
Closed and logical relations for
over- and under-approximation of
powersets

David Schmidt

Kansas State University
and École Polytechnique

� � � � �� � �� �� � �� � 	�

 � ��
 � � �

��� � ���

Background

��� � ���

Over-approximation states a property of a
program’s outputs

Nat }{ 2n | n

∋

αo
U
S

oddeven

any

none

P(Nat) Parityγ

�� � � � � �� � � 	 asserts “
 �� � � ” — all concrete outputs in set �

are even-valued. (We might write � � �� � � or �
�� �� � � .)

The upper adjoint, � , selects the largest set approximated by

�� � � :

{ 2n | n

∋

Nat }

even
{0,2}

{0} {2}

{2,4,8,16,...}

ρ

γ

{ }

�� � � � � � �
 � � � �
��� � ���

Under-approximation might be stated as the dual

Here, �� � � assets that all evens are included in the concrete
outputs:

Nat }{ 2n | n

∋
U

αu

P(Nat)op opParity

S

oddeven

none

any

γ

This often abstracts constants to nothing, e.g., � � � � ��� � � � � �	 , where

� � � �	 � �
� , because we require
�� � �
� � �
�� � � , forcing

� �
�� � � � � �	 .

Thus, many program phrases are under-approximated to nothing:

� �� � � � ��� � � � � � �� � �� � ��� ��� � � � � � � � � � � � � �� 	 � � �� � � �	 � � � � �	

If we repair, say by including all constants, � �� �� , in � � ! � "$# % , then to preserve

&' () *+ ,- .0/ 12 304 5 * 67 &' � 3 , we must expand � � ! � " # % into 8 ' � �� 3# % !

��� � �:9

Under-approximation as existential quantification

If the over-approximating �� � � � � � � � � 	 asserts “
 �� � � ,”

{ 2n | n

∋

Nat }P(Nat)

{0,2}

{0} {2}

{2,4,8,16,...}

{ }
o

even

ρ

Parity

then the under-approximating �� � � � � �� � � 	�� � should assert
“� �� � � ” — there exists an even number in the program’s outputs:

P(Nat)op opParity

{2,4,8,16,...}

Nat

{0,1} even
{0}

uρ

{2}

{5,7,9,12}

This provides a nontrivial under-approximation of constants, e.g.,

� � � � � � � � 	 �	 � , and expressions: � �� � � � � � � � � � � �� 	 � � �� 	 �	 � � � 	 � � � .

��� � ���

But we cannot define � � � �� � � 	 � � � � ��� � � �� � in the usual
way:

?P(Nat)op
γ

{5,7,9,12}
{2}

{2,4,8,16,...}

Nat

{0,1} even
{0}

ρu

There is no best, minimal set that contains an even number.

Indeed, �� � � ’s concretization is not a single set — it is a set of
sets:

� � �� � � � � � � � � ��� � � �� �
 � � � �� � � �

This suggests that we work with power-domains in both the concrete

and abstract domains.

��� � ���

Universal (over-approximating) interpretation: � �� � � � � � � �

asserts
 � �� � � � � � � ���
� �� � � � � � � � — all outputs are even- or

odd-valued: Use a lower power-domain (lower sets) for the abstract domain.

{ S | S has even numbers only }

{ S | S is a subset of Nat }

{ }

γ

P (Parity)

{ }

{even,none} {odd,none}
{none}

{even,odd,none}

{any,even,odd,none}

(P(Nat))P

∀(even v odd)=

Existential (under-approximating) interpretation: � �� � � � � � � �

asserts� � �� � � � � � � ��� � �� � �� � � � � — there exists an even-

valued and an odd-valued output: Use an upper power-domain (upper sets).

