is given, for a ∈ Ab

a |=¬
τ1→τ2

f.φ iff f ](a) |=¬
τ2

φ, for a ∈ Aτ1 , f
] ∈ Aτ1→τ2

T |=¬
U(τ) ∀φ iff there exists a∈̃T, a |=¬

τ φ, for T ∈ AU(τ)

T |=¬
L(τ) ∃φ iff for all a∈̃T, a |=¬

τ φ, for T ∈ AL(τ)

In the refutation logic, the roles of IPL(τ) and IPU(τ) are exchanged.

Definition 36 |=¬
τ ′ φ is sound iff for all c ∈ Cτ , a ∈ Aτ , c ρτ a and a |=¬

τ ′ φ
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imply c 6|=τ ′ φ.

Proposition 37 For all types, τ , |=¬
τ φ is sound and monotone, assuming

that the base-type judgements, |=¬
b pb, are. 14

A corollary of the above is a best-precision theorem, analogous to Theorem 35,
for the refutation logic. Indeed, when we add these two (sound and monotone)
definitions, unioning the two logics [28,31],

a |=τ ¬φ iff a |=¬
τ φ

a |=¬
τ ¬φ iff a |=τ φ

we maintain the best-precision theorem for the unioned logic:

Theorem 38 For a fixed family of logical relations and domains, concrete
transition function, R\ : Cb → IP(Cb), and Galois connection, IP(Cb)〈α, γ〉Ab,
we have that R

]
best : Ab → L(Ab) and R[

best : Ab → IPU(Ab) soundly prove the
most typed judgements, a |=τ φ and a |=¬

τ φ, for all a ∈ Aτ ′.

PROOF. A simultaneous but routine induction on assertions, φ, in |=τ φ and
|=¬

τ φ.

The Sagiv-Reps-Wilhelm TVLA system simultaneously calculates validation
and refutation logics[42]. Indeed, we might combine ρL(τ) and ρU(τ) into ρPτ ⊆
IP(C)×(IPL(A)×IPU(A)). This motivates sandwich- and mixed-powerdomains
in a theory of over-underapproximation of sets [6,21,25,28,29].

11 Related work

In addition to Dams’s work [13,15], three other lines of research deserve men-
tion:

14 The intuition is that a |=¬τ ′ φ implies γρτ (a) ∩ [[φ]] = {}. For base types, b, define
a |=¬b p iff for all c ∈ Cb, c ρb a implies c 6|=b p. When ρb is U-closed, |=¬b p is sound
and monotone.
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11.1 Loiseaux, et al. [32]

Loiseaux, et al. showed an equivalence between simulations and Galois con-
nections: For sets C and A, and ρ ⊆ C × A, they note that
IP(C)〈post[ρ], ˜pre[ρ]〉IP(A) is always a Galois connection. 15

For R ⊆ C × C and R] ⊆ A × A, the notion of simulation is equivalently
defined as R is ρ-simulated by R] iff R−1 · ρ ⊆ ρ · (R])−1 Treating R−1 and
(R])−1 as functions, we can define Galois-connection soundness as

(R])−1 is a sound overapproximation for R−1 with respect to γ iff
pre[R] ◦ γ vIP(A)→IP(C) γ ◦ pre[R]]

For ρ, R, R], Loiseaux, et al. prove
1. R is ρ-simulated by R] iff (R])−1 is sound for R−1 w.r.t. ˜pre[ρ].
2. a |= φ ∈ ACTL [8] implies c |= φ, for c ρ a.

11.2 Backhouse and Backhouse [5]

Backhouse and Backhouse saw that Galois connections can be characterized
within relational algebra, and they reformulated key results of Abramsky [1]:
ρ ⊆ C ×A is a pair algebra iff there exist α : C → A and γ : A → C such that
{(c, a) | α(c) vA a} = ρ = {(c, a) | c vC γ(a)}.

For the category, C , of partially ordered sets (objects) and binary relations
(morphisms), if an endofunctor, σ : C ⇒ C , is also

(1) monotonic: for relations, R,S ⊆ C × C ′, R ⊆ S implies σR ⊆ σS

(2) invertible: for all relations, R ⊆ C × C ′, (σR)−1 = σ(R−1),

then σ maps pair algebras to pair algebras, that is, σ is a unary type construc-
tor that lifts a Galois connection between C and A to one between σC and
σA.

The result generalizes to n-ary functors and applies to the standard functors,
τ × τ , τ → τ , List(τ), etc. But the result does not apply to IPL(τ) nor IPU(τ)
— invertibility (2) fails.

