
Abstract interpretation
from a denotational semantics
perspective

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

(-: / 1

Thank you, Bob Tennent...

for your contributions to
programming-languages
research!

The clarity and precision of
your work is an inspiration,
as is the care you take to
ground your results in
practice!

(-: / 2

Patrick Cousot, MFPS 1997: “Denotational
semantics is an abstract interpretation...”

(-: / 3

)

Σ * ω)(),

U
I

P(Σx Σ)

U
I),(

ΣP() ,(Σ)

ΣP() ΣP(),()

x(P(A A) ,

U
I

P(

Στ Σrelation/function, x

U
I

Data domains for transition

(-: / 4

Abstract interpretation
finitely approximates a program’s

execution [Cousot78,Cousot277].

According to [Cousot97], it is the

reinterpretation of a formal sys-

tem, (τ,D), by an adjunction,

D A
γ

α ,
as (α ◦ τ ◦ γ, A):

γ
DD

τ

α
A A

where A’s elements finitely ap-

proximate D’s.

Denotational semantics
defines a program’s meaning

extensionally (and inductively)

a value from a Scott domain

[ScottStrachey71,Tennent76].

In the sense of [Cousot97], it is a

function,

C : Program → D∞ → D∞ ,

from which one defines, for

program P, its formal system,

(C[[P]], D∞).

This talk shows how to use the approximation embedded within Scott
domain D∞ to define abstract interpretation. In this sense, “abstract
interpretation is a denotational semantics....”

(-: / 5

Background: abstract
interpretation

(-: / 6

Abstract interpretation = finite approximation
readInt(x)

x = succ(x)

if x < 0 :

x = negate(x)

else:

x = succ(x)

writeInt(x)

Q:is the output pos?

A: abstractly interpret

input domain Int by

Sign = {neg , zero, pos , any}:

readSign(x)

x = succ♯(x)

if (filterNeg(x):

x = negate♯(x))

(filterNonNeg(x):

x = succ♯(x)) fi

writeSign(x)

where

succ♯(pos) = pos

succ♯(zero) = pos

succ♯(neg) = any (!)
succ♯(any) = any

and

negate♯(neg) = pos

negate♯(zero) = zero

negate♯(pos) = neg

negate♯(any) = any

For the abstract data-test sets, zero,neg , pos , we calculate:
{zero 7→ pos , pos 7→ pos , neg 7→ any}. The last result arises because

succ♯(neg) = any and filterNeg(any) = neg (good!) but filterNonNeg(any) = any

(bad — we need zero ∨ pos!), so we cannot ensure the success of the else-arm.

(-: / 7

A Galois connection formalizes the approximation

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}
pos

zero

none

any

neg

α

P(Int)
Sign

γ : Sign → P(Int)

γ(none) = {}, γ(any) = Int

γ(neg) = {· · · ,−3,−2,−1}

γ(zero) = {0}, γ(pos) = {1, 2, 3, · · ·}

α : P(Int) → Sign

α(S) = ⊓{a | γ(a) ⊆ S}

e.g., α{2, 4, 6, 8, ...} = pos ,
α{−1, 0} = any , α{0} = zero

(P(Int),⊆)〈α, γ〉(Sign,⊑) is a Galois connection:

α(S)⊑a iff S ⊆ γ(a).

γ interprets the elements in Sign, and α maps each data-test set in the collecting

domain, P(Int), to the name that best describes the set [CousotCousot77].

(-: / 8

The Galois connection defines a closure operator,
ρ = γ ◦ α : P(Σ) → P(Σ)

ρ[P(Int)] =

{{}, {· · · ,−2,−1}, {0}, {1, 2, · · ·}, Int}

{0}

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

P(Int)

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

ρ[P(Int)] identifies the properties expressible in abstract
domain Sign, and ρ maps a test set to its minimal property, e.g.,
ρ{1} = {1, 2, · · ·}, ρ{−1, 1} = Int , etc. Note that ρ[P(Int)] is closed under
intersection (conjunction).

From here on, we work with Galois connections of form,
(P(Σ),⊆)〈α, γ〉(A, ⊑), so that ρ = γ ◦ α maps sets to sets, and we
assume that α is onto.

(-: / 9

Monotone, sound abstract functions

f♯ : A → A is sound for f : Σ → Σ iff α ◦ f ⊑ f♯ ◦ α (iff f ◦ γ ⊑ γ ◦ f♯):

α
f #α (S)

f[S]S
f

α
a

(a)

f #
f #(a)

f

γγ

γ
α and γ are
semi-homomorphisms.