{ S | S is nonempty }

{ S | S is a subset of Nat }

{ S | S has an even }

{ S | S has an even and an odd }

{ }

op

γ

P (Parity)

{any}

{ }

{even,odd,any}

{even,any} {odd,any}

{none,even,odd,any}

(P(Nat))P

∃= even ∃ oddv

��� � ���

Dennis Dams’s mixed transition systems employ
the universal and existential abstractions

A transition

system:

� �
�� � � � �� � � �

� �
� � � � � � �� � � �� � � �� � � � � � � ��

c0

c1

c2

Approximating the states: Note: � and � omitted for brevity.

	 ��
 � � � � � , 	 �
 � � � � � � � 	 �
 � � � 	 �
 � �
 � �

That is, �
 � �
 , � � � � �� , and � � � � �� .

Over-approximation transitions (“may”):

��� � �� � � � � � � � �� � � � � � � � � �� � � � � � � � � a0 a12

As a function, ��� ' �
 304 � � �� ��� � � �� and �� ' � �� 34 � �
 � � �� ��� �' �
� � �� 3 .
Under-approximation transitions (“must”):

� � � �� � � � � � � � � a0 a12

As a function, ��� ' �
 304 � � �� ��� � � �� and �� ' � �� 34 � �� �' 3� �
The mixed transition system is� � � � � � � � � � � � � ��� � .

��� � �!

c0

c1

c2
a0 a12 a0 a12

From Galois connection, � � � � � � �
 �� , Dams defines this simulation
relation: � � � iff� �
� � � . From � � � � � , he defines

� �� �	 iff �	 �
 ��
 ��
 ��
 �
�� 	 � ��� � �
� � �� � 	 �� �

� � � �	 iff �	 �
 ��
 ��
 ��
 �
�� 	 � ��� � �
� � �� � 	 �� �

and he proves � � � �� , that is, �� � -simulates �

� � � ��� � � , that is, � � is � -simulated by �

This gives him soundness for � (� �) and � (� �):

Define � � � � � iff for all �	 , � �� �	 implies �	 � � �

� � � � � iff there exists �	 such that � � � �	 and �	 � � �

Then, �
�� � and
 � � imply

�� � .

And with lots of hard work, he proves best precision: For all � -,

�� � -simulations of � , �� and � � preserve the most � � -properties.

��� � � �

Can we derive ��� and ��� and prove soundness and
precision directly from Galois-connection theory?

Yes — we treat � � � � � as � � � � � � � � .
Then, we have �� � � � � �� � � , where � ��	� � is a lower powerset (�)
constructor.

We “lift” the Galois connection, � � � � � �
 �

 �� , on the states to a

Galois connection on powersets,� � � � � � � � � �

 ��
 �

 � � � �� � �� so that

1. ��� � -simulates � iff � � � �

 �� � ��� �
 � �� �
� ��� � � � �

 �� ���

2. the soundness of �
�� � � follows from Item 1

3. ��� � ��� � 	 �

 �� � � � �

 �� � �� �

We do similar work for � � � ��� � � � � �� � � and � � , where � ��	� � is an
upper (� -ordered) powerset constructor.

For over-approximation, we can use � 4 ! or � 4 8 !'#" 3 ; for under-approximation, we

must use � 4 8 !'#" # % 3 . (We will see why....)

�� � � � $

Our results from reworking Dams’s constructions

1. Starting from approximation relations, � � � � � , we generate

Galois connections from U-GLB-L-LUB-closed relations cf.

[Mycroft-Jones 86, Cousot-Cousot JLC 92].

2. We define lower and upper powerset constructions, weaker forms

of powerdomain but strong enough for abstraction studies. They

are the join completions of [Cousot-Cousot ICCL 94].

3. We use powerset types in a family of logical relations, show how

the family preserves the closure properties in 1., and prove that a

simulation proof is an instance of proof via logical relations. We

obtain Dams’s most-precise simulation results “for free.”

4. We extract validation and refutation logics from the logical

relations, state their resemblance to Hennessy-Milner logic (and

description logic), and obtain easy proofs of soundness.

�� � � � �

Closed approximation relations

�� � � � �

Closed relations and Galois connections

Let � and� be complete lattices, and let � � � � � .

