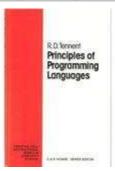
Abstract interpretation from a denotational semantics perspective

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

Thank you, Bob Tennent...



for your contributions to programming-languages research!

The clarity and precision of your work is an inspiration, as is the care you take to ground your results in practice!

Patrick Cousot, MFPS 1997: "Denotational semantics is an abstract interpretation..."

Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation

Patrick Cousot^a

^aDépartement d'Informatique, École Normale Supérieure, 45 rue d'Ulm, 75230 Paris cedex 05, France, Patrick.Cousot@ens.fr, http://www.di.ens.fr/~cousot

We construct a hierarchy of semantics by successive abstract interpretations. Starting from the maximal trace semantics of a transition system, we derive the big-step semantics, termination and nontermination semantics, Plotkin's natural, Smyth's demoniac and Hoare's angelic relational semantics and equivalent nondeterministic denotational semantics (with alternative powerdomains to the Egli-Milner and Smyth constructions), D. Scott's deterministic denotational semantics, the generalized and Dijkstra's conservative/liberal predicate transformer semantics, the generalized/total and Hoare's partial correctness axiomatic semantics and the corresponding proof methods. All the semantics are presented in a uniform fixpoint form and the correspondences between these semantics are established through composable Galois connections, each semantics being formally calculated by abstract interpretation of a more concrete one using Kleene and/or Tarski fixpoint approximation transfer theorems.

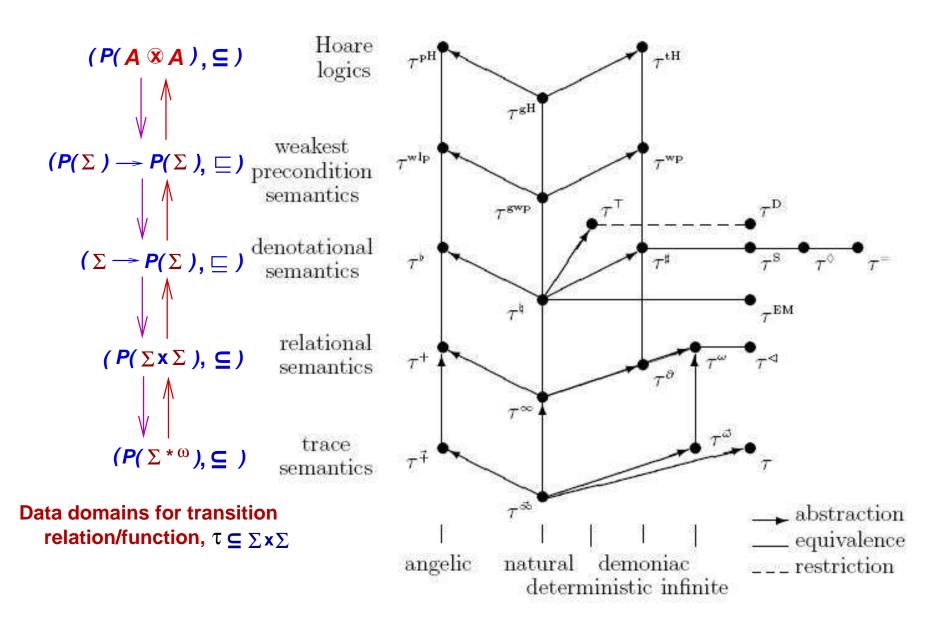


Fig. 4. The lattice of semantics

Abstract interpretation

finitely approximates a program's execution [Cousot78,Cousot277].

According to [Cousot97], it is the reinterpretation of a formal system, (τ, D) , by an adjunction,

$$D \stackrel{\gamma}{\Longrightarrow} A$$
 as $(\alpha \circ \tau \circ \gamma, A)$:
$$D \stackrel{\tau}{\Longrightarrow} D$$

$$\gamma \wedge \qquad \downarrow \alpha$$

$$A \xrightarrow{A \xrightarrow{}} A$$

where A's elements finitely approximate D's.

Denotational semantics

defines a program's meaning extensionally (and inductively) a value from a *Scott domain* [ScottStrachey71,Tennent76].