Example: The succ♯ function seen earlier is sound for succ, e.g., for

succ : Int → Int , succ[{0}] = {1}, and succ♯(zero) = pos.

Recall that ρ[P(Σ)] = γ[A] identifies the properties expressed by A.

When α is onto, we can treat f♯ : A → A as f♯ : ρ[P(Σ)] → ρ[P(Σ)].
Example: succ♯{0} = {1, 2, · · ·}.

Proposition: For all φ ∈ ρ[P(Σ)], f♯ is sound for f iff
f(φ) ⊆ f♯(φ).

There is also the dual notion, underapproximating soundness, where f(φ) ⊇ f♯(φ);

this is best developed with an interior map, ι : P(Σ) → P(Σ).

(-: / 10

Strongest abstract function

The strongest (most precise), sound f♯ : A → A for f : Σ → Σ is
f
♯
0 = α ◦ f ◦ γ, that is, f♯0(a) = α(f[γ(a)]):

a
#

aγ aγf[]

aγf[])(α

f

γ α
f

Example: The succ♯ function seen earlier is strongest for succ.

We can define f♯0 in terms of ρ = γ ◦ α:

f
♯
0 = ρ ◦ f : ρ[P(Σ)] → ρ[P(Σ)], e.g., succ♯

0{0} = {1, 2, · · ·}.

Proposition: (strongest postcondition for f): For all
φ,ψ ∈ ρ[P(Σ)], if f(φ) ⊆ ψ, then f♯0(φ) ⊆ ψ.

There is dual formulation, in terms of an interior map, ι, that generates the weakest

precondition for f as ι ◦ f−1 .

(-: / 11

Complete abstract functions

Forwards completeness
[Giacobazzi01]: f ◦ γ = γ ◦ f♯

γ
#

γ (a)

f #(a)

f

a

γ
f

Backwards completeness
[Cousot279,Giacobazzi00]:

α ◦ f = f♯ ◦ α

α
#α (S)

f(S)S
f

α
f

Define f♯0 = ρ ◦ f : ρ[P(Σ)] → ρ[P(Σ)] as before.

Proposition: TFAE: (i) f♯0 is forwards complete for f;
(ii) for all φ ∈ ρ[P(Σ)], f(φ) ∈ ρ[P(Σ)];
(iii) f ◦ ρ = ρ ◦ f ◦ ρ.

Proposition: TFAE: (i) f♯0 is backwards complete for f;
(ii) for all S1, S2 ∈ P(Σ), ρ(S1) = ρ(S2) implies ρ(f[S1]) = ρ(f[S2]);
(iii) ρ ◦ f = ρ ◦ f ◦ ρ.

What do these results signify, really?

(-: / 12

Background: denotational
semantics

(-: / 13

Inverse limit of L∞ ≈ ({nil} + (D× L∞)⊥ (in SFPep)

. . .d, ⊥nil
⊥

α0

0γ

1α

1γ

d,d, ⊥d,nil

d, ⊥nil
⊥ d, ⊥nil

⊥

d i ⊥i−1d nil

d,nil d,d, ⊥
d,d,nil

iα

iγ

d, ⊥nil
⊥

d i ⊥i−1d nil

d

d,nil d,d, ⊥
d,d,nil

L

L0 L1 L2
Li

2α

2γ
⊥ . . .

For L0 = {⊥}, Li+1 = ({nil} + (D× Li)⊥,
the embedding, projection pairs, Li〈γi, αi〉Li+1, are defined

γ0(⊥) = ⊥

α0(ℓ) = ⊥

γi+1 = F(γi)

αi+1 = F(αi)
where

F(f)(⊥) = ⊥

F(f)(nil) = nil

F(f)(d, ℓ) = (d, f(ℓ))

The e,p pairs compose into ones of form, Li〈γi,j, αj,i〉Lj, for i < j.

(-: / 14

L∞ ≈ ({nil} + (D× L∞)⊥, cont.

. . .d, ⊥nil
⊥

α0

0γ

1α

1γ

d,d, ⊥d,nil

d, ⊥nil
⊥ d, ⊥nil

⊥

d i ⊥i−1d nil

d,nil d,d, ⊥
d,d,nil

iα

iγ

d, ⊥nil
⊥

d i ⊥i−1d nil

d

d,nil d,d, ⊥
d,d,nil

L

L0 L1 L2
Li

2α

2γ
⊥ . . .

The elements of L∞ are tuples, 〈ℓi〉i≥0, such that each ℓi ∈ Li

and ℓi = αi(ℓi+1), for all i ≥ 0.

