An introduction to separation logic

David Schmidt

Kansas State University (USA) and Projet Lande, IRISA (F)

www.cis.ksu.edu/~schmidt

Outline

- 1. Review Hoare-logic rules for program validation
- 2. Examine problems related to objects, pointers, and aliasing
- 3. Introduce graph models of storage
- 4. Introduce *separation logic* for validating programs that use the graph models
- If time allows, see how separation logic can be used to prove properties of concurrent programs that share resources

When we write programs, we depend on logical properties

```
class BankAccount {
  private int balance; {invariant : balance ≥ 0}
...
  deposit(int x){ {precondition : x > 0}
    balance := balance + x;
  } is the invariant preserved? Is balance ≥ 0?
```

. . .

}

Floyd, Hoare, and Wirth proposed logical laws for programs

Assignment axiom:

```
\{[E/x]P\} x := E \{P\}
```

where [E/x]P denotes the substitution of E for all free occurrences of x in P.

Example:

 $\{balance + x \ge 0\}$ $balance := balance + x \{balance \ge 0\}$

(It helps to read the rule and the example from right to left.)

Since deposit's precondition asserted that x > 0, and BankAccount's class invariant said that balance ≥ 0 , we conclude that

{balance $\geq 0 \land x > 0$ } balance:=balance + x {balance ≥ 0 },

proving that deposit preserves the class invariant.

Composition rule for commands

 $\frac{\{P\}S_1\{Q\}\ \{Q\}S_2\{R\}}{\{P\}S_1;S_2\{R\}}$

Example: validating the exchange of two values

 $\{x = a \land y = b\}$ temp:=y; $\{x = a \land temp = b\}$ y:=x; $\{y = a \land temp = b\}$ x:=temp $\{y = a \land x = b\}$ The rules for conditionals and loops

 $\begin{array}{ll} \frac{\{E \land P\}S_1\{Q\} & \{\neg E \land P\}S_2\{Q\} \\ \hline \{P\} \text{if E then S_1 else $S_2\{Q\}$} & \begin{array}{ll} \{E \land P\}S\{P\} \\ \hline \{P\} \text{while E do $S\{P \land \neg E\}$} \end{array} \end{array}$

Example: validating factorial using the *loop invariant*, fac = i!

i:=0; fac:=1; $\{fac = i!\}$ while $i \neq x do \{$ $\{i \neq x \land fac = i!\}$ i := i + 1; fac := fac * i $\{fac = i!\}$ $\{ fac = i! \land i = x \}$ $\{fac = x!\}$

The rules are unsound when aliasing is allowed

Assignment axiom: $\{[E/x]P\} x := E \{P\}$

Program: x:= new Cell(3,nil); y:= x; y.head:= 4

Read the example from the bottom to the top:

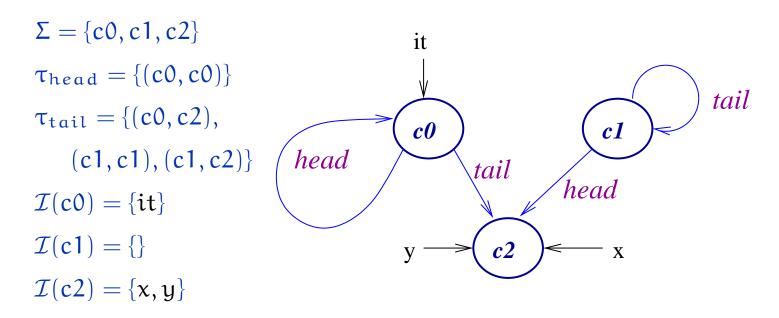
Cell object!

 $\{4 > 3\}$ $\{4 > \text{new Cell}(3, \text{nil}).\text{head}\}$ x := new Cell(3, nil) $\{4 > x.head\}$ $\mathbf{y} := \mathbf{x}$ $\{4 > x.head\}$ y.head := 4 $\{y.head > x.head\}$ We proved y.head > x.head, even though x and y point to the same The aliasing problem also appears when we use procedures with call-by-reference (call-by-location) parameter passing and/or arrays.

Since objects, references ("pointers"), and aliasing are standard features, we must develop a more discriminating semantic model and more discriminating inference rules for programs.