In the sense of [Cousot97], it is a function,

 $\mathcal{C}: \operatorname{Program} \to D^{\infty} \to D^{\infty},$ from which one defines, for program P, its formal system, $(\mathcal{C}[P], D^{\infty}).$

This talk shows how to use the approximation embedded within Scott domain D^{∞} to define abstract interpretation. In this sense, "abstract interpretation is a denotational semantics...."

Background: abstract interpretation

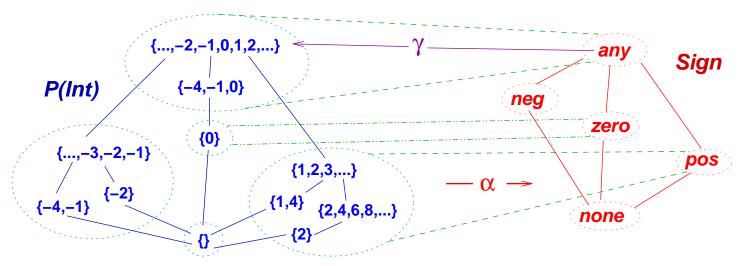
Abstract interpretation = finite approximation

```
readInt(x)
                                                               readSign(x)
x = succ(x)
                                                               x = succ^{\sharp}(x)
                         Q:is the output pos?
if x < 0:
                                                                if (filterNeg(x):
  x = negate(x)
                                                                    x = negate^{\sharp}(x)
                         A: abstractly interpret
                                                                  (filterNonNeg(x):
else:
                         input domain Int by
                                                                    x = succ^{\sharp}(x)) fi
  x = succ(x)
                         Sign = \{neg, zero, pos, any\}:
writeInt(x)
                                                               writeSign(x)
            \operatorname{succ}^{\sharp}(pos) = pos
                                                  negate^{\sharp}(neg) = pos
            succ^{\sharp}(zero) = pos
                                                  negate^{\sharp}(zero) = zero
                                        and
  where
            \operatorname{succ}^{\sharp}(neg) = any (!)
                                                  negate^{\sharp}(pos) = neg
            \operatorname{succ}^{\sharp}(any) = any
                                                  negate^{\sharp}(any) = any
```

For the abstract data-test sets, zero, neg, pos, we calculate:

 $\{zero \mapsto pos, pos \mapsto pos, neg \mapsto any\}$. The last result arises because $\operatorname{succ}^\sharp(neg) = any$ and $\operatorname{filterNeg}(any) = neg$ (good!) but $\operatorname{filterNonNeg}(any) = any$ (bad — we need $zero \vee pos!$), so we cannot ensure the success of the else-arm.

A Galois connection formalizes the approximation



$$\gamma: Sign
ightarrow \mathcal{P}(Int)$$
 $lpha: \mathcal{P}(Int)
ightarrow Sign$ $\gamma(none) = \{\}, \quad \gamma(any) = Int$ $\alpha(S) = \square\{a \mid \gamma(a) \subseteq S\}$ $\gamma(neg) = \{\cdots, -3, -2, -1\}$ e.g., $\alpha\{2, 4, 6, 8, ...\} = pos$, $\gamma(zero) = \{0\}, \quad \gamma(pos) = \{1, 2, 3, \cdots\}$ $\alpha\{-1, 0\} = any, \quad \alpha\{0\} = zero$

$$(\mathcal{P}(\operatorname{Int}), \subseteq)\langle \alpha, \gamma \rangle(Sign, \sqsubseteq)$$
 is a *Galois connection*: $\alpha(S) \sqsubseteq \alpha$ iff $S \subseteq \gamma(\alpha)$.

 γ interprets the elements in Sign, and α maps each data-test set in the *collecting* domain, $\mathcal{P}(Int)$, to the name that best describes the set [CousotCousot77].

The Galois connection defines a closure operator, $\rho = \gamma \circ \alpha : \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$

$$\rho[\mathcal{P}(Int)] = \{\{\}, \{\cdots, -2, -1\}, \{0\}, \{1, 2, \cdots\}, Int\}\}$$

$$P(Int)$$

$$\{-4, -1, 0\}$$

$$\{1, 2, 3, \dots\}$$

$$\{1, 2, 3, \dots\}$$

$$\{1, 4, 4, 6, 8, \dots\}$$

 $\rho[\mathcal{P}(Int)]$ identifies the *properties* expressible in abstract domain Sign, and ρ maps a test set to its *minimal property*, e.g., $\rho\{1\} = \{1, 2, \dots\}, \ \rho\{-1, 1\} = Int$, etc. Note that $\rho[\mathcal{P}(Int)]$ is *closed under intersection* (conjunction).

