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Thank you, Bob Tennent...

for your contributions to
programming-languages
research!

The clarity and precision of
your work is an inspiration,
as is the care you take to
ground your results in
practice!
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Patrick Cousot, MFPS 1997: “Denotational
semantics is an abstract interpretation...”
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Abstract interpretation
finitely approximates a program’s

execution [Cousot78,Cousot277].

According to [Cousot97], it is the

reinterpretation of a formal sys-

tem, (τ,D), by an adjunction,

D A
γ

α ,
as (α ◦ τ ◦ γ, A):

γ
DD

τ

α
A A

where A’s elements finitely ap-

proximate D’s.

Denotational semantics
defines a program’s meaning

extensionally (and inductively)

a value from a Scott domain

[ScottStrachey71,Tennent76].

In the sense of [Cousot97], it is a

function,

C : Program → D∞ → D∞ ,

from which one defines, for

program P, its formal system,

(C[[P]], D∞).

This talk shows how to use the approximation embedded within Scott
domain D∞ to define abstract interpretation. In this sense, “abstract
interpretation is a denotational semantics....”
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Background: abstract
interpretation
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Abstract interpretation = finite approximation
readInt(x)

x = succ(x)

if x < 0 :

x = negate(x)

else:

x = succ(x)

writeInt(x)

Q:is the output pos?

A: abstractly interpret

input domain Int by

Sign = {neg , zero, pos , any}:

readSign(x)

x = succ♯(x)

if (filterNeg(x):

x = negate♯(x))

(filterNonNeg(x):

x = succ♯(x)) fi

writeSign(x)

where

succ♯(pos) = pos

succ♯(zero) = pos

succ♯(neg) = any (!)
succ♯(any) = any

and

negate♯(neg) = pos

negate♯(zero) = zero

negate♯(pos) = neg

negate♯(any) = any

For the abstract data-test sets, zero,neg , pos , we calculate:
{zero 7→ pos , pos 7→ pos , neg 7→ any}. The last result arises because

succ♯(neg) = any and filterNeg(any) = neg (good!) but filterNonNeg(any) = any

(bad — we need zero ∨ pos!), so we cannot ensure the success of the else-arm.
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A Galois connection formalizes the approximation

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}
pos

zero

none

any

neg

α

P(Int)
Sign

γ : Sign → P(Int)

γ(none) = {}, γ(any) = Int

γ(neg) = {· · · ,−3,−2,−1}

γ(zero) = {0}, γ(pos) = {1, 2, 3, · · ·}

α : P(Int) → Sign

α(S) = ⊓{a | γ(a) ⊆ S}

e.g., α{2, 4, 6, 8, ...} = pos ,
α{−1, 0} = any , α{0} = zero

(P(Int),⊆)〈α, γ〉(Sign,⊑) is a Galois connection:

α(S)⊑a iff S ⊆ γ(a).

γ interprets the elements in Sign, and α maps each data-test set in the collecting

domain, P(Int), to the name that best describes the set [CousotCousot77].
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The Galois connection defines a closure operator,
ρ = γ ◦ α : P(Σ) → P(Σ)

ρ[P(Int)] =

{{}, {· · · ,−2,−1}, {0}, {1, 2, · · ·}, Int}

{0}

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

P(Int)

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

ρ[P(Int)] identifies the properties expressible in abstract
domain Sign, and ρ maps a test set to its minimal property, e.g.,
ρ{1} = {1, 2, · · ·}, ρ{−1, 1} = Int , etc. Note that ρ[P(Int)] is closed under
intersection (conjunction).

From here on, we work with Galois connections of form,
(P(Σ),⊆)〈α, γ〉(A, ⊑ ), so that ρ = γ ◦ α maps sets to sets, and we
assume that α is onto.
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Monotone, sound abstract functions

f♯ : A → A is sound for f : Σ → Σ iff α ◦ f ⊑ f♯ ◦ α (iff f ◦ γ ⊑ γ ◦ f♯):

α
f #α ( S )

f[S]S
f

α
a

( a )

f #
f #(a)

f

γγ

γ
α and γ are
semi-homomorphisms.

Example: The succ♯ function seen earlier is sound for succ, e.g., for

succ : Int → Int , succ[{0}] = {1}, and succ♯(zero) = pos.

Recall that ρ[P(Σ)] = γ[A] identifies the properties expressed by A.

