Closed and logical relations for over- and under-approximation of powersets

David Schmidt

Kansas State University and École Polytechnique

www.cis.ksu.edu/~schmidt

Over-approximation states a property of a program's outputs

even \in Parity asserts " \forall even" — all concrete outputs in set S are even-valued. (*We might write* $S \rho$ even or $S \models$ even.)

The upper adjoint, γ , selects the largest set approximated by even:

 $\gamma(\mathbf{a}) = \cup \{S \mid S \rho \mathbf{a}\}$

Under-approximation *might be stated as the dual*

Here, even assets that all evens are *included* in the concrete outputs:

This often abstracts constants to nothing, e.g., $[2]_e^{\flat} = none$, where $\gamma(none) = \{\}$, because we require $\{2\} \supseteq \gamma(\alpha_u\{2\})$, forcing $\alpha_u\{2\} = none$.

Thus, many program phrases are under-approximated to nothing:

$$\llbracket \mathbf{x} + 2 \rrbracket_e^{\flat} = add^{\flat}(\llbracket \mathbf{x} \rrbracket_e^{\flat}, \llbracket 2 \rrbracket_e^{\flat}) = add^{\flat}(e(\mathbf{x}), \mathbf{none}) = \mathbf{none}$$

If we repair, say by including all constants, $n \in Nat$, in $Parity^{op}$, then to preserve $\gamma(\prod_{Parity^{op}} W) = \bigcup_{a \in W} \gamma(a)$, we must expand $Parity^{op}$ into $\mathcal{P}(Nat)^{op}$!

Under-approximation as existential quantification

If the over-approximating even ∈ Parity asserts "∀even,"

then the under-approximating even \in Parity^{op} should assert " \exists even" — there exists an even number in the program's outputs:

This provides a nontrivial under-approximation of constants, e.g., $[2]_e^{\flat} = even$, and expressions: $[x + 2]_e^{\flat} = add^{\flat}(e(x), even) = e(x)$.

But we cannot define γ : Parity^{op} $\rightarrow \mathcal{P}(Nat)^{op}$ in the usual way:

There is no best, minimal set that contains an even number. Indeed, even's concretization is not a single set — it is a set of sets:

$$\gamma(\text{even}) = \{S \in \mathcal{P}(Nat)^{op} \mid S \rho_u \text{ even}\}$$

This suggests that we work with *power-domains* in both the concrete and abstract domains.

Universal (over-approximating) interpretation: {even, odd} asserts \forall {even, odd} $\equiv \forall$ (even \lor odd) — all outputs are even- or odd-valued: Use a lower power-domain (lower sets) for the abstract domain.

Existential (under-approximating) interpretation: {even, odd} asserts \exists {even, odd} $\equiv \exists$ even $\land \exists$ odd — there exists an evenvalued and an odd-valued output: Use an upper power-domain (upper sets).

Dennis Dams's mixed transition systems employ the universal and existential abstractions

A transition $\Sigma = \{c_0, c_1, c_2\}$ system: $R = \{(c_0, c_1), (c_1, c_2), (c_2, c_0)\}$

c0 c1 c2

Approximating the states: Note: \perp and \top omitted for brevity.

$$\alpha \{c_0\} = a_0, \quad \alpha \{c_1\} = a_{12} = \alpha \{c_2\} = \alpha \{c_1, c_2\}$$

That is, $c_0 \rho a_0$, $c_1 \rho a_{12}$, and $c_2 \rho a_{12}$.

Over-approximation transitions ("may"):

 $R^{\sharp} = \{(a_0, a_{12}), (a_{12}, a_{12}), (a_{12}, a_0)\} \qquad a0 \leq z \leq z \leq z$

As a function, $R^{\sharp}(\mathfrak{a}_0) = \{\mathfrak{a}_{12}\} \equiv \forall \mathfrak{a}_{12}$ and $R^{\sharp}(\mathfrak{a}_{12}) = \{\mathfrak{a}_0, \mathfrak{a}_{12}\} \equiv \forall (\mathfrak{a}_0 \lor \mathfrak{a}_{12}).$

Under-approximation transitions ("*must*"):