From here on, we work with Galois connections of form, $(\mathcal{P}(\Sigma), \subseteq) \langle \alpha, \gamma \rangle (A, \sqsubseteq)$, so that $\rho = \gamma \circ \alpha$ maps sets to sets, and we assume that α is onto.

Monotone, sound abstract functions

 $f^{\sharp}: A \to A$ is sound for $f: \Sigma \to \Sigma$ iff $\alpha \circ f \sqsubseteq f^{\sharp} \circ \alpha$ (iff $f \circ \gamma \sqsubseteq \gamma \circ f^{\sharp}$):

Example: The succ[‡] function seen earlier is sound for succ, e.g., for

 $succ: Int \rightarrow Int, \ succ[\{0\}] = \{1\}, \ and \ \ succ^{\sharp}(zero) = pos.$

Recall that $\rho[\mathcal{P}(\Sigma)] = \gamma[A]$ identifies the properties expressed by A.

When α is onto, we can treat $f^{\sharp}: A \to A$ as $f^{\sharp}: \rho[\mathcal{P}(\Sigma)] \to \rho[\mathcal{P}(\Sigma)]$. **Example:** $succ^{\sharp}\{0\} = \{1, 2, \cdots\}.$

Proposition: For all $\phi \in \rho[\mathcal{P}(\Sigma)]$, f^{\sharp} is sound for f iff $f(\phi) \subset f^{\sharp}(\phi)$.

There is also the dual notion, *underapproximating soundness*, where $f(\phi) \supseteq f^{\sharp}(\phi)$; this is best developed with an interior map, $\iota : \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$.

Strongest abstract function

The strongest (most precise), sound $f^{\sharp}: A \to A$ for $f: \Sigma \to \Sigma$ is $f_0^{\sharp} = \alpha \circ f \circ \gamma$, that is, $f_0^{\sharp}(\alpha) = \alpha(f[\gamma(\alpha)])$:

$$\gamma a \xrightarrow{f} f[\gamma a]$$

$$\gamma \uparrow \qquad \qquad \downarrow \alpha$$

$$a \longrightarrow \alpha (f[\gamma a])$$

Example: The $succ^{\sharp}$ function seen earlier is strongest for succ.

We can define f_0^{\sharp} in terms of $\rho = \gamma \circ \alpha$:

$$\mathsf{f}_0^\sharp = \rho \circ \mathsf{f} : \rho[\mathcal{P}(\Sigma)] \to \rho[\mathcal{P}(\Sigma)], \quad \text{e.g., } \mathsf{succ}_0^\sharp \{0\} = \{1, 2, \cdots\}.$$

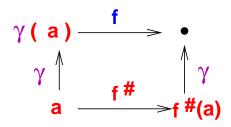
Proposition: (strongest postcondition for f): For all $\phi, \psi \in \rho[\mathcal{P}(\Sigma)]$, if $f(\phi) \subseteq \psi$, then $f_0^{\sharp}(\phi) \subseteq \psi$.

There is dual formulation, in terms of an interior map, ι , that generates the weakest precondition for f as $\iota \circ f^{-1}$.

Complete abstract functions

Forwards completeness

[Giacobazzi01]: $f \circ \gamma = \gamma \circ f^{\sharp}$



Backwards completeness

[Cousot²79,Giacobazzi00]:

$$\alpha \circ f = f^{\sharp} \circ \alpha$$

$$s \xrightarrow{f} f(s)$$

$$\alpha \downarrow \qquad \qquad \downarrow \alpha$$

$$\alpha(s) \xrightarrow{f^{\#}} \bullet$$

Define $f_0^\sharp = \rho \circ f : \rho[\mathcal{P}(\Sigma)] \to \rho[\mathcal{P}(\Sigma)]$ as before.

Proposition: TFAE: (i) f_0^{\sharp} is forwards complete for f;

(ii) for all $\varphi \in \rho[\mathcal{P}(\Sigma)]$, $f(\varphi) \in \rho[\mathcal{P}(\Sigma)]$;

(iii) $f \circ \rho = \rho \circ f \circ \rho$.

