
Guards and Guarantees for
Programming

David Schmidt

Kansas State University

(-: / 1

Tools: hammers, paper cutters, lawn mowers

¨ Tools are designed for a speci£c purpose; if misused (intentionally

or unintentionally), they can cause physical harm.

¨ To provide protection against unintentional misuse, tools come

with guards.

¨ To promote proper use, tools come with instructions and

guarantees of performance with proper use.

(-: / 2

A programming language is a tool

¨ Like a physical tool, it can be misused, unintentionally or

intentionally.

¨ Like a physical tool, a programming language should come with

guards that protect against unintentional (and most intentional)

misuse.

¨ Like a physical tool, a programming language should come with

instructions and guarantees of proper performance.

(-: / 3

Typical language guards and guarantees

Forms of guards:

¨ static (pre-execution) checks: declaration checks, type checks,
signature (module-interface) compatibility checks, uninitialization
checks, other safety checks

¨ dynamic (execution) checks: virtual-method message checks,
type-cast checks, array-bounds checks, dereference and jump
checks, liveness checks, and other safety checks

Forms of instructions:

¨ language descriptions in English verbiage)-:

¨ syntax de£nitions in grammatical format

¨ semantic de£nitions in operational/denotational/axiomatic format

Forms of guarantees:

¨ ???
(-: / 4

Typical dynamic checks: trapping malicious actions

¨ ... r -> f ... Does object r have value null ? Does r

possess a £eld named f ?

¨ a[i + 2] = ... ; Does the value of i + 2 fall in the range of

a’s indices ?

¨ goto x; Is x’s value a location in this user’s program partition ?

¨ assert{ exponentiation == loop counter * base } Are the

run-time values of the variables supporting the invariance (safety)

check ?

(-: / 5

Typical static checks: identifying dubious phrases

¨ (I) ... Math.sqrt("hello") ... Is this an appropriate

argument to the function ? (II) ... Math.sqrt(2, 9) ... Is

this an appropriate quantity of arguments to the function ?

¨ (I) int x = "hello"; Is this an appropriate assignment to the

variable ? Will the value £t into the storage cell ? (II) int pi =

3.14159; Is this an appropriate assignment to the variable ? Will

the value £t into the storage cell ?

¨ ... a[x() + y() * z()] ... Does the value of the index

expression fall in the range of a’s indices ? Does the absence of

brackets in the index expression make it ambiguous ? (The

functions x, y, z might possess side effects.)

Can a static checker identify these situations as well as those on the

previous slide? Some checkers (e.g., LC-Lint, ESC-Java) can.

(-: / 6

Assessment of dynamic checks

✘ Requires extra code, either embedded into the application (e.g.,

compiler embeds array bounds check at each indexing) or coded

within an interpreter that monitors the application (e.g., Java

byte-code interpreter in web browser) or “woven” into the

application (e.g., AspectJ and other aspect-oriented-programming

weavers).

This increases code size and slows execution.

✔ Prevents almost all inadvertant misuses and many malicious

security violations. (Standard C-trick, responsible for 50% of all

security attacks: deliberately over-index an array (called a “buffer

overrun”) to the base of the application’s C-implemented

activation-record stack, resetting the application’s return address

so its exit jumps to malicious code but with OS-level read-write

privileges.)

(-: / 7

Assessment of static checks

✘ Occasionally rejects sensible programs that exploit programming

shortcuts in control/data representation — forces conformance to

standard and perhaps “boring” programming style.

✔ Protects a programmer from making foolish errors when tired or

confused and protects the programmer from writing patterns that

can be exploited by a malicious user/hacker.

✔ Forces the programmer to question her/his programming

technique and forces her/him to study the language’s instructions.

(-: / 8

History

Dif£cult experiences with machine programming in the 1940’s and

1950’s caused John Backus to introduce both static and dynamic

checks on arrays into Fortran. Their great success caused their

extension in subsequent languages, notably the Algols, Pascal and

Modula, where modern type checking matured. Even the

fundamentally dynamic languages Lisp and Snobol employed

dynamic checks.

But these experiences were forgotten in the 1980’s, when C-programs

were written for mini- and micro-computers, whose limited storage and

processor power made the user pay a performance penalty for such

guards. Software reliability decreased, and malicious users regularly

exploit ¤awed software developed in “un-guarded” languages.

The consequences have been severe, and the software community is

relearning what Backus knew in the 1950’s.