Our semantic model of storage will be a graph structure, speci£cally, a *Kripke structure*.

Storage is a Kripke structure, $G = \langle \Sigma, \tau, \mathcal{I} \rangle$



The nodes are *cells* (objects). We express properties of the graph: $G \models tail(it, x) \land x = y$

 $G \models \exists n.tail(n,n)$

We validate graph properties across state changes, {P} s {Q}:

 $\{x = y\}$ That is, if $G_{pre} \models P$, it.tail:=x and $G_{post} = [S]G_{pre}$, $\{tail(it, x) \land x = y\}$ then $G_{post} \models Q$

Modular validation

A property, ϕ , is checked with respect to the entire graph, G,

 $G \models \phi$.

Is there a "modular" variant of property checking, where a subgraph of G is used to validate ϕ ?

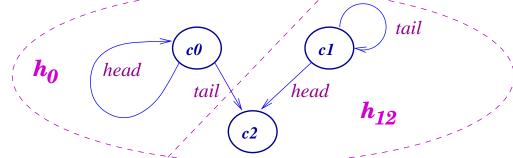
That is, we want to divide the model, G, into disjoint "regions" (subgraphs), h_i , so that we can use this reasoning principle:

 $\frac{\mathbf{h}_1 \models \phi_1 \quad \mathbf{h}_2 \models \phi_2 \quad \mathbf{h}_1 \# \mathbf{h}_2}{\mathbf{h}_1 \circ \mathbf{h}_2 \models \phi_1 * \phi_2}$

where $h_1 # h_2$ asserts that h_1 and h_2 are disjoint regions of G. $\phi_1 * \phi_2$ expresses an assertion whose conjuncts hold true for disjoint regions — *no aliasing/sharing between regions!*

This is the motivation for separation logic.

We will apply separation logic to storage heaps, e.g., $h = \langle Cell, \{head, tail\} \rangle$. (Say that domain(h) = Cell.)



We say that $(Cell_1, \{head_1, tail_1\}) # (Cell_2, \{head_2, tail_2\})$ iff $Cell_1 \cap Cell_2 = \{\}$ — their domains (node sets) are disjoint.

The composition of two heap-regions is $(Cell_1, \{head_1, tail_1\}) \circ (Cell_2, \{head_2, tail_2\})$

 $= \langle Cell_1 \cup Cell_2, \{head_1 \cup head_2, tail_1 \cup tail_2\} \rangle$

if $Cell_1 # Cell_2$ (else the composition is unde£ned).

The above diagram displays two disjoint regions, h_0 and h_{12} :

 $h_0 = \langle \{c_0\}, \{\{(c_0, c_0)\}, \{(c_0, c_2)\}\} \rangle$ $h_{12} = \langle \{c_1, c_2\}, \{\{(c_1, c_2)\}, \{(c_1, c_1)\}\} \rangle$

ho shows that a graph can contain "dangling edges" (free references).

2. Separation logic (O'Hearn, Pym, Reynolds, Yang)

Additives (the logic that expresses graph properties): Let $h \in Heap$:

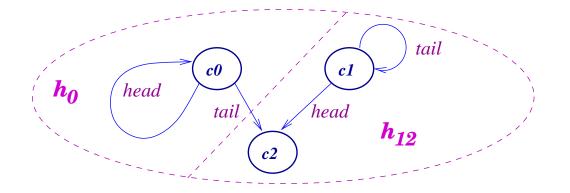
- $h \models p \land p'$ iff $h \models p$ and $h \models p'$ (similar for $h \models p \lor p'$)
- $h \models p \rightarrow p'$ iff $h \models p$ implies $h \models p'$
- $h \models \exists x.p_x$ iff exists $v \in Cell \text{ s.t. } h \models p_v$ (similar for $h \models \forall x.p_x$)
- $h \models false$ never
- $h \models R(E_1, E_2)$... application dependent: see examples that follow

Multiplicatives (based on a commutative partial monoid, $(Heap, \circ, \epsilon)$):

$$\begin{split} h &\models emp & \text{iff } h = \varepsilon \\ h &\models p * p' & \text{iff there exist } h_0, h_1 \text{ such that } h_0 \# h_1, \\ h &= h_0 \circ h_1, \ h_0 \models p, \text{ and } h_1 \models p' \\ h &\models p \twoheadrightarrow p' & \text{iff for all } h', \text{ if } h' \# h \text{ and } h' \models p, \\ & \text{then } h \circ h' \models p' \end{split}$$

