Closed and logical relations for over- and under-approximation of powersets

David Schmidt

Kansas State University
and École Polytechnique
www.cis.ksu.edu/~schmidt

Background

Over-approximation states a property of a program's outputs

even \in Parity asserts " \forall even" - all concrete outputs in set S are even-valued. (We might write $S \rho$ even or $S \models$ even.)
The upper adjoint, γ, selects the largest set approximated by even:

Under-approximation might be stated as the dual

Here, even assets that all evens are included in the concrete outputs:

This often abstracts constants to nothing, e.g., $\left[2 \rrbracket_{e}^{b}=\right.$ none, where $\gamma($ none $)=\{ \}$, because we require $\{2\} \supseteq \gamma\left(\alpha_{u}\{2\}\right)$, forcing $\alpha_{u}\{2\}=$ none.
Thus, many program phrases are under-approximated to nothing:

$$
\llbracket x+2 \rrbracket_{e}^{b}=\operatorname{add}^{b}\left(\llbracket x \rrbracket_{e}^{b}, \llbracket 2 \rrbracket_{e}^{b}\right)=\operatorname{add}^{b}(e(x), \text { none })=\text { none }
$$

If we repair, say by including all constants, $n \in N a t$, in Parity ${ }^{\circ p}$, then to preserve $\gamma\left(\Pi_{\text {Parityop }} \mathcal{W}\right)=\cup_{\mathrm{a} \in \mathrm{W}} \gamma(\mathrm{a})$, we must expand Parity ${ }^{\mathrm{op}}$ into $\mathcal{P}(\mathrm{Nat})^{\mathrm{op}}$!

Under-approximation as existential quantification

If the over-approximating even \in Parity asserts " \forall even,"

then the under-approximating even \in Parity ${ }^{\text {op }}$ should assert " \exists even" - there exists an even number in the program's outputs:
$P(N a t)^{o p}$
\{2\} -.... Parity op

This provides a nontrivial under-approximation of constants, e.g., $\llbracket 2 \rrbracket_{e}^{b}=e v e n$, and expressions: $\llbracket x+2 \rrbracket_{e}^{b}=\operatorname{add}^{b}(e(x)$, even $)=e(x)$.

But we cannot define $\gamma:$ Parity $^{\text {op }} \rightarrow \mathcal{P}(\mathrm{Nat})^{\text {op }}$ in the usual way:

There is no best, minimal set that contains an even number. Indeed, even's concretization is not a single set - it is a set of sets:

$$
\gamma(\text { even })=\left\{S \in \mathcal{P}(\mathrm{Nat})^{\text {op }} \mid S \rho_{\mathrm{u}} \text { even }\right\}
$$

This suggests that we work with power-domains in both the concrete and abstract domains.

Universal (over-approximating) interpretation: \{even, odd\} asserts $\forall\{$ even, odd $\} \equiv \forall($ even \vee odd $)$ - all outputs are even- or odd-valued: Use a lower power-domain (lower sets) for the abstract domain.

Existential (under-approximating) interpretation: \{even, odd\} asserts $\exists\{$ even, odd $\} \equiv \exists$ even $\wedge \exists$ odd — there exists an evenvalued and an odd-valued output: Use an upper power-domain (upper sets).

Dennis Dams's mixed transition systems employ the universal and existential abstractions

A transition
system:

$$
\begin{aligned}
& \Sigma=\left\{c_{0}, c_{1}, c_{2}\right\} \\
& R=\left\{\left(c_{0}, c_{1}\right),\left(c_{1}, c_{2}\right),\left(c_{2}, c_{0}\right)\right\}
\end{aligned}
$$

Approximating the states: Note: \perp and T omitted for brevity.

$$
\alpha\left\{\mathrm{c}_{0}\right\}=\mathrm{a}_{0}, \quad \alpha\left\{\mathrm{c}_{1}\right\}=\mathrm{a}_{12}=\alpha\left\{\mathrm{c}_{2}\right\}=\alpha\left\{\mathrm{c}_{1}, \mathrm{c}_{2}\right\}
$$

That is, $c_{0} \rho a_{0}, c_{1} \rho a_{12}$, and $c_{2} \rho a_{12}$.
Over-approximation transitions ("may"):

$$
R^{\sharp}=\left\{\left(a_{0}, a_{12}\right),\left(a_{12}, a_{12}\right),\left(a_{12}, a_{0}\right)\right\}
$$

As a function, $R^{\sharp}\left(a_{0}\right)=\left\{a_{12}\right\} \equiv \forall a_{12}$ and $R^{\sharp}\left(a_{12}\right)=\left\{a_{0}, a_{12}\right\} \equiv \forall\left(a_{0} \vee a_{12}\right)$.
Under-approximation transitions ("musl"):

$$
R^{b}=\left\{\left(a_{0}, a_{12}\right)\right\}
$$

$$
a 0 \longrightarrow a 12
$$

As a function, $R^{b}\left(a_{0}\right)=\left\{a_{12}\right\} \equiv \exists a_{12}$ and $R^{b}\left(a_{12}\right)=\{ \} \equiv \exists() \equiv \perp$
The mixed transition system is $\left(\left\{a_{0}, a_{12}\right\}, R^{b}, R^{\sharp}\right)$.