(-: / 9

Instructions for programming languages

Unfortunately, most programming languages do not possess a

comprehensible set of instructions, that is, a formal language

de£nition. The situation is worse today that it was in the 1970’s and

1980’s !

A formal language de£nition should, in principle, consist of

¨ syntax de£nition: lexicon (vocabulary) and grammatical rules

(sentence structure)

¨ semantics de£nition: description of the operation of the

syntactically legal programs

¨ pragmatics description: how to employ the language to best

effect

(-: / 10

Sample syntax de£nition for a baby assignment
language

Lexicon:

n ∈ Numeral = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗

v ∈ Var = {a, b, c, d, ..., z}∗

Punctuation and operators: @, :=, +, ;

Grammar:

e ∈ Expr

e ::= @v | n | e1 + e2

c ∈ Command

c ::= v := e | c1; c2

The grammar gives a precise de£nition how programs appear.

(-: / 11

Example syntax tree for a:= 2; b:= @a + 1

c

c c

e v e

n e e

v2

b

a 1

v

a

;

:= :=

+

@ n

(-: / 12

Sample (big-step) operational semantics

Data structures:
s ∈ StorageVector = (Var×Nat)∗

n ∈ Nat = {0, 1, 2, ...}

Expression computation rule format: s ` e → n

s ` @v → lookup(v, s) x ` n → n

s ` e1 → n1 s ` e2 → n2

s ` e1 + e2 → add(n1, n2)

Command computation rule format: s ` c → s ′

s ` e → n
s ` v := e → update(s, v, n)

s ` c1 → s1 s1 ` c2 → s2

s ` c1; c2 → s2

Assuming that we de£ne precisely lookup, update, and add, the

semantics explains precisely the meanings of the phrases.

(-: / 13

Example semantics for a:= 2; b:= @a + 1

[] ` a := 2; b := @a + 1 → [(a, 2), (b, 3)]

[] ` a := 2 → [(a, 2)] [(a, 2)] ` b := @a + 1 → [(a, 2), (b, 3)]

[(a, 2)] ` @a + 1 → 3

[(a, 2)] ` @a → 2 [(a, 2)] ` 1 → 1

[] ` 2 → [2]

(-: / 14

What are a programming language’s guarantees ?

A typical “guarantee”:

“This software is sold ‘as is,’ and no warranty is expressed

or implied. The user takes full responsibility for use of

aforementioned software and the Manufacturer is not liable

for any use that leads to loss of any kind to the user ... blah

blah blah”

You are a software engineer; you build applications whose input-data

formats de£ne a specialized “programming language” (consisting of

appropriate sequences of keyboard presses and mouse clicks).

What are the guards, instructions, and guarantees that you offer to

your clients ?

(-: / 15

Final remark: guards and guarantees are needed for
program components that are “used” by other
components — this is programming by contract

/** factorial computes n! for input n in the range 0..20.

* @param n - must be in the range 0..20 <---PRECONDITION - guard

* @return n! <---POSTCONDITION - guaranteed if precondition true

* @throw RuntimeException, if n < 0 or n > 20 */

public long factorial(int n)

{ long answer; // holds the result

if (n < 0 || n > 20) // <---IMPLEMENTS THE GUARD

{ throw new RuntimeException("illegal input"); }

else { answer = 1; int count = 0;

while (count != n)

// invariant: answer == count! <---SAFETY-CHECK GUARD

{ count = count + 1; answer = count * answer; }

}

return answer; // assert: answer == n! <---SAFETY-CHECK GUARD

}

(-: / 16

A few references

The slides for this talk: www.cis.ksu.edu/~schmidt/papers

C.A.R. Hoare. Notes on data structuring. In Structured Programming,
O.-J. Dahl, et al., editors. Academic Press, 1972. The origin of
modern data types.

Neil Jones and Steve Muchnick. TEMPO: A uni£ed treatment of
binding time concepts. Springer Lecture Notes in Computer Science
66, 1978. How guards are introduced into a language and moved
from dynamic checks into static checks.

D.A. Schmidt. Denotational Semantics: A Methodology for Language
Development W.C. Brown, 1988. One explanation of how to read,
write, and use formal language de£nitions.

D. Detlefs, et al. Extended static checking. Compaq SRC Report 159,
1998. A static checker that does many checks considered “dynamic.”
John Hatcliff’s CIS771 web page has a nice intro.

(-: / 17