Let $h \models tl(a, b)$ iff domain(h) = {a} and (a, b) \in tail. That is, h has one cell, a, whose tail £eld holds address b. (similar for $h \models hd(a, b)$)

Examples:



 $h_{0} \models tl(c_{0}, c_{2}) \text{ Notice the "dangling pointer" (free reference)} \\ h_{0} \models \exists c. tl(c_{0}, c) \\ h_{0} \models tl(c_{0}, c_{2}) \land \exists c. tl(c_{0}, c) \\ h_{12} \models c_{1} \neq c_{2} \\ h_{0} \circ h_{12} \models (tl(c_{0}, c_{2}) \land \exists c. tl(c_{0}, c)) * c_{1} \neq c_{2} \\ h_{0} \models tl(c_{2}, x) * \exists z. tl(c_{0}, z) \land tl(z, x) \end{cases}$

Separation logic proves correctness properties

We can write an assertion that de£nes a (tail-)noncircular list:

 $nc(\ell) \text{ iff}_{lfp} \ (\ell = null) \lor (\exists c. \ tl(\ell, c) * nc(c))$

The star (*) ensures that all cells in the list's tail live in a region that is disjoint from the one-cell region holding the list's head, ℓ .

We might prove that a copy function constructs a noncircular list:

```
copy(Cell x) { precondition: {nc(x)}
if x = null
    then y:= null; {nc(y)}
    else temp := copy(x.tl); {nc(temp)} %recursion hyp.
        y := new Cell(x.hd, temp) {tl(y,temp) * nc(temp)}
        {nc(y)}
    {nc(y)}
return y; postcondition: {nc(answer<sub>copy</sub>)} }
```

The assignment axiom is replaced by four "small axioms"

First, let $E \doteq E'$ abbreviate $E = E' \land emp$ (where *emp* asserts that the head is empty: $\epsilon \models emp$). and let $E_1 \mapsto E_2, E_3$ abbreviate $hd(E_1, E_2) \land tl(E_1, E_3)$.

(Therefore, the heap has exactly one cell, E_1 .)

Assume that x, a, b, and c are *variables* and that $x \notin \{a, b, c\}$.

The small axioms for command forms are

$$\{x \doteq a\} \ x := E \ \{x \doteq E[a/x]\}$$

$$\{E \mapsto a, b\} \ E.tail := E' \ \{E \mapsto a, E')\}$$

$$\{x \doteq a\} \ x := new C(E_1, E_2) \ \{x \mapsto E_1[a/x], E_2[a/x]\}$$

$$\{x = a \land E \mapsto b, c\} \ x := E.tail \ \{x = c \land E[a/x] \mapsto b, c\}$$

The small axioms state precise properties of 0- and 1-cell heaps.

The Frame rule and other structural rules

The small axioms gain utility when used with these structural rules; let modified(S) be those variables that are targets of assignments in S.

Frame:
$$\frac{\{p\}S\{p'\}}{\{p * q\}S\{p' * q\}} \text{ where } modified(S) \cap free(q) = \{\}$$

Consequence:
$$\frac{p \supset p' \{p'\}S\{q'\} \ q' \supset q}{\{p\}S\{q\}}$$

Subst:
$$\frac{\{p\}S\{q\}}{(\{p\}S\{q\})[E_1/x_1, \cdots E_k/x_k]} \text{ where } \{x_1, \cdots, x_k\} \supseteq free(p, S, q),$$

and $x_i \in modified(S) \text{ implies } E_i \text{ is a var, } E_i \notin free(E_j), j \neq i$

The Subst rule motivates the usual rule for procedure invocation (as substitution of actuals for formals).

The Frame rule embeds a result proved of a heap region into a larger heap, *justifying modular reasoning on disjoint heap regions*.