� � � means that � is modelled/approximated by �

Definition: For all
 �
 	 �� , � � � 	 � � , for �� � � � , � is

1. U-closed iff
 � � , � � � 	 imply
 � � 	

2. GLB-closed iff
 � � � �

 � � �

3. L-closed iff
 � � ,
 	 �
 imply
 	 � �

4. LUB-closed iff � �

 � � � � �

ac
ρ

C A

{ c’ | c’ ρ a } = { a’ | c ρ= a’ }
c’

a’

Origins: Hartmanis and Stearns 1964 (pair algebras); Mycroft-Jones 1986

(LU-closure); Cousot-Cousot JLC 1992; Backhouse-Backhouse 1998

�� � � � �

ac
ρ

C A

{ c’ | c’ ρ a } = { a’ | c ρ= a’ }
c’

a’

Proposition: For L-LUB-U-GLB-closed � � � � � ,� � 	 � � � � � �

is a Galois connection, where

� 	 ��
 � � � � �

 � � �

� � �� � � � � �

 � � �

Intuition: U-closed makes & � mono; L-closed makes � � mono; GLB-closed ensures

� � selects the most precise sound answer; LUB-closed ensures & � selects the most

general sound answer.

Note that� � � iff� � �
 � � iff � � � � � � .

Proposition: For Galois connection,� � 	 � � � � , define

�� � � � � � as ��
 � � �
 	
 � � � . Then,

�� � is L-LUB-U-GLB-closed and � 	 �� 	 � � �� 	 � � � 	 � � � .

�� � � � 9

“Completing” U-GLB-closed � � � into a
Galois connection between � � � and

Here is a standard technique: Let � be a (discretely ordered) set and
let� be a complete lattice.

For � � � � � , define

�
� � � � � � � � as � �
� � iff for all
 � � ,

 � � .

Theorem: If � is U-GLB-closed, then

�
� is L-LUB-U-GLB-closed,

and � � � � � 	� � � � � � � � is a Galois connection,
where � � � � � � � �
 � �

� � � � �

 � � � .

Example: Let � �� be the discretely ordered set of integers:

	
 � �
 � �� � �

� � 	 �� �

� 	� � � �

� � 	 � � �

� 	� � �

{ m | m < 0 }
neg zero pos

all

none

ρ
P(Int) Sign 	 is L-U-GLB-closed

but not LUB-closed.
It is completed to

�	
 � � � �
 � �� � � .

�� � � � �

Powersets

�� � � � �

Lower powersets

� ’s “powerset” is a complete lattice, � , with monotone singleton and

union operations: � � � � � � � � �
�� � � � � � � � � � � � � � � � .
Define membership as�

�� � iff
� � � � � � � � .

A lower powerset, � �� � � , treats � � as� : For all � � � � � � � ,

� � � � � � iff (for all �� � � � , there exists 	
�

� � � such that � �)

Down-set (order-ideal) completion: For � � � ,� � � , define

 � �
	 � � � 	 �	 � � and
 � � �

 � � � � � � .

Define � �� � � � �

 � � � � � � � � �
 � � � — all down-closed subsets of

Example: P (Parity)

{ }

{even,none} {odd,none}
{none}

{even,odd,none}

{any,even,odd,none}Parity any

even odd

none

�� � � � �

Upper powersets

There is a dual construction:

An upper powerset, � �� � � , treats � � as � : For all � � � � � � � ,

� � � � � � iff (for all 	
�

� � � , there exists �� � � � such that � �)

Up-set (filter) completion: For � � � and� � � , define

� � �
	 � � � � �	 	 � and � � � �
 � � � � � � � .

