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Over-approximation states a property of a
program’s outputs
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�� � � � � �� � � 	 asserts “ 
 �� � � ” — all concrete outputs in set �

are even-valued. (We might write � � �� � � or � 
�� �� � � .)

The upper adjoint, � , selects the largest set approximated by

�� � � :
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Under-approximation might be stated as the dual

Here, �� � � assets that all evens are included in the concrete
outputs:
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This often abstracts constants to nothing, e.g., � � � � ��� � � � � �	 , where


� � � �	 � � 
� , because we require 
�� � � 
� � � 
�� � � , forcing

� � 
�� � � � � �	 .

Thus, many program phrases are under-approximated to nothing:

� �� � � � ��� � � � � � �� � �� � ��� ��� � � � � � � � � � � � � �� 	 � � �� � � �	 � � � � �	

If we repair, say by including all constants, � �� �� , in � � ! � "$# % , then to preserve

&' ( ) *+ ,- .0/ 12 304 5 * 67 &' � 3 , we must expand � � ! � " # % into 8 ' � �� 3# % !
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Under-approximation as existential quantification

If the over-approximating �� � � � � � � � � 	 asserts “ 
 �� � � ,”

{ 2n | n

∋

Nat }P(Nat)

{0,2}

{0} {2}

{2,4,8,16,...}

{ }
o

even

ρ

Parity

then the under-approximating �� � � � � �� � � 	�� � should assert
“� �� � � ” — there exists an even number in the program’s outputs:

P(Nat)op opParity

{2,4,8,16,...}

Nat

{0,1} even
{0}

uρ

{2}

{5,7,9,12}

This provides a nontrivial under-approximation of constants, e.g.,

� � � � � � � � 	 �	 � , and expressions: � �� � � � � � � � � � � �� 	 � � �� 	 �	 � � � 	 � � � .
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But we cannot define � � � �� � � 	 � � � � ��� � � �� � in the usual
way:

?P(Nat)op
γ

{5,7,9,12}
{2}

{2,4,8,16,...}

Nat

{0,1} even
{0}

ρu

There is no best, minimal set that contains an even number.

Indeed, �� � � ’s concretization is not a single set — it is a set of
sets:

� � �� � � � � � � � � ��� � � �� � 
 � � � �� � � �

This suggests that we work with power-domains in both the concrete

and abstract domains.
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Universal (over-approximating) interpretation: � �� � � � � � � �

asserts 
 � �� � � � � � � ��� 
� �� � � � � � � � — all outputs are even- or

odd-valued: Use a lower power-domain (lower sets) for the abstract domain.

{ S | S has even numbers only }

{ S | S is a subset of Nat }

{ }

γ

P (Parity)

{ }

{even,none} {odd,none}
{none}

{even,odd,none}

{any,even,odd,none}

(P(Nat))P

∀( even v odd )=

Existential (under-approximating) interpretation: � �� � � � � � � �

asserts� � �� � � � � � � ��� � �� � �� � � � � — there exists an even-

valued and an odd-valued output: Use an upper power-domain (upper sets).

{ S | S is nonempty }

{ S | S is a subset of Nat }

{ S | S has an even }

{ S | S has an even and an odd }

{ }

op

γ

P (Parity)

{any}

{ }

{even,odd,any}

{even,any} {odd,any}

{none,even,odd,any}

(P(Nat)    )P

∃= even ∃ oddv
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Dennis Dams’s mixed transition systems employ
the universal and existential abstractions

A transition

system:

� � 
�� � � � �� � � �

� � 
� � � � � � �� � � �� � � �� � � � � � � ��

c0

c1

c2

Approximating the states: Note: � and � omitted for brevity.

	 ��
 � � � � � , 	 �
 � � � � � � � 	 �
 � � � 	 �
 � � 
 � �

That is, � 
 � � 
 , � � � � �� , and � � � � �� .