When α is onto, we can treat f♯ : A → A as f♯ : ρ[P(Σ)] → ρ[P(Σ)].
Example: succ♯{0} = {1, 2, · · ·}.

Proposition: For all φ ∈ ρ[P(Σ)], f♯ is sound for f iff
f(φ) ⊆ f♯(φ).

There is also the dual notion, underapproximating soundness, where f(φ) ⊇ f♯(φ);

this is best developed with an interior map, ι : P(Σ) → P(Σ).
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Strongest abstract function

The strongest (most precise), sound f♯ : A → A for f : Σ → Σ is
f
♯
0 = α ◦ f ◦ γ, that is, f♯0(a) = α(f[γ(a)]):

a
#

aγ aγf[ ]

aγf[ ] )(α

f

γ α
f

Example: The succ♯ function seen earlier is strongest for succ.

We can define f♯0 in terms of ρ = γ ◦ α:

f
♯
0 = ρ ◦ f : ρ[P(Σ)] → ρ[P(Σ)], e.g., succ♯

0{0} = {1, 2, · · ·}.

Proposition: (strongest postcondition for f): For all
φ,ψ ∈ ρ[P(Σ)], if f(φ) ⊆ ψ, then f♯0(φ) ⊆ ψ.

There is dual formulation, in terms of an interior map, ι, that generates the weakest

precondition for f as ι ◦ f−1 .
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Complete abstract functions

Forwards completeness
[Giacobazzi01]: f ◦ γ = γ ◦ f♯

γ
#

γ ( a )

f #(a)

f

a

γ
f

Backwards completeness
[Cousot279,Giacobazzi00]:

α ◦ f = f♯ ◦ α

α
#α ( S )

f(S)S
f

α
f

Define f♯0 = ρ ◦ f : ρ[P(Σ)] → ρ[P(Σ)] as before.

Proposition: TFAE: (i) f♯0 is forwards complete for f;
(ii) for all φ ∈ ρ[P(Σ)], f(φ) ∈ ρ[P(Σ)];
(iii) f ◦ ρ = ρ ◦ f ◦ ρ.

Proposition: TFAE: (i) f♯0 is backwards complete for f;
(ii) for all S1, S2 ∈ P(Σ), ρ(S1) = ρ(S2) implies ρ(f[S1]) = ρ(f[S2]);
(iii) ρ ◦ f = ρ ◦ f ◦ ρ.

What do these results signify, really?
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Background: denotational
semantics
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Inverse limit of L∞ ≈ ({nil} + (D× L∞)⊥ (in SFPep)

. . .d, ⊥nil
⊥

α0

0γ

1α

1γ

d,d, ⊥d,nil

d, ⊥nil
⊥ d, ⊥nil

⊥

d i ⊥i−1d nil

d,nil d,d, ⊥
d,d,nil

iα

iγ

d, ⊥nil
⊥

d i ⊥i−1d nil

d

d,nil d,d, ⊥
d,d,nil

L

L0 L1 L2
Li

2α

2γ
⊥ . . .

For L0 = {⊥}, Li+1 = ({nil} + (D× Li)⊥,
the embedding, projection pairs, Li〈γi, αi〉Li+1, are defined

γ0(⊥) = ⊥

α0(ℓ) = ⊥

γi+1 = F(γi)

αi+1 = F(αi)
where

F(f)(⊥) = ⊥

F(f)(nil) = nil

F(f)(d, ℓ) = (d, f(ℓ))

The e,p pairs compose into ones of form, Li〈γi,j, αj,i〉Lj, for i < j.
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L∞ ≈ ({nil} + (D× L∞)⊥, cont.

. . .d, ⊥nil
⊥

α0

0γ

1α

1γ

d,d, ⊥d,nil

d, ⊥nil
⊥ d, ⊥nil

⊥

d i ⊥i−1d nil

d,nil d,d, ⊥
d,d,nil

iα

iγ

d, ⊥nil
⊥

d i ⊥i−1d nil

d

d,nil d,d, ⊥
d,d,nil

L

L0 L1 L2
Li

2α

2γ
⊥ . . .

The elements of L∞ are tuples, 〈ℓi〉i≥0, such that each ℓi ∈ Li

and ℓi = αi(ℓi+1), for all i ≥ 0.