For all i ≥ 0, Li〈γi,∞ , α∞,i〉L
∞ are defined

γi,∞ (ℓ) = 〈αi−1,0(ℓ), αi−1,1(ℓ), · · · , αi(ℓ), ℓ, γi(ℓ), γi,i+2(ℓ), γi,i+3(ℓ) · · ·〉

α∞ ,i〈ℓ0, ℓ1, · · · , ℓi, · · ·〉 = ℓi

L∞〈γ∞ , α∞〉({nil} + (D× L∞))⊥ forms an order-isomorphism, where

γ∞ = ⊔i≥0 F(γi,∞) ◦ α∞,i+1

α∞ = ⊔i≥0 γi+1,∞ ◦ F(α∞,i)

(-: / 15

A semantics definition based on L∞

d ∈ Data(atomic data) x ∈ Var (var names) G ∈ Guard(bool exprs)
E ∈ Expression ::= x | tl E | cons d E
C ∈ Command ::= x = E | C1; C2 | if (Gi : Ci)i∈I fi | while G do C

Domain of stores: σ ∈ Σ = Var → L∞

G : Guard → Σ → Σ⊥

G[[G]]σ = σ when G holds true in σ; G[[G]]σ = ⊥ otherwise

E : Expression → Σ → L∞

E [[x]]σ = lookup [[x]] σ where lookup v σ = σ(v)

E [[tl E]]σ = tail (E [[E]]σ) where tail(v) = cases γ∞ (v) of

⊥ : α∞ (⊥)

nil : α∞ (⊥)

(d, ℓ) : ℓE [[cons d E]]σ = cons d (E [[E]]σ) where cons d ℓ = α∞ (d, ℓ)

C : Command → Σ → Σ⊥

C[[x = E]]σ = update [[x]] (E [[E]]σ) σ where update v ℓ σ = σ+ [v 7→ ℓ]

C[[C1; C2]] = C[[C2]] ◦ C[[C1]] Note: g ◦ f(σ) = ⊥ when f(σ) = ⊥

C[[if (Gi : Ci)i∈I fi]] =
⊔

i∈I C[[Ci]] ◦ G[[Gi]]

C[[while G do C]] = lfp λf. (G[[¬G]]) ⊔ (f ◦ C[[C]] ◦ G[[G]])

(-: / 16

A guard filters the store, like a logic gate; absence of store is denoted

by ⊥.

Example: let σ0 = [[[x]] 7→ nil]. Then,

C[[if (isNil x : x = cons d0 x) (isNonNil x : x = x) fi]]σ0

= (C[[x = cons d0 x]] ◦ G[[isNil x]])σ0 ⊔ (C[[x = x]] ◦ G[[isNonNil x]])σ0

= C[[x = cons d0 x]]σ0 ⊔ C[[x = x]]⊥

= (update [[x]] (E [[cons d0 x]]σ0) σ0) ⊔ ⊥ = [[[x]] 7→ (d0, nil)]

G[[isNil x]] passes σ0 forwards, because the guard holds true for the store, whereas

G[[isNonNil x]] passes ⊥.

The while-command is a tail-recursive guarded-if, such that

C[[while B do C]] equals C[[if (¬B : skip), (B : C; (while B do C)) fi]].

We write the semantics this way, because abstract-interpretation methodology treats

programs as circuits and calculates information flows through them.

(-: / 17

From denotational semantics to
abstract interpretation

(-: / 18

...the bridge is the collecting domain, P(L∞)

Intuition: an element, like (d,⊥), approximates/describes the set,
{(d, l) | l ∈ L∞} ∈ P(L∞):

⊥

⊥nil
⊥

k−1d nil d k⊥

d,nil d,d, ⊥
d,d,nil α k

k,γ

d, ⊥nil
⊥

i−1d nil

d

d i ⊥

d,nil d,d, ⊥
d,d,nil

Pα

Pγ

Lk

⊥

d{ }

L| l: }{(d,d,l)

L{(d,l) | l: }

L

{ }

{nil}

{(d,nil)}

UI

. . .

LP() op
L

⊥

⊥

d,

Define

L⊤k 〈γ, α〉P(L∞)
op as

γ = γP ◦ γk.∞

α = α∞ ,k ◦ αP

, where

γP(ℓ) = ↑ℓ
= {m ∈ L∞ | ℓ ⊑m}

αP(S) = ⊓S

Each l ∈ Lk “names” the data-test set, γ(l) =↑l ∈ P(L∞)

just like pos ∈ Sign names {1, 2, · · ·}!