Over-approximation transitions (“may”):

��� � �� � � � � � � � �� � � � � � � � � �� � � � � � � � � a0 a12

As a function, ��� ' � 
 304 � � �� ��� � � �� and �� ' � �� 34 � � 
 � � �� ��� �' � 
� � �� 3 .
Under-approximation transitions (“must” ):

� � � �� � � � � � � � � a0 a12

As a function, ��� ' � 
 304 � � �� ��� � � �� and �� ' � �� 34 � �� �' 3� �
The mixed transition system is� � � � � � � � � � � � � ��� � .
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c0

c1

c2
a0 a12 a0 a12

From Galois connection, � � � � � � � 
 �� , Dams defines this simulation
relation: � � � iff� � 
� � � . From � � � � � , he defines

� �� �	 iff �	 � 
 �� 
 �� 
 �� 
 � 
�� 	 � ��� � � 
� � �� � 	 �� �

� � � �	 iff �	 � 
 �� 
 �� 
 �� 
 � 
�� 	 � ��� � � 
� � �� � 	 �� �

and he proves � � � �� , that is, �� � -simulates �

� � � ��� � � , that is, � � is � -simulated by �

This gives him soundness for � ( � � ) and � (� � ):

Define � � � � � iff for all �	 , � �� �	 implies �	 � � �

� � � � � iff there exists �	 such that � � � �	 and �	 � � �

Then, � 
�� � and
 � � imply
 
�� � .

And with lots of hard work, he proves best precision: For all � -,

�� � -simulations of � , �� and � � preserve the most � � -properties.

��� � � �



Can we derive ��� and ��� and prove soundness and
precision directly from Galois-connection theory?

Yes — we treat � � � � � as � � � � � � � � .
Then, we have �� � � � � �� � � , where � ��	� � is a lower powerset ( � )
constructor.

We “lift” the Galois connection, � � � � � � 
 � 
 
 �� , on the states to a

Galois connection on powersets,� � � � � � � � � � 
 
 �� 
 � 
 
 � � � �� � �� so that

1. ��� � -simulates � iff � � � � 
 
 �� � ��� � 
 � �� � 
� ��� � � � � 
 
 �� ���

2. the soundness of � 
�� � � follows from Item 1

3. ��� � ��� � 	 � 
 
 �� � � � � 
 
 �� � �� � 


We do similar work for � � � ��� � � � � �� � � and � � , where � ��	� � is an
upper ( � -ordered) powerset constructor.

For over-approximation, we can use � 4 !  or � 4 8 !'#" 3 ; for under-approximation, we

must use � 4 8 !'#" # % 3 . (We will see why....)

�� � � � $



Our results from reworking Dams’s constructions

1. Starting from approximation relations, � � � � � , we generate

Galois connections from U-GLB-L-LUB-closed relations cf.

[Mycroft-Jones 86, Cousot-Cousot JLC 92].

2. We define lower and upper powerset constructions, weaker forms

of powerdomain but strong enough for abstraction studies. They

are the join completions of [Cousot-Cousot ICCL 94].

3. We use powerset types in a family of logical relations, show how

the family preserves the closure properties in 1., and prove that a

simulation proof is an instance of proof via logical relations. We

obtain Dams’s most-precise simulation results “for free.”

4. We extract validation and refutation logics from the logical

relations, state their resemblance to Hennessy-Milner logic (and

description logic), and obtain easy proofs of soundness.

�� � � � �



Closed approximation relations
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Closed relations and Galois connections

Let � and� be complete lattices, and let � � � � � .

� � � means that � is modelled/approximated by �

Definition: For all
 � 
 	 �� , � � � 	 � � , for �� � � � , � is

1. U-closed iff
 � � , � � � 	 imply
 � � 	

2. GLB-closed iff
 � � � � 
 
 � � �

3. L-closed iff
 � � ,
 	 � 
 imply
 	 � �

4. LUB-closed iff � �
 
 
 � � � � �

ac
ρ

C A

{ c’ | c’ ρ a } = { a’ | c ρ= a’ }
c’

a’

Origins: Hartmanis and Stearns 1964 (pair algebras); Mycroft-Jones 1986

(LU-closure); Cousot-Cousot JLC 1992; Backhouse-Backhouse 1998
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ac
ρ

C A

{ c’ | c’ ρ a } = { a’ | c ρ= a’ }
c’

a’

Proposition: For L-LUB-U-GLB-closed � � � � � ,� � 	 � � � � � �

is a Galois connection, where

� 	 �� 
 � � � � � 
 
 � � �

� � �� � � � � �
 
 
 � � �

Intuition: U-closed makes & � mono; L-closed makes � � mono; GLB-closed ensures

� � selects the most precise sound answer; LUB-closed ensures & � selects the most

general sound answer.

Note that� � � iff� � � 
 � � iff � � � � � � .

