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Abstract. We propose a naive version of action semantics that begins
with a selection of “transient” and “persistent” facets, each characterized
as a partial monoid. Yielders are defined as operations on the monoids’
values, and actions extract values from the facets, give them to yield-
ers, and place the results into facet output. Actions are composed with
a primary combinator, andthen, which can be specialized for multiple
facet flows, and the choice combinator, or. Using big-step-style deduc-
tion rules, we give the semantics of yielders and actions, and we intro-
duce a weakening rule and a strengthening rule, which let us compose
actions with different facet domain-codomains. We also introduce Mosses
abstraction, a lambda-abstraction variant that improves the readability
of action-semantics definitions. Finally, we exploit the subsort (subtype)
structure within Mosses’s unified algebras to use the deduction rules as
both a typing definition as well as a semantics definition. Partial evalu-
ation techniques are applied to type check and compile programs.

1 Introduction

Peter Mosses developed action semantics [9–13, 15, 16] as an antidote to the
complexity of denotational semantics definitions, which use lambda-abstraction
and application to model all possible language features and definitional styles.
This leads to problems like the complete rewrite of a definition when moving
from “direct style” to “continuation style” [14, 20].

The key innovation within action semantics is the facet — an “active” se-
mantic domain, a kind of value stream, that connects one action to another. A
typical imperative language has a facet that represents the flow of temporaries,
a facet that represents binding (environment/symbol-table) flow, and a facet
that portrays the threading of primary store. Facets are analogous to Strachey’s
characteristic domains for denotational semantics [21].

Actions operate on facets. An action is a “computational step,” a kind of
state-transition function. Actions consume facet values and produce facet val-
ues. (In the case of the store, an action updates the store and passes it to the
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next action). A language’s action set defines the language’s computational ca-
pabilities. When one action is composed with another, the facet flows must be
directed to make one action affect another; combinators are used to direct the
flows. Yielders are the “noun phrases” within actions, evaluating to the data
values that are computed upon by the actions.

The end result is an expressive, high-level, data-flow-like semantics. It is sim-
plistic to describe action semantics as a typed combinatory logic, but similarities
do exist.

It is enlightening to review the evolution of action semantics from Mosses’s
first papers on abstract semantic algebras [9–11] to unified algebras [12] to
“linguistic-style” action semantics [13, 15, 16, 22]. In Mosses’s early papers, one
sees algebraic laws for infix combinators (; , ! [], etc.) that define flow of indi-
vidual facets, as well as precisely stated combinations that direct multiple facet
flows. The combinators evolved into a technical English of conjunctions (and,
then, hence, tentatively, furthermore, before, etc.) that express a variety of flows
of facet combinations [2, 13, 16].

Although the end result is a powerful, general-purpose, language-semantics
toolkit, there is value in having a “lightweight” version of action semantics for
tutorial purposes. In this paper, we propose a naive version of action semantics
that begins with a selection of “transient” and “persistent” facets, each charac-
terized as a partial monoid. Yielders are defined as operations on the monoids’
values, and actions extract values from the facets, give them to yielders, assem-
ble results, and place the results into facet output. Actions are composed with a
primary combinator, andthen, which can be specialized for multiple facet flows.
There is the choice combinator, or.

Using big-step-style deduction rules, we give the semantics of yielders and
actions, and we introduce a weakening rule and a strengthening rule, which let
us compose actions with different facet domain-codomains. We also reintroduce
Mossses-style lambda-abstraction, which we call Mosses abstraction, as a read-
ability aid [9]. Finally, we exploit the subsort (subtype) structure within Mosses’s
unified algebras [12] to use the deduction rules as both a typing definition as well
as a semantics definition. Partial evaluation techniques [1] are applied to type
check and compile programs.

2 Facets

A facet is a collection of data values, a Strachey-like characteristic domain [21],
that are handled similarly, especially with respect to computational lifetime.

Formally defined, a facet is a (partial) monoid, that is, a set of values, S, a
(partial) associative operation, ◦ : S × S → S, and an identity element from S.
Composition ◦ defines how to combine or ”glue” two values.

A facet is classified as transient or persistent, based on the lifetime (extent)
of its values. A transient facet’s values are short-lived and are produced, copied,
and consumed during a program’s computation; a persistent facet’s are long-



lived, fixed, data structures that are referenced and updated (and not produced,
copied, and consumed).

Here are the facets we employ in this paper. First, we define by induction
these sets of basic values:

Identifier = identifiers
Action = text of actions

Cell = storage locations
Int = integers

Expressible = Cell ∪ Int

F = List(Transient)
Transient = F ∪ D ∪ Expressible ∪ Closure
Closure = Set(Transient) × Identifier × Action

D = Set(Identifier × Denotable)
Denotable = Transient

I = Cell → Storable
Storable = Int

The facets in this paper use the basic-value sets:

1. functional facet: The monoid of most-transient values is written F = (F, : , 〈 〉).
The value set is sequences (lists) of transients, e.g., 〈2, cell99 , {(x, cell99 )}〉 is
a three-transient sequence. Composition, :, is sequence append, and identity
is the empty sequence, 〈 〉. Functional-facet values have a brief extent, and
the facet is a transient facet.

2. declarative facet: Sets of bindings are modelled by the monoid, D = (D,+, { });
The value set consists of finite sets of pairs, ρ = {(I0, n0), (I1, n1), · · · (Im, nm),
· · ·}, where each such set defines a function (that is, each Ij is distinct).
Composition is binding override: For values ρ1 and ρ2, we define ρ1 + ρ2 =
ρ2∪{(Ij = nj) ∈ ρ1 | Ij 6∈ domain(ρ2)} — ρ2’s bindings take precedence over
ρ1’s. Identity is the empty set of bindings. Bindings are readily generated
and copied — the facet is a transient facet.

3. imperative facet: Stores belong to the monoid, I = (I, ∗, [ ]). The value set
consists of finite functions, σ = [ℓ0 7→ n0, ℓ1 7→ n1, · · · , ℓk 7→ nk], each
ℓi ∈ Cell and ni ∈ Storable. Composition, σ1 ∗σ2, is function union (provided
that the functions’ domains are disjoint) — a partial operation. The identity
is the empty map. Since the imperative facet denotes persistent store, the
facet is persistent.

A computation step (action) may require values from more than one facet, so
we define a compound facet as a monoid of finite sets of facet elements, at most
one element per facet: For distinct facets, F = (F, ◦F , idF ) and G = (G, ◦G, idG),
define the compound facet as

FG = ({{f, g} | f ∈ F, g ∈ G}, ◦FG, {idF , idG})
where {f1, g1} ◦FG {f2, g2} = {f1 ◦F f2, g1 ◦G g2}

That is, a compound-facet value is a set of singleton-facet values, and compo-
sition is applied on the individual values in the respective sets based on facet
affiliation. The construction allows compound facets like DI but not FFDID;
the latter case must be folded into FDI by using the respective composition
operators for F and D.