(-: / 19

The rotated diagram yields a Cousot-style
Galois connection — the notion of approximation
is one and the same

P(L∞)〈α, γ〉L⊤k
op

:
L

{ }

UI

LP()
γ

α

⊥d,
⊥d,d,

k−1d nil d k⊥

nil
⊥

d,nil

d,d,nil

⊥

Lk

⊥

op

γ(l) = ↑l = {m ∈ L∞ | l ⊑ m}

α(S) =
⊔

L⊤

K
{l ∈ L⊤k | S ⊆ γ(l)}

� (dn,⊥) ∈ L⊤k
op

names those lists having at least n-many

elements; (dn, nil) represents a list that has exactly n elements.

� ⊥ ∈ L⊤k
op

stands for all lists; ⊤ ∈ L⊤k
op

for none.

One might also restrict the collecting domain to be just the totally

defined lists or just the finite, total lists.

(-: / 20

The Sign domain is derived from a Scott-domain:

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}
pos

zero

none

any

neg

α

P(Int)
Sign

N = {1}⊥ ⊕N where ⊕ denotes disjoint sum with merged ⊥s

S = (N+ {0} +N)⊥

S denotes the integers partitioned into the negatives, zero, and the

positives. The approximating domain,

S1 = (N0 + {0} +N0)⊥, where N0 = {⊥}, defines Sign = S⊤1
op

.

The collecting domain, P(Int), holds sets of total values from S∞ .

We obtain better-precision signs-analyses from domains Sk, k > 1, which distinguish

individual integers, e.g, S⊤2
op

= {⊤, neg ,−1, zero, 1, pos,⊥}.

(-: / 21

Many abstract domains are defined this way — they are “partitions” of

data-test sets, “crowned” by a ⊤, characterized by a finite domain

from an inverse-limit sequence. But here are two that are not:

any

none

0 1 2−1−2.

Const, for constant-propagation analysis.

Vars are analyzed to see if they are uninitialized

(⊥), a constant (n), or hold multiple values (⊤).

This domain is N∞ ⊤op , where N = ({0} +N)⊥.

Interval, for tracking the range of values
a variable is assigned. Like Const, this do-
main is itself an inverse limit; its opposite is not in

SFP.

Later, we will look at relational abstract domains,

which abstract the entire store, Var → Σ, rather

than just the data domain, Σ.

[i,j]

..
...

−[,0] +[0,]

+[1,]−[,1]

...
...

+[i,]−[,i]

...
...

− +[,]

...

...

[−1,0] [0,1]

[1,1][0,0][−1,−1]

[]

[−1,1]

.

.

.

(-: / 22

A bit of topology...

Domains like L∞ are objects in category SFP, and each l ∈ Lk is a

finite element that names the property, γ(l) = ↑l ⊆ L∞ — a

Scott-basic-open set.

For ρ = γ ◦ α, ρ[P(L∞)] are all Scott-basic opens. This family is

closed under intersection (because γ is an upper adjoint).

We can close ρ[P(L∞)] under unions, making a topology on L∞

(coarser than L∞ ’s Scott topology).

But this is exactly the disjunctive com-

pletion construction of abstract interpreta-

tion [Cousot294], which is used to increase

precision of an analysis!
{0}

{ }

{...,−1,0,1,...}

{...,−2,−1}

{...,−2,−1,1,2,...}

{...,−2,−1,0} {0,1,2,3,...}

{1,2,3,...}

SignO

But what are the topologically continuous functions in this setting?

(-: / 23

A bit of logic...

Every abstract interpretation, A, has a logic of properties it can
validate:

ψ ::= a ∈ A | f(ψi)0<i≤n

where f : Σn → Σ is a logical operator: f[γ(ψi)]0<i≤n ∈ γ[A] that is, f

maps properties to properties, on the nose

Fact: f is a logical operator iff it is forwards complete.

Since γ is an upper adjoint, ⊓ is a logical operator; when γ[A] defines
a topology, ⊔ is a logical operator. Here is the logic for Sign:

φ ::= a ∈ Sign | φ1 ⊓ φ2 | negate(φ), where negate(n) = −n

But this developement is just Abramsky’s domain theory in logical
form [Abramsky91], where a domain’s logic uses the finite/atomic
elements of L∞ as its A!

Jensen similarly defined abstract interpretation in logical form
[Jensen92], where A is a finite subset of L∞ ’s finite elements.

