
An introduction to
separation logic

David Schmidt

Kansas State University (USA)
and Projet Lande, IRISA (F)

www.cis.ksu.edu/~schmidt

(-: / 1

Outline

1. Review Hoare-logic rules for program validation

2. Examine problems related to objects, pointers, and aliasing

3. Introduce graph models of storage

4. Introduce separation logic for validating programs that use
the graph models

5. If time allows, see how separation logic can be used to
prove properties of concurrent programs that share
resources

(-: / 2

When we write programs, we depend on logical
properties

class BankAccount {

private int balance; {invariant : balance ≥ 0}

...

deposit(int x){ {precondition : x > 0}

balance := balance + x;

} is the invariant preserved? Is balance ≥ 0?

...

}

(-: / 3

Floyd, Hoare, and Wirth proposed logical laws for
programs

Assignment axiom:

{[E/x]P} x :=E {P}

where [E/x]P denotes the substitution of E for all free occurrences of x in P.

Example:

{balance + x ≥ 0} balance := balance + x {balance ≥ 0}

(It helps to read the rule and the example from right to left.)

Since deposit’s precondition asserted that x > 0, and BankAccount’s

class invariant said that balance ≥ 0, we conclude that

{balance ≥ 0∧ x > 0} balance := balance + x {balance ≥ 0},

proving that deposit preserves the class invariant.

(-: / 4

Composition rule for commands

{P}S1{Q} {Q}S2{R}
{P}S1;S2{R}

Example: validating the exchange of two values

{x = a∧ y = b}

temp := y;

{x = a∧ temp = b}

y := x;

{y = a∧ temp = b}

x := temp

{y = a∧ x = b}

(-: / 5

The rules for conditionals and loops

{E∧ P}S1{Q} {¬E∧ P}S2{Q}
{P}if E then S1 else S2{Q}

{E∧ P}S{P}
{P}while E do S{P ∧ ¬E}

Example: validating factorial using the loop invariant, fac = i!

i := 0; fac := 1;

{fac = i!}

while i 6= x do {

{i 6= x ∧ fac = i!}

i := i + 1; fac := fac ∗ i

{fac = i!}

}

{fac = i! ∧ i = x}

{fac = x!}

(-: / 6

The rules are unsound when aliasing is allowed

Assignment axiom: {[E/x]P} x :=E {P}

Program: x:= new Cell(3,nil); y:= x; y.head:= 4

Read the example from the bottom to the top:
{4 > 3}

{4 > new Cell(3, nil).head}

x := new Cell(3, nil)

{4 > x.head}

y := x

{4 > x.head}

y.head := 4

{y.head > x.head}

We proved y.head > x.head, even though x and y point to the same
Cell object!

(-: / 7

The aliasing problem also appears when we use procedures with

call-by-reference (call-by-location) parameter passing and/or arrays.

Since objects, references (“pointers”), and aliasing are standard

features, we must develop a more discriminating semantic model and

more discriminating inference rules for programs.

Our semantic model of storage will be a graph structure, speci£cally, a

Kripke structure.

(-: / 8

Storage is a Kripke structure, G = 〈Σ, τ, I〉

Σ = {c0, c1, c2}

τhead = {(c0, c0)}

τtail = {(c0, c2),

(c1, c1), (c1, c2)}

I(c0) = {it}

I(c1) = {}

I(c2) = {x, y}

.

c0 c1

c2

head
head

y

it

tail

tail

x

The nodes are cells (objects). We express properties of the graph:
G |= tail(it, x) ∧ x = y

G |= ∃n.tail(n,n)

We validate graph properties across state changes, {P} S {Q}:

{x = y}

it.tail := x

{tail(it, x) ∧ x = y}

That is, if Gpre |= P,

and Gpost = [[S]]Gpre,

then Gpost |= Q

(-: / 9

Modular validation

A property, φ, is checked with respect to the entire graph, G,

G |= φ.

Is there a “modular” variant of property checking, where a
subgraph of G is used to validate φ?