The “empty” compound facet is the basic (“control” [13]) facet, and it is the
one-element monoid, B. We use Γ,∆,Σ to stand for compound facet values.

We can embed a (compound) facet value into a larger compound facet by
adding identity values: For element f = {f0, f1, ..., fm} ∈ F0F1 · · · Fm, we embed
f into F0F1 · · · FmG0G1 · · · Gn as f ∪ {idG0

, idG1
, ..., idGn

}.
Embedding is a technical device that lets us compose any two facet values

together: For f and g, we define f ◦g by unioning their facet domains, embedding
each of f and g into the unioned-facet domain, and composing the embedded
elements in the unioned monoid.

We define a “strict union” of two (compound) facet values as this partial func-
tion: for {f1, ..., fm, g1, ..., gn} ∈ F1 · · · FmG1 · · · Gn and {f1, ..., fm, h1, ..., hp} ∈
F1 · · · FmH1 · · ·Hp,

{f1, ..., fm, g1, ..., gn} ∪ {f1, ..., fm, h1, ..., hp} = {f1, ..., fm, g1, ..., gn, h1, ..., hp}

That is, two facet values are unioned only if they agree on the values of their
shared facets. In a similar manner, we define “facet restriction” and “facet sub-
traction”:

{f1, ..., fm, g1, ..., gn}↓F1···FmH1···Hp
= {f1, ..., fm}

{f1, ..., fm, g1, ..., gn}↓∼F1···FmH1···Hp
= {g1, ..., gn}

3 Yielders

An action semantics requires operations on values carried within a facet and
operations on the facets themselves. The former are called yielders and the lat-
ter are called actions.1 Yielders are embedded within actions in a semantics
definition; for this reason, they compute on transients.

Yielders are interesting because their arguments can often be computed at
earlier binding times (compile-time, link-time) than run-time. Type checking,
constant folding, and partial evaluation can be profitably applied to yielders, as
we investigate in Section 11.

In our naive version of action semantics, we define yielders via big-step
operational-semantics rules. Figure 1 presents a sample collection. Within a rule,
read the configuration, Γ ⊢ y : ∆, as stating, “yielder y consumes inputs Γ to
produce outputs ∆.”

For example, (add (find x) it) is a yielder that adds the value bound to x

in the declarative facet to the incoming transient in the functional facet. One
possible derivation, for the functional, declarative facets, 〈n1〉, {(x, n0), (z, n2)},
goes as follows:

{(x, n0), (z, n2)} ⊢ find x : n0 〈n1〉 ⊢ it : n1

{〈n1〉, {(x, n0), (z, n2)}} ⊢ add (find x) it : add(n0, n1)

1 In the “linguistic” version of action semantics [13, 16, 22], yielders are “noun phrases”
and actions are “verb phrases.” But this distinction is not clearcut, e.g., “give (the
denotable bound to x)” versus “find x,” so we deemphasize this approach.



Functional-facet yielders:

primitive constant: ⊢ k : k

n-ary operation (e.g., addition):
Γ ⊢ y1 : τ1 ∆ ⊢ y2 : τ2

Γ ∪∆ ⊢ add y1 y2 : add(τ1, τ2)

indexing:
1 ≤ i ≤ m

〈τ1, · · · , τm〉 ⊢ #i : τi
Note: it abbreviates #1

sort filtering:
Γ ⊢ y : ∆ ∆ ≤ T

Γ ⊢ isT y : ∆
where ≤ is defined in Section 10

Declarative-facet yielders: binding lookup, binding creation, and copy:

(I, τ ) ∈ ρ
ρ ⊢ find I : τ

Γ ⊢ y : τ
Γ ⊢ bind I y : {(I, τ )} ρ ⊢ currentbindings : ρ

Fig. 1. Yielders

∪ combines the input requirements of the component yielders in the consequent
sequent.

Note there is a derivation for isT y exactly when y yields a value that belongs
to sort (type) T .

4 Actions

Actions compute on facets in well-defined steps. In particular, actions enumer-
ate the steps taken upon persistent-facet values like stores, databases, and i/o
buffers.

There are “structural” actions that hand facet values to yielders and place
the yielders’ results in facets; there are actions that operate on persistent-facet
values; and there are actions that define and apply closures containing action-
text. Figure 2 presents a sample action set, whose behaviors are defined with
big-step deduction rules. Read Γ ⊢ a ⇒ ∆ as asserting that action a receives
facets Γ and produces facets ∆.

Of the structural actions, giveG y hands yielder y its inputs and places its
outputs into the facet stream named by G. complete is an empty computation
step.

Actions lookup, update, and allocate define computation steps on the persis-
tent facet, I; a store value must be provided as input. The rule for allocate shows
that the action produces a functional-facet value (c) as well as an updated store.

The last two rules in the Figure portray closure construction and application.
Assuming that yielder y evaluates as Γ ⊢ y : ∆, then Γ ⊢ recabstractG I y a :
[∆ ↓ G , I, a]G yields a closure that holds the G-facet portion of ∆, the closure’s
name, I, and the unevaluated action, a. Later, exec y1 y2 evaluates y1 to the
closure, evaluates y2 to an argument, τ , and evaluates the closure body, a, to
〈τ〉 ◦ (∆∪ (Γ ↓∼G)) ◦ {(I, [∆, I, a]G)} ⊢ a ⇒ Σ, that is, input τ is composed with



Structural actions:

Γ ⊢ y : ∆ ∆ ∈ G
Γ ⊢ giveG y ⇒ ∆

where G names the facet that receives value ∆

⊢ complete ⇒ completing
where completing is the sole element
in the basic-facet monoid

Imperative-facet actions:

Γ ⊢ y : c c ≤ Cell
Γ ∪ σ ⊢ lookup y ⇒ 〈σ(c)〉

Γ1 ⊢ y1 : c c ≤ Cell Γ2 ⊢ y2 : τ τ ≤ Storable
Γ1 ∪ Γ2 ∪ σ ⊢ update y1 y2 ⇒ σ[c 7→ τ ]

c 6∈ domain(σ)
σ ⊢ allocate ⇒ 〈c〉, σ ∗ [c 7→?]

Note: the output belongs to compound facet, FI

Closure yielder and action:

Γ ⊢ y : ∆
Γ ⊢ recabstractG I y a : [∆↓G , I, a]G

where G names only
transient facets

Γ1 ⊢ y1 : [∆, I, a]G
Γ2 ⊢ y2 : τ
Γ = Γ1 ∪ Γ2

〈τ 〉 ◦ (∆ ∪ (Γ ↓∼G)) ◦ {(I, [∆, I, a]G)} ⊢ a ⇒ Σ

Γ ⊢ exec y1 y2 ⇒ Σ
Note: y2 is optional.