 $R^{\flat} = \{(a_0, a_{12})\} \qquad a0 \longrightarrow a12$ As a function, $R^{\flat}(a_0) = \{a_{12}\} \equiv \exists a_{12} \text{ and } R^{\flat}(a_{12}) = \{\} \equiv \exists () \equiv \bot$

The mixed transition system is $(\{a_0, a_{12}\}, R^{\flat}, R^{\sharp})$.

$$c0 \qquad c1 \qquad a0 \leq z \leq z \leq a12^{b} \qquad a0 \longrightarrow a12$$

From Galois connection, $\mathcal{P}(C)\langle \alpha, \gamma \rangle A$, Dams defines this *simulation* relation: $c \rho \alpha$ iff $c \in \gamma(\alpha)$. From $R \subseteq C \times C$, he defines

 $aR^{\sharp}a' \text{ iff } a' \in \{\alpha(Y) \mid Y \in \min\{S' \mid R^{\exists \exists}(\gamma(a), S')\}\}$ $aR^{\flat}a' \text{ iff } a' \in \{\alpha(Y) \mid Y \in \min\{S' \mid R^{\forall \exists}(\gamma(a), S')\}\}$

and he proves $R \triangleleft_{\rho} R^{\sharp}$, that is, $R^{\sharp} \rho$ -simulates R $R^{\flat} \triangleleft_{\rho^{-1}} R$, that is, R^{\flat} is ρ -simulated by R

This gives him **soundness** for \Box (\forall **R**) and \diamond (\exists **R**):

Define $a \models \Box \phi$ *iff for all* a', $aR^{\sharp}a'$ *implies* $a' \models \phi$ $a \models \Diamond \phi$ *iff there exists* a' *such that* $aR^{\flat}a'$ *and* $a' \models \phi$ **Then,** $a \models \phi$ **and** $c \rho a$ **imply** $c \models \phi$.

And with lots of hard work, he proves **best precision**: For all ρ -, ρ^{-1} -simulations of R, R^{\sharp} and R^{\flat} preserve the *most* \Box \diamond -properties.

Can we derive R^{\$} **and** R^{\$} **and prove soundness and precision directly from Galois-connection theory?**

Yes — we treat $R \subseteq C \times C$ as $R : C \rightarrow \mathcal{P}(C)$.

Then, we have $\mathbb{R}^{\sharp} : \mathbb{A} \to \mathcal{P}_{L}(\mathbb{A})$, where $\mathcal{P}_{L}(\cdot)$ is a *lower powerset* (\subseteq) constructor.

We "lift" the Galois connection, $\mathcal{P}(C)\langle \alpha_{\tau}, \gamma_{\tau} \rangle A$, on the states to a Galois connection on powersets, $F[\mathcal{P}(C)]\langle \alpha_{F[\tau]}, \gamma_{F[\tau]} \rangle \mathcal{P}_{L}(A)$, so that

- **1.** $R^{\sharp} \rho$ -simulates R iff $ext_{F[\tau]}(R) \circ \gamma_{\tau} \sqsubseteq_{A \to F[\mathcal{P}(C)]} \gamma_{F[\tau]} \circ R^{\sharp}$
- **2.** the soundness of $a \models \Box \phi$ follows from Item **1**
- **3.** $R^{\sharp}_{best} = \alpha_{F[\tau]} \circ ext_{F[\tau]}(R) \circ \gamma_{\tau}$

We do similar work for $\mathbb{R}^{\flat}_{best} : \mathbb{A} \to \mathcal{P}_{U}(\mathbb{A})$ and $\Diamond \phi$, where $\mathcal{P}_{U}(\cdot)$ is an *upper (\supseteq-ordered) powerset* constructor.

For over-approximation, we can use F = id or $F = \mathcal{P}_L(\cdot)$; for under-approximation, we must use $F = \mathcal{P}_L(\cdot^{op})$. (We will see why....)

Our results from reworking Dams's constructions

- 1. Starting from approximation relations, $\rho \subseteq C \times A$, we generate Galois connections from *U-GLB-L-LUB-closed* relations cf. [*Mycroft-Jones 86, Cousot-Cousot JLC 92*].
- 2. We define *lower and upper powerset constructions*, weaker forms of powerdomain but strong enough for abstraction studies. They are the *join completions* of [*Cousot-Cousot ICCL 94*].
- 3. We use powerset types in a family of *logical relations*, show how the family preserves the closure properties in 1., and prove that a simulation proof is an instance of proof via logical relations. We obtain Dams's most-precise simulation results "for free."
- 4. We extract *validation and refutation logics* from the logical relations, state their resemblance to Hennessy-Milner logic (and description logic), and obtain easy proofs of soundness.