(-: / 24

A language’s abstract interpretation is its
semantics where A = L⊤k

op replaces L∞

Abstract store domain: σ ∈ Σ♯ = Var → L⊤k
op

Galois
connections:

L∞ : P(L∞)〈α, γ〉L⊤k
op

Σ = Var → L∞ : P(Σ)〈αVar , γVar 〉Σ
♯ (indexed product)

Σ⊥: P(Σ⊥)〈α⊥, γ⊥〉Σ
♯ (merges ⊥ with ⊥ ∈ Σ♯)

G♯ : Guard → Σ♯ → Σ♯

G♯[[G]] = α⊥ ◦ G[[G]] ◦ γΣ

E♯ : Expression → Σ♯ → L⊤k
op

E♯[[x]]σ = lookup♯ [[x]] σ

where lookup♯ v = α ◦ lookup v ◦ γVar , that is, lookup♯ v σ = σ(v)

E♯[[tl E]]σ = tail♯(E♯[[E]]σ)

that is, tail♯(a, ℓ) = ℓ; tail♯(nil) = ⊥ = tail♯(⊥)

E♯[[cons a E]]σ = cons♯ a (E♯[[E]]σ)

that is, cons♯ a ℓ = (a, ℓ)

(-: / 25

abstract interpretation, cont.

Abstract store domain: σ ∈ Σ♯ = Var → L⊤k
op

Galois
connections:

L∞ : P(L∞)〈α, γ〉L⊤k
op

Σ = Var → L∞ : P(Σ)〈αVar , γVar 〉Σ
♯

Σ⊥: P(Σ⊥)〈α⊥, γ⊥〉Σ
♯

,

C♯ : Command → Σ♯ → Σ♯

C♯[[x = E]]σ = update♯ [[x]] (E♯[[E]]σ) σ

where update♯[[x]] = α⊥ ◦ update[[x]] ◦ (γ× γVar),

that is, update♯ v ℓ σ = σ+ [v 7→ ℓ]

C♯[[C1; C2]] = C♯[[C2]] ◦ C
♯[[C1]]

C♯[[if (Gi : Ci)Ifi]] =
⊔

i∈I C
♯[[Ci]] ◦ G

♯[[Gi]]

C♯[[while B do C]] = lfp λf. G♯[[¬G]] ⊔ (f ◦ C♯[[C]] ◦ G♯[[G]])

We utilize the appropriate maps from the Galois connections to replace
operations f by f♯0 = α ◦ f ◦ γ.

(-: / 26

For the conditional, the guards filter the abstract
store, and the results join together

Let σ0 = [[[x]] 7→ ⊥] ∈ Σ♯, that is, x might be any L∞-value at all:

C♯[[if (isNil x : x = cons d0 x), (isNonNil x : x = x) fi]]σ0

= (C♯[[x = cons d0 x]] ◦ G♯[[isNil x]])σ0 ⊔ (C♯[[x = x]] ◦ G♯[[isNonNil x]])σ0

Now,
G♯[[isNil x]])σ0 = (α⊥ ◦ G[[isNil x]] ◦ γVar)σ0

= α⊥{[[[x]] 7→ nil], ⊥} = [[[x]] 7→ nil]

and,
G♯[[isNonNil x]])σ0 = α⊥({[[[x]] 7→ (d, ℓ)] | ℓ ∈ L∞ } ∪ {⊥})

= [[[x]] 7→ (d,⊥)]

So, C♯[[x = cons d0 x]][[[x]] 7→ nil] ⊔ C♯[[x = x]][[[x]] 7→ (d,⊥)]

= (update♯ [[x]] (E♯[[cons d0 x]][[[x]] 7→ nil]) [[[x]] 7→ nil]) ⊔ [[[x]] 7→ (d,⊥)]

= [[[x]] 7→ (d0, nil)] ⊔ [[[x]] 7→ (d,⊥)] Note that the ⊔ operates in L⊤k
op

.

= [[[x]] 7→ (d0 ⊔ d, ⊥)]

(-: / 27

We use C♯ for abstract testing

Like the previous example, we supply an abstract test input and
calculate its output. For denotations of form, f = lfp λσ.Ffσ′ , we must
ensure detectable, finite convergence of tests, f(σ).

We use “minimal function graph” semantics [JonesMycroft86]: Starting
from f(σ0), we generate the subsequent calls, f(σi), giving a family of
k first-order equations,

fσ0 = Ffσ1

fσ1 = Ffσ2

· · ·
fσk = Ffσj

, for some j ≤ k
which we solve iteratively.

If the abstract domain for σ is not finite (e.g., Const), k is forced finite
by making the argument sequence, σ0, σ1, · · · , σk, into a chain so that
the domain’s finite-height ensures a finite equation set. Then, it is
common to solve just fσk = Ffσk

.