For all i ≥ 0, Li〈γi,∞ , α∞,i〉L
∞ are defined

γi,∞ (ℓ) = 〈αi−1,0(ℓ), αi−1,1(ℓ), · · · , αi(ℓ), ℓ, γi(ℓ), γi,i+2(ℓ), γi,i+3(ℓ) · · ·〉

α∞ ,i〈ℓ0, ℓ1, · · · , ℓi, · · ·〉 = ℓi

L∞〈γ∞ , α∞〉({nil} + (D× L∞))⊥ forms an order-isomorphism, where

γ∞ = ⊔i≥0 F(γi,∞) ◦ α∞,i+1

α∞ = ⊔i≥0 γi+1,∞ ◦ F(α∞,i)
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A semantics definition based on L∞

d ∈ Data(atomic data) x ∈ Var (var names) G ∈ Guard(bool exprs)
E ∈ Expression ::= x | tl E | cons d E
C ∈ Command ::= x = E | C1; C2 | if (Gi : Ci)i∈I fi | while G do C

Domain of stores: σ ∈ Σ = Var → L∞

G : Guard → Σ → Σ⊥

G[[G]]σ = σ when G holds true in σ; G[[G]]σ = ⊥ otherwise

E : Expression → Σ → L∞

E [[x]]σ = lookup [[x]] σ where lookup v σ = σ(v)

E [[tl E]]σ = tail (E [[E]]σ) where tail(v) = cases γ∞ (v) of






⊥ : α∞ (⊥)

nil : α∞ (⊥)

(d, ℓ) : ℓE [[cons d E]]σ = cons d (E [[E]]σ) where cons d ℓ = α∞ (d, ℓ)

C : Command → Σ → Σ⊥

C[[x = E]]σ = update [[x]] (E [[E]]σ) σ where update v ℓ σ = σ+ [v 7→ ℓ]

C[[C1; C2]] = C[[C2]] ◦ C[[C1]] Note: g ◦ f(σ) = ⊥ when f(σ) = ⊥

C[[if (Gi : Ci)i∈I fi]] =
⊔

i∈I C[[Ci]] ◦ G[[Gi]]

C[[while G do C]] = lfp λf. (G[[¬G]]) ⊔ (f ◦ C[[C]] ◦ G[[G]])
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A guard filters the store, like a logic gate; absence of store is denoted

by ⊥.

Example: let σ0 = [[[x]] 7→ nil]. Then,

C[[if (isNil x : x = cons d0 x) (isNonNil x : x = x) fi]]σ0

= (C[[x = cons d0 x]] ◦ G[[isNil x]])σ0 ⊔ (C[[x = x]] ◦ G[[isNonNil x]])σ0

= C[[x = cons d0 x]]σ0 ⊔ C[[x = x]]⊥

= (update [[x]] (E [[cons d0 x]]σ0) σ0) ⊔ ⊥ = [[[x]] 7→ (d0, nil)]

G[[isNil x]] passes σ0 forwards, because the guard holds true for the store, whereas

G[[isNonNil x]] passes ⊥.

The while-command is a tail-recursive guarded-if, such that

C[[while B do C]] equals C[[if (¬B : skip), (B : C; (while B do C)) fi]].

We write the semantics this way, because abstract-interpretation methodology treats

programs as circuits and calculates information flows through them.
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From denotational semantics to
abstract interpretation
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...the bridge is the collecting domain, P(L∞)

Intuition: an element, like (d,⊥), approximates/describes the set,
{(d, l) | l ∈ L∞} ∈ P(L∞):

⊥

⊥nil
⊥

k−1d nil d k⊥

d,nil d,d, ⊥
d,d,nil α k

k,γ

d, ⊥nil
⊥

i−1d nil

d

d i ⊥

d,nil d,d, ⊥
d,d,nil

Pα

Pγ

Lk

⊥

d{ }

L| l: }{(d,d,l)

L{(d,l) | l: }

L

{ }

{nil}

{(d,nil)}

UI

. . .