Proposition: TFAE: (i) f_0^{\sharp} is backwards complete for f;

(ii) for all $S_1, S_2 \in \mathcal{P}(\Sigma)$, $\rho(S_1) = \rho(S_2)$ implies $\rho(f[S_1]) = \rho(f[S_2])$;

(iii)
$$\rho \circ f = \rho \circ f \circ \rho$$
.

What do these results signify, really?

Background: denotational semantics

Inverse limit of $L^{\infty} \approx (\{nil\} + (D \times L^{\infty})_{\perp} \text{ (in SFP}^{ep})_{d^{\infty}}$

For $L_0 = \{\bot\}$, $L_{i+1} = (\{nil\} + (D \times L_i)_{\bot}$, the embedding, projection pairs, $L_i \langle \gamma_i, \alpha_i \rangle L_{i+1}$, are defined

$$\begin{array}{ll} \gamma_0(\bot) = \bot & \gamma_{i+1} = F(\gamma_i) \\ \alpha_0(\ell) = \bot & \alpha_{i+1} = F(\alpha_i) \end{array} \quad \text{where} \quad \begin{array}{ll} F(f)(\bot) = \bot \\ F(f)(\mathit{nil}) = \mathit{nil} \\ F(f)(d,\ell) = (d,f(\ell)) \end{array}$$

The e,p pairs compose into ones of form, $L_i \langle \gamma_{i,j}, \alpha_{j,i} \rangle L_j$, for i < j.

$L^{\infty} \approx (\{\text{nil}\} + (D \times L^{\infty})_{\perp}, \text{ cont.})$

The elements of L^{∞} are tuples, $\langle \ell_i \rangle_{i \geq 0}$, such that each $\ell_i \in L_i$ and $\ell_i = \alpha_i(\ell_{i+1})$, for all $i \geq 0$.

For all $i \geq 0$, $L_i \langle \gamma_{i,\infty}, \alpha_{\infty,i} \rangle L^{\infty}$ are defined

$$\begin{split} & \gamma_{i,\infty}(\ell) = \langle \alpha_{i-1,0}(\ell), \alpha_{i-1,1}(\ell), \cdots, \alpha_{i}(\ell), \ell, \gamma_{i}(\ell), \gamma_{i,i+2}(\ell), \gamma_{i,i+3}(\ell) \cdots \rangle \\ & \alpha_{\infty,i} \langle \ell_0, \ell_1, \cdots, \ell_i, \cdots \rangle = \ell_i \end{split}$$

 $L^{\infty}\langle\gamma^{\infty},\alpha^{\infty}\rangle(\{\text{nil}\}+(D\times L^{\infty}))_{\perp}\text{ forms an order-isomorphism, where }$

$$\gamma^{\infty} = \sqcup_{i \geq 0} F(\gamma_{i,\infty}) \circ \alpha_{\infty,i+1}$$
$$\alpha^{\infty} = \sqcup_{i \geq 0} \gamma_{i+1,\infty} \circ F(\alpha_{\infty,i})$$

A semantics definition based on L^{∞}

```
d \in Data(atomic data) x \in Var(var names) G \in Guard(bool exprs)
 E \in Expression := x | tl E | cons d E
  C \in Command := x = E \mid C_1; C_2 \mid if (G_i : C_i)_{i \in I} fi \mid while G do C
Domain of stores: \sigma \in \Sigma = Var \to L^{\infty}
\mathcal{G}:\mathsf{Guard} 	o \Sigma 	o \Sigma_{\perp}
  \mathcal{G}[G]\sigma = \sigma when G holds true in \sigma; \mathcal{G}[G]\sigma = \underline{\bot} otherwise
\mathcal{E}: Expression \to \Sigma \to L^{\infty}
 \mathcal{C}: Command \rightarrow \Sigma \rightarrow \Sigma_{\perp}
 \mathcal{C}[x = E]\sigma = \text{update}[x](\mathcal{E}[E]\sigma)\sigma where update v \ell \sigma = \sigma + [v \mapsto \ell]
 \mathcal{C}[C_1; C_2] = \mathcal{C}[C_2] \circ \mathcal{C}[C_1] Note: g \circ f(\sigma) = \bot when f(\sigma) = \bot
 \mathcal{C}\llbracket 	ext{if } (G_{\mathbf{i}}:C_{\mathbf{i}})_{\mathbf{i}\in I} 	ext{ fi} 
bracket = igsqcup_{\mathbf{i}\in I} \mathcal{C}\llbracket C_{\mathbf{i}} 
bracket \circ \mathcal{G}\llbracket G_{\mathbf{i}} 
bracket
 \mathcal{C}[[while G do C]] = lfp \lambda f. (\mathcal{G}[\neg G]]) \sqcup (f \circ \mathcal{C}[[C]] \circ \mathcal{G}[[G]])
```