Proposition: For Galois connection,� � 	 � � � � , define

�� � � � � � as �� 
 � � � 
 	 
 � � � . Then,

�� � is L-LUB-U-GLB-closed and � 	 �� 	 � � �� 	 � � � 	 � � � .

�� � � � 9



“Completing” U-GLB-closed � � � into a
Galois connection between � � � and

Here is a standard technique: Let � be a (discretely ordered) set and
let� be a complete lattice.

For � � � � � , define

�
� � � � � � � � as � �
� � iff for all
 � � ,


 � � .

Theorem: If � is U-GLB-closed, then

�
� is L-LUB-U-GLB-closed,

and � � � � � 	� � � � � � � � is a Galois connection,
where � � � � � � � � 
 � �

� � � � �
 
 
 � � � .

Example: Let � �� be the discretely ordered set of integers:

	
 � �
 � �� � �

� � 	 �� �

� 	� � � �

� � 	 � � �

� 	� � �

{ m | m < 0 }
neg zero pos

all

none

ρ
P(Int) Sign 	 is L-U-GLB-closed

but not LUB-closed.
It is completed to

�	
 � � � �
  � �� � � .
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Powersets
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Lower powersets

� ’s “powerset” is a complete lattice, � , with monotone singleton and

union operations: � � � � � � � � � 
�� � � � � � � � � � � � � � � � .
Define membership as�

�� � iff 
� � � � � � � � .

A lower powerset, � �� � � , treats � � as� : For all � � � � � � � ,

� � � � � � iff (for all �� � � � , there exists 	
�

� � � such that � �	 	 )

Down-set (order-ideal) completion: For � � � ,� � � , define


 � � 
	 � � � 	 �	 � � and 
 � � � 
 
 � � � � � � .

Define � �� � � � � 
 
 � � � � � � � � � 
 � � � — all down-closed subsets of 


Example: P (Parity)

{ }

{even,none} {odd,none}
{none}

{even,odd,none}

{any,even,odd,none}Parity any

even odd

none

�� � � � �



Upper powersets

There is a dual construction:

An upper powerset, � �� � � , treats � � as � : For all � � � � � � � ,

� � � � � � iff (for all 	
�

� � � , there exists �� � � � such that � �	 	 )

Up-set (filter) completion: For � � � and� � � , define

� � � 
	 � � � � �	 	 � and � � � � 
 � � � � � � � .

Define � �� � � � � 
 � � � � � � � � � � � � � � — all up-closed subsets of 


Example:
Parity any

even odd

none

P (Parity)

{any}

{ }

{even,odd,any}

{even,any} {odd,any}

{none,even,odd,any}

�� � � �  



Logical relations
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Logical relations

We now attach typings to the relations. Here are the types:

� � � � � 
 � � � � � 
 � �� � � 
 � �� � � 

��

�� is a special case of 8 !' � 3 and names the completion of U-GLB-closed �� � � �

to ��� 8 ' � 3 � � , seen earlier

Let � 
 and� 
 be p.o.-sets of the appropriate form (e.g.,� 
 �� 
 � is a

lattice of monotone functions,� � � � 
 � is an upper powerset, etc.)

We define this family of logical relations, � 
 � � 
 � � 
 :

	 � is given


 	 
 �� 
 � 
� iff for all
 �� 
 � �� � � 
 � � 
 	 
 � � implies 
 

 � 	 
 � 
� 
� �

� 	 � ! � 
 �� iff for all

�

� � � there exists�
�

� � such that
 	 
 �

� 	 � � � 
 � � iff for all�
�

� � � there exists

�

� � such that
 	 
 �

� 	�� 
 � iff for all

�

� � � 
 	 
 � � That is, � 	�� 
 � iff � 	 � ! � 
 ��� � � �

��� � ��� $



Simulation relations are logical relations

Binary relations are the key component in simulation proofs:

For � � � � � , transition relations, � � � � � , �� � � � � ,

Definition: ��� simulates � , written � � � ��� , iff for all

�

 	 ��

and� � � ,


 	 � and
 � 
 	 imply there exists� 	 � � s.t. � � � � 	 and
 	 	 � 	 .