Closed approximation relations

Closed relations and Galois connections

Let C and A be complete lattices, and let $\rho \subseteq C \times A$.

 $c \: \rho \: a$ means that c is modelled/approximated by a

Definition: For all $c, c' \in C$, $a, a' \in A$, for $\rho \subseteq C \times A$, ρ is

- 1. U-closed iff $c \rho a$, $a \sqsubseteq a'$ imply $c \rho a'$
- 2. *GLB-closed* iff $c \rho \sqcap \{a \mid c \rho a\}$
- 3. *L-closed* iff $c \rho a$, $c' \sqsubseteq c$ imply $c' \rho a$
- 4. *LUB-closed* iff $\sqcup \{c \mid c \rho a\} \rho a$

Origins: Hartmanis and Stearns 1964 (pair algebras); Mycroft-Jones 1986 (LU-closure); Cousot-Cousot JLC 1992; Backhouse-Backhouse 1998

Proposition: For L-LUB-U-GLB-closed $\rho \subseteq C \times A$, $C\langle \alpha_{\rho}, \gamma_{\rho} \rangle A$ is a Galois connection, where

- $\blacklozenge \ \alpha_{\rho}(c) = \sqcap \{ a \mid c \ \rho \ a \}$
- $\blacklozenge \gamma_{\rho}(\mathfrak{a}) = \sqcup \{ c \mid c \rho \mathfrak{a} \}$

Intuition: U-closed makes γ_{ρ} mono; L-closed makes α_{ρ} mono; GLB-closed ensures α_{ρ} selects the most precise sound answer; LUB-closed ensures γ_{ρ} selects the most general sound answer.

Note that $c \rho a$ iff $c \sqsubseteq_C \gamma_{\rho} a$ iff $\alpha_{\rho} c \sqsubseteq_A a$.

Proposition: For Galois connection, $C\langle \alpha, \gamma \rangle A$, define $\rho_{\alpha\gamma} \subseteq C \times A$ as $\{(c, a) \mid \alpha c \sqsubseteq a\}$. Then,

 $\rho_{\alpha\gamma}$ is L-LUB-U-GLB-closed and $\langle \alpha_{\rho_{\alpha\gamma}}, \gamma_{\rho_{\alpha\gamma}} \rangle = \langle \alpha, \gamma \rangle$.

"Completing" U-GLB-closed $\rho \subseteq C \times A$ into a Galois connection between $\mathcal{P}(\overline{C})$ and A

Here is a standard technique: Let C be a (discretely ordered) set and let A be a complete lattice.

For $\rho \subseteq C \times A$, define $\overline{\rho} \subseteq \mathcal{P}(C) \times A$ as $S \overline{\rho} \mathfrak{a}$ *iff for all* $c \in S$, $c \rho \mathfrak{a}$.

Theorem: If ρ is U-GLB-closed, then $\bar{\rho}$ is L-LUB-U-GLB-closed, and $\mathcal{P}(C)\langle \alpha_{\bar{\rho}}, \gamma_{\bar{\rho}}\rangle A$ is a Galois connection, where $\gamma_{\bar{\rho}} a = \sqcup \{S \mid S \bar{\rho} a\} = \{c \mid c \rho a\}.$

Example: Let Int be the discretely ordered set of integers: $\rho \subseteq Int \times Sign$

 ρ is L-U-GLB-closed but not LUB-closed. It is completed to $\bar{\rho} \subseteq \mathcal{P}(Int) \times Sign.$

Lower powersets

D's "powerset" is a complete lattice, E, with monotone *singleton* and *union* operations: $PD = (E, \sqsubseteq_E, \{\cdot\} : D \to E, \uplus : E \times E \to E)$. Define *membership* as $c \in S$ iff $\{c\} \uplus S = S$.