Define � �� � � � �
 � � � � � � � � � � � � � � — all up-closed subsets of

Example:
Parity any

even odd

none

P (Parity)

{any}

{ }

{even,odd,any}

{even,any} {odd,any}

{none,even,odd,any}

�� � � �

Logical relations

�� � � � �

Logical relations

We now attach typings to the relations. Here are the types:

� � � � �
 � � � � �
 � �� � �
 � �� � �

��

�� is a special case of 8 !' � 3 and names the completion of U-GLB-closed �� � � �

to ��� 8 ' � 3 � � , seen earlier

Let �
 and�
 be p.o.-sets of the appropriate form (e.g.,�
 ��
 � is a

lattice of monotone functions,� � � �
 � is an upper powerset, etc.)

We define this family of logical relations, �
 � �
 � �
 :

	 � is given

 	
 ��
 �
� iff for all
 ��
 � �� � �
 � �
 	
 � � implies

 � 	
 �
�
� �

� 	 � ! �
 �� iff for all

�

� � � there exists�
�

� � such that
 	
 �

� 	 � � �
 � � iff for all�
�

� � � there exists

�

� � such that
 	
 �

� 	��
 � iff for all

�

� � �
 	
 � � That is, � 	��
 � iff � 	 � ! �
 ��� � � �

��� � ��� $

Simulation relations are logical relations

Binary relations are the key component in simulation proofs:

For � � � � � , transition relations, � � � � � , �� � � � � ,

Definition: ��� simulates � , written � � � ��� , iff for all

�

 	 ��

and� � � ,

 	 � and
 �
 	 imply there exists� 	 � � s.t. � � � � 	 and
 	 	 � 	 .

Say that we represent � and �� as multi-functions, � � � � � � �
�

�

and

�� � � � � � �
�

�

:

Theorem:

1. � � � �

� � iff � 	 �� � ! � � � ���

2. � � � �� �
�

� iff � 	 �� � � � � � � �

��� � ��� �

Closure properties of logical relations
� � � ��� � � �� iff for all � � � � � �� � � � � � � � � � � implies � � � 	 � � � �� �� 	

 � � �
 � �� iff for all �� �
 � there exists� � � � such that � � � �

 � � �
 � � � iff for all� � � � � there exists �� �
 such that � � � �

 ��� � � iff for all �� �
 � � � � �
Theorem: For 	
� �
 � �
 and for

� � � � � � � 	 � �
��� �
�� � � �
�� � �

! � � ,

If 	" is L-closed, then so is 	# $" % .
If 	" is U-closed, then so is 	# $" % .
If 	" is U-GLB-closed, then so are 	"'& (" , 	��" , and) * +" , .
If 	" is L-LUB-closed, then so are 	"'& (" and) - +" , .
Proposition: 	�" and) * +" , are always L-closed, and) - +" , is
always U-closed.

�/. � ��� �

Alas, LUB-closure is not guaranteed for � � ��� �

and neither is

GLB-closure for � ��� �

.

But there are some sufficient conditions upon the choice of lower- and

upper-powerset that ensure these closures.

Here are two simple but useful examples:

Proposition:) * +" ,�� � �
�� " � � � �
	 " � is always LUB-closed.

Proposition:) - +" , � �
�� " �
� � �
 	 " � is aways GLB-closed.

�/. � ��� �

Dams’s results

�/. � ����

Synthesizing a most-precise simulation

Dams proved, for � �
�

� �� � � �� and transition relation � � � 	 � , that
the most-precise, sound abstract relation �
 � � 	 � is

�
 �
� � � �

�
iff � �
 � � ��� �� �
� � � ��� �� ��� �

� � �
�

� � � �
�� �

Reformatted as a function, this reads

�

� ��� ��
�� � � � � � !
� � �
� � " �
�� � �

We can derive Dams’s result: Given U-GLB-closed #$ � � 	 � and
transition function � % �& � �

�
�

, we derive �
 % � & � � �
�

�

:

1. We use the closure properties to generate
L-LUB-U-GLB-closed relations, '� $ � �
�� �
� 	 and

') * +$,� �
�� � � � �
	 � .