Say that we represent � and �� as multi-functions, � � � � � � �
�

�

and

�� � � � � � �
�

�

:

Theorem:

1. � � � �

� � iff � 	 �� � ! � � � ���

2. � � � �� �
�

� iff � 	 �� � � � � � � �

��� � ��� �



Closure properties of logical relations
� � � ��� � � �� iff for all � � � � � �� � � � � � � � � � � implies � � � 	 � � � �� �� 	


 � � �
 � �� iff for all �� � 
 � there exists� � � � such that � � � �


 � � � 
 � � � iff for all� � � � � there exists �� � 
 such that � � � �


 ��� � � iff for all �� � 
 � � � � �
Theorem: For 	 
� � 
 � � 
 and for

� � � � � � � 	 � �
��� � 
�� � � �  
�� � �

! � � ,

If 	" is L-closed, then so is 	# $" % .
If 	" is U-closed, then so is 	# $" % .
If 	" is U-GLB-closed, then so are 	"'& ( " , 	��" , and 	 ) * +" , .
If 	" is L-LUB-closed, then so are 	"'& ( " and 	 ) - +" , .
Proposition: 	�" and 	 ) * +" , are always L-closed, and 	 ) - +" , is
always U-closed.

�/. � ��� �



Alas, LUB-closure is not guaranteed for � � ��� �

and neither is

GLB-closure for �  ��� �

.

But there are some sufficient conditions upon the choice of lower- and

upper-powerset that ensure these closures.

Here are two simple but useful examples:

Proposition: 	 ) * +" ,�� � � 
�� " � � � � 
	 " � is always LUB-closed.

Proposition: 	 ) - +" , � �  
�� " �
� � � 
 	 " � is aways GLB-closed.

�/. � ��� �



Dams’s results
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Synthesizing a most-precise simulation

Dams proved, for � �
�

� �� � � �� and transition relation � � � 	 � , that
the most-precise, sound abstract relation � 
 � � 	 � is

� 
 �
� � � �

�
iff � � 
 � � ��� �� � 
� � � ��� �� ��� �

� � �
�

� � � �
�� �

Reformatted as a function, this reads

� 
 
� ��� �� 
�� � � �  � � ! 
� � �
� � " � 
�� � �

We can derive Dams’s result: Given U-GLB-closed #$ � � 	 � and
transition function � % �& � �

�
�

, we derive � 
 % � & � � �
�

�

:

1. We use the closure properties to generate
L-LUB-U-GLB-closed relations, '� $ � � 
�� �
� 	 and

' ) * +$ ,� � 
�� � � � � 
	 � .

2. We synthesize �)( $* +, - 	 � � � 
 	 � in the expected way:

�)( $* +, � � . � * 
 � �0/ 123 
 � � / ! .� �
� � 


�/. � ��� 4



Synthesizing a most-precise dual simulation

Dams proved, for � �
�

� �� � � �� and � � � 	 � , that the best

underapproximating relation � � � � 	 � is

� � �
� � � �

�

iff � � 
 � � ��� �� � 
� � � ��� �� � ��
� � �
�

� � � �
�� �

Reformatted as a function, this reads

� � 
� � � �� 
�� �� � " �� � � � �� for all� " !�� 	 �

�� � 	�
 � � 
� �� � �

We must work a bit harder, but we can derive the same
result:

Given �- � � � � � 	 and U-GLB-closed ' $ � � � 	 , we derive

� �- 	 � � �� 	 	 ....

��� � ��� �



We derive � �- 	 � � �� 	 	 :
1. We generate L-LUB-U-GLB-closed '�� $ � � � � 	 � 	

2. We generate ' � ) - +$ ,� � �� � � � 	 � � 	 � � �� 	 	 in stages:

(a) begin with U-GLB-closed ' $ � � � 	 (because � is
discretely ordered, ' $ is L-closed also);

(b) lift to sets of answers: lift the relation to L-U-GLB-closed

' ) - +" , � � � � 	 � � � � �� 	 	 ;
(c) introduce LUB-closure (giving a Galois connection):

complete the relation to ' � ) - +" , � � �� � � � 	 � � 	 � � �� 	 	 .
3. We synthesize � �$* +, - 	 � � �� 	 	 :

� �$* +, � � . � � - �� �/ 123 � �	 
 	� � � 	 � ! .
� � � � �

where �� � ��� �� �� � ��� � ��� ��� �  � ! � � � � ��� � � maps a set of concrete arguments

to the set of � -successor sets of the arguments.