A *lower powerset*, $\mathcal{P}_{L}(D)$, treats \sqsubseteq_{E} as \subseteq : For all $S_{1}, S_{2} \in E$, $S_{1} \sqsubseteq_{E} S_{2}$ iff (for all $x \in S_{1}$, there exists $y \in S_{2}$ such that $x \sqsubseteq_{D} y$)

Down-set (order-ideal) completion: For $d \in D$, $S \subseteq D$, define $\downarrow d = \{e \in D \mid e \sqsubseteq_D d\}$ and $\downarrow S = \cup \{\downarrow d \mid d \in S\}$.

Define $\mathcal{P}_{\downarrow}(D) = (\{\downarrow S \mid S \subseteq D\}, \subseteq, \downarrow, \cup)$ —all down-closed subsets of D

Upper powersets

There is a dual construction:

An *upper powerset*, $\mathcal{P}_{U}(D)$, treats \sqsubseteq_{E} as \supseteq : For all $S_1, S_2 \in E$,

 $S_1 \sqsubseteq_E S_2$ iff (for all $y \in S_2$, there exists $x \in S_1$ such that $x \sqsubseteq_D y$)

Up-set (filter) completion: For $d \in D$ and $S \subseteq D$, define $\uparrow d = \{e \in D \mid d \sqsubseteq_D e\}$ and $\uparrow S = \cup \{\uparrow d \mid d \in S\}$.

Define $\mathcal{P}_{\uparrow}(D) = (\{\uparrow S \mid S \subseteq D\}, \supseteq, \uparrow, \cup)$ —all up-closed subsets of D

Logical relations

We now attach typings to the relations. Here are the types:

$\tau ::= b \mid \tau_1 \to \tau_2 \mid \mathcal{P}_L(\tau) \mid \mathcal{P}_U(\tau) \mid \bar{\tau}$

 $\bar{\tau}$ is a special case of $\mathcal{P}_L(\tau)$ and names the completion of U-GLB-closed $\rho \subseteq C \times A$ to $\bar{\rho} \subseteq \mathcal{P}(C) \times A$, seen earlier

Let C_{τ} and A_{τ} be p.o.-sets of the appropriate form (e.g., $A_{\tau_1 \to \tau_2}$ is a lattice of monotone functions, $A_{\mathcal{P}_{U}(\tau)}$ is an upper powerset, etc.)

We define this family of logical relations, $\rho_{\tau} \subseteq C_{\tau} \times A_{\tau}$:

 ρ_b is given

f $\rho_{\tau_1 \to \tau_2} f^{\sharp}$ iff for all $c \in C_{\tau_1}, a \in A_{\tau_1}, c \rho_{\tau_1} a$ implies $f(c) \rho_{\tau_2} f^{\sharp}(a)$ S $\rho_{\mathcal{P}_L(\tau)} T$ iff for all $c \in S$, there exists $a \in T$ such that $c \rho_{\tau} a$ S $\rho_{\mathcal{P}_U(\tau)} T$ iff for all $a \in T$, there exists $c \in S$ such that $c \rho_{\tau} a$ S $\rho_{\tau} a$ iff for all $c \in S, c \rho_{\tau} a$. That is, S $\rho_{\tau} a$ iff S $\rho_{\mathcal{P}_L(\tau)} \{a\}$

Simulation relations are logical relations

Binary relations are the key component in simulation proofs:

For $\rho \subseteq C \times A$, transition relations, $R \subseteq C \times C$, $R^{\sharp} \subseteq A \times A$,

Definition: R^{\sharp} *simulates* R, written $R \triangleleft_{\rho} R^{\sharp}$, iff for all $c, c' \in C$ and $a \in A$,

 $c \rho \alpha$ and c R c' imply there exists $\alpha' \in A$ s.t. $\alpha R^{\sharp} \alpha'$ and $c' \rho \alpha'$.