(-: / 28

Example: For C♯[[while NonNil x : x = tl x]] = f, where
f(σ) = G♯[[Nil x]]σ ⊔ f(C♯[[x = tl x]](G♯[[NonNil x]]σ)),
we calculate an abstract test with σd⊥:

Let
σd⊥ = [x 7→ (d,⊥)]

σ⊥ = [x 7→ ⊥]

(Note: in abstract domain L⊤k
op

,
⊥ ∈ L⊤k means “all lists,” and ⊤ ∈ L⊤k
means ”no lists.”)

C♯[[while NonNil x : x = tl x]]σd⊥ = fσd⊥, where

fσd⊥ = G♯[[Nil x]]σd⊥ ⊔ f(C♯[[x = tl x]](G♯[[NonNil x]]σd⊥)

= [x 7→ ⊤] ⊔ f(C♯[[x = tl x]]σd⊥)

= fσ⊥

fσ⊥ = G♯[[Nil x]]σ⊥ ⊔ f(C♯[[x = tl x]](G♯[[NonNil x]]σ⊥)

= [x 7→ nil] ⊔ f(C♯[[x = tl x]]σd⊥)

= [x 7→ nil] ⊔ fσ⊥

We solve these two first-order equations.

(-: / 29

The inductive definition preserves soundness
and completeness

For the format, E [[op(Ei)]] = f(E [[Ei]]), we define the abstract

semantics inductively as E ♯[[op(Ei)]] = f
♯
0(E

♯[[Ei]]), where

f
♯
0 = α ◦ f ◦ γ.

It is easy to prove that E ♯ is sound for E .

Recall
F-completeness: For all E, E [[E]] ◦ γ = γ ◦ E ♯[[E]]

B-completeness: For all E, α ◦ E [[E]] = E ♯[[E]] ◦ α

Proposition: If for every equation, E [[op(Ei)]] = f(E [[Ei]]), f
♯
0 is F-

(resp. B-) complete for f, then E ♯ is F- (resp. B-) complete for E .

This result is preserved when lfp and gfp are used.

When there is not completeness, the inductive definition of E ♯ is

sound but may be weaker than the strongest abstract interpretation:

E ♯[[E]] ⊒ α ◦ E [[E]] ◦ γ.

(-: / 30

A store domain, Var → Σ, can be abstracted
pointwise by Var → A or relationally by P(An)

SignO: [x 7→ ≥0][y 7→ ≥0] Interval: [x 7→ [3, 27]][[y 7→ [4, 32]]

Octagon:
∧

i(±xi ± yi ≤ ci) Polyhedra:
∧

i((
∑

jaij · xij) ≤ bi)

diagrams from Abstract Interpretation: Achievements and Perspectives by Patrick

Cousot, Proc. SSGRR 2000.

(-: / 31

Some modellings of a relational store value
from the octagon abstract domain:

diagram from The octagon abstract domain, by Antoine Miné, J. Symbolic and

Higher-Order Computation 2006

Octogan and polyhedral values can perhaps be explained in terms of
Abramsky-Jensen “abstract interpretation in logical form.”

(-: / 32

Predicate abstraction uses an ad-hoc relational
domain, based on predicates in the program

Example: prove that z ≥ x ∧ z ≥ y at p3:

p1 :
p0 :

p2 :
p3 :

if x < y
then z = y;
else z = x;

exit

p1, 〈t, ?, ?〉

p3, 〈t, t, t〉

p0, 〈?, ?, ?〉

p2, 〈f, ?, ?〉

p3, 〈f, t, t〉

The store is abstracted to a relational domain that denotes the values

of these predicates, taken from the source program,

φ1 = x < y φ2 = z ≥ x φ2 = z ≥ y

The predicates are evaluated at the program’s points as one of {t, f, ?}.

(Read ? as t∨ f.)

At all occurrences of p3 in the abstract trace, φ2 ∧ φ3 holds.

(-: / 33

When a goal is undecided, domain refinement
becomes necessary

Prove φ0 ≡ x ≥ y at p4:

p0 :
p1 :

p2 :
p3 :

p4 :

if !(x >= y)
then { i = x;

x = y;
y = i;

}

p1, 〈f〉
p2, 〈f〉
p3, 〈t〉
p4, 〈?〉

p0, 〈?〉

p4, 〈t〉

To decide the goal, we refine the ad-hoc domain:

wp(y = i, x ≥ y) = (x ≥ i) ≡ φ1. We add φ1 and try again:

p1, 〈f, ?〉
p2, 〈f, t〉
p3, 〈t, t〉
p4, 〈t, t〉

p0, 〈?, ?〉

p4, 〈t〉
because x 6≥ y and x ≥ i

imply y > i implies xnew ≥ i

(-: / 34

But incremental predicate refinement cannot synthesize many
interesting loop invariants. For this example:

p0 :
p1 :

p2 :

p3 :

i = n; x = 0;
while i != 0 {

x = x + 1; i = i − 1;

}
goal: x = n

The initial predicate set, P0 ≡ {i = 0, x = n}, does not validate the
loop body.