From Galois connection, $\mathcal{P}(\mathrm{C})\langle\alpha, \gamma\rangle \mathrm{A}$, Dams defines this simulation relation: $\mathrm{c} \rho$ a iff $\mathrm{c} \in \gamma(\mathrm{a})$. From $\mathrm{R} \subseteq \mathrm{C} \times \mathrm{C}$, he defines

$$
\begin{aligned}
& a R^{\sharp} a^{\prime} \text { iff } a^{\prime} \in\left\{\alpha(Y) \mid Y \in \min \left\{S^{\prime} \mid R^{\exists \exists}\left(\gamma(a), S^{\prime}\right)\right\}\right\} \\
& a R^{b} a^{\prime} \text { iff } a^{\prime} \in\left\{\alpha(Y) \mid Y \in \min \left\{S^{\prime} \mid R^{\forall \exists}\left(\gamma(a), S^{\prime}\right)\right\}\right\}
\end{aligned}
$$

and he proves $R \triangleleft_{\rho} R^{\sharp}$, that is, $R^{\sharp} \rho$-simulates R $R^{b} \triangleleft_{\rho^{-1}} R$, that is, R^{b} is ρ-simulated by R
This gives him soundness for $\square(\forall R)$ and $\diamond(\exists R)$:
Define $a \models \square \phi$ iff for all $a^{\prime}, a R^{\sharp} a^{\prime}$ implies $a^{\prime} \models \phi$
$a \models \diamond \phi$ iff there exists a^{\prime} such that $\mathrm{aR}^{b} \mathrm{a}^{\prime}$ and $\mathrm{a}^{\prime} \models \phi$
Then, $a \models \phi$ and $c \rho$ a imply $c \models \phi$.
And with lots of hard work, he proves best precision: For all $\rho-$, ρ^{-1}-simulations of R, R^{\sharp} and R^{b} preserve the most $\square \diamond$-properties.

Can we derive R^{\sharp} and R^{b} and prove soundness and precision directly from Galois-connection theory?

Yes - we treat $\mathrm{R} \subseteq \mathrm{C} \times \mathrm{C}$ as $\mathrm{R}: \mathrm{C} \rightarrow \mathcal{P}(\mathrm{C})$.
Then, we have $R^{\sharp}: A \rightarrow \mathcal{P}_{\mathrm{L}}(A)$, where $\mathcal{P}_{\mathrm{L}}(\cdot)$ is a lower powerset (\subseteq) constructor.

We "lift" the Galois connection, $\mathcal{P}(\mathrm{C})\left\langle\alpha_{\tau}, \gamma_{\tau}\right\rangle \mathcal{A}$, on the states to a Galois connection on powersets, $\mathrm{F}[\mathcal{P}(\mathrm{C})]\left\langle\alpha_{\mathrm{F}[\tau]}, \gamma_{\mathrm{F}[\tau]}\right\rangle \mathcal{P}_{\mathrm{L}}(A)$, so that

1. $R^{\sharp} \rho$-simulates R iff $\operatorname{ext}_{F[\tau]}(R) \circ \gamma_{\tau} \sqsubseteq_{A \rightarrow F[\mathcal{P}(C)]} \gamma_{F[\tau]} \circ R^{\sharp}$
2. the soundness of $\mathrm{a} \models \square \phi$ follows from Item 1
3. $R_{\text {best }}^{\sharp}=\alpha_{F[\tau]} \circ \operatorname{ext}_{F[\tau]}(R) \circ \gamma_{\tau}$

We do similar work for $\mathrm{R}_{\text {best }}^{b}: \mathcal{A} \rightarrow \mathcal{P}_{\mathrm{u}}(A)$ and $\diamond \phi$, where $\mathcal{P}_{\mathrm{u}}(\cdot)$ is an upper (\supseteq-ordered) powerset constructor.

For over-approximation, we can use $F=$ id or $F=\mathcal{P}_{\mathrm{L}}(\cdot)$; for under-approximation, we

Our results from reworking Dams's constructions

1. Starting from approximation relations, $\rho \subseteq C \times A$, we generate Galois connections from U-GLB-L-LUB-closed relations cf. [Mycroft-Jones 86, Cousot-Cousot JLC 92].
2. We define lower and upper powerset constructions, weaker forms of powerdomain but strong enough for abstraction studies. They are the join completions of [Cousot-Cousot ICCL 94].
3. We use powerset types in a family of logical relations, show how the family preserves the closure properties in 1., and prove that a simulation proof is an instance of proof via logical relations. We obtain Dams's most-precise simulation results "for free."
4. We extract validation and refutation logics from the logical relations, state their resemblance to Hennessy-Milner logic (and description logic), and obtain easy proofs of soundness.