Say that we represent R and R^{\sharp} as multi-functions, $R : C \to \mathcal{P}_L(C)$ and $R^{\sharp} : A \to \mathcal{P}_L(A)$:

Theorem:

- 1. $R \triangleleft_{\rho_b} R^{\sharp}$ iff $R \rho_{b \rightarrow \mathcal{P}_L(b)} R^{\sharp}$
- 2. $\mathbb{R}^{\flat} \triangleleft_{\rho_{b}^{-1}} \mathbb{R}$ iff $\mathbb{R} \rho_{b \rightarrow \mathcal{P}_{U}(b)} \mathbb{R}^{\flat}$

Closure properties of logical relations

f $\rho_{\tau_1 \to \tau_2} f^{\sharp}$ iff for all $c \in C_{\tau_1}$, $a \in A_{\tau_1}$, $c \rho_{\tau_1} a$ implies $f(c) \rho_{\tau_2} f^{\sharp}(a)$ S $\rho_{\mathcal{P}_L(\tau)} T$ iff for all $c \in S$, there exists $a \in T$ such that $c \rho_{\tau} a$ S $\rho_{\mathcal{P}_U(\tau)} T$ iff for all $a \in T$, there exists $c \in S$ such that $c \rho_{\tau} a$ S $\rho_{\tau} a$ iff for all $c \in S$, $c \rho_{\tau} a$

- $\begin{array}{ll} \text{Theorem:} \ \ \text{For} \ \rho_{\tau} \subseteq C_{\tau} \times A_{\tau} \ \text{and for} \\ F[\tau] \in \{\tau' \to \tau, \ \mathcal{P}_L(\tau), \ \mathcal{P}_U(\tau), \ \bar{\tau}\}, \end{array}$
- If ρ_{τ} is L-closed, then so is $\rho_{F[\tau]}$.
- If ρ_{τ} is U-closed, then so is $\rho_{F[\tau]}$.
- If ρ_{τ} is U-GLB-closed, then so are $\rho_{\tau' \to \tau}$, $\rho_{\bar{\tau}}$, and $\rho_{\mathcal{P}_{L}(\tau)}$.
- If ρ_{τ} is L-LUB-closed, then so are $\rho_{\tau' \to \tau}$ and $\rho_{\mathcal{P}_{U}(\tau)}$.

Proposition: $\rho_{\bar{\tau}}$ and $\rho_{\mathcal{P}_L(\tau)}$ are always L-closed, and $\rho_{\mathcal{P}_U(\tau)}$ is always U-closed.

Alas, LUB-closure is not guaranteed for $\mathcal{P}_{L}(\tau)$ and neither is GLB-closure for $\mathcal{P}_{U}(\tau)$.

But there are some sufficient conditions upon the choice of lower- and upper-powerset that ensure these closures.

Here are two simple but useful examples:

Proposition: $\rho_{\mathcal{P}_L(\tau)} \subseteq \mathcal{P}_{\downarrow}(C_{\tau}) \times \mathcal{P}_L(A_{\tau})$ is always LUB-closed.

Proposition: $\rho_{\mathcal{P}_{U}(\tau)} \subseteq \mathcal{P}_{U}(C_{\tau}) \times \mathcal{P}_{\uparrow}(A_{\tau})$ is aways GLB-closed.

Dams's results

Synthesizing a most-precise simulation

Dams proved, for $\mathcal{P}(C)\langle \alpha, \gamma \rangle A$ and transition relation $R \subseteq C \times C$, that the most-precise, sound abstract relation $R_0 \subseteq A \times A$ is

 $\mathsf{R}_{\mathsf{0}}(\mathfrak{a},\mathfrak{a}') \text{ iff } \mathfrak{a}' \in \{ \alpha(Y) \mid Y \in \min\{S' \mid \mathsf{R}^{\exists \exists}(\gamma(\mathfrak{a}),S')\} \}$

Reformatted as a function, this reads

 $\mathbf{R}_{0}(\mathbf{a}) = \{ \alpha(s') \mid \exists s \in \gamma(\mathbf{a}), s' \in \mathbf{R}(s) \}$

We can derive Dams's result: Given U-GLB-closed $\rho_b \subseteq C \times A$ and transition function $R : C \to \mathcal{P}(C)$, we derive $R_0 : A \to \mathcal{P}_{\downarrow}(A)$:

- 1. We use the closure properties to generate L-LUB-U-GLB-closed relations, $\rho_{\bar{b}} \subseteq \mathcal{P}(C) \times A$ and $\rho_{\mathcal{P}_{L}(b)} \subseteq \mathcal{P}(C) \times \mathcal{P}_{\downarrow}(A).$
- 2. We synthesize $R^{\sharp}_{best} : A \to \mathcal{P}_{\downarrow}(A)$ in the expected way: $R^{\sharp}_{best} = \alpha_{\rho_{\mathcal{P}_{I}}(b)} \circ ext(R) \circ \gamma_{\rho_{\overline{b}}} = R_{0}$