LP(       ) op
L

⊥

⊥

d,

Define

L⊤k 〈γ, α〉P(L∞ )
op as

γ = γP ◦ γk.∞

α = α∞ ,k ◦ αP

, where

γP(ℓ) = ↑ℓ
= {m ∈ L∞ | ℓ ⊑m}

αP(S) = ⊓S

Each l ∈ Lk “names” the data-test set, γ(l) =↑l ∈ P(L∞)

just like pos ∈ Sign names {1, 2, · · ·}!
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The rotated diagram yields a Cousot-style
Galois connection — the notion of approximation
is one and the same

P(L∞)〈α, γ〉L⊤k
op

:
L

{ }

UI

LP(       )
γ

α

⊥d,
⊥d,d,

k−1d nil d k⊥

nil
⊥

d,nil

d,d,nil

⊥

Lk

⊥

op

γ(l) = ↑l = {m ∈ L∞ | l ⊑ m}

α(S) =
⊔

L⊤

K
{l ∈ L⊤k | S ⊆ γ(l)}

� (dn,⊥) ∈ L⊤k
op

names those lists having at least n-many

elements; (dn, nil) represents a list that has exactly n elements.

� ⊥ ∈ L⊤k
op

stands for all lists; ⊤ ∈ L⊤k
op

for none.

One might also restrict the collecting domain to be just the totally

defined lists or just the finite, total lists.
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The Sign domain is derived from a Scott-domain:

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}
pos

zero

none

any

neg

α

P(Int)
Sign

N = {1}⊥ ⊕N where ⊕ denotes disjoint sum with merged ⊥s

S = (N+ {0} +N)⊥

S denotes the integers partitioned into the negatives, zero, and the

positives. The approximating domain,

S1 = (N0 + {0} +N0)⊥, where N0 = {⊥}, defines Sign = S⊤1
op

.

The collecting domain, P(Int), holds sets of total values from S∞ .

We obtain better-precision signs-analyses from domains Sk, k > 1, which distinguish

individual integers, e.g, S⊤2
op

= {⊤, neg ,−1, zero, 1, pos,⊥}.
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Many abstract domains are defined this way — they are “partitions” of

data-test sets, “crowned” by a ⊤, characterized by a finite domain

from an inverse-limit sequence. But here are two that are not:

any

none

0 1 2−1−2. . . . . .

Const, for constant-propagation analysis.

Vars are analyzed to see if they are uninitialized

(⊥), a constant (n), or hold multiple values (⊤).

This domain is N∞ ⊤op , where N = ({0} +N)⊥.

Interval, for tracking the range of values
a variable is assigned. Like Const, this do-
main is itself an inverse limit; its opposite is not in

SFP.

Later, we will look at relational abstract domains,

which abstract the entire store, Var → Σ, rather

than just the data domain, Σ.

[i,j]

..
...

−[ ,0] +[0, ]

+[1, ]−[ ,1]

...
...

+[i, ]−[ ,i]

...
...

− +[ , ]

...

...

[−1,0] [0,1]

[1,1][0,0][−1,−1]

[ ]

[−1,1]

. . . . . . 

. . . . . . 

.
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A bit of topology...

Domains like L∞ are objects in category SFP, and each l ∈ Lk is a

finite element that names the property, γ(l) = ↑l ⊆ L∞ — a

Scott-basic-open set.

For ρ = γ ◦ α, ρ[P(L∞)] are all Scott-basic opens. This family is

closed under intersection (because γ is an upper adjoint).

We can close ρ[P(L∞)] under unions, making a topology on L∞

(coarser than L∞ ’s Scott topology).

But this is exactly the disjunctive com-

pletion construction of abstract interpreta-

tion [Cousot294], which is used to increase

precision of an analysis!
{0}

{ }

{...,−1,0,1,...}

{...,−2,−1}

{...,−2,−1,1,2,...}

{...,−2,−1,0} {0,1,2,3,...}

{1,2,3,...}

SignO

But what are the topologically continuous functions in this setting?
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A bit of logic...

Every abstract interpretation, A, has a logic of properties it can
validate:

ψ ::= a ∈ A | f(ψi)0<i≤n

where f : Σn → Σ is a logical operator: f[γ(ψi)]0<i≤n ∈ γ[A] that is, f

maps properties to properties, on the nose

Fact: f is a logical operator iff it is forwards complete.

Since γ is an upper adjoint, ⊓ is a logical operator; when γ[A] defines
a topology, ⊔ is a logical operator. Here is the logic for Sign:

φ ::= a ∈ Sign | φ1 ⊓ φ2 | negate(φ), where negate(n) = −n

But this developement is just Abramsky’s domain theory in logical
form [Abramsky91], where a domain’s logic uses the finite/atomic
elements of L∞ as its A!