Closed approximation relations

Closed relations and Galois connections

Let C and A be complete lattices, and let $\rho \subseteq C \times A$.
$\mathrm{c} \rho$ a means that c is modelled/approximated by a
Definition: For all $c, c^{\prime} \in C, a, a^{\prime} \in A$, for $\rho \subseteq C \times A, \rho$ is

1. U-closed iff $c \rho a, a \sqsubseteq a^{\prime}$ imply $c \rho a^{\prime}$
2. GLB-closed iff $c \rho \sqcap\{a \mid c \rho a\}$
3. L-closed iff $c \rho a, c^{\prime} \sqsubseteq c$ imply $c^{\prime} \rho a$
4. LUB-closed iff $\sqcup\{c \mid c \rho a\} \rho a$

Origins: Hartmanis and Stearns 1964 (pair algebras); Mycroft-Jones 1986 (LU-closure); Cousot-Cousot JLC 1992; Backhouse-Backhouse 1998

Proposition: For L-LUB-U-GLB-closed $\rho \subseteq C \times A, C\left\langle\alpha_{\rho}, \gamma_{\rho}\right\rangle A$ is a Galois connection, where

- $\alpha_{\rho}(c)=\sqcap\{a \mid c \rho a\}$
- $\gamma_{\rho}(a)=\sqcup\{c \mid c \rho a\}$

Intuition: U-closed makes γ_{ρ} mono; L-closed makes α_{ρ} mono; GLB-closed ensures α_{ρ} selects the most precise sound answer; LUB-closed ensures γ_{ρ} selects the most general sound answer.

Note that $\mathrm{c} \rho \mathrm{a}$ iff $\mathrm{c} \sqsubseteq_{\mathrm{c}} \gamma_{\rho} \mathrm{a}$ iff $\alpha_{\rho} \mathrm{c} \sqsubseteq_{A}$ a.
Proposition: For Galois connection, $\mathrm{C}\langle\alpha, \gamma\rangle A$, define $\rho_{\alpha \gamma} \subseteq C \times A$ as $\{(c, a) \mid \alpha c \sqsubseteq a\}$. Then,
$\rho_{\alpha \gamma}$ is L-LUB-U-GLB-closed and $\left\langle\alpha_{\rho_{\alpha \gamma}}, \gamma_{\rho_{\alpha \gamma}}\right\rangle=\langle\alpha, \gamma\rangle$.

"Completing" U-GLB-closed $\rho \subseteq C \times A$ into a Galois connection between $\mathcal{P}(\bar{C})$ and A

Here is a standard technique: Let C be a (discretely ordered) set and let A be a complete lattice.

For $\rho \subseteq C \times A$, define $\bar{\rho} \subseteq \mathcal{P}(C) \times A$ as $S \bar{\rho}$ a iff for all $c \in S$, c ρ a.

Theorem: If ρ is U-GLB-closed, then $\bar{\rho}$ is L-LUB-U-GLB-closed, and $\mathcal{P}(\mathrm{C})\left\langle\alpha_{\bar{\rho}}, \gamma_{\bar{\rho}}\right\rangle A$ is a Galois connection, where $\gamma_{\bar{\rho}} a=\sqcup\{S \mid S \bar{\rho} a\}=\{c \mid c \rho a\}$.

Example: Let Int be the discretely ordered set of integers:
$\rho \subseteq \operatorname{Int} \times \operatorname{Sign}$

Powersets

Lower powersets

D's "powerset" is a complete lattice, E , with monotone singleton and union operations: $\quad \mathrm{PD}=\left(\mathrm{E}, \sqsubseteq_{\mathrm{E}},\{\mathfrak{f} \cdot\}: \mathrm{D} \rightarrow \mathrm{E}, \uplus: \mathrm{E} \times \mathrm{E} \rightarrow \mathrm{E}\right)$.
Define membership as c $\tilde{\in} S$ iff $\{c \mathfrak{c}\} \uplus S=S$.
A lower powerset, $\mathcal{P}_{\mathrm{L}}(\mathrm{D})$, treats \sqsubseteq_{E} as \subseteq : For all $\mathrm{S}_{1}, S_{2} \in \mathrm{E}$,
$S_{1} \sqsubseteq_{\mathrm{E}} S_{2}$ iff (for all $x \tilde{\in} S_{1}$, there exists $y \tilde{\in} S_{2}$ such that $x \sqsubseteq_{\mathrm{D}} y$)
Down-set (order-ideal) completion: For $d \in D, S \subseteq D$, define $\downarrow d=\left\{e \in \mathrm{D} \mid e \sqsubseteq_{\mathrm{D}} \mathrm{d}\right\}$ and $\downarrow S=\cup\{\downarrow \mathrm{d} \mid \mathrm{d} \in S\}$.