That is, we want to divide the model, G, into disjoint “regions”

(subgraphs), hi, so that we can use this reasoning principle:

h1 |= φ1 h2 |= φ2 h1#h2

h1 ◦ h2 |= φ1 ∗ φ2

where h1#h2 asserts that h1 and h2 are disjoint regions of G.

φ1 ∗ φ2 expresses an assertion whose conjuncts hold true for disjoint

regions — no aliasing/sharing between regions!

This is the motivation for separation logic.

(-: / 10

We will apply separation logic to storage heaps, e.g.,
h = 〈Cell, {head, tail}〉. (Say that domain(h) = Cell.)

h0

h12

c0 c1

c2

.

head
head

tail

tail

We say that 〈Cell1, {head1, tail1}〉#〈Cell2, {head2, tail2}〉 iff Cell1 ∩ Cell2 = {}

— their domains (node sets) are disjoint.

The composition of two heap-regions is
〈Cell1, {head1, tail1}〉 ◦ 〈Cell2, {head2, tail2}〉

= 〈Cell1 ∪ Cell2, {head1 ∪ head2, tail1 ∪ tail2}〉

if Cell1#Cell2 (else the composition is unde£ned).

The above diagram displays two disjoint regions, h0 and h12:
h0 = 〈{c0}, {{(c0, c0)}, {(c0, c2)}}〉

h12 = 〈{c1, c2}, {{(c1, c2)}, {(c1, c1)}}〉

h0 shows that a graph can contain “dangling edges” (free references).

(-: / 11

2. Separation logic (O’Hearn, Pym, Reynolds, Yang)

Additives (the logic that expresses graph properties): Let h ∈ Heap:

h |= p∧ p ′ iff h |= p and h |= p ′ (similar for h |= p ∨ p ′)

h |= p → p ′ iff h |= p implies h |= p ′

h |= ∃x.px iff exists v ∈ Cell s.t. h |= pv (similar for h |= ∀x.px)

h |= false never

h |= R(E1, E2) ... application dependent: see examples that follow

Multiplicatives (based on a commutative partial monoid, (Heap, ◦, ε)):

h |= emp iff h = ε

h |= p ∗ p ′ iff there exist h0, h1 such that h0#h1,

h = h0 ◦ h1, h0 |= p, and h1 |= p ′

h |= p−∗p ′ iff for all h ′, if h ′#h and h ′ |= p,

then h ◦ h ′ |= p ′

(-: / 12

Let h |= tl(a, b) iff domain(h) = {a} and (a, b) ∈ tail . That is, h has

one cell, a, whose tail £eld holds address b. (similar for h |= hd(a, b))

Examples:

h0

h12

c0 c1

c2

.

head
head

tail

tail

h0 |= tl(c0, c2) Notice the “dangling pointer” (free reference)

h0 |= ∃c. tl(c0, c)

h0 |= tl(c0, c2) ∧ ∃c. tl(c0, c)

h12 |= c1 6= c2

h0 ◦ h12 |= (tl(c0, c2) ∧ ∃c. tl(c0, c)) ∗ c1 6= c2

h0 |= tl(c2, x) −∗ ∃z. tl(c0, z) ∧ tl(z, x)

(-: / 13

Separation logic proves correctness properties

We can write an assertion that de£nes a (tail-)noncircular list:

nc(`) ifflfp (` = null) ∨ (∃c. tl(`, c) ∗ nc(c))

The star (∗) ensures that all cells in the list’s tail live in a region that is

disjoint from the one-cell region holding the list’s head, `.

We might prove that a copy function constructs a noncircular list:

copy(Cell x) { precondition : {nc(x)}

if x = null

then y:= null; {nc(y)}

else temp := copy(x.tl); {nc(temp)} %recursion hyp.

y := new Cell(x.hd, temp) {tl(y, temp) ∗ nc(temp)}

{nc(y)}

{nc(y)}

return y; postcondition : {nc(answercopy)} }

(-: / 14

The assignment axiom is replaced by four “small axioms”

First, let E .
= E ′ abbreviate E = E ′ ∧ emp

(where emp asserts that the head is empty: ε |= emp).

and let E1 7→ E2, E3 abbreviate hd(E1, E2) ∧ tl(E1, E3).
(Therefore, the heap has exactly one cell, E1.)