Fig. 2. actions

weaken-L: Γ ⊢ a ⇒ ∆
Σ ∪ Γ ⊢ a ⇒ ∆

strengthen-R: Γ ⊢ a ⇒ ∆ Γ ∪ σ = Γ
Γ ⊢ a ⇒ ∆ ∪ σ where σ ∈ I

Fig. 3. weakening and strengthening rules

the data, ∆, saved in the closure along with the facets within Γ that are allowed
as the inputs to a. Name I rebinds to the same closure for recursive calls.

For example, abstractD f currentbindings (giveF(add (findx) it)) defines a stat-
ically scoped closure, f, that adds x’s value in the scope of definition to the
argument supplied at the point of application.

Actions are polymorphic depending on the inputs and outputs of their em-
bedded yielders, and we need rules to assemble compound actions. They are
listed in Figure 3. The weaken-L rule states that an action can consume more
facets than what are needed to conduct the action, and no harm occurs. The
strengthen-R rule states that an action whose input includes a persistent value,
σ, passes forwards that value unaltered (provided that the action did not itself
alter the value — recall that ∆ ∪ σ is “strict union,” defined iff ∆ holds no
I-value distinct from σ).

Here is an example. We can derive that



or1 a2 a1 a2 a2a1then anda

Fig. 4. Facet flows

{(x, 2)} ⊢ giveF(find x) ⇒ 2

Using the weaken-L rule, we deduce

〈 〉, {(x, 2)}, σ0 ⊢ giveF(find x) ⇒ 2

which shows that the empty sequence of transients and the persistent store
do not alter the outcome. The strengthen-R rule lets us deduce that the store
propagates unaltered:

〈 〉, {(x, 2)}, σ0 ⊢ giveF(find x) ⇒ 2, σ0

5 Combinators

When two actions are composed, there are three possible patterns of a facet’s
flow: sequential, parallel, and conditional; see Figure 4. Parallel flow finishes by
composing the outputs from the two component actions by monoid composition.
Conditional flow allows only one action to produce the output.

The flows are modelled by the combinators, then, and, and or, respectively;
here are their semantics:

Γ ⊢ a1 ⇒ ∆ ∆ ⊢ a2 ⇒ Σ
Γ ⊢ a1 then a2 ⇒ Σ

Γ ⊢ a1 ⇒ ∆1 Γ ⊢ a2 ⇒ ∆2
Γ ⊢ a1 and a2 ⇒ ∆1 ◦∆2

Γ ⊢ ai ⇒ ∆ i ∈ {1, 2}
Γ ⊢ a1 or a2 ⇒ ∆

At this point, we have a kind of combinatory logic for the imperative facet,
I: a1 then a2 defines composition, a2(a1 σ); a1 and a2 defines an S-combinator,
S a1a2σ = a1(σ)◦a2(σ); the L-weaken rule defines a K-combinator, (ax)σ = ax;
and the R-strengthen rule defines an I-combinator, a σ = σ.

When actions consume multiple facets, it is likely that different flows are
required for the individual facets. The standard example is command composi-
tion, C1;C2, where the incoming set of bindings (scope/symbol table) is given
in parallel to both C1 and C2, and the incoming store is threaded sequentially
through C1, which updates it and passes it to C2. Such concepts are crucial to
language semantics, and denotational semantics employs lambda-abstractions to
encode such flows; in contrast, action semantics makes the flows primitive and
explicit.

Our naive action semantics uses the combinator, andGthen, where G denotes
the (compound) facet that is passed in parallel (by and) and all other facets are
passed sequentially (by then). Here is its definition:

Γ ⊢ a1 ⇒ ∆1 (Γ ↓G) ∪ (∆1 ↓∼G) ⊢ a2 ⇒ ∆2

Γ ⊢ a1 andGthen a2 ⇒ ∆1 ↓G ◦∆2



Expression: E ::= k | E1 +E2 | N

Command: C ::= N:= E | C1;C2 | while E do C | D in C | callN(E)

Declaration: D ::= val I =E | var I =E | proc I1(I2) = C | module I =D | D1;D2

Name: N ::= I | N.I

Identifier: I

Fig. 5. Example language syntax

In particular, then abbreviates and∅then and and abbreviates andAllFacetsthen.
When we omit the subscript and write andthen, we mean andDthen, that is, only
the declarative facet, D, is consumed in parallel.

With andthen and or, we can readily model most mainstream language con-
cepts.

6 Action equations

A language’s action semantics is a set of equations, defined inductively on the
language’s syntax. For the syntax in Figure 5, we define one valuation function for
each syntax domain, one equation for each syntactic construction. Each valuation
function has an arity that lists the facets that may be consumed and must be
produced. For example, expressions are interpreted by the valuation function,
evaluate : Expression → DI → F , which indicates that an expression might
require the declarative and imperative facets to produce a functional-facet value.
Figure 6 shows the action equations for the language described in Figure 5. We
follow Mosses-Watt-style action notation, which elides the semantic brackets
from single nonterminals, e.g., evaluate E rather than evaluate[[E]].

Wherever possible, we employ a1 andthen a2 to combine actions: the declara-
tive facet flows in parallel to a1 and a2 and the store and any temporaries thread
from a1 to a2. The language is an “andthen”-sequencing language. When we
deviate from using andthen in the semantics, this indicates a feature deserving
further study. Here are a few general points:

– The self-reference in execute[[while E do C ]] is understood as a lazy, infi-
nite unfolding of the compound action, which has the usual least-fixed-point
meaning in a partial ordering of partial, finite, and ω-length phrases [6].

– Although the arity of elaborate states that an action may produce both a
set of bindings (in D) and an altered store (in I), not all equations do so
(e.g., val and proc). In these latter cases, the R-strengthening rule applies,
passing the store through, unchanged.

– The closure defined in elaborate[[procI1(I2)=C ]] embeds the current bindings
at the definition point. When applied, the closure’s action consumes the
actual parameter, it, and the store at the point of call.

Figure 7 shows a derivation of the actions taken by a procedure call.
Here are the situations where combinators other than andthen appear:



evaluate : Expression → DI → F

evaluate[[k]] = giveF k

evaluate[[E1 +E2 ]] =
(evaluateE1 andFDthen evaluateE2)
andthen giveF (add (isInt #1) (isInt #2))

evaluate[[N ]] = investigate N andthen
lookup (isCell it)
or giveF (isInt it)

execute : Command → DI → I

execute[[N:=E ]] =
(investigate N andFDthen evaluateE)
andthen update(isCell #1) #2

execute[[C1;C2 ]] = execute C1 andthen execute C2

execute[[while E do C ]] =

evaluate E andthen
((giveF (isZero it) andthen complete)
or
(giveF (isNonZero it) andthen execute C
andthen execute [[while E do C ]]))

execute[[D in C ]] = (giveD currentbindings andthen elaborateD) then execute C

execute[[callN(E)]] =
(investigateN andFDthen evaluate E)
andthen exec(isClosure #1) #2

elaborate : Declaration → DI → DI

elaborate[[val I =E ]] = evaluateE andthen giveD (bind I it)

elaborate[[var I =E ]] =
(evaluateE andFDthen allocate)
andthen (giveD (bind I #2) andFDthen update #2 #1)

elaborate[[proc I1(I2) = C ]] = giveD(bind I1 closure)

where closure = recabstractD I1 (currentbindings)
((giveD currentbindings
andFDthen giveD(bind I2 it))

then execute C)

elaborate[[module I =D]] = elaborateD then giveD(bind I currentbindings)

elaborate[[D1;D2 ]] =

(elaborateD1

then (giveF currentbindings and giveD currentbindings))
andthen ((giveD currentbindings andFDthen giveD it)

then elaborateD2)

investigate : Name → D → F

investigate[[I ]] = giveF (find I)

investigate[[N.I ]] = investigateN then giveD(isD it) then giveF (find I)