15 Indeed, it is an axiality [17]: ˜pre[ρ] = λT.{c | {a | c ρ a} ⊆ T} is ρ “reduced”
to an underapproximation function, and post[ρ] = λS.{a | exists c ∈ S, c ρ a}. A’s
partial ordering, if any, is forgotten.
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11.3 Ranzato and Tapparo [40]

Ranzato and Tapparo studied the completion of upper closure maps, µ :
IP(C) → IP(C). 16 Given a logic, L, of form, φ ::= opi(φj)0<j<|opi|, its se-
mantics, [[ · ]] ⊆ IP(C), has format

[[opi(φj)]] = fi([[φj]])0<j<|opi|

where each fi : IP(C)|opi| → IP(C) gives the semantics of connector opi. The
abstract semantics has form, [[opi(φj)]]

µ = (µ ◦ fi)([[φj]]
µ), and [[φ]]µ ∈ µ[IP(C)].

Upper closure µ is L-preserving if, for all S ⊆ C, µS ⊆ [[φ]]µ implies S ⊆ [[φ]],
and it is L-strongly preserving if the implies is replaced by iff.

Ranzato and Tapparo showed that the coarsest upper closure that is strongly
preserving is µL(S) = ∪{T ⊆ C | for all φ, S |= φ implies T |= φ}. Given
an L-preserving µ, Ranzato and Tapparo apply the domain-completion tech-
nique of Giacobazzi and Quintarelli [18] to complete µ to its coarsest, strongly
preserving form:

complete(µ) = gfp(λρ.µ u M (R{fi}(ρ)))

where u operates in the complete lattice of upper closures, M is the Moore
completion, and RF (µ) = {f(x) | f ∈ F, x ∈ µ[IP(C)]|f |} adds the image
points of the logical operations, fi, to the domain.

In subsequent work [41], Ranzato and Tapparo applied the construction to
synthesizing the Paige-Tarjan algorithm for computing the coarsest refinement
of a state partition that bisimulates a Kripke structure: A state partition is
expressed within a partitioning domain generated by an upper closure map,
and the resulting strongly preserving closure preserves the most properties of
the original Kripke structure within Hennessy-Milner logic.

This technique can be applied to the present paper to generate strongly pre-
serving, over- and underapproximating Galois connections.
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[17] M. Erné, J. Koslowski, A. Melton, and G. Strecker. A primer on Galois
connections. In Summer Conference on General Topology and Applications,
Vol. 704, pages 103–125. Annuals of N.Y. Academy of Sciences, 1993.

[18] R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and
refinements in abstract model checking. In Static Analysis Symposium, LNCS
2126, pages 356–373. Springer Verlag, 2001.

[19] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations
complete. J. ACM, 47:361–416, 2000.

[20] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided
underapproximation-widening for multi-process systems. In Symp. Princ. of
Programming Languages. ACM, 2005.

[21] C. Gunter. The mixed power domain. Theoretical Comp. Sci., 103:311–334,
1992.

[22] J. Hartmanis and R.E. Stearns. Pair algebras and their application to automata
theory. J. Information and Control, 7:485–507, 1964.

[23] M. Hecht. Flow Analysis of Computer Programs. Elsevier, 1977.

[24] R. Heckmann. Power domain constructions. PhD thesis, Univ. Saarbrücken,
1990.

[25] R. Heckmann. Set domains. In Proc. European Symp. Programming, LNCS,
pages 177–196. Springer Verlag, 1990.

[26] M. Hennessy and G. Plotkin. Full abstraction for a simple parallel programming
language. In Mathematical Foundations of Computer Science, LNCS 74, pages
108–120. Springer Verlag, 1979.

[27] M.C.B. Hennessy and Robin Milner. Algebraic laws for non-determinism and
concurrency. JACM, 32:137–161, 1985.

[28] M. Huth, R. Jagadeesan, and D.A. Schmidt. Modal transition systems:
a foundation for three-valued program analysis. In Proc. European Symp.
Programming, LNCS, pages 155–169. Springer Verlag, 2001.

[29] M. Huth, R. Jagadeesan, and D.A. Schmidt. A domain equation for refinement
of partial systems. Mathematical Structures in Computer Science, 14:469–505,
2004.

[30] N. Jones and F. Nielson. Abstract interpretation: a semantics-based tool for
program analysis. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, Vol. 4, pages 527–636. Oxford Univ.
Press, 1995.

41



[31] P. Kelb. Model checking and abstraction: a framework preserving both truth
and failure information. Technical Report Technical report, OFFIS, University
of Oldenburg, Germany, 1994.

[32] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for verification of concurrent systems. Formal Methods
in System Design, 6:1–36, 1995.

[33] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[34] A. Mycroft and N.D. Jones. A relational framework for abstract interpretation.
In Programs as Data Objects, LNCS 217, pages 156–171. Springer Verlag, 1985.

[35] F. Nielson. Two-level semantics and abstract interpretation. Theoretical Comp.
Sci., 69:117–242, 1989.

[36] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer Verlag, 1999.

[37] D. Park. Concurrency and automata in infinite strings. Lecture Notes in
Computer Science 104, pages 167–183. Springer, 1981.
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