Jensen similarly defined abstract interpretation in logical form
[Jensen92], where A is a finite subset of L∞ ’s finite elements.
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A language’s abstract interpretation is its
semantics where A = L⊤k

op replaces L∞

Abstract store domain: σ ∈ Σ♯ = Var → L⊤k
op

Galois
connections:

L∞ : P(L∞ )〈α, γ〉L⊤k
op

Σ = Var → L∞ : P(Σ)〈αVar , γVar 〉Σ
♯ (indexed product)

Σ⊥: P(Σ⊥)〈α⊥, γ⊥〉Σ
♯ (merges ⊥ with ⊥ ∈ Σ♯)

G♯ : Guard → Σ♯ → Σ♯

G♯[[G]] = α⊥ ◦ G[[G]] ◦ γΣ

E♯ : Expression → Σ♯ → L⊤k
op

E♯[[x]]σ = lookup♯ [[x]] σ

where lookup♯ v = α ◦ lookup v ◦ γVar , that is, lookup♯ v σ = σ(v)

E♯[[tl E]]σ = tail♯(E♯[[E]]σ)

that is, tail♯(a, ℓ) = ℓ; tail♯(nil) = ⊥ = tail♯(⊥)

E♯[[cons a E]]σ = cons♯ a (E♯[[E]]σ)

that is, cons♯ a ℓ = (a, ℓ)
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abstract interpretation, cont.

Abstract store domain: σ ∈ Σ♯ = Var → L⊤k
op

Galois
connections:

L∞ : P(L∞ )〈α, γ〉L⊤k
op

Σ = Var → L∞ : P(Σ)〈αVar , γVar 〉Σ
♯

Σ⊥: P(Σ⊥)〈α⊥, γ⊥〉Σ
♯

,

C♯ : Command → Σ♯ → Σ♯

C♯[[x = E]]σ = update♯ [[x]] (E♯[[E]]σ) σ

where update♯[[x]] = α⊥ ◦ update[[x]] ◦ (γ× γVar ),

that is, update♯ v ℓ σ = σ+ [v 7→ ℓ]

C♯[[C1; C2]] = C♯[[C2 ]] ◦ C
♯[[C1]]

C♯[[if (Gi : Ci)Ifi]] =
⊔

i∈I C
♯[[Ci]] ◦ G

♯[[Gi]]

C♯[[while B do C]] = lfp λf. G♯[[¬G]] ⊔ (f ◦ C♯[[C]] ◦ G♯[[G]])

We utilize the appropriate maps from the Galois connections to replace
operations f by f♯0 = α ◦ f ◦ γ.
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For the conditional, the guards filter the abstract
store, and the results join together

Let σ0 = [[[x]] 7→ ⊥] ∈ Σ♯, that is, x might be any L∞-value at all:

C♯[[if (isNil x : x = cons d0 x), (isNonNil x : x = x) fi]]σ0

= (C♯[[x = cons d0 x]] ◦ G♯[[isNil x]])σ0 ⊔ (C♯[[x = x]] ◦ G♯[[isNonNil x]])σ0

Now,
G♯[[isNil x]])σ0 = (α⊥ ◦ G[[isNil x]] ◦ γVar )σ0

= α⊥{[[[x]] 7→ nil], ⊥} = [[[x]] 7→ nil]

and,
G♯[[isNonNil x]])σ0 = α⊥({[[[x]] 7→ (d, ℓ)] | ℓ ∈ L∞ } ∪ {⊥})

= [[[x]] 7→ (d,⊥)]

So, C♯[[x = cons d0 x]][[[x]] 7→ nil] ⊔ C♯[[x = x]][[[x]] 7→ (d,⊥)]

= (update♯ [[x]] (E♯[[cons d0 x]][[[x]] 7→ nil]) [[[x]] 7→ nil]) ⊔ [[[x]] 7→ (d,⊥)]

= [[[x]] 7→ (d0, nil)] ⊔ [[[x]] 7→ (d,⊥)] Note that the ⊔ operates in L⊤k
op

.

= [[[x]] 7→ (d0 ⊔ d, ⊥)]
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We use C♯ for abstract testing

Like the previous example, we supply an abstract test input and
calculate its output. For denotations of form, f = lfp λσ.Ffσ′ , we must
ensure detectable, finite convergence of tests, f(σ).

We use “minimal function graph” semantics [JonesMycroft86]: Starting
from f(σ0), we generate the subsequent calls, f(σi), giving a family of
k first-order equations,

fσ0 = Ffσ1

fσ1 = Ffσ2

· · ·
fσk = Ffσj

, for some j ≤ k
which we solve iteratively.