Synthesizing a most-precise dual simulation

Dams proved, for $\mathcal{P}(C)\langle \alpha, \gamma \rangle A$ and $R \subseteq C \times C$, that the best underapproximating relation $R_1 \subseteq A \times A$ is

 $\mathbf{R}_{1}(\mathfrak{a},\mathfrak{a}') \text{ iff } \mathfrak{a}' \in \{ \mathfrak{a}(Y) \mid Y \in \min\{S' \mid \mathbb{R}^{\forall \exists}(\gamma(\mathfrak{a}),S')\} \}$

Reformatted as a function, this reads

 $R_1(\alpha) = \{ \alpha(Y) \mid Y \in \min\{S' \mid \text{for all } s \in \gamma(\alpha), R(s) \cap S' \neq \{\} \} \}$

We must work a bit harder, but we can derive the same result:

Given $R: C \to \mathcal{P}(C)$ and U-GLB-closed $\rho_b \subseteq C \times A$, we derive $R_1: A \to \mathcal{P}_{\uparrow}(A)$

We derive $R_1 : A \to \mathcal{P}_{\uparrow}(A)$:

- 1. We generate L-LUB-U-GLB-closed $\rho_{\bar{b}} \subseteq \mathcal{P}(C) \times A$
- 2. We generate $\rho_{\bar{\mathcal{P}}_{u}(b)} \subseteq \mathcal{P}_{\downarrow}(\mathcal{P}(C)^{op}) \times \mathcal{P}_{\uparrow}(A)$ in stages:
 - (a) begin with U-GLB-closed $\rho_b \subseteq C \times A$ (because C is discretely ordered, ρ_b is L-closed also);
 - (b) *lift to sets of answers*: lift the relation to L-U-GLB-closed $\rho_{\mathcal{P}_{U}(\tau)} \subseteq \mathcal{P}(C)^{op} \times \mathcal{P}_{\uparrow}(A);$
 - (c) *introduce LUB-closure (giving a Galois connection):* complete the relation to $\rho_{\bar{\mathcal{P}}_{U}(\tau)} \subseteq \mathcal{P}_{\downarrow}(\mathcal{P}(C)^{op}) \times \mathcal{P}_{\uparrow}(A)$.
- 3. We synthesize $\mathbb{R}^{\flat}_{best} : \mathbb{A} \to \mathcal{P}_{\uparrow}(\mathbb{A})$:

 $\mathbb{R}^{\flat}_{\text{best}} = \alpha_{\rho_{\bar{\mathcal{P}}_{U}(\flat)}} \circ ext(\{\!\!\{\cdot\}\!\!\} \circ \mathbb{R}) \circ \gamma_{\rho_{\bar{b}}} = \mathbb{R}_{1}$

where $ext(\{ \cdot \} \circ R) : \mathcal{P}(C)^{op} \to \mathcal{P}_{\downarrow}(\mathcal{P}(C)^{op})$ maps a set of concrete arguments to the set of R-successor sets of the arguments.

As seen in the talk's introductory example, the relation in (b) lacks LUB-closure.

Validation and refutation logics

A logic generated from the logical relations

We define this language of assertions,

 $\phi ::= p_b \mid f.\phi \mid \forall \phi \mid \exists \phi$

and this semantics of typed judgements for both concrete domains, C_{τ} , and abstract domains, A_{τ} :

$$\begin{split} d &\models_{b} p_{b} \text{ is given, for } d \in D_{b} \\ d &\models_{\tau_{1} \to \tau_{2}} f.\varphi \text{ if } f(d) \models_{\tau_{2}} \varphi, \text{ for } d \in D_{\tau_{1}}, f \in D_{\tau_{1} \to \tau_{2}} \\ S &\models_{\mathcal{P}_{L}(\tau)} \forall \varphi \text{ if for all } d \in S, d \models_{\tau} \varphi, \text{ for } S \in D_{\mathcal{P}_{L}(\tau)} \\ S &\models_{\mathcal{P}_{U}(\tau)} \exists \varphi \text{ if there exists } d \in S \text{ such that } d \models_{\tau} \varphi, \text{ for } S \in D_{\mathcal{P}_{U}(\tau)} \end{split}$$