Fig. 6. Action equations



To make linear the big-step deductions that follow, we use this notation for sub-
goaling: For big-step rule,

{Γi ⊢ ei ⇒ τi}i∈I τ = f{τi}i∈I
Γ ⊢ op(ei)i∈I ⇒ τ

and goal, Γ ⊢ op(ei)i∈I ⇒ τ , we depict the subgoaling and computation of the result
in this form:

:− f{Γi ⊢ ei ⇒ τi}i∈I = τ

Let ρxp = {(x, ℓ0), (p, closurep)},
closurep = [{(x, ℓ0)}, p, [[x := y]]]D, and
σx = [ℓ0 7→ 2]. This goal,

ρxp, σx ⊢ execute[[call p(3)]] ⇒ σf

is solved for σf as follows:

= ρxp, σx ⊢ (investigate p andFDthen evaluate 3)
andthen exec(isClosure#1) #2 ⇒ σf

:− ρxp, σx ⊢ (investigate p andFDthen evaluate 3) ⇒ τ1, σx,

τ1, ρxp, σx ⊢ exec(isClosure#1) #2 ⇒ σ2 = σf

The first subgoal computes as follows:

((ρxp ⊢ investigate p ⇒ closurep); (ρxp ⊢ evaluate 3 ⇒ 3)) = τ1
= 〈closurep, 3〉 = τ1

So, the second subgoal proceeds as follows:

〈closurep, 3〉, ρxp, σx ⊢ exec(isClosure#1) #2 ⇒ σf

:− ρxp + {(y, 3)}, σx ⊢ execute[[x := y]] ⇒ σf

= ρxp + {(y, 3)}, σx ⊢ (investigate x andFDthen evaluate y)
andthen update(isCell #1) #2 ⇒ σf

· · · = [ℓ0 7→ 3] = σf

Fig. 7. Derivation of the actions defined by call p(3)

– The or used in evaluate[[N ]] gives opportunity to both its clauses to complete;
at most one will do so. This is also true for execute[[whileE doC ]].

– andFDthen appears in situations (e.g., evaluate[[E1 + E2]]) where two argu-
ments must be evaluated independently (“in parallel”) and supplied to a
yielder, indicating that the transient values will be held for a longer extent
than usual. (An implementation might employ a stack to hold the longer-
living transients.)

– then appears where the usual scoping is ignored (e.g., execute[[D inC ]]). The
strict sequential flow warns us that bindings are made locally and override
the incoming scope. See in particular, investigate[[N.I ]], where the module
(binding set) computed as N ’s meaning replaces the current scope in deter-
mining I’s meaning.
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D[[D1;D2 ]]ρ0σ0 = let b1, σ1 = D[[D1 ]]ρ0σ0

let b2, σ2 = D[[D2 ]](ρ0 + b1)σ1

in b1 + b2, σ2

elaborate[[D1;D2 ]] =

(elaborateD1

then (giveF currentbindings and giveD currentbindings))
andthen ((giveD currentbindings andFDthen giveD it)

then elaborateD2)

Fig. 8. Facet flow of D1;D2 and its denotational- and action-semantics codings

– The binding flow for elaborate[[D1;D2 ]] is complex: The semantics assembles
the bindings made byD1 andD2, whereD1 uses the entry scope, butD2 uses
the scope made from the entry scope plus D1’s bindings. This means D1’s
bindings are part of the output as well as part of the input to elaborate[[D2 ]].
For this reason, they are produced both as a declarative-facet value as well
as a functional-facet value; see Figure 8.
The denotational-semantics coding of the semantics, included in the Fig-
ure, states the correct distribution of bindings, but it ignores the language’s
“semantic architecture” (i.e., the facets), which must accommodate D1’s
binding flows.
Mosses named this complex flow pattern elaborate D1 before elaborate D2

[13]. Figure 9 shows a example derivation that uses the pattern.

As an exercise, one might rewrite the semantic equations so that the default
combinator is andFDthen (or, for that matter, then or and), to see what form of
language results. (High-level declarative languages tend to be “and-languages,”
and low-level imperative languages are “then-languages” where the store, symbol
table, and temporary-value stack are passed sequentially.)

7 Pronoun unambiguity and Mosses abstraction

Although they are functions on facet values, the yielders it and currentbindings
look like pronouns. For this reason, it is important these “pronouns” are under-
stood unambiguously. Consider elaborate[[D1;D2 ]] in Figure 8; there are three
occurrences of pronoun currentbindings, but the first and second occurrences re-
fer to the bindings generated from D1 and the third occurrence refers to the
bindings incoming to D1;D2. We can repair the ambiguity with an abstraction
form first proposed by Mosses [9], which we call the Mosses abstraction. Our
version is an action of form, (p : G) => a, where pattern p predicts the shape
of the incoming value from facet G to action a. Not a naive binder, pattern p



Let ρ0 = {} and σ0 = []. The goal

ρ0, σ0 ⊢ elaborate[[var x = 2; proc p(y) = (x := y)]] ⇒ ρxp, σx

is solved as follows:

ρ0, σ0 ⊢

(elaborate[[var x = 2]]
then (giveF currentbindings and giveD currentbindings))

andthen ((giveD currentbindings andFDthen giveD it)
then elaborate[[proc p(y) = (x := y)]])

⇒ ρxp, σx

:− (ρ0, σ0 ⊢ elaborate[[var x = 2]]
then (giveF currentbindings and giveD currentbindings) ⇒ τ1, ρx, σ1)

+(τ1, ρ0, σ1 ⊢ (giveD currentbindings andFDthen giveD it)
then elaborate[[proc p(y) = (x := y)]] ⇒ ρp, σx) = ρxp, σx

The first subgoal simplifies to

= {(x, ℓ0)}, [ℓ0 7→ 2] ⊢ giveF currentbindings and giveD currentbindings ⇒ τ1, ρx, σx

= 〈{(x, ℓ0)}〉, {(x, ℓ0)}, [ℓ0 7→ 2] = τ1, ρx, σx

Note how the binding, {(x, ℓ0)}, is copied to the functional facet as well as to the
declarative facet. The overall denotation has progressed to