The first refinement suggests we add P1 ≡ {i = 1, x = n− 1} to the
program state, but this fails to validate a loop that iterates more than
once.

Refinement stage j adds predicates Pj ≡ {i = j, x = n− j}; the
refinement process continues forever!

The loop invariant is x = n − i :-)

(-: / 35

Explaining abstract-interpretation
completeness with (a bit of) Scott
topology

(-: / 36

Open sets are computable properties [Smyth]

For an algebra cpo, D, its Scott-basic-open sets are ↑e, for each finite

element, e ∈ D. Read d ∈ ↑e as “d has property ↑e.”

But abstract intepretation is finite computation on properties; for an

abstract domain, like Sign, γ[Sign] (or, ρ[P(Sign)]) identifies the

computable properties.

Alas, ρ[P(Sign)] is closed un-

der intersections (not necessarily

unions). Also, there exist abstract

domains A that possess only a γ

but no α (and no ρ) [Cousot292].

{0}

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

P(Int)

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

(-: / 37

Let’s weaken some definitions

For abstract domain A and γ : A → P(Σ), define Σ’s property family

as FΣ = γ[A].

For each U ∈ FΣ, its complement is ∼U = Σ−U; for FΣ, its

complement family, ∼FΣ, is {∼U | U ∈ FΣ}.

FΣ is an open family if it is closed under unions, and it is a closed

family if it is closed under intersections. If FΣ is an open family, then

its complement is a closed family (and vice versa).

When γ is the upper adjoint of a Galois connection, then FΣ is a

closed family.

Intuition: closed families are used for overapproximating, postcondition abstract

interpretations; open families are used for underapproximating, precondition abstract

interpretations.

(-: / 38

Property preservation

For f : Σ → Σ, define f : P(Σ) → P(Σ) as f[S] = {f(s) | s ∈ S}, and

define f−1 : P(Σ) → P(Σ) as f−1(T) = {s ∈ Σ | f(s) ∈ T }, as usual.

f is FΣ-preserving iff for all U ∈ FΣ, f[U] ∈ FΣ. In such a case,
f : FΣ → FΣ is well defined.

This generalizes the notions of topologically open and closed maps.

Let FΣ be a closed family, and let ρ : P(Σ) → P(Σ) be the
associated closure operator.

For f : Σ → Σ, define f♯0 : P(Σ) → P(Σ) as f♯0 = ρ ◦ f, as usual.

Fact: f
♯
0 is forwards complete for f iff f is FΣ preserving, that is,

iff f is a topologically closed map.

(-: / 39

Property reflection (continuity)

Let Uc (respectively, US) denote a member of FΣ such that c ∈ Uc

(respectively, S ⊆ US):

� For c ∈ Σ, f : Σ → Σ is continuous at c iff for all Vf(c) ∈ FΣ, there

exists some Uc ∈ FΣ such that f[Uc] ⊆ Vf(c).

� For S ⊆ Σ, f is continuous at S iff for all Vf[S] ∈ FΣ, there exists

some US ∈ FΣ such that f[US] ⊆ Vf[S].

� f is FΣ-reflecting iff for all V ∈ FΣ, f−1(V) ∈ FΣ, that is, f−1 is

FΣ-preserving.

The second item is needed because FΣ might not be an open family.

If FΣ is a topology, then all three notions are equivalent.

(-: / 40

reflection, cont.

f is continuous at S ⊆ Σ:
V

f[S]S

US
f

If f[S] ⊆ V ∈ FΣ, then there exists US ∈ FΣ such that f[US] ⊆ V .

Proposition:

1. f is FΣ-reflecting iff f is continuous at S, for all S ⊆ Σ.

2. If FΣ is an open family, then f is FΣ-reflecting iff f is
continuous at c, for all c ∈ Σ.

3. f : Σ → Σ is ∼FΣ-reflecting iff f is FΣ-reflecting.

(-: / 41

reflection, concl.

For S, S ′ ⊆ Σ, write S ≤FΣ
S ′ iff for all K ∈ FΣ, S ⊆ K implies S ′ ⊆ K.

Write S ≡FΣ
S ′ iff S ≤FΣ

S ′ and S ′ ≤FΣ
S. That is, S and S ′ share the same

properties.