The judgement form for $\overline{\tau}$ is a special case of $\mathcal{P}_{L}(\tau)$'s:

$$\begin{split} S &\models_{\bar{\tau}} \varphi \text{ if } c \models_{\tau} \varphi, \text{ for all } c \in S, \, S \in \mathcal{P}_L(C_{\tau}) \\ a &\models_{\bar{\tau}} \varphi \text{ if } a \models_{\tau} \varphi, \text{ for } a \in A_{\tau} \end{split}$$

Some "syntactic sugar":

 $d \models \forall R \varphi$ (that is, $d \models \Box \varphi$) abbreviates $d \models_{\tau_1 \rightarrow \mathcal{P}_L(\tau_2)} R. \forall \varphi$

 $d \models \exists R \varphi (d \models \Diamond \varphi)$ abbreviates $d \models_{\tau_1 \rightarrow \mathcal{P}_U(\tau_2)} R. \exists \varphi$

This reveals that the logic extracted from the logical relations is a variant of *Hennessy-Milner logic* or *description logic* or *branching-time temporal logic*.

$\tau ::= b \mid \tau_1 \to \tau_2 \mid \mathcal{P}_L(\tau) \mid \mathcal{P}_U(\tau) \mid \bar{\tau}$

Assume, for all function symbols, f, typed $\tau_1 \rightarrow \tau_2$, there are interpretations $f: C_{\tau_1} \rightarrow C_{\tau_2}$, and $f^{\sharp}: A_{\tau_1} \rightarrow A_{\tau_2}$, such that $f \rho_{\tau_1 \rightarrow \tau_2} f^{\sharp}$. Also, we formalize when judgements $a \models_{\tau} \phi$ are *well formed*.

Definition: $\models_{\tau} \phi$ *is* ρ_{τ} *-sound* iff for all $c \in C_{\tau_1}$, $a \in A_{\tau_2}$,

 $a \models_{\tau} \phi$ is well formed, holds true, and $c \rho_{\tau} a$ imply $c \models_{\tau} \phi$.

Assume that all $\models_b p$ are ρ_b -sound.

Theorem: For all types, τ , we have that $\models_{\tau} \phi$ are ρ_{τ} -sound.

We can add the logical connectives,

 $d \models_{\tau} \phi_1 \land \phi_2 \text{ if } d \models_{\tau} \phi_1 \text{ and } d \models_{\tau} \phi_2$ $d \models_{\tau} \phi_1 \lor \phi_2 \text{ if } d \models_{\tau} \phi_1 \text{ or } d \models_{\tau} \phi_2$

and prove these ρ_{τ} -sound as well.

Validating ¬ ϕ *requires a* refutation logic

Define $c \models_{\tau} \neg \phi$ iff $c \not\models_{\tau} \phi$.

We have a logic that validates ϕ for $c \in C$ by validating it for $a \in A$, so we might have also a logic that *refutes* properties similarly:

Read $\mathbf{a} \models_{\tau}^{pos} \mathbf{\phi}$ as "it is not possible that any value modelled by \mathbf{a} has property $\mathbf{\phi}$."

 $a \models_{b}^{pos} p \text{ is given, for } a \in A_{b}$ $a \models_{\tau_{1} \to \tau_{2}}^{pos} f.\phi \text{ if } f(a) \models_{\tau_{2}}^{pos} \phi, \text{ for } a \in A_{\tau_{1}}, f \in A_{\tau_{1} \to \tau_{2}}$ $T \models_{\mathcal{P}_{u}(\tau)}^{pos} \forall \phi \text{ if exists } a \in T, a \models_{\tau}^{pos} \phi, \text{ for } T \in A_{\mathcal{P}_{u}(\tau)}$ $T \models_{\mathcal{P}_{L}(\tau)}^{pos} \exists \phi \text{ if for all } a \in T, a \models_{\tau}^{pos} \phi, \text{ for } T \in A_{\mathcal{P}_{L}(\tau)}$ $a \models_{\tau}^{pos} \phi \text{ if } a \models_{\tau}^{pos} \phi, \text{ for } a \in A_{\tau}$

Definition: $\models_{\tau}^{pos} \phi$ is ρ_{τ} -sound iff for all $c \in C_{\tau_1}$, $a \in A_{\tau_2}$, $a \models_{\tau}^{pos} \phi$ is well formed, holds, and $c \rho_{\tau} a$ imply $c \not\models_{\tau} \phi$.