If the abstract domain for σ is not finite (e.g., Const), k is forced finite
by making the argument sequence, σ0, σ1, · · · , σk, into a chain so that
the domain’s finite-height ensures a finite equation set. Then, it is
common to solve just fσk = Ffσk

.
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Example: For C♯[[while NonNil x : x = tl x]] = f, where
f(σ) = G♯[[Nil x]]σ ⊔ f(C♯[[x = tl x]](G♯[[NonNil x]]σ)),
we calculate an abstract test with σd⊥:

Let
σd⊥ = [x 7→ (d,⊥)]

σ⊥ = [x 7→ ⊥]

(Note: in abstract domain L⊤k
op

,
⊥ ∈ L⊤k means “all lists,” and ⊤ ∈ L⊤k
means ”no lists.”)

C♯[[while NonNil x : x = tl x]]σd⊥ = fσd⊥, where

fσd⊥ = G♯[[Nil x]]σd⊥ ⊔ f(C♯[[x = tl x]](G♯[[NonNil x]]σd⊥)

= [x 7→ ⊤] ⊔ f(C♯[[x = tl x]]σd⊥)

= fσ⊥

fσ⊥ = G♯[[Nil x]]σ⊥ ⊔ f(C♯[[x = tl x]](G♯[[NonNil x]]σ⊥)

= [x 7→ nil ] ⊔ f(C♯[[x = tl x]]σd⊥)

= [x 7→ nil ] ⊔ fσ⊥

We solve these two first-order equations.
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The inductive definition preserves soundness
and completeness

For the format, E [[op(Ei)]] = f(E [[Ei]]), we define the abstract

semantics inductively as E ♯[[op(Ei)]] = f
♯
0(E

♯[[Ei]]), where

f
♯
0 = α ◦ f ◦ γ.

It is easy to prove that E ♯ is sound for E .

Recall
F-completeness: For all E, E [[E]] ◦ γ = γ ◦ E ♯[[E]]

B-completeness: For all E, α ◦ E [[E]] = E ♯[[E]] ◦ α

Proposition: If for every equation, E [[op(Ei)]] = f(E [[Ei]]), f
♯
0 is F-

(resp. B-) complete for f, then E ♯ is F- (resp. B-) complete for E .

This result is preserved when lfp and gfp are used.

When there is not completeness, the inductive definition of E ♯ is

sound but may be weaker than the strongest abstract interpretation:

E ♯[[E]] ⊒ α ◦ E [[E]] ◦ γ.
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A store domain, Var → Σ, can be abstracted
pointwise by Var → A or relationally by P(An)

SignO: [x 7→ ≥0][y 7→ ≥0] Interval: [x 7→ [3, 27]][[y 7→ [4, 32]]

Octagon:
∧

i(±xi ± yi ≤ ci) Polyhedra:
∧

i((
∑

jaij · xij) ≤ bi)

diagrams from Abstract Interpretation: Achievements and Perspectives by Patrick

Cousot, Proc. SSGRR 2000.
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Some modellings of a relational store value
from the octagon abstract domain:

diagram from The octagon abstract domain, by Antoine Miné, J. Symbolic and

Higher-Order Computation 2006

Octogan and polyhedral values can perhaps be explained in terms of
Abramsky-Jensen “abstract interpretation in logical form.”
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Predicate abstraction uses an ad-hoc relational
domain, based on predicates in the program

Example: prove that z ≥ x ∧ z ≥ y at p3:

p1 :
p0 :

p2 :
p3 :

if x < y 
then z = y;
else z = x;

exit

p1, 〈t, ?, ?〉

p3, 〈t, t, t〉

p0, 〈?, ?, ?〉

p2, 〈f, ?, ?〉

p3, 〈f, t, t〉

The store is abstracted to a relational domain that denotes the values

of these predicates, taken from the source program,

φ1 = x < y φ2 = z ≥ x φ2 = z ≥ y

The predicates are evaluated at the program’s points as one of {t, f, ?}.

(Read ? as t∨ f.)