A guard filters the store, like a logic gate; absence of store is denoted by \perp .

Example: let $\sigma_0 = [\llbracket x \rrbracket \mapsto nil \rrbracket$. Then, $\mathcal{C}[\llbracket if \ (isNil \ x : \ x = cons \ d0 \ x) \ (isNonNil \ x : \ x = x) \ fi \rrbracket \sigma_0$ $= (\mathcal{C}[\llbracket x = cons \ d0 \ x] \circ \mathcal{G}[\llbracket isNil \ x]])\sigma_0 \sqcup (\mathcal{C}[\llbracket x = x]] \circ \mathcal{G}[\llbracket isNonNil \ x]])\sigma_0$ $= \mathcal{C}[\llbracket x = cons \ d0 \ x] \sigma_0 \sqcup \mathcal{C}[\llbracket x = x] \bot$ $= (update \ \llbracket x] \ (\mathcal{E}[\llbracket cons \ d0 \ x] \sigma_0) \ \sigma_0) \sqcup \bot = [\llbracket x \rrbracket \mapsto (d0, nil)]$

G[isNil x] passes σ_0 forwards, because the guard holds true for the store, whereas G[isNonNil x] passes \bot .

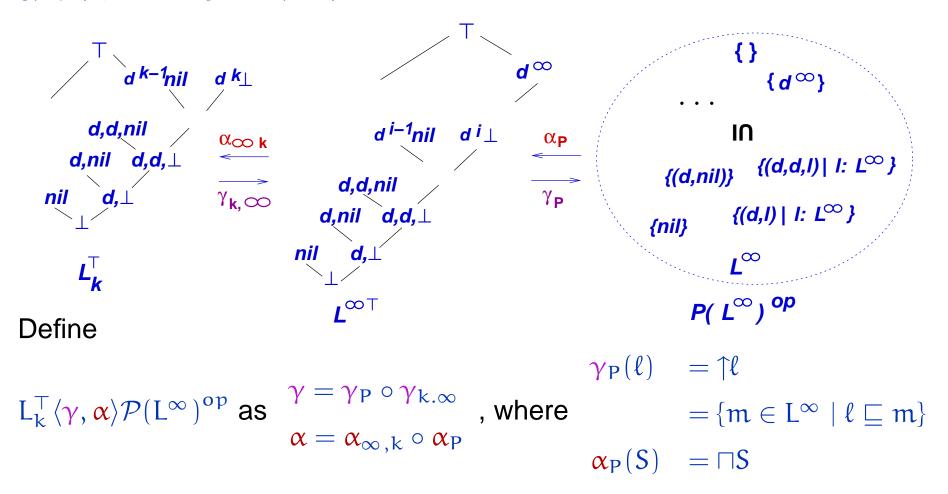
The while-command is a tail-recursive guarded-if, such that C[while B do C] equals $C[if (\neg B : skip), (B : C; (while B do C)) fi].$

We write the semantics this way, because abstract-interpretation methodology treats programs as circuits and calculates information flows through them.