({(x, ℓ0)}+
〈{(x, ℓ0)}〉, ρ0, [ℓ0 7→ 2] ⊢ (giveD currentbindings andFDthen giveD it)

then elaborate[[proc p(y) = (x := y)]] ⇒ ρp, σf) = ρxp, σx

The second subgoal proceeds as follows:

〈{(x, ℓ0)}〉, ρ0, [ℓ0 7→ 2] ⊢ (giveD currentbindings andFDthen giveD it)
then elaborate[[proc p(y) = (x := y)]] ⇒ ρp, σf

:− ({} + {(x, ℓ0)} = ρx), (ρx, [ℓ0 7→ 2] ⊢ elaborate[[proc p(y) = (x := y)]] ⇒ ρp, σf)

= {(x, ℓ0)}, [ℓ0 7→ 2] ⊢ elaborate[[proc p(y) = (x := y)]] ⇒ ρp, σf

= {(x, ℓ0)}, [ℓ0 7→ 2] ⊢ giveD(bind p closurep) ⇒ ρp, σf

where closurep = [{(x, ℓ0)}, p, [[x := y]]]D

: − ({(p, closurep)}, [ℓ0 7→ 2] = ρp, σf

This makes the overall denotation equal

{(x, ℓ0)} + {(p, closurep)}, [ℓ0 7→ 2] = {(x, ℓ0), (p, closurep)}, [ℓ0 7→ 2] = ρxp, σx

Fig. 9. Actions taken by var x = 2; proc p(y) = (x := y)



defines named yielders that can be invoked within a. For example, the nested
Mosses abstraction,

(〈v,w〉 : F) => ({(x, d)} : D) => giveF (add w d)

asserts that the incoming functional-facet value is a sequence of at least two
values and the incoming declarative-facet value holds at least a binding to x.
The first pattern binds the name v to the yielder #1 and binds the name w to
the yielder #2; the second pattern binds the name d to the yielder, find x.

Thus, giveF (add w d) makes the same action as does giveF(add #2 (find x)).
A Mosses abstraction can be understood as a kind of “macro expansion,” much
like traditional lambda notation macro-expands to De Bruijn notation. But there
are crucial properties of Mosses abstractions that go beyond this simple analogy.
To show this, we require a more formal development.2

A transient facet can be described by a pattern. The pattern we use for the
functional facet, F , is 〈vi〉1≤i≤k, each vi a name, representing a sequence of
at least k values. For the declarative facet, D, we use rho to denote the entire
binding set and {(xi, di)}1≤i≤k, each xi an identifier and each di a name, to
represent a binding set that has bindings for identifiers xi.

Figure 10 defines how these patterns bind names to yielders. Yielders and
actions are now evaluated with a yielder environment, ψ, a mapping of form,
Facet → Identifier → Yielder. For the example Mosses abstraction seen earlier,
action giveF (add v d) is interpreted with the yielder environment, [F 7→ [v 7→
#1, w 7→ #2], D 7→ [d 7→ find x]]. Figure 10 shows and explains the deriva-
tion rule for yielder-name lookup, which consults ψ to extract and evaluate the
corresponding yielder.

A Mosses abstraction is itself an action that operates with a yielder envi-
ronment that is extended by the abstraction’s pattern. There can be at most

one set of named yielders per facet. Further, when a set of named yielders is
generated for a facet, the default yielder for that same facet cannot be used —
see the derivation rules for #i and currentbindings in Figure 10. This removes
pronoun/noun ambiguity in referencing values.

Additionally, a Mosses abstraction supports referential transparency. Within
a Mosses-abstraction’s body, every reference to a yielder name evaluates to the

same yielder which evaluates to the same value. This crucial semantical property,
which makes a Mosses abstraction behave like a lambda-abstraction, is ensured
by the disciplined structure of the action-semantics combinator, a1 andthen a2:
if a1 generates output in facet F that passes sequentially to a2, then the F -
generated named yielders used by a1 are removed from a2’s use — see Figure
10.

We can employ Mosses abstractions to clarify two definitions in Figure 6.
First, the semantics of function definition now shows better how a closure uses
its bindings and argument:

2 When he proposed the construction, Mosses stated, “The definition of ‘x => a1’ has
been left informal, to avoid going into some technicalities.” [9]



Each facet pattern generates a yielder environment of arity, Facet → Identifier →
Yielder:

[[〈vi〉1≤i≤k : F ]] = [F 7→ [vi 7→ #i]1≤i≤k]
[[rho : D]] = [D 7→ [rho 7→ currentbindings]]
[[{(xi, di)}1≤i≤k : D]] = [D 7→ [di 7→ find xi]1≤i≤k]

Let ψ be a yielder environment. A yielder sequent now has form, Γ ⊢ψ y : τ ; the
ψ annotations are uniformly added to the sequents in the rules of Figure 1. The
rule for evaluating a yielder name, n, defined from the pattern for facet G, goes as
follows:

G ∈ domain(ψ) ψ(G)(n) = y Γ ⊢ y : τ
Γ ⊢ψ (n : G) : τ

The default yielders for F and D are “disabled” when a yielder environment already
exists for the facet:

F 6∈ domain(ψ) 1 ≤ i ≤ n
〈τ1, · · · , τn〉 ⊢ψ #i : τi

D 6∈ domain(ψ)
ρ ⊢ψ currentbindings : ρ

An action sequent has form, Γ ⊢ψ a ⇒ ∆. The ψ annotations are uniformly added
to the sequents in the rules of Figure 2. The new rule for Mosses abstraction reads
as follows:

Γ ⊢ψ+[[p]] a ⇒ ∆

Γ ⊢ψ (p => a) ⇒ ∆

The + denotes function override.

When an F-value flows sequentially from action a1 to a2, the ψ(F)-part of ψ must
be removed from a2’s use. This is enforced by the revised rule for andthen:

Γ ⊢ψ a1 ⇒ ∆1 (Γ ↓G) ∪ (∆1 ↓∼G) ⊢ψ↓G a2 ⇒ ∆2

Γ ⊢ψ a1 andGthen a2 ⇒ ∆1 ↓G ◦∆2

where ψ↓G denotes ψ restricted to argument(s) G only.

Finally, the yielder environment for a closure is restricted to the facets embedded
within the closure:

Γ ⊢ψ y : ∆
Γ ⊢ψ recabstractG y I a : [∆↓G, I, a]G,ψ↓G

Γ1 ⊢ψ y1 : [∆, I, a]G,ψ′

Γ2 ⊢ψ y2 : τ
Γ = Γ1 ∪ Γ2

〈τ 〉 ◦ (∆ ∪ (Γ ↓∼G)) ◦ {(I, [∆, I, a]G,ψ′)} ⊢ψ′ a ⇒ Σ

Γ ⊢ψ exec y1 y2 ⇒ Σ

Fig. 10. Semantics of Mosses abstractions



elaborate[[proc I1(I2) = C ]] = (rho : D) => giveD(bind I1 closure)
where closure = recabstractD I1 rho

((〈arg〉 : F) =>
(giveD rho andFDthen giveD(bind I2 arg))
then execute C)

This macro-expands to the definition seen in Figure 6. (The proof depends on
the big-step rule for andFDthen, which shows that the F -value flows in parallel.)