At all occurrences of p3 in the abstract trace, φ2 ∧ φ3 holds.
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When a goal is undecided, domain refinement
becomes necessary

Prove φ0 ≡ x ≥ y at p4:

p0 :
p1 :

p2 :
p3 :

p4 :

if !(x >= y)
then { i = x;

x = y;
y = i;

}

p1, 〈f〉
p2, 〈f〉
p3, 〈t〉
p4, 〈?〉

p0, 〈?〉

p4, 〈t〉

To decide the goal, we refine the ad-hoc domain:

wp(y = i, x ≥ y) = (x ≥ i) ≡ φ1. We add φ1 and try again:

p1, 〈f, ?〉
p2, 〈f, t〉
p3, 〈t, t〉
p4, 〈t, t〉

p0, 〈?, ?〉

p4, 〈t〉
because x 6≥ y and x ≥ i

imply y > i implies xnew ≥ i
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But incremental predicate refinement cannot synthesize many
interesting loop invariants. For this example:

p0 :
p1 :

p2 :

p3 :

i = n; x = 0;
while  i != 0  {

x = x + 1;  i = i − 1;   

}
goal: x = n

The initial predicate set, P0 ≡ {i = 0, x = n}, does not validate the
loop body.

The first refinement suggests we add P1 ≡ {i = 1, x = n− 1} to the
program state, but this fails to validate a loop that iterates more than
once.

Refinement stage j adds predicates Pj ≡ {i = j, x = n− j}; the
refinement process continues forever!

The loop invariant is x = n − i :-)
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Explaining abstract-interpretation
completeness with (a bit of) Scott
topology
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Open sets are computable properties [Smyth]

For an algebra cpo, D, its Scott-basic-open sets are ↑e, for each finite

element, e ∈ D. Read d ∈ ↑e as “d has property ↑e.”

But abstract intepretation is finite computation on properties; for an

abstract domain, like Sign, γ[Sign] (or, ρ[P(Sign)]) identifies the

computable properties.

Alas, ρ[P(Sign)] is closed un-

der intersections (not necessarily

unions). Also, there exist abstract

domains A that possess only a γ

but no α (and no ρ) [Cousot292].

{0}

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

P(Int)

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}
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Let’s weaken some definitions

For abstract domain A and γ : A → P(Σ), define Σ’s property family

as FΣ = γ[A].

For each U ∈ FΣ, its complement is ∼U = Σ−U; for FΣ, its

complement family, ∼FΣ, is {∼U | U ∈ FΣ}.

FΣ is an open family if it is closed under unions, and it is a closed

family if it is closed under intersections. If FΣ is an open family, then

its complement is a closed family (and vice versa).

When γ is the upper adjoint of a Galois connection, then FΣ is a

closed family.

Intuition: closed families are used for overapproximating, postcondition abstract

interpretations; open families are used for underapproximating, precondition abstract

interpretations.
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Property preservation

For f : Σ → Σ, define f : P(Σ) → P(Σ) as f[S] = {f(s) | s ∈ S}, and

define f−1 : P(Σ) → P(Σ) as f−1(T) = {s ∈ Σ | f(s) ∈ T }, as usual.

f is FΣ-preserving iff for all U ∈ FΣ, f[U] ∈ FΣ. In such a case,
f : FΣ → FΣ is well defined.

This generalizes the notions of topologically open and closed maps.

Let FΣ be a closed family, and let ρ : P(Σ) → P(Σ) be the
associated closure operator.

For f : Σ → Σ, define f♯0 : P(Σ) → P(Σ) as f♯0 = ρ ◦ f, as usual.

Fact: f
♯
0 is forwards complete for f iff f is FΣ preserving, that is,

iff f is a topologically closed map.
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Property reflection (continuity)

Let Uc (respectively, US) denote a member of FΣ such that c ∈ Uc

(respectively, S ⊆ US):

� For c ∈ Σ, f : Σ → Σ is continuous at c iff for all Vf(c) ∈ FΣ, there

exists some Uc ∈ FΣ such that f[Uc] ⊆ Vf(c).

� For S ⊆ Σ, f is continuous at S iff for all Vf[S] ∈ FΣ, there exists

some US ∈ FΣ such that f[US] ⊆ Vf[S].

� f is FΣ-reflecting iff for all V ∈ FΣ, f−1(V) ∈ FΣ, that is, f−1 is

FΣ-preserving.

The second item is needed because FΣ might not be an open family.

If FΣ is a topology, then all three notions are equivalent.
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reflection, cont.

f is continuous at S ⊆ Σ:
V

f[S]S

US
f

If f[S] ⊆ V ∈ FΣ, then there exists US ∈ FΣ such that f[US] ⊆ V .