As seen in the talk’s introductory example, the relation in (b) lacks LUB-closure.

��� � ��� "



Validation and refutation logics
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A logic generated from the logical relations

We define this language of assertions,

� - - � � $ 	�� � � 	�� � 	  �

and this semantics of typed judgements for both concrete domains,

� " , and abstract domains,� " :

� 	� $ � $ is given, for � " � $

� 	� " 	 ( " 
 � � � if� � � 	 	� " 
 �� for � " � " 	� � " � " 	 ( " 


� 	� ) * +" ,� � if for all �� " �� � 	� " �� for � " � ) * +" ,

� 	� ) - +" ,  � if there exists �� " � such that � 	� " �� for � " � ) - +" ,

The judgement form for


� is a special case of � � �� � ’s:

� ��� �" � if � ��� " � , for all � 
 � ,� 
 � � � � " �

� �� �" � if � ��� " � , for � 
 � "

��� � ��� �



Some “syntactic sugar”:

� 	� � � � (that is, � 	� � � ) abbreviates � 	� " 	 ( ) * +" 
 , � �� �

� 	�  � � ( � 	� � � ) abbreviates � 	� " 	 ( ) - +" 
 , � �  �

This reveals that the logic extracted from the logical relations is
a variant of Hennessy-Milner logic or description logic or
branching-time temporal logic.

��� � � ��



� � ��� � � � � � � � � 	 � 
 � � 	 � 
 �
�

�

Assume, for all function symbols, 
 , typed � �& � � , there are
interpretations 
 % � " 	& � " 
 , and 
( % � " 	& � " 
 , such that


 #" 	 ( " 
 
( . Also, we formalize when judgements � �� " � are well
formed.

Definition: 	� " � is '" -sound iff for all � " � " 	 ,� " 	 " 
 ,

� 	� " � is well formed, holds true, and � '" � imply � 	� " � .

Assume that all��� $ � are # $ -sound.

Theorem: For all types, � , we have that 	� " � are '" -sound.

We can add the logical connectives,

� ��� " � ��� � � if � �� " � � and � �� " � �

� ��� " � ��� � � if � �� " � � or � ��� " � �

and prove these #" -sound as well.

��� � � ��



Validating � requires a refutation logic

Define � ��� " � � iff � ���� " � .

We have a logic that validates � for � 
 � by validating it for � 
 � , so
we might have also a logic that refutes properties similarly:

Read � ����� �	
� � as “it is not possible that any value modelled by � has property � .”

� ��� 
 ����$ � is given, for � 
 � $

� ��� 
 ����" 	 ( " 
 
 � � if 
 �� � ��� 
 �� �" 
 � � for � 
 � " 	 � 
 
 � " 	 ( " 


� ��� 
 �� �) - +" ,�� � if exists � �
 � � � �� 
 ���" � � for � 
 � ) - +" ,

� ��� 
 �� �) * +" ,�� � if for all � �
 � � � ��� 
 ����" � � for � 
 � ) * +" ,

� ��� 
 �����" � if � ��� 
 ����" � � for � 
 � "

Definition: 	� 
 ����" � is '" -sound iff for all � " � " 	 ,� " 	 " 
 ,

� 	� 
 ����" � is well formed, holds, and � '" � imply � 
	� " � .

Theorem: All 	� 
 ���" � are '" -sound.

��� � � ��



The case for���� �	
� � � shows significant loss of precision: � ���� �	
� � � and � � � � � imply

for all � � � , that � ���� �	
� � , whereas we need only show that there exists some � � � ,

such that � ���� �	
 � � .

Corollary:� 	� " � � if� 	� 
 �� �" � is sound for '" .

� 	� 
 ����" � � if� 	� " � is sound for '" .

(i) In the refutation logic,���� �	
� � , the roles of � * ��� � and � - �� � are exchanged. This,

as well as the need to validate a mix of � and 	 , means we must employ ��
 and �
� to

validate/refute assertions — this is the idea behind mixed/modal transition systems.

(ii) The Sagiv-Reps-Wilhelm TVLA system simultaneously calculates validation and

refutation logics.

(iii) We might approximate every concrete set by a pair of lower and upper

approximations: �� � � � � � � � * �� � � � - � � � � . This motivates sandwich- and

mixed-powerdomains for over-under-approximation of sets

[Huth-Jagadeesan-Schmidt].
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