Definition: f : Σ → Σ is backwards-FΣ-complete iff for all S, S ′ ⊆ Σ,
S ≡FΣ

S ′ implies f[S] ≡FC
f[S ′] cf. Slide 12.

Proposition: If f is FΣ-reflecting, then it is
backwards-FΣ-complete.

Lemma: If FΣ is a closed family, then TFAE:
(i) f is backwards-FΣ-complete;
(ii) for all S ⊆ Σ, f[S] ≡FΣ

f[ρ(S)];
(iii) ρ ◦ f = ρ ◦ f ◦ ρ

Theorem: For closed family, FΣ, f is backwards-FΣ-complete iff
it is FΣ-reflecting.

So, abstract-interpretation backwards completeness is topological continuity.

(-: / 42

What about open families?

Let FΣ be open (closed under unions) and ι : P(Σ) → FΣ be its

interior map.

We use an open family to perform an underapproximating

precondition analysis: for f : Σ → Σ, define f−1 : P(Σ) → P(Σ) as

f−1(S) = {s ∈ Σ | f(s) ∈ S}, as usual.

The strongest (weakest precondition) abstract function for f−1 is

ι ◦ f−1 : FΣ → FΣ.

Define
F-FΣ-completeness: f−1 ◦ ι = ι ◦ f−1 ◦ ι

B-FΣ-completeness: ι ◦ f−1 = ι ◦ f−1 ◦ ι

Fact: f−1 is FΣ-preserving iff f−1 is F-FΣ-complete iff f is

∼FΣ-reflecting iff f is FΣ-reflecting.

This is the classic pre- post-condition duality of predicate transformers.

(-: / 43

Backwards completeness for an open family and
f−1 is a “dual continuity” property

Definition: f−1 : P(Σ) → P(Σ) is dual continuous at S ⊆ Σ iff for all

U ∈ FΣ, if f−1[S] ⊇ U then there exists V ∈ FΣ, V ⊆ S, such that

f−1[V] ⊇ U.

f−1 is dual continuous at S ⊆ Σ:
S

U
−1f [V]

f [S]−1

−1f
V

Theorem: f−1 is dual continuous for all S ⊆ Σ iff f−1 is
B-FΣ-complete, that is, ι ◦ f−1 = ι ◦ f−1 ◦ ι.

But I don’t know for what this might be useful! (-:

(-: / 44

The “topology” induced from an abstract
interpretation is coarser than the Scott topology

Reconsider L∞ and its approximant, Lk, which denotes a closed
family.

� There is a Scott-continuous function, f : L∞ → L∞ , that is not
Lk-backwards complete for all k > 0. Define f as f(dk , nil) = nil, for all

k ≥ 0, and f(ℓ) = ⊥, otherwise; this is Scott-continuous. Consider f−1{nil}; it is

all total, finite lists in L∞ , and for no finite e ∈ L∞ does this set equal ↑e. (Nor

does the union of the upclosed sets of finite elements in any Lk equal f−1(nil)

— the union of the basic opens of all finite lists in L∞ are required.)

� For each k > 0, there is a monotone, Lk-backwards complete
function that is not Scott-continuous. For k, define fk : L∞ → L∞ as

follows: f(⊥) = ⊥; for j < k, fk(dj , nil) = (dj , nil) and fk(dj ,⊥) = (dj ,⊥). For

j ≥ k, fk(dj , nil) = (dk ,⊥); fk(dj ,⊥) = (dk ,⊥). Finally, define fk(d∞) = d∞ .

This makes fk monotone and backwards complete but Scott-discontinuous. The

result does not change when the sets defined by Lk are closed under union.

(-: / 45

Concluding remarks

(-: / 46

There is a lot of classical denotational semantics employed in

abstract-interpretation theory and practice....

(-: / 47

References This talk: www.cis.ksu.edu/∼schmidt/papers

1. S. Abramsky. Domain theory in logical form. Ann.Pure Appl.Logic (51)
1991.

2. P. Cousot. Constructive design of a hierarchy of semantics of a
transition system by abstract interpretation. TCS (277) 2002.

3. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs. Proc. 4th. ACM Prin. Prog. Lang. 1977.

4. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples,
and refinements in abstract model checking. SAS’01, LNCS 2126.

5. T. Jensen. Abstract Interpretation in Logical Form. PhD Thesis, Imperial
College, 1992.

6. D.A. Schmidt. Abstract interpretation from a topological perspective.
Submitted for publication, 2009.

7. R.D. Tennent. The denotational semantics of programming languages.
Comm. ACM (19) 1976.

(-: / 48