Second, the multiple occurrences of currentbindings within the semantics of
sequential declaration can be resolved unambiguously as

elaborate[[D1;D2]] = (rho0 : D) =>
(elaborateD1 then (rho1 : D) => giveF rho1 and giveD rho1)
andthen
((〈rho1〉 : F) => (giveD rho0 andFDthen giveD rho1) then elaborateD2)

Compare this semantics to the ones in Figure 8 — it is as readable as the
denotational one but remains true to the underlying “semantic architecture.”

8 From action equations to big-step semantics

Since the yielders and actions are defined by big-step semantic rules, one can
map the action equations themselves into big-step-rule format by applying par-
tial evaluation [1, 8]. The idea is that a valuation function of arity, interp :
PhraseForm → F1 · · · Fm → G1 · · · Gn, suggests a big-step sequent of form,
f1 ◦ · · · ◦ fm ⊢ P ⇒ g1 ◦ · · · ◦ gn. An action equation for a phrase, consP1 · · ·Pp,
relies on the actions denoted by the interpPis to compute interp[[consP1 · · ·Pp]].
The corresponding big-step rule uses the sequent forms for each Pi as antecedents
for the consequent sequent, f1 ◦ · · · ◦ fm ⊢ cons P1 · · ·Pp ⇒ g1 ◦ · · · ◦ gn.

The translation from action equations to big-step rules is a mechanical pro-
cess, where the big-step rules for or, andthen, and the primitive actions and
yielders are elaborated to expose the argument-passing flows of temporaries, τ ,
binding sets, ρ, and store, σ. Figure 11 shows representative translations from
Figure 6. Of the examples shown above, only the rule for callN(E) requires mild
reformatting to match its counterpart in Figure 6, the issue being the binding
of actual to formal parameter.

Figures 6 and 11 have the same information content, but Figure 6 is higher-
level in its presentation of value flows, whereas Figure 11 makes explicit the
connections and compositions. A reader familiar with big-step semantics may
prefer the latter, but the explicit detail obscures the fundamental andthen facet
flows that give the language its character. And this was indeed the issue that
motivated Mosses to develop action semantics in the first place.

9 From action equations to denotational semantics

Mosses did not intend to erase from memory Scott-Strachey denotational se-
mantics [7, 14, 19], but he desired a methodology and notation that matched



ρ ◦ σ ⊢ evaluateE1 ⇒ τ1 ρ ◦ σ ⊢ evaluate E1 ⇒ τ2
τ1 ≤ Int τ2 ≤ Int
τ3 = add(τ1, τ2)

ρ, σ ⊢ evaluate[[E1 + E2 ]] ⇒ τ3

ρ ⊢ investigateN ⇒ τ τ ≤ Cell σ(τ1) = τ2
ρ ◦ σ ⊢ evaluateN ⇒ τ2

ρ ◦ σ ⊢ investigateN ⇒ τ1 τ1 ≤ Cell ρ ◦ σ ⊢ evaluateE ⇒ τ2 σ1 = σ[τ1 7→ τ2]
ρ ◦ σ ⊢ execute[[N:=E ]] ⇒ σ1

ρ ◦ σ ⊢ execute C1 ⇒ σ1 ρ ◦ σ1 ⊢ execute C2 ⇒ σ2

ρ ◦ σ ⊢ execute[[C1;C2 ]] ⇒ σ2

ρ ◦ σ ⊢ evaluateE ⇒ τ τ ≤ NonZero
ρ ◦ σ ⊢ execute C ⇒ σ1

ρ ◦ σ1 ⊢ execute[[while E do C ]] ⇒ σ2

ρ ◦ σ ⊢ execute[[while E do C ]] ⇒ σ2

ρ ◦ σ ⊢ investigate N ⇒ τ1
τ1 ≤ Closure
ρ ◦ σ ⊢ evaluate E ⇒ τ2

τ1 = [D, ρ1, I1, I2, C]
ρ1 + {(I1, τ1), (I2, τ2)} ◦ σ ⊢ execute C ⇒ σ1

ρ ◦ σ ⊢ execute[[callN(E)]] ⇒ σ1

ρ ◦ σ ⊢ evaluateE ⇒ τ c 6∈ domain(σ) ρ1 = {(I, c)} σ1 = σ[c 7→ τ ]
ρ ◦ σ ⊢ elaborate[[var I =E ]] ⇒ ρ1 ◦ σ1

ρ ◦ σ ⊢ elaborateD1 ⇒ ρ1 ◦ σ1

ρ ◦ ρ1 ◦ σ1 ⊢ elaborateD2 ⇒ ρ2 ◦ σ2
ρ3 = ρ1 ◦ ρ2

ρ ◦ σ ⊢ elaborate[[D1;D2 ]] ⇒ ρ3 ◦ σ2

Fig. 11. Selected big-step rules derived from action equations

more closely a programmer’s and a language designer’s intuitions and was less
sensitive to modelling issues (e.g., direct versus continuation semantics). Action
semantics lives at a higher level of abstraction than does denotational semantics,
and it is a routine but enlightening exercise to interpret its facets, yielders, and
actions with Scott-domains and continuous functions:

– Each facet is mapped to a Strachey-style “characteristic domain.”
– Each yielder is mapped to a continuous function on the characteristic do-

mains such that the big-step rules in Figure 1 are proved sound, where
Γ ⊢ y : ∆ is interpreted as [[y]](γ) = δ, such that [[y]] is the continous func-
tion and γ and δ are the Scott-domain values interpreted from Γ and ∆.

– Each action is mapped to a (higher-order) continuous function in a similar
manner so that the rules in Figure 2 are proved sound. When the yielders
compute on transients only and actions compute on persistent values, the
interpretation into denotational semantics gives a “two-level” denotational
semantics as developed by Nielson and Nielson [17].

– The action equations are treated as valuation functions, and a least-fixed-
point interpretation is taken of self-references.
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Fig. 12. Sort structure for functional facet

Once again, the information in the action-equation version and the denotational
semantics version is “the same,” but the former presents and emphasizes lan-
guage design concepts more directly.

Related to this exercise is the relationship between direct-style and continuation-
style semantics. If our example language contained jumps or fork-join construc-
tions, the denotational-semantics domains would change as would the interpre-
tation of the andthen combinator, into a tail-recursive form, à la a1 andthen , so
that the continuation from a1 could be kept or discarded as directed. The action
equations themselves remain the same.

10 Subsorts within the facets

The relation, ≤, has been used to indicate data-type membership, e.g., 3 ≤
Int. Mosses defined unified algebra [12] to state membership properties that go
beyond the usual judgements.