Assume that x, a, b, and c are variables and that x 6∈ {a, b, c}.

The small axioms for command forms are

{x
.
= a} x :=E {x

.
= E[a/x]}

{E 7→ a, b} E.tail :=E ′ {E 7→ a, E ′)}

{x
.
= a} x := new C(E1, E2) {x 7→ E1[a/x], E2[a/x]}

{x = a∧ E 7→ b, c} x :=E.tail {x = c∧ E[a/x] 7→ b, c}

The small axioms state precise properties of 0- and 1-cell heaps.

(-: / 15

The Frame rule and other structural rules

The small axioms gain utility when used with these structural rules; let
modified(S) be those variables that are targets of assignments in S.

Frame :
{p}S{p ′}

{p ∗ q}S{p ′ ∗ q}
where modified(S) ∩ free(q) = {}

Consequence :
p ⊃ p ′ {p ′}S{q ′} q ′ ⊃ q

{p}S{q}

Subst :
{p}S{q}

({p}S{q})[E1/x1, · · ·Ek/xk]
where {x1, · · · , xk} ⊇ free(p,S , q),

and xi ∈ modified(S) implies Ei is a var, Ei 6∈ free(Ej), j 6= i

The Subst rule motivates the usual rule for procedure invocation (as
substitution of actuals for formals).

The Frame rule embeds a result proved of a heap region into a larger
heap, justifying modular reasoning on disjoint heap regions.

(-: / 16

Synthesis of strongest assertions

for this example program:

y:= new Cell(y,x); x.tail:= y

we apply the small axioms to each of the two assignments:

{y
.
= a}

y := new Cell(y, x)

{y 7→ a, x}

{x 7→ b, c}

x.tail := y

{x 7→ b, y}

(-: / 17

The example: y:= new Cell(y,x); x.tail:= y

Next, we apply the Frame rule to both derivations:

{y
.
= a}

y := new Cell(y, x)

{y 7→ a, x}

{x 7→ b, c}

x.tail := y

{x 7→ b, y}

=⇒

{y
.
= a ∗ x 7→ b, c}

y := new Cell(y, x)

{y 7→ a, x ∗ x 7→ b, c}

{y 7→ a, x ∗ x 7→ b, c}

x.tail := y

{y 7→ a, x ∗ x 7→ b, y}

(-: / 18

The example: y:= new Cell(y,x); x.tail:= y

Now, we apply command composition:

{y
.
= a}

y := new Cell(y, x)

{y 7→ a, x}

{x 7→ b, c}

x.tail := y

{x 7→ b, y}

⇒

{y
.
= a ∗ x 7→ b, c}

y := new Cell(y, x)

{y 7→ a, x ∗ x 7→ b, c}

{y 7→ a, x ∗ x 7→ b, c}

x.tail := y

{y 7→ a, x ∗ x 7→ b, y}

⇒

{y
.
= a ∗ x 7→ b, c}

y := new Cell(y, x)

{y 7→ a, x ∗ x 7→ b, c}

x.tail := y

{y 7→ a, x ∗ x 7→ b, y}

The small axioms plus the structural rules plus the rules for the
command forms are relatively complete for the assertion
language and Heap models de£ned earlier.

(-: / 19

Aliasing: x:= new Cell(3,nil); y:= x; y.head:= 4

{x
.
= a}

x := new Cell(3, nil)

{x 7→ 3, nil}

{y
.
= b}

y := x

{y
.
= x}

{y 7→ c, d}

y.head := 4

{y 7→ 4, d}

=⇒

{x
.
= a ∗ y

.
= b}

x := new Cell(3, nil)