Proposition:

1. f is FΣ-reflecting iff f is continuous at S, for all S ⊆ Σ.

2. If FΣ is an open family, then f is FΣ-reflecting iff f is
continuous at c, for all c ∈ Σ.

3. f : Σ → Σ is ∼FΣ-reflecting iff f is FΣ-reflecting.
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reflection, concl.

For S, S ′ ⊆ Σ, write S ≤FΣ
S ′ iff for all K ∈ FΣ, S ⊆ K implies S ′ ⊆ K.

Write S ≡FΣ
S ′ iff S ≤FΣ

S ′ and S ′ ≤FΣ
S. That is, S and S ′ share the same

properties.

Definition: f : Σ → Σ is backwards-FΣ-complete iff for all S, S ′ ⊆ Σ,
S ≡FΣ

S ′ implies f[S] ≡FC
f[S ′] cf. Slide 12.

Proposition: If f is FΣ-reflecting, then it is
backwards-FΣ-complete.

Lemma: If FΣ is a closed family, then TFAE:
(i) f is backwards-FΣ-complete;
(ii) for all S ⊆ Σ, f[S] ≡FΣ

f[ρ(S)];
(iii) ρ ◦ f = ρ ◦ f ◦ ρ

Theorem: For closed family, FΣ, f is backwards-FΣ-complete iff
it is FΣ-reflecting.

So, abstract-interpretation backwards completeness is topological continuity.
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What about open families?

Let FΣ be open (closed under unions) and ι : P(Σ) → FΣ be its

interior map.

We use an open family to perform an underapproximating

precondition analysis: for f : Σ → Σ, define f−1 : P(Σ) → P(Σ) as

f−1(S) = {s ∈ Σ | f(s) ∈ S}, as usual.

The strongest (weakest precondition) abstract function for f−1 is

ι ◦ f−1 : FΣ → FΣ.

Define
F-FΣ-completeness: f−1 ◦ ι = ι ◦ f−1 ◦ ι

B-FΣ-completeness: ι ◦ f−1 = ι ◦ f−1 ◦ ι

Fact: f−1 is FΣ-preserving iff f−1 is F-FΣ-complete iff f is

∼FΣ-reflecting iff f is FΣ-reflecting.

This is the classic pre- post-condition duality of predicate transformers.
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Backwards completeness for an open family and
f−1 is a “dual continuity” property

Definition: f−1 : P(Σ) → P(Σ) is dual continuous at S ⊆ Σ iff for all

U ∈ FΣ, if f−1[S] ⊇ U then there exists V ∈ FΣ, V ⊆ S, such that

f−1[V] ⊇ U.

f−1 is dual continuous at S ⊆ Σ:
S

U
−1f   [V]

f   [S]−1

−1f
V

Theorem: f−1 is dual continuous for all S ⊆ Σ iff f−1 is
B-FΣ-complete, that is, ι ◦ f−1 = ι ◦ f−1 ◦ ι.

But I don’t know for what this might be useful! (-:
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The “topology” induced from an abstract
interpretation is coarser than the Scott topology

Reconsider L∞ and its approximant, Lk, which denotes a closed
family.

� There is a Scott-continuous function, f : L∞ → L∞ , that is not
Lk-backwards complete for all k > 0. Define f as f(dk , nil) = nil, for all

k ≥ 0, and f(ℓ) = ⊥, otherwise; this is Scott-continuous. Consider f−1{nil}; it is

all total, finite lists in L∞ , and for no finite e ∈ L∞ does this set equal ↑e. (Nor

does the union of the upclosed sets of finite elements in any Lk equal f−1(nil)

— the union of the basic opens of all finite lists in L∞ are required.)

� For each k > 0, there is a monotone, Lk-backwards complete
function that is not Scott-continuous. For k, define fk : L∞ → L∞ as

follows: f(⊥) = ⊥; for j < k, fk(dj , nil) = (dj , nil) and fk(dj ,⊥) = (dj ,⊥). For

j ≥ k, fk(dj , nil) = (dk ,⊥); fk(dj ,⊥) = (dk ,⊥). Finally, define fk(d∞ ) = d∞ .

This makes fk monotone and backwards complete but Scott-discontinuous. The

result does not change when the sets defined by Lk are closed under union.
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Concluding remarks

(-: / 46



There is a lot of classical denotational semantics employed in

abstract-interpretation theory and practice....
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