Figure 12 portrays a subsort relationship, a partial ordering, for a unified
algebra that lists the sorts of values that can be used with the functional facet.
The diagram asserts that integer ≤ rational ≤ datum, etc. — an implicit subset
ordering applies. Even finite sets of values ({2, 3, 4}) and singletons (2) are sorts.
Of course, one does not implement all the sort names, but they serve as a useful
definitional tool. Each sort name is interpreted by a carrier of values that belong
to the sort, e.g., integer is interpreted by {· · · ,−1, 0, 1, 2, · · ·}, and {2, 3, 4} is in-
terpreted by {2, 3, 4}. Sequences of functional-facet values are ordered pointwise.

The declarative facet’s sorts can be portrayed as seen in Figure 13. There is a
pointwise ordering, based on the identifiers that are named in the sorts: ρ1 ≤ ρ2

iff the identifiers named in ρ1 equal the ones named in ρ2 and for for every (I, τ1)
in ρ1 and (I, τ2) in ρ2, τ1 ≤ τ2. A sort is interpreted by those sets of pairs that
have exactly the bindings stated in the sort name, e.g., {(x, integer), (y, {2, 3, 4})}
is interpreted by {{(x,m), (y, n)} | m ≤ integer and n ≤ {2, 3, 4}}.

The imperative facet is organized similarly to the declarative facet: its sorts
are finite maps from Cell names to subsorts of datum such that σ1 ≤ σ2 iff
domain(σ1) = domain(σ2) and for every c ∈ domain(σ1), σ1(c) ≤ σ2(c).



{(x,integer), (y, truth−value) }

{ }

{ (x, {2,3,4}) }

{ (x, value) }

{ (x, integer) }

{ (x, 2) } { (x, 4) }

{ (y, truth−value) }

{ (y, value) }

{ (y, true) } { (y, false) }

{(x, value), (y, value) }

{(x, integer), (y, value) }

{(x,integer), (y,true) }

{(x,2), (y,true) }

Fig. 13. Sort structure for declarative facet

Strictly speaking, subsorting does not extend to compound-facet values, but
we will write ∆ ≤ Γ for compound facet values to assert that ∆ = {f1, · · · , fm},
Γ = {f ′

1
, · · · , f ′

m} and fi ≤ f ′
i for all i ∈ 1..m in each respective facet, Fi.

The sorting hierarchies suggest that yielders and actions can compute on
sort names as well as individual values. For example, all these derivations are
meaningful:

⊢ give 2 ⇒ 2
⊢ give 2 ⇒ integer
⊢ give 2 ⇒ datum

{〈2〉, {(x, 3)}} ⊢ give add(isInteger it, isInteger(find x)) ⇒ 5
{〈2〉, {(x, 3)}} ⊢ give add(isInteger it, isInteger(find x)) ⇒ integer
{〈2〉, {(x, integer)}} ⊢ give add(isInteger it, isInteger(find x)) ⇒ integer
{〈integer〉, {(x, integer)}} ⊢ give add(isInteger it, isInteger(find x)) ⇒ integer

The derivations justify type checking and abstract interpretation upon the se-
mantics definition.3

The above assertions are connected by this weakening rule for sorting, which
weakens information within individual facets:

Γ1 ≤ Γ2 Γ2 ⊢ a ⇒ ∆2 ∆2 ≤ ∆1

Γ1 ⊢ a ⇒ ∆1

The rule complements the two existing weakening and strengthening rules, which
weaken the facet structures themselves.

11 Partial evaluation of action semantics

As in the derivation examples in the previous section, a yielder may have many
possible input-output sort pairs. However, for input context Γ , there is a least
output sort ∆ such that Γ ⊢ y : ∆ holds. This is called the least sorting property.
For example, a yielder 2 can have output sorts datum, value, integer, {2,3,4}, 2,

3 In the example, we assume that the operation, add, is extended monotonically to
operate on all sorts within the functional facet. This makes all yielders and actions
behave monotonically as well.



etc., in any input context, but the least sort among them is 2. Similarly, a
yielder add (isInteger it) (isInteger (find x)) has the least output sort integer in
the context, 2, {(x,integer)}. The sort checking rule for calculating a least sort
for integer addition operation can be defined as follows:

Γ ⊢ y1 : τ1 ∆ ⊢ y2 : τ2 τ1 ≤ integer τ2 ≤ integer
Γ ∪∆ ⊢ add y1 y2 : add(τ1, τ2)

Other rules for yielders in Figure 1 can be used for sort checking without modi-
fication, along with the weakening rule just introduced:

Γ1 ≤ Γ2 Γ2 ⊢ y : ∆2 ∆2 ≤ ∆1

Γ1 ⊢ y : ∆1

The rules for sort consistency check upon actions can also be defined in big-
step deduction style. Read Γ ⊢ a ⇒ ∆ as asserting that action a receives sorts
of facets Γ and produces sorts of facets ∆. Note that the imperative facet is
excluded from Γ and ∆ since sort checking occurs before run-time. The sort
checking rules for imperative-facet actions are defined as follows:

Γ ⊢ y : c c ≤ integer-cell
Γ ⊢ lookup y ⇒ integer

Γ1 ⊢ y1 : c c ≤ integer-cell Γ2 ⊢ y2 : τ τ ≤ integer
Γ1 ∪ Γ2 ⊢ update y1 y2 ⇒ completing

⊢ allocate ⇒ integer-cell

Sort consistency checking between closure and its arguments is done at applica-
tion time. The rules are identical to those in Figure 2.

Sorts can be distinguished according to binding times — compile-time sorts
and run-time sorts [3, 5]. Individual sorts, such as 1, true, etc., are known con-
stants, and thus static sorts. All other sorts, including integer, cell, etc., are
treated as dynamic sorts because their values are not known. Yielders and ac-
tions taking static sorts can be processed at compile-time, reducing the run-time
computation overhead. For example, consider an action, give 2 andthen give (add
it (find x)). The left subaction, give 2, is statically computable, and passes its
output value to the yielder it in the right subaction. The yielder it then consumes
the value, and then the whole action is semantically identical to give 2 andthen
give (add 2 (find x)). Since the life of the left subaction is over, the action is safely
reduced to give (add 2 (find x)). If the given context to this action is {(x,3)},
find x becomes 3, and then the yielder add 2 3 is further computed to 5. On the
other hand, if the given context is {(x,integer)}, no more computation is possible
and the action remains as it is. This transformation is partial evaluation of the
actions.