2. We synthesize �)($* +, - 	 � � �
 	 � in the expected way:

�)($* +, � � . � *
 � �0/ 123
 � � / ! .� �
� �

�/. � ��� 4

Synthesizing a most-precise dual simulation

Dams proved, for � �
�

� �� � � �� and � � � 	 � , that the best

underapproximating relation � � � � 	 � is

� � �
� � � �

�

iff � �
 � � ��� �� �
� � � ��� �� � ��
� � �
�

� � � �
�� �

Reformatted as a function, this reads

� �
� � � ��
�� �� � " �� � � � �� for all� " !�� 	 �

�� � 	�
 � �
� �� � �

We must work a bit harder, but we can derive the same
result:

Given �- � � � � � 	 and U-GLB-closed ' $ � � � 	 , we derive

� �- 	 � � �� 	 	

��� � ��� �

We derive � �- 	 � � �� 	 	 :
1. We generate L-LUB-U-GLB-closed '�� $ � � � � 	 � 	

2. We generate ' �) - +$,� � �� � � � 	 � � 	 � � �� 	 	 in stages:

(a) begin with U-GLB-closed ' $ � � � 	 (because � is
discretely ordered, ' $ is L-closed also);

(b) lift to sets of answers: lift the relation to L-U-GLB-closed

') - +" , � � � � 	 � � � � �� 	 	 ;
(c) introduce LUB-closure (giving a Galois connection):

complete the relation to ' �) - +" , � � �� � � � 	 � � 	 � � �� 	 	 .
3. We synthesize � �$* +, - 	 � � �� 	 	 :

� �$* +, � � . � � - �� �/ 123 � �	
 	� � � 	 � ! .
� � � � �

where �� � ��� �� �� � ��� � ��� ��� � � ! � � � � ��� � � maps a set of concrete arguments

to the set of � -successor sets of the arguments.

As seen in the talk’s introductory example, the relation in (b) lacks LUB-closure.

��� � ��� "

Validation and refutation logics

��� � ��� �

A logic generated from the logical relations

We define this language of assertions,

� - - � � $ 	�� � � 	�� � 	 �

and this semantics of typed judgements for both concrete domains,

� " , and abstract domains,� " :

� 	� $ � $ is given, for � " � $

� 	� " 	 ("
 � � � if� � � 	 	� "
 �� for � " � " 	� � " � " 	 ("

� 	�) * +" ,� � if for all �� " �� � 	� " �� for � " �) * +" ,

� 	�) - +" , � if there exists �� " � such that � 	� " �� for � " �) - +" ,

The judgement form for

� is a special case of � � �� � ’s:

� ��� �" � if � ��� " � , for all �
 � ,�
 � � � � " �

� �� �" � if � ��� " � , for �
 � "

��� � ��� �

Some “syntactic sugar”:

� 	� � � � (that is, � 	� � �) abbreviates � 	� " 	 () * +"
 , � �� �

� 	� � � (� 	� � �) abbreviates � 	� " 	 () - +"
 , � � �

This reveals that the logic extracted from the logical relations is
a variant of Hennessy-Milner logic or description logic or
branching-time temporal logic.

��� � � ��

� � ��� � � � � � � � � 	 �
 � � 	 �
 �
�

�

Assume, for all function symbols,
 , typed � �& � � , there are
interpretations
 % � " 	& � "
 , and
(% � " 	& � "
 , such that

 #" 	 ("

(. Also, we formalize when judgements � �� " � are well
formed.

Definition: 	� " � is '" -sound iff for all � " � " 	 ,� " 	 "
 ,

� 	� " � is well formed, holds true, and � '" � imply � 	� " � .

Assume that all��� $ � are # $ -sound.

Theorem: For all types, � , we have that 	� " � are '" -sound.

We can add the logical connectives,

� ��� " � ��� � � if � �� " � � and � �� " � �

� ��� " � ��� � � if � �� " � � or � ��� " � �

and prove these #" -sound as well.

��� � � ��

Validating � requires a refutation logic

Define � ��� " � � iff � ���� " � .