Define $\mathcal{P}_{\downarrow}(\mathrm{D})=(\{\downarrow \mathrm{S} \mid \mathrm{S} \subseteq \mathrm{D}\}, \subseteq, \downarrow, \cup)$-all down-closed subsets of D

Example:

Upper powersets

There is a dual construction:
An upper powerset, $\mathcal{P}_{\mathrm{u}}(\mathrm{D})$, treats \sqsubseteq_{E} as \supseteq : For all $S_{1}, S_{2} \in \mathrm{E}$,
$S_{1} \sqsubseteq_{E} S_{2}$ iff (for all y $\tilde{\in} S_{2}$, there exists $x \tilde{\in} S_{1}$ such that $x \sqsubseteq_{D} y$)
Up-set (fi lter) completion: For $\mathrm{d} \in \mathrm{D}$ and $\mathrm{S} \subseteq \mathrm{D}$, define $\uparrow d=\left\{e \in D \mid d \sqsubseteq_{D} e\right\}$ and $\uparrow S=\cup\{\uparrow d \mid d \in S\}$.

Define $\mathcal{P}_{\uparrow}(\mathrm{D})=(\{\uparrow S \mid S \subseteq \mathrm{D}\}, \supseteq, \uparrow, \cup)$-all up-closed subsets of D

Example:

\{\} $\quad P_{\text {作 }}$ (Parity) \{any\}
\{even,any\} \{odd,any\}
\{even,odd,any\}
\{none,even,odd,any\}

Logical relations

Logical relations

We now attach typings to the relations. Here are the types:

$$
\tau::=\mathrm{b}\left|\tau_{1} \rightarrow \tau_{2}\right| \mathcal{P}_{\mathrm{L}}(\tau)\left|\mathcal{P}_{\mathrm{u}}(\tau)\right| \bar{\tau}
$$

$\bar{\tau}$ is a special case of $\mathcal{P}_{\mathrm{L}}(\tau)$ and names the completion of U-GLB-closed $\rho \subseteq \mathrm{C} \times \mathrm{A}$ to $\bar{\rho} \subseteq \mathcal{P}(\mathrm{C}) \times \mathrm{A}$, seen earlier
Let C_{τ} and A_{τ} be p.o.-sets of the appropriate form (e.g., $A_{\tau_{1} \rightarrow \tau_{2}}$ is a lattice of monotone functions, $A_{\mathcal{P u}(\tau)}$ is an upper powerset, etc.)

We define this family of logical relations, $\rho_{\tau} \subseteq C_{\tau} \times A_{\tau}$:
ρ_{b} is given
$f \rho_{\tau_{1} \rightarrow \tau_{2}} f^{\sharp}$ iff for all $c \in C_{\tau_{1}}, a \in A_{\tau_{1}}, c \rho_{\tau_{1}}$ a implies $f(c) \rho_{\tau_{2}} f^{\sharp}(a)$
$S \rho_{\mathcal{P}_{\mathrm{L}}(\tau)} \mathrm{T}$ iff for all $\mathrm{c} \tilde{\in} S$, there exists $a \tilde{\in} T$ such that $\mathrm{c} \rho_{\tau}$ a
$S \rho_{\mathcal{P u}(\tau)} T$ iff for all $a \tilde{\in} T$, there exists $c \tilde{\in} S$ such that $c \rho_{\tau}$ a
$S \rho_{\bar{\tau}}$ a iff for all $c \tilde{\in} S, c \rho_{\tau} a$. That is, $S \rho_{\bar{\tau}}$ a iff $S \rho_{\mathcal{P}_{\mathrm{L}}(\tau)}\{a\}$

Simulation relations are logical relations

Binary relations are the key component in simulation proofs:
For $\rho \subseteq C \times A$, transition relations, $R \subseteq C \times C, R^{\sharp} \subseteq A \times A$,
Definition: R^{\sharp} simulates R, written $R \triangleleft_{\rho} R^{\sharp}$, iff for all $c, c^{\prime} \in C$ and $a \in A$,
$c \rho a$ and $c R c^{\prime}$ imply there exists $a^{\prime} \in A$ s.t. $a R^{\sharp} a^{\prime}$ and $c^{\prime} \rho a^{\prime}$.
Say that we represent R and R^{\sharp} as multi-functions, $R: C \rightarrow \mathcal{P}_{\mathrm{L}}(\mathrm{C})$ and $R^{\sharp}: A \rightarrow \mathcal{P}_{\mathrm{L}}(A):$

Theorem:

1. $R \triangleleft_{\rho_{\mathrm{b}}} R^{\#}$ iff $R \rho_{\mathrm{b} \rightarrow \mathcal{P}_{\mathrm{L}}(\mathrm{b})} R^{\sharp}$
2. $R^{b} \triangleleft_{\rho_{b}^{-1}} R$ iff $R \rho_{b \rightarrow \mathcal{P u}(b)} R^{b}$