During partial evaluation, since each yielder either gives computed sorts or
reconstructs yielder code, rules for partial evaluation have to carry around both
facets and reconstructed residual code. Read Γ, κi ⊢ y : ∆,κo as asserting that
yielder y consumes facets Γ and residual code κi, and produces facets ∆ and



Functional-facet yielders:

primitive constant: ⊢ k : k, ∅

n-ary operation (e.g., addition):

Γ, κ ⊢ y1 : τ1, κ1 ∆,κ ⊢ y2 : τ2, κ2

Γ ∪∆,κ ⊢ add y1 y2 :

case κ1, κ2 of
∅, ∅ → add(τ1, τ2), ∅
∅, → τ1 ⊔ τ2, [[add [[τ1 ]] κ2 ]]
, ∅ → τ1 ⊔ τ2, [[add κ1 [[τ2]]]]
, → τ1 ⊔ τ2, [[add κ1 κ2 ]]

indexing:
1 ≤ i ≤ m

〈τ1, · · · , τm〉, 〈κ1, · · · , κm〉 ⊢ #i : τi, κi
Note: it abbreviates #1

sort filtering:
Γ, κ ⊢ y : ∆, κ′

∆ ≤ T

Γ, κ ⊢ isT y : ∆, if κ′ = ∅ then ∅ else [[isT κ′ ]]

Declarative-facet yielders:

binding lookup:
(I, τ ) ∈ ρ

ρ, κ ⊢ find I : τ, if static(τ ) then ∅ else [[find I]]

binding creation:
Γ, κ ⊢ y : τ, κ′

Γ, κ ⊢ bind I y : {(I, τ )}, if κ′ = ∅ then ∅ else [[bind I κ′ ]]

binding copy:
ρ, κ ⊢ currentbindings : ρ, if κ′ = ∅ then ∅ else [[currentbindings]]

Fig. 14. Partial evaluation for yielders

residual code κo. If the output sort ∆ is static, then code reconstruction is not
necessary and thus κo = ∅, indicating no code. Otherwise, the residual code is
reconstructed.

Checking whether or not a yielder output is static can be done by examining
its output sort. The following function static determines if the given functional-
facet sort is static.

static(〈τ〉) = if τ is an individual value then true else false
static(〈τ1, . . . , τn〉) = static(τ1) ∧ · · · ∧ static(τn)
static([τ, I, a]) = false
static({(I1, τ1), . . . , (In, τn)}) = static(τ1) ∧ · · · ∧ static(τn)

A yielder output is also static when the emitted residual code is ∅.

Figure 14 presents a sample collection of rules for partial evaluation for yield-
ers. Primitive constant yielder is always static, thus emits no residual code, ∅.
If two argument yielders of addition operation are both static, they are evalu-
ated and added to give a static output, while emitting no code. Otherwise, after
two argument yielders are partially evaluated, the whole yielder code is recon-



Structural actions:

Γ, κ ⊢ y : ∆,κ′

Γ, κ ⊢ giveG y ⇒ ∆, if κ′ = ∅ then ∅ else [[giveG κ
′ ]]

⊢ complete ⇒ completing , [[complete]]

Imperative-facet actions:

Γ, κ ⊢ y : s-cell, κ′

Γ, κ ⊢ lookup y ⇒ s, [[lookup κ′ ]]

Γ1, κ ⊢ y1 : τ1-cell, κ1 Γ2, κ ⊢ y2 : τ2, κ2 τ2 ≤ τ1
Γ1 ∪ Γ2, κ ⊢ update y1 y2 ⇒ completing, [[update κ1 κ2 ]]

⊢ allocates ⇒ s-cell, [[allocates ]]

Fig. 15. partial evaluation for actions

structed. If the output of declarative-facet yielder is static, no code is emitted.
However, the code is reconstructed otherwise.

Figure 15 presents a sample action set, whose partial-evaluation behaviors
are defined with big-step deduction rules. Read Γ, κi ⊢ a ⇒ ∆,κo as assert-
ing that action a receives facets Γ and a residual code κi, and produces facets
∆ and a residual code κo. A structural action such as give y either gives the
evaluated results or reconstructs a residual code depending on its binding time.
Imperative actions are all reconstructed at partial-evaluation time, but their
yielder constituents are evaluated when possible. Since the termination is not
guaranteed, the body of a self-referencing closure is not partially evaluated.

For action combinators, andGthen, partial evaluation is defined differently
depending on the facet flows. When G = ∅, the combinator is essentially the
same as then, and its partial evaluation can be defined as follows:

Γ, κ ⊢ a1 ⇒ ∆,κ1 ∆,κ1 ⊢ a2 ⇒ Σ, κ2

Γ, κ ⊢ a1 then a2 ⇒ Σ, if κ1 = ∅ then κ2 else [[κ1 then κ2]]

In this case, when the left subaction is static, the whole action can be reduced
to its right subaction. The partial evaluation of the andGthen combinator when
G 6= ∅ is defined differently as follows:

Γ, κ ⊢ a1 ⇒ ∆1, κ1 (Γ ↓G) ∪ (∆1 ↓∼G), κ ⊢ a2 ⇒ ∆2, κ2

Γ, κ ⊢ a1 andGthen a2 ⇒ ∆1 ↓G ◦∆2,

case κ1, κ2 of
∅, ∅ → ∅
∅, → [[[[∆1 ]] andGthen κ2]]
, ∅ → [[κ1 andGthen [[∆2 ]]]]
, → [[κ1 andGthen κ2]]



12 Conclusion

Action semantics was an influential experiment in programming-language design
and engineering. Its success rests on its relatively high level of abstraction and its
sensitivity to a language’s “semantic architecture,” as expressed by facets. Action
semantics readily maps to operational and denotational semantics definitions,
giving a good entry point into language-definition methodology.

By presenting a naive formulation, based on two combinators, a weakening
rule, and a strengthening rule, the present paper has attempted to expose action
semantics’s personality and emphasize its strengths.

In appreciation of Peter D. Mosses
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working correctly, then get it working fast!”)

Peter answered many of my beginner’s questions about denotational seman-
tics, and his work on binding algebras showed me that language semantics was
more than Scott-domains and lambda calculus — semantics itself should have
structure. This insight, plus Peter’s remark to me in 1982, that semantic do-
mains need not necessarily possess ⊥-elements, gave me all I needed to write the
key chapters of my Denotational Semantics text [18].

Peter’s research on action semantics forms the most profound body of knowl-
edge on programming-language principles I have encountered, and I have enjoyed
studying and applying this material over the decades. I deeply appreciate Peter’s
insights, his perseverence, and his friendship.

Kyung-Goo Doh: It was the paper, “Abstract semantic algebras!” [10], introduced
to me by David Schmidt in 1990, that impressed me and guided me into the
Peter Mosses’s world of programming language semantics. It did not take a
long time for me to choose the subject as my Ph.D. research topic. Since then,
Peter has been a good mentor to me on numerous occasions through personal
communications, research collaborations, and published papers. Peter assured
me that it would be possible to have a useful semantics formalism for realistic
programming languages just like the syntax counterpart, BNF. Peter’s outlasting
works in programming-language semantics hugely influenced me and my students
on understanding the principles of programming languages. I admire Peter’s
enduring body of research works, and I cordially thank him for his support and
friendship.

Finally, this paper is a significantly expanded and revised version of research



presented at the First Workshop on Action Semantics, Edinburgh, 1994 [4]. The
authors thank Peter Mosses for organizing the workshop and inviting both of us
to attend.
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