Synthesis of strongest assertions

for this example program:

```
y:= new Cell(y,x); x.tail:= y
```

we apply the small axioms to each of the two assignments:

 $\begin{aligned} \{ y \doteq a \} \\ y &:= new \ Cell(y, x) \\ \{ y \mapsto a, x \} \end{aligned}$

```
\begin{aligned} \{\mathbf{x} \mapsto \mathbf{b}, \mathbf{c}\} \\ & \text{x.tail} \coloneqq \mathbf{y} \\ \{\mathbf{x} \mapsto \mathbf{b}, \mathbf{y}\} \end{aligned}
```

The example: y:= new Cell(y,x); x.tail:= y

Next, we apply the Frame rule to both derivations:

$$\{y \doteq a\} \qquad \{y \doteq a * x \mapsto b, c\} \\ y \coloneqq new Cell(y, x) \qquad y \coloneqq new Cell(y, x) \\ \{y \mapsto a, x\} \qquad \{y \mapsto a, x * x \mapsto b, c\}$$

$$\{ x \mapsto b, c \} \qquad \implies \qquad \{ y \mapsto a, x * x \mapsto b, c \}$$

x.tail := y

$$\{ x \mapsto b, y \} \qquad \qquad \{ y \mapsto a, x * x \mapsto b, y \}$$

The example: y:= new Cell(y,x); x.tail:= y

Now, we apply command composition:

$\{y \doteq a\}$		$\{y \doteq a \ast x \mapsto b, c\}$		
$\mathtt{y} := \texttt{new} \mathtt{Cell}(\mathtt{y}, \mathtt{x})$		$\mathtt{y} \coloneqq \texttt{new}~\texttt{Cell}(\mathtt{y},\mathtt{x})$		$\{y \doteq a \ast x \mapsto b, c\}$
$\{y \mapsto a, x\}$		$\{y \mapsto a, x * x \mapsto b, c\}$		$\mathtt{y} \coloneqq \texttt{new}~\texttt{Cell}(\mathtt{y},\mathtt{x})$
=	\Rightarrow		\Rightarrow	$\{\mathtt{y} \mapsto \mathtt{a}, \mathtt{x} \ast \mathtt{x} \mapsto \mathtt{b}, \mathtt{c}\}$
$\{\mathbf{x}\mapsto \mathbf{b},\mathbf{c}\}$		$\{y\mapsto a, x\ast x\mapsto b, c\}$		x.tail := y
x.tail:= y		x.tail := y		$\{\mathtt{y} \mapsto \mathtt{a}, \mathtt{x} \ast \mathtt{x} \mapsto \mathtt{b}, \mathtt{y}\}$
$\{ x \mapsto b, y \}$		$\{y \mapsto a, x \ast x \mapsto b, y\}$		

The small axioms plus the structural rules plus the rules for the command forms are *relatively complete* for the assertion language and Heap models defined earlier.

$\{\mathbf{x} \doteq \mathbf{a}\}$	
$\mathbf{x} := \text{ new Cell}(3, \mathtt{nil})$	
$\{\mathbf{x} \mapsto 3, \mathbf{nil}\}$	
$\{y \doteq b\}$	
y := x	\Longrightarrow
$\{\mathbf{y} \doteq \mathbf{x}\}$	
$\{y\mapsto c,d\}$	
y.head := 4	
$\{y \mapsto 4, d\}$	

 $\{x \doteq a * y \doteq b\}$ x := new Cell(3, nil) $\{\mathbf{x} \mapsto 3, \mathbf{nil} * \mathbf{y} \doteq \mathbf{b}\}\$ y := x $\{\mathbf{x} \mapsto \mathbf{3}, \mathbf{nil} * \mathbf{y} \doteq \mathbf{x}\}$ $\{\mathbf{y} \mapsto \mathbf{c}, \mathbf{d}\}$ y.head := 4 $\{\mathbf{y} \mapsto \mathbf{4}, \mathbf{d}\}$

We can try to complete the proof incorrectly

$$\{x \doteq a * y \doteq b\} \\ \{x \doteq a * y \doteq b * y \mapsto c, d\} \\ x \coloneqq new Cell(3, nil) \\ y \coloneqq x \\ \{x \mapsto 3, nil * y \doteq x\} \\ \{x \mapsto 3, nil * y \doteq x\} \\ \{y \mapsto c, d\} \\ y.head \coloneqq 4 \\ \{y \mapsto 4, d\} \\ \{x \mapsto 3, nil * y \doteq x * y \mapsto c, d\} \\ \{x \mapsto 3, nil * y \doteq x * y \mapsto c, d\} \\ \{x \mapsto 3, nil * y \doteq x * y \mapsto c, d\} \\ \equiv \{false\} \\ y.head \coloneqq 4 \\ \{x \mapsto 3, nil * y \doteq x * y \mapsto d, d\} \\ \equiv \{false\} \\ \{x \mapsto 3, nil * y \doteq x * y \mapsto d, d\} \\ \equiv \{false\} \\ assertions.$$