From denotational semantics to abstract interpretation

...the bridge is the collecting domain, $\mathcal{P}(L^{\infty})$

Intuition: an element, like (d, \bot) , approximates/describes the set, $\{(d, l) \mid l \in L^{\infty}\} \in \mathcal{P}(L^{\infty})$:



Each $l \in L_k$ "names" the data-test set, $\gamma(l) = \uparrow l \in \mathcal{P}(L^{\infty})$

just like $pos \in Sign$ names $\{1, 2, \dots\}!$

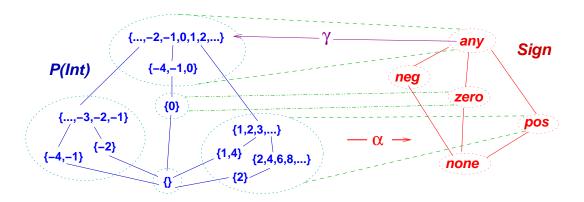
The rotated diagram yields a Cousot-style Galois connection — the notion of approximation is one and the same

$$\mathcal{P}(\mathsf{L}^{\infty}) \langle \alpha, \gamma \rangle \mathsf{L}_k^{\top \, \mathsf{op}} \colon \\ \mathcal{P}(\mathsf{L}^{\infty}) \langle \alpha, \gamma \rangle \mathsf{L}_k^{\top \, \mathsf{op}} \colon \\ \mathcal{V}(\mathsf{l}) = \uparrow \mathsf{l} = \{ \mathsf{m} \in \mathsf{L}^{\infty} \mid \mathsf{l} \sqsubseteq \mathsf{m} \} \\ \alpha(\mathsf{S}) = \bigsqcup_{\mathsf{L}_k^{\top}} \{ \mathsf{l} \in \mathsf{L}_k^{\top} \mid \mathsf{S} \subseteq \gamma(\mathsf{l}) \} \\ \mathcal{V}(\mathsf{l}) = \mathsf{l} =$$

- ♦ $(d^n, \bot) \in L_k^{\top op}$ names those lists having at least n-many elements; (d^n, nil) represents a list that has exactly n elements.
- $lack \perp \in L_k^{\top^{op}}$ stands for all lists; $\top \in L_k^{\top^{op}}$ for none.

One might also restrict the collecting domain to be just the *totally defined* lists or just the *finite*, *total* lists.

The Sign domain is derived from a Scott-domain:



$$N=\{1\}_{\perp}\oplus N$$
 where \oplus denotes disjoint sum with merged \perp s $S=(N+\{0\}+N)_{\perp}$

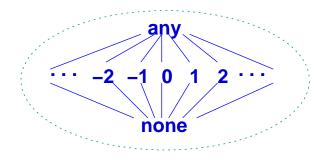
S denotes the integers partitioned into the negatives, zero, and the positives. The approximating domain,

$$S_1 = (N_0 + \{0\} + N_0)_{\perp}$$
, where $N_0 = \{\bot\}$, defines $Sign = S_1^{\top op}$.

The collecting domain, $\mathcal{P}(Int)$, holds sets of *total values* from S^{∞} .

We obtain better-precision signs-analyses from domains S_k , k > 1, which distinguish individual integers, e.g, $S_2^{\text{Top}} = \{\top, neg, -1, zero, 1, pos, \bot\}$.

Many abstract domains are defined this way — they are "partitions" of data-test sets, "crowned" by a \top , characterized by a finite domain from an inverse-limit sequence. But here are two that are not:



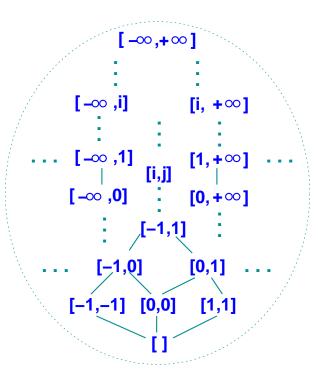
Const, for constant-propagation analysis.

Vars are analyzed to see if they are uninitialized (\bot) , a constant (n), or hold multiple values (\top) .

This domain is $N^{\infty Top}$, where $N = (\{0\} + N)_{\perp}$.

Interval, for tracking the range of values a variable is assigned. Like Const, this domain is itself an inverse limit; its opposite is not in SFP.

Later, we will look at *relational abstract domains*, which abstract the entire store, $Var \rightarrow \Sigma$, rather than just the data domain, Σ .



A bit of topology...

Domains like L^{∞} are objects in category SFP, and each $l \in L_k$ is a *finite element* that names the property, $\gamma(l) = \uparrow l \subseteq L^{\infty}$ — a *Scott-basic-open set*.

For $\rho = \gamma \circ \alpha$, $\rho[\mathcal{P}(L^{\infty})]$ are all Scott-basic opens. This family is closed under intersection (because γ is an upper adjoint).