Closure properties of logical relations

$f \rho_{\tau_{1} \rightarrow \tau_{2}} f^{\sharp}$ iff for all $c \in C_{\tau_{1}}, a \in A_{\tau_{1}}, c \rho_{\tau_{1}}$ a implies $f(c) \rho_{\tau_{2}} f^{\sharp}(a)$
$S \rho_{\mathcal{P}_{\mathrm{L}}(\tau)} \mathrm{T}$ iff for all $\mathrm{c} \tilde{\in} S$, there exists $a \tilde{\in} T$ such that $\mathrm{c} \rho_{\tau}$ a
$S \rho_{\mathcal{P}_{\mathrm{u}}(\tau)} \mathrm{T}$ iff for all $a \tilde{\in} T$, there exists $c \tilde{\in} S$ such that $c \rho_{\tau} a$ $S \rho_{\bar{\tau}}$ a iff for all $c \tilde{\in} S, c \rho_{\tau}$ a

Theorem: For $\rho_{\tau} \subseteq \mathrm{C}_{\tau} \times A_{\tau}$ and for $\mathrm{F}[\tau] \in\left\{\tau^{\prime} \rightarrow \tau, \mathcal{P}_{\mathrm{L}}(\tau), \mathcal{P}_{\mathrm{u}}(\tau), \bar{\tau}\right\}$,

If ρ_{τ} is L-closed, then so is $\rho_{\mathrm{F}[\tau]}$.
If ρ_{τ} is U-closed, then so is $\rho_{\mathrm{F}[\tau]}$.
If ρ_{τ} is U-GLB-closed, then so are $\rho_{\tau^{\prime} \rightarrow \tau}, \rho_{\bar{\tau}}$, and $\rho_{\mathcal{P}_{\mathrm{L}}(\tau)}$.
If ρ_{τ} is L-LUB-closed, then so are $\rho_{\tau^{\prime} \rightarrow \tau}$ and $\rho_{\mathcal{P}_{\mathrm{u}}(\tau)}$.
Proposition: $\rho_{\bar{\tau}}$ and $\rho_{\mathcal{P}_{\mathrm{L}}(\tau)}$ are always L-closed, and $\rho_{\mathcal{P}_{\mathrm{u}}(\tau)}$ is always U-closed.

Alas, LUB-closure is not guaranteed for $\mathcal{P}_{\mathrm{L}}(\tau)$ and neither is GLB-closure for $\mathcal{P}(\tau)$.

But there are some sufficient conditions upon the choice of lower- and upper-powerset that ensure these closures.

Here are two simple but useful examples:
Proposition: $\rho_{\mathcal{P}_{\mathrm{L}}(\tau)} \subseteq \mathcal{P}_{\downarrow}\left(\mathrm{C}_{\tau}\right) \times \mathcal{P}_{\mathrm{L}}\left(\mathrm{A}_{\tau}\right)$ is always LUB-closed.
Proposition: $\rho_{\mathcal{P}_{\mathrm{u}}(\tau)} \subseteq \mathcal{P}_{\mathrm{u}}\left(\mathrm{C}_{\tau}\right) \times \mathcal{P}_{\uparrow}\left(\mathrm{A}_{\tau}\right)$ is aways GLB-closed.

Dams's results

Synthesizing a most-precise simulation

Dams proved, for $\mathcal{P}(\mathrm{C})\langle\alpha, \gamma\rangle \mathcal{A}$ and transition relation $\mathrm{R} \subseteq \mathrm{C} \times \mathrm{C}$, that the most-precise, sound abstract relation $R_{0} \subseteq A \times A$ is

$$
R_{0}\left(a, a^{\prime}\right) \text { iff } a^{\prime} \in\left\{\alpha(Y) \mid Y \in \min \left\{S^{\prime} \mid R^{\exists \exists}\left(\gamma(a), S^{\prime}\right)\right\}\right\}
$$

Reformatted as a function, this reads

$$
R_{0}(a)=\left\{\alpha\left(s^{\prime}\right) \mid \exists s \in \gamma(a), s^{\prime} \in R(s)\right\}
$$

We can derive Dams's result: Given U-GLB-closed $\rho_{\mathrm{b}} \subseteq \mathrm{C} \times A$ and transition function $\mathrm{R}: \mathrm{C} \rightarrow \mathcal{P}(\mathrm{C})$, we derive $\mathrm{R}_{0}: A \rightarrow \mathcal{P}_{\downarrow}(A)$:

1. We use the closure properties to generate L-LUB-U-GLB-closed relations, $\rho_{\bar{b}} \subseteq \mathcal{P}(C) \times A$ and $\rho_{\mathcal{P}_{\mathrm{L}}(\mathrm{b})} \subseteq \mathcal{P}(\mathrm{C}) \times \mathcal{P}_{\downarrow}(\mathrm{A})$.
2. We synthesize R^{\sharp} best $: A \rightarrow \mathcal{P}_{\downarrow}(A)$ in the expected way:

$$
R_{\text {best }}^{\sharp}=\alpha_{\rho_{\mathcal{P}_{\mathrm{L}}(\mathrm{~b})}} \circ \operatorname{ext}(\mathrm{R}) \circ \gamma_{\rho_{\overline{\mathrm{b}}}}=R_{0}
$$

Synthesizing a most-precise dual simulation

Dams proved, for $\mathcal{P}(C)\langle\alpha, \gamma\rangle A$ and $R \subseteq C \times C$, that the best underapproximating relation $R_{1} \subseteq A \times A$ is

$$
R_{1}\left(a, a^{\prime}\right) \text { iff } a^{\prime} \in\left\{\alpha(Y) \mid Y \in \min \left\{S^{\prime} \mid R^{\forall \exists}\left(\gamma(a), S^{\prime}\right)\right\}\right\}
$$

Reformatted as a function, this reads

$$
R_{1}(a)=\left\{\alpha(Y) \mid Y \in \min \left\{S^{\prime} \mid \text { for all } s \in \gamma(a), R(s) \cap S^{\prime} \neq\{ \}\right\}\right\}
$$

We must work a bit harder, but we can derive the same result:

Given $\mathrm{R}: \mathrm{C} \rightarrow \mathcal{P}(\mathrm{C})$ and U -GLB-closed $\rho_{\mathrm{b}} \subseteq \mathrm{C} \times \mathcal{A}$, we derive $R_{1}: A \rightarrow \mathcal{P}_{\uparrow}(A) \ldots$.

We derive $\mathrm{R}_{1}: A \rightarrow \mathcal{P}_{\uparrow}(A):$

1. We generate $L-L U B-U-G L B$-closed $\rho_{\bar{b}} \subseteq \mathcal{P}(C) \times A$
2. We generate $\rho_{\overline{\mathcal{P}}_{\mathrm{u}}(\mathrm{b})} \subseteq \mathcal{P}_{\downarrow}\left(\mathcal{P}(\mathrm{C})^{\mathrm{op}}\right) \times \mathcal{P}_{\uparrow}(\mathcal{A})$ in stages:
(a) begin with U-GLB-closed $\rho_{\mathrm{b}} \subseteq \mathrm{C} \times A$ (because C is discretely ordered, ρ_{b} is L-closed also);
(b) lift to sets of answers: lift the relation to L-U-GLB-closed $\rho_{\mathcal{P}_{\mathrm{u}}(\tau)} \subseteq \mathcal{P}(\mathrm{C})^{\mathrm{op}} \times \mathcal{P}_{\uparrow}(\mathrm{A}) ;$
(c) introduce LUB-closure (giving a Galois connection): complete the relation to $\rho_{\mathcal{P}_{\mathrm{u}}(\tau)} \subseteq \mathcal{P}_{\downarrow}\left(\mathcal{P}(\mathrm{C})^{\mathrm{op}}\right) \times \mathcal{P}_{\uparrow}(A)$.
3. We synthesize $\mathrm{R}_{\text {best }}$: $A \rightarrow \mathcal{P}_{\uparrow}(A)$:

$$
R_{b e s t}^{b}=\alpha_{\rho_{\overline{\mathcal{P}}}(\mathrm{b})} \circ \operatorname{ext}(\mathfrak{f} \cdot \mathfrak{\}} \circ R) \circ \gamma_{\rho_{\overline{\mathrm{b}}}}=R_{1}
$$

where $\operatorname{ext}(\hat{f} \cdot f \circ \mathrm{R}): \mathcal{P}(\mathrm{C})^{\mathrm{op}} \rightarrow \mathcal{P}_{\downarrow}\left(\mathcal{P}(\mathrm{C})^{\mathrm{op}}\right)$ maps a set of concrete arguments to the set of R-successor sets of the arguments.

As seen in the talk's introductory example, the relation in (b) lacks LUB-closure.

Validation and refutation logics

A logic generated from the logical relations

We define this language of assertions,

$$
\phi::=p_{\mathrm{b}}|\mathrm{f} . \phi| \forall \phi \mid \exists \phi
$$

and this semantics of typed judgements for both concrete domains, C_{τ}, and abstract domains, A_{τ} :
$d \models_{\mathrm{b}} \mathrm{p}_{\mathrm{b}}$ is given, for $\mathrm{d} \in \mathrm{D}_{\mathrm{b}}$
$d \models_{\tau_{1} \rightarrow \tau_{2}} f . \phi$ if $f(d) \models_{\tau_{2}} \phi$, for $d \in D_{\tau_{1}}, f \in D_{\tau_{1} \rightarrow \tau_{2}}$
$S \models_{\mathcal{P}_{\mathrm{L}}(\tau)} \forall \phi$ if for all $\mathrm{d} \tilde{\in} \mathrm{S}, \mathrm{d} \models_{\tau} \phi$, for $S \in \mathrm{D}_{\mathcal{P}_{\mathrm{L}}(\tau)}$
$S \models_{\mathcal{P}_{\mathrm{u}}(\tau)} \exists \phi$ if there exists $\mathrm{d} \tilde{\in} S$ such that $d \models_{\tau} \phi$, for $S \in \mathrm{D}_{\mathcal{P}_{\mathrm{u}}(\tau)}$
The judgement form for $\bar{\tau}$ is a special case of $\mathcal{P}_{\mathrm{L}}(\tau)$'s:

$$
\begin{gathered}
S \models_{\tau} \phi \text { if } c \models_{\tau} \phi, \text { for all } c \in S, S \in \mathcal{P}_{L}\left(C_{\tau}\right) \\
a \models_{\tau} \phi \text { if } a \models_{\tau} \phi, \text { for } a \in A_{\tau}
\end{gathered}
$$

Some "syntactic sugar":

$\mathrm{d} \models \forall \mathrm{R} \phi$ (that is, $\mathrm{d} \models \square \phi$) abbreviates $\mathrm{d} \models_{\tau_{1} \rightarrow \mathcal{P}_{\mathrm{L}}\left(\tau_{2}\right)} \mathrm{R} . \forall \phi$

$$
\mathrm{d} \models \exists \mathrm{R} \phi(\mathrm{~d} \models \diamond \phi) \quad \text { abbreviates } \quad \mathrm{d} \models_{\tau_{1} \rightarrow \mathcal{P} \mathrm{u}\left(\tau_{2}\right)} R . \exists \phi
$$

This reveals that the logic extracted from the logical relations is a variant of Hennessy-Milner logic or description logic or branching-time temporal logic.

$\tau::=\mathrm{b}\left|\tau_{1} \rightarrow \tau_{2}\right| \mathcal{P}_{\mathrm{L}}(\tau)\left|\mathcal{P}_{\mathrm{u}}(\tau)\right| \bar{\tau}$

Assume, for all function symbols, f, typed $\tau_{1} \rightarrow \tau_{2}$, there are interpretations $f: C_{\tau_{1}} \rightarrow C_{\tau_{2}}$, and $f^{\sharp}: A_{\tau_{1}} \rightarrow A_{\tau_{2}}$, such that $\mathrm{f} \rho_{\tau_{1} \rightarrow \tau_{2}} f^{\sharp}$. Also, we formalize when judgements $a \models_{\tau} \phi$ are well formed.

Definition: $\models_{\tau} \phi$ is ρ_{τ}-sound iff for all $c \in C_{\tau_{1}}, a \in A_{\tau_{2}}$,
$\mathrm{a} \models_{\tau} \phi$ is well formed, holds true, and c ρ_{τ} a imply $\mathrm{c} \models_{\tau} \phi$.
Assume that all $\models_{\mathrm{b}} \mathrm{p}$ are ρ_{b}-sound.
Theorem: For all types, τ, we have that $\models_{\tau} \phi$ are ρ_{τ}-sound.
We can add the logical connectives,

$$
\begin{aligned}
& d \models_{\tau} \phi_{1} \wedge \phi_{2} \text { if } d \models_{\tau} \phi_{1} \text { and } d \models_{\tau} \phi_{2} \\
& d \models_{\tau} \phi_{1} \vee \phi_{2} \text { if } d \models_{\tau} \phi_{1} \text { or } d \models_{\tau} \phi_{2}
\end{aligned}
$$

and prove these ρ_{τ}-sound as well.

Validating $\neg \phi$ requires a refutation logic

Define $\mathrm{c} \models_{\tau} \neg \phi$ iff $\mathrm{c} \not \vDash_{\tau} \phi$.
We have a logic that validates ϕ for $c \in C$ by validating it for $a \in A$, so we might have also a logic that refutes properties similarly:

Read $\mathrm{a} \models_{\tau}^{\sim \text { pos }} \phi$ as "it is not possible that any value modelled by a has property ϕ."
$a \models_{b}^{\text {pos }} p$ is given, for $a \in A_{b}$
$a \models_{\tau_{1} \rightarrow \tau_{2}}^{\rightarrow \text { pos }}$ f. ϕ if $f(a) \models_{\tau_{2}}^{\text {pos }} \phi$, for $a \in A_{\tau_{1}}, f \in A_{\tau_{1} \rightarrow \tau_{2}}$
$\mathrm{T} \models_{\mathcal{P} \mathrm{u}(\tau)}^{\neg \text { pos }} \forall \phi$ if exists $\mathrm{a} \in \mathrm{T}, \mathrm{a} \models_{\tau}^{\neg \text { pos }} \phi$, for $\mathrm{T} \in \mathcal{A}_{\mathcal{P u}(\tau)}$
$\mathrm{T} \models_{\mathcal{P}_{\mathrm{P}}(\tau)}^{\sim \text { pos }} \exists \phi$ if for all $\mathrm{a} \in \mathrm{T}, \mathrm{a} \models_{\tau}^{\neg p o s} \phi$, for $\mathrm{T} \in \mathcal{A}_{\mathcal{P}_{\mathrm{L}}(\tau)}$
$a \models_{\bar{\tau}}^{\text {pos }} \phi$ if $a \models_{\tau}^{\text {pos }} \phi$, for $a \in A_{\tau}$
Definition: $\models_{\tau}^{\sim \text { pos }} \phi$ is ρ_{τ}-sound iff for all $c \in C_{\tau_{1}}, a \in A_{\tau_{2}}$, $\mathrm{a} \models_{\tau}^{\text {pos }} \phi$ is well formed, holds, and $\mathrm{c} \rho_{\tau}$ a imply $\mathrm{c} \not \nexists_{\tau} \phi$.