We have a logic that validates � for �
 � by validating it for �
 � , so
we might have also a logic that refutes properties similarly:

Read � ����� �	
� � as “it is not possible that any value modelled by � has property � .”

� ���
 ����$ � is given, for �
 � $

� ���
 ����" 	 ("

 � � if
 �� � ���
 �� �"
 � � for �
 � " 	 �

 � " 	 ("

� ���
 �� �) - +" ,�� � if exists � �
 � � � ��
 ���" � � for �
 �) - +" ,

� ���
 �� �) * +" ,�� � if for all � �
 � � � ���
 ����" � � for �
 �) * +" ,

� ���
 �����" � if � ���
 ����" � � for �
 � "

Definition: 	�
 ����" � is '" -sound iff for all � " � " 	 ,� " 	 "
 ,

� 	�
 ����" � is well formed, holds, and � '" � imply �
	� " � .

Theorem: All 	�
 ���" � are '" -sound.

��� � � ��

The case for���� �	
� � � shows significant loss of precision: � ���� �	
� � � and � � � � � imply

for all � � � , that � ���� �	
� � , whereas we need only show that there exists some � � � ,

such that � ���� �	
 � � .

Corollary:� 	� " � � if� 	�
 �� �" � is sound for '" .

� 	�
 ����" � � if� 	� " � is sound for '" .

(i) In the refutation logic,���� �	
� � , the roles of � * ��� � and � - �� � are exchanged. This,

as well as the need to validate a mix of � and 	 , means we must employ ��
 and �
� to

validate/refute assertions — this is the idea behind mixed/modal transition systems.

(ii) The Sagiv-Reps-Wilhelm TVLA system simultaneously calculates validation and

refutation logics.

(iii) We might approximate every concrete set by a pair of lower and upper

approximations: �� � � � � � � � * �� � � � - � � � � . This motivates sandwich- and

mixed-powerdomains for over-under-approximation of sets

[Huth-Jagadeesan-Schmidt].

��� � � � �

References

Primary:

1. This talk: � � � � �� � �� �� � �� � 	�

 � ��
 � � � 	 ��� � �� �

2. K. Backhouse and R. Backhouse. Galois Connections and Logical Relations.
Mathematics of Program Construction, LNCS 2386, 2002.

3. P. Cousot and R.Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation 2 (1992).

4. P. Cousot and R.Cousot. Higher-order abstract interpretation. IEEE Conf. on
Computer Languages, 1994.

5. D. Dams. Abstract interpretation and partition refinement for model checking.
PhD thesis, Univ. Eindhoven, 1996.

6. C. Loiseaux, et al. Property preserving abstractions for the verification of
concurrent systems. Formal Methods in System Design 6 (1995).

7. A. Mycroft and N.D. Jones. A relational framework for abstract interpretation. In
Programs as Data Objects, LNCS 217, 1985.

8. G. Plotkin. Domain theory. Lecture notes, Univ. Pisa 1982.

��� � � ��

Secondary:

1. S. Abramsky, Abstract interpretation, logical relations, and Kan extensions. J.
Logic and Computation 1 (1990).

2. F. Baader, et al. The Description Logic Handbook. Cambridge Univ. Press 2003.

3. D. Dams, R. Gerth, O. Grumberg. Abstract Interpretation of Reactive Systems.
ACM TOPLAS 19 (1997).

4. J. Hartmanis and R. Stearns. Pair algebras and their application to automata
theory. Information and Control 7 (1964).

5. R. Heckman. Powerdomain constructions. PhD thesis, Saarbrücken, 1990.

6. M. Huth, R. Jagadeesan, D. Schmidt. Modal transition systems: a foundation for
three-valued program analysis, ESOP 2002. Also, A domain equation for
refinement of partial systems,J. MSCS, in press.

7. M. Sagiv, T. Reps, R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic.
26th ACM POPL, 1999.

8. D.A. Schmidt. Binary Relations for Program Abstraction. In The Essence of
Computation, Springer LNCS 2566, 2002.

��� � � � 4