{x 7→ 3, nil ∗ y
.
= b}

y := x

{x 7→ 3, nil ∗ y
.
= x}

{y 7→ c, d}

y.head := 4

{y 7→ 4, d}

(-: / 20

We can try to complete the proof incorrectly

{x
.
= a ∗ y

.
= b}

x := new Cell(3, nil)

y := x

{x 7→ 3, nil ∗ y
.
= x}

{y 7→ c, d}

y.head := 4

{y 7→ 4, d}

=⇒

{x
.
= a ∗ y

.
= b ∗ y 7→ c, d}

x := new Cell(3, nil)

y := x

{x 7→ 3, nil ∗ y
.
= x ∗ y 7→ c, d}

{x 7→ 3, nil ∗ y
.
= x ∗ y 7→ c, d}

≡ {y 7→ 3, nil ∗ y 7→ c, d}

≡ {false}

y.head := 4

{x 7→ 3, nil ∗ y
.
= x ∗ y 7→ 4, d}

≡ {false}

The Frame

rule
disallows
y 7→ c, d

because y

is modi£ed
within the
commands.

y

cannot
name two
disjoint
cells in the
assertions.

Frame :
{p}S{p

′
}

{p ∗ q}S{p
′ ∗ q}

where modified(S) ∩ free(q) = { }

(-: / 21

A correct proof completion uses the Frame,
Subst, and Consequence rules

{x
.
= a ∗ y

.
= b}

x := new Cell(3, nil)

y := x

{x 7→ 3, nil ∗ y
.
= x}

{y 7→ c, d}

y.head := 4

{y 7→ 4, d}

=⇒

{x
.
= a ∗ y

.
= b}

x := new Cell(3, nil)

y := x

{x 7→ 3, nil ∗ y
.
= x}

{y 7→ 3, nil ∗ y
.
= x}

{y 7→ 3, nil}

y.head := 4

{y 7→ 4, nil}

=⇒

{x
.
= a ∗ y

.
= b}

x := new Cell(3, nil)

y := x

{y 7→ 3, nil ∗ y
.
= x}

y.head := 4

{y 7→ 4, nil ∗ y
.
= x}

Frame :
{p}S{p

′
}

{p ∗ q}S{p
′ ∗ q}

Consequence :
p ⊃ p

′
{p

′
}S{q

′
} q

′ ⊃ q
{p}S{q}

Subst :
{p}S{q}

({p}S{q})[E1/x1, · · ·Ek/xk]

(-: / 22

Relationship to Linear Logic

Both separation and linear logics are substructural logics: no
weakening and no contraction:

A ∗ B 6 |= A A 6 |= A ∗A

But separation logic’s additives, ∧, ∨, and →, behave classically (or
intuitionistically, if desired — partially order Heap), so that distribution
and deduction hold:

A∧ (B∨ C) =| |= (A∧ B) ∨ (A∧ C)

A∧ B |= C iff A |= B → C

These laws fail for linear logic (where ∧ is &, ∨ is ⊕, and → is
!(·) −◦(·)).

Separation logic has deduction for the multiplicatives:

A ∗ B |= C iff A |= B−∗C

Unlike linear logic, there can be no ! such that !A−∗B=| |= A → B.

(-: / 23

Practical intuition:

Use linear logic to study production/consumption of short-lived

resources (e.g., to model a Petri net that produces and consumes

tokens at its transitions).

Use separation logic to study ownership of long-term resources

(e.g., to model a Petri net whose transitions “own” the token that

arrives and “lose” ownership when the token departs — the token

behaves like a “pinball” (boule du ¤ipper) of a pinball game).

(-: / 24

References This talk: www.cis.ksu.edu/~schmidt/papers

1. Peter O’Hearn’s web page: http://www.dcs.qmul.ac.uk/~ohearn/

2. P. O’Hearn, J. Reynolds, H. Yang. Local reasoning about programs that alter
data structures. http://www.dcs.qmul.ac.uk/~ohearn/

3. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data
structures. Proc. 28th ACM POPL, London, 2001.

4. D. Pym, P. O’Hearn, H. Yang. Possible worlds and resources: The semantics of
BI. Theoretical Computer Science http://www.dcs.qmul.ac.uk/~ohearn/

5. J. Reynolds. Separation Logic: a logic for shared mutable data structures. Proc.
17th LICS 2002.

6. M. Sagiv, T. Reps, R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic.
26th ACM POPL 1999.

(-: / 25