Frame: $\frac{\{p\}S\{p'\}}{\{p * q\}S\{p' * q\}} \text{ where } modified(S) \cap free(q) = \{\}$

The Frame

A correct proof completion uses the Frame, Subst, and Consequence rules

$$\{x \doteq a * y \doteq b\}$$

$$\{x \doteq a * y \doteq b\}$$

$$x \coloneqq new Cell(3,nil)$$

$$y \coloneqq x$$

$$y \coloneqq x$$

$$\{x \mapsto 3, nil * y \doteq x\}$$

$$\{x \mapsto 3, nil * y \doteq x\}$$

$$\{y \mapsto 3, nil * y \doteq x\}$$

$$\{y \mapsto 4, d\}$$

$$\{y \mapsto 4, d\}$$

$$\{x \doteq a * y \doteq b\}$$

$$\{x \doteq a * y \doteq b\}$$

$$x \coloneqq new Cell(3,nil)$$

$$\{x \Rightarrow a * y \doteq b\}$$

$$x \coloneqq new Cell(3,nil)$$

$$y \coloneqq x$$

$$y \mapsto x\}$$

$$\{y \mapsto 3, nil * y \doteq x\}$$

$$y \mapsto 4, nil$$

$$\{y \mapsto 4, nil\}$$

$$\{y \mapsto 4, nil\}$$

Frame:
$$\frac{\{p\}S\{p'\}}{\{p * q\}S\{p' * q\}}$$
Consequence: $\frac{p \supset p' \{p'\}S\{q'\} q' \supset q}{\{p\}S\{q\}}$ Subst: $\frac{\{p\}S\{q\}}{(\{p\}S\{q\})[E_1/x_1, \cdots E_k/x_k]}$

Relationship to Linear Logic

Both separation and linear logics are *substructural logics*: no weakening and no contraction:

 $A * B \not\models A$ $A \not\models A * A$

But separation logic's additives, \land , \lor , and \rightarrow , behave classically (or intuitionistically, if desired — partially order Heap), so that distribution and deduction hold:

 $A \land (B \lor C) \rightleftharpoons \models (A \land B) \lor (A \land C)$ $A \land B \models C \text{ iff } A \models B \to C$

These laws *fail* for linear logic (where \land is &, \lor is \oplus , and \rightarrow is $!(\cdot) - \circ(\cdot)$).

Separation logic has deduction for the multiplicatives:

$$A * B \models C \text{ iff } A \models B \twoheadrightarrow C$$

Unlike linear logic, *there can be no* ! *such that* $|A \twoheadrightarrow B \Rightarrow |= A \rightarrow B$.

Practical intuition:

Use **linear logic** to study *production/consumption of short-lived resources* (e.g., to model a Petri net that produces and consumes tokens at its transitions).

Use **separation logic** to study *ownership of long-term resources* (e.g., to model a Petri net whose transitions "own" the token that arrives and "lose" ownership when the token departs — the token behaves like a "pinball" (*boule du ¤ipper*) of a pinball game).

- 1. Peter O'Hearn's web page: http://www.dcs.qmul.ac.uk/~ohearn/
- 2. P. O'Hearn, J. Reynolds, H. Yang. Local reasoning about programs that alter data structures. http://www.dcs.qmul.ac.uk/~ohearn/
- 3. S. Ishtiaq and P. O'Hearn. BI as an assertion language for mutable data structures. Proc. 28th ACM POPL, London, 2001.
- D. Pym, P. O'Hearn, H. Yang. Possible worlds and resources: The semantics of Bl. *Theoretical Computer Science* http://www.dcs.qmul.ac.uk/~ohearn/
- J. Reynolds. Separation Logic: a logic for shared mutable data structures. Proc. 17th LICS 2002.
- M. Sagiv, T. Reps, R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic.
 26th ACM POPL 1999.