Theorem: All $\models_{\tau}^{pos} \phi$ are ρ_{τ} -sound.

The case for $\models_{\bar{\tau}}^{pos} \phi$ shows significant loss of precision: $a \models_{\bar{\tau}}^{pos} \phi$ and $S \rho_{\bar{\tau}} a$ imply for all $c \in S$, that $c \models_{\tau}^{pos} \phi$, whereas we need only show that *there exists* some $c \in S$, such that $c \models_{\tau}^{pos} \phi$.

Corollary: $a \models_{\tau} \neg \phi$ *if* $a \models_{\tau}^{pos} \phi$ is sound for ρ_{τ} .

 $a \models_{\tau}^{pos} \neg \varphi$ *if* $a \models_{\tau} \varphi$ is sound for ρ_{τ} .

(*i*) In the refutation logic, $\models_{\tau}^{\neg pos} \phi$, the roles of $\mathcal{P}_{L}(\tau)$ and $\mathcal{P}_{U}(\tau)$ are exchanged. This, as well as the need to validate a mix of \forall and \exists , means we must employ \mathbb{R}^{\sharp} and \mathbb{R}^{\flat} to validate/refute assertions —this is the idea behind mixed/modal transition systems.

(ii) The Sagiv-Reps-Wilhelm TVLA system simultaneously calculates validation and refutation logics.

(iii) We might approximate every concrete set by a *pair* of lower and upper approximations: $\rho_{P\tau} \subseteq PC \times (\mathcal{P}_L(A) \times \mathcal{P}_U(A))$. This motivates sandwich- and mixed-powerdomains for over-under-approximation of sets [Huth-Jagadeesan-Schmidt].

References

Primary:

- 1. This talk: www.cis.ksu.edu/~schmidt/papers
- 2. K. Backhouse and R. Backhouse. Galois Connections and Logical Relations. Mathematics of Program Construction, LNCS 2386, 2002.
- 3. P. Cousot and R.Cousot. Abstract interpretation frameworks. *Journal of Logic and Computation* 2 (1992).
- 4. P. Cousot and R.Cousot. Higher-order abstract interpretation. IEEE Conf. on Computer Languages, 1994.
- 5. D. Dams. Abstract interpretation and partition refi nement for model checking. PhD thesis, Univ. Eindhoven, 1996.
- 6. C. Loiseaux, et al. Property preserving abstractions for the verification of concurrent systems. *Formal Methods in System Design* 6 (1995).
- 7. A. Mycroft and N.D. Jones. A relational framework for abstract interpretation. In Programs as Data Objects, LNCS 217, 1985.
- 8. G. Plotkin. Domain theory. Lecture notes, Univ. Pisa 1982.

Secondary:

- S. Abramsky, Abstract interpretation, logical relations, and Kan extensions. J. Logic and Computation 1 (1990).
- 2. F. Baader, et al. *The Description Logic Handbook.* Cambridge Univ. Press 2003.
- D. Dams, R. Gerth, O. Grumberg. Abstract Interpretation of Reactive Systems. ACM TOPLAS 19 (1997).
- 4. J. Hartmanis and R. Stearns. Pair algebras and their application to automata theory. *Information and Control* 7 (1964).
- 5. R. Heckman. *Powerdomain constructions.* PhD thesis, Saarbrücken, 1990.
- M. Huth, R. Jagadeesan, D. Schmidt. Modal transition systems: a foundation for three-valued program analysis, ESOP 2002. Also, A domain equation for refi nement of partial systems, *J. MSCS*, in press.
- M. Sagiv, T. Reps, R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic. 26th ACM POPL, 1999.
- 8. D.A. Schmidt. Binary Relations for Program Abstraction. In The Essence of Computation, Springer LNCS 2566, 2002.