Theorem: All $\models_{\tau}^{\text {pos }} \phi$ are ρ_{τ}-sound.

The case for $\models_{\bar{\tau}}^{\sim \text { pos }} \phi$ shows signifi cant loss of precision: $a \models_{\bar{\tau}}^{\sim_{\bar{\tau}}^{p o s}} \phi$ and $S \rho_{\bar{\tau}}$ a imply for all $c \in S$, that $c \models_{\tau}^{\text {pos }} \phi$, whereas we need only show that there exists some $c \in S$, such that $\mathrm{c} \models{ }^{\text {pos }}{ }_{\tau} \phi$.

Corollary: $\mathrm{a} \models_{\tau} \neg \phi$ if $\mathrm{a} \models_{\tau}^{\text {pos }} \phi$ is sound for ρ_{τ}.
$\mathrm{a} \models_{\tau}^{\text {pos }} \neg \phi$ if $\mathrm{a} \models_{\tau} \phi$ is sound for ρ_{τ}.
(i) In the refutation logic, $\models_{\tau}^{\text {pos }} \phi$, the roles of $\mathcal{P}_{\mathrm{L}}(\tau)$ and $\mathcal{P}_{\mathrm{u}}(\tau)$ are exchanged. This, as well as the need to validate a mix of \forall and \exists, means we must employ R^{\sharp} and R^{b} to validate/refute assertions -this is the idea behind mixed/modal transition systems.
(ii) The Sagiv-Reps-Wilhelm TVLA system simultaneously calculates validation and refutation logics.
(iii) We might approximate every concrete set by a pair of lower and upper approximations: $\rho_{\mathrm{P} \tau} \subseteq \mathrm{PC} \times\left(\mathcal{P}_{\mathrm{L}}(\mathrm{A}) \times \mathcal{P}_{\mathrm{u}}(\mathrm{A})\right)$. This motivates sandwich- and mixed-powerdomains for over-under-approximation of sets
[Huth-Jagadeesan-Schmidt].

References

Primary:

1. This talk: www.cis.ksu.edu/~schmidt/papers
2. K. Backhouse and R. Backhouse. Galois Connections and Logical Relations. Mathematics of Program Construction, LNCS 2386, 2002.
3. P. Cousot and R.Cousot. Abstract interpretation frameworks. Journal of Logic and Computation 2 (1992).
4. P. Cousot and R.Cousot. Higher-order abstract interpretation. IEEE Conf. on Computer Languages, 1994.
5. D. Dams. Abstract interpretation and partition refi nement for model checking. PhD thesis, Univ. Eindhoven, 1996.
6. C. Loiseaux, et al. Property preserving abstractions for the verifi cation of concurrent systems. Formal Methods in System Design 6 (1995).
7. A. Mycroft and N.D. Jones. A relational framework for abstract interpretation. In Programs as Data Objects, LNCS 217, 1985.
8. G. Plotkin. Domain theory. Lecture notes, Univ. Pisa 1982.

Secondary:

1. S. Abramsky, Abstract interpretation, logical relations, and Kan extensions. J. Logic and Computation 1 (1990).
2. F. Baader, et al. The Description Logic Handbook. Cambridge Univ. Press 2003.
3. D. Dams, R. Gerth, O. Grumberg. Abstract Interpretation of Reactive Systems. ACM TOPLAS 19 (1997).
4. J. Hartmanis and R. Stearns. Pair algebras and their application to automata theory. Information and Control 7 (1964).
5. R. Heckman. Powerdomain constructions. PhD thesis, Saarbrücken, 1990.
6. M. Huth, R. Jagadeesan, D. Schmidt. Modal transition systems: a foundation for three-valued program analysis, ESOP 2002. Also, A domain equation for refi nement of partial systems, J. MSCS, in press.
7. M. Sagiv, T. Reps, R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic. 26th ACM POPL, 1999.
8. D.A. Schmidt. Binary Relations for Program Abstraction. In The Essence of Computation, Springer LNCS 2566, 2002.