We can close $\rho[\mathcal{P}(L^{\infty})]$ under unions, making a topology on L^{∞} (coarser than L^{∞} 's Scott topology).

But this is exactly the *disjunctive completion* construction of abstract interpretation [Cousot²94], which is used to increase precision of an analysis!

But what are the topologically continuous functions in this setting?

A bit of logic...

Every abstract interpretation, A, has a logic of properties it can validate:

$$\psi ::= a \in A \mid f(\psi_i)_{0 < i \le n}$$

where $f: \Sigma^n \to \Sigma$ is a *logical operator*. $f[\gamma(\psi_i)]_{0 < i \leq n} \in \gamma[A]$ that is, f maps properties to properties, on the nose

Fact: f is a logical operator iff it is forwards complete.

Since γ is an upper adjoint, \sqcap is a logical operator; when $\gamma[A]$ defines a topology, \sqcup is a logical operator. Here is the logic for Sign:

$$\phi ::= \mathbf{a} \in Sign \mid \phi_1 \sqcap \phi_2 \mid negate(\phi)$$
, where $negate(n) = -n$

But this developement is just Abramsky's *domain theory in logical form* [Abramsky91], where a domain's logic uses the finite/atomic elements of L^{∞} as its A!

Jensen similarly defined abstract interpretation in logical form [Jensen92], where A is a finite subset of L^{∞} 's finite elements.

A language's abstract interpretation is its semantics where $A = L_k^{\text{Top}}$ replaces L^{∞}

```
Abstract store domain: \sigma \in \Sigma^{\sharp} = Var \to L_{k}^{\top op}
                                                                                              \mathcal{P}(\mathsf{L}^{\infty})\langle\alpha,\gamma\rangle\mathsf{L}_{\nu}^{\mathsf{Top}}
                                            L^{\infty}:
Galois
                                          \Sigma = \mathit{Var} 	o \mathsf{L}^\infty \colon \ \mathcal{P}(\Sigma) \langle \alpha_{\mathit{Var}}, \gamma_{\mathit{Var}} \rangle \Sigma^\sharp (indexed product)
connections:
                                                                         \mathcal{P}(\Sigma_{\perp})\langle \alpha_{\perp}, \gamma_{\perp} \rangle \Sigma^{\sharp} (merges \underline{\perp} with \perp \in \Sigma^{\sharp})
                                             \Sigma_{\perp}:
\mathcal{G}^{\sharp}:\mathsf{Guard} 	o \Sigma^{\sharp} 	o \Sigma^{\sharp}
   \mathcal{G}^{\sharp}\llbracket \mathtt{G} 
rbracket = \pmb{lpha}_{\perp} \circ \mathcal{G}\llbracket \mathtt{G} 
rbracket \circ \pmb{\gamma}_{\Sigma}
\mathcal{E}^{\sharp}: \mathsf{Expression} \to \Sigma^{\sharp} \to \mathsf{L}_{k}^{\mathsf{Top}}
   \mathcal{E}^{\sharp} \llbracket \mathbf{x} \rrbracket \sigma = \text{lookup}^{\sharp} \llbracket \mathbf{x} \rrbracket \sigma
              where lookup^{\sharp} v = \alpha \circ lookup v \circ \gamma_{Var}, that is, lookup^{\sharp} v \sigma = \sigma(v)
   \mathcal{E}^{\sharp} [tl E] \sigma = \text{tail}^{\sharp} (\mathcal{E}^{\sharp} [E] \sigma)
                that is, tail^{\sharp}(a, \ell) = \ell; tail^{\sharp}(nil) = \bot = tail^{\sharp}(\bot)
   \mathcal{E}^{\sharp} [cons a E] \sigma = \cos^{\sharp} a (\mathcal{E}^{\sharp} [E] \sigma)
                that is, cons^{\sharp} a \ell = (a, \ell)
```

abstract interpretation, cont.

```
Abstract store domain: \sigma \in \Sigma^{\sharp} = Var \to L_{\nu}^{\top op}
                                                                                                                                       \mathcal{P}(\mathsf{L}^{\infty})\langle\alpha,\gamma\rangle\mathsf{L}_{\mathsf{k}}^{\mathsf{Top}}
                                                                          I^{\infty}:
Galois
                                                                          \Sigma = Var \rightarrow L^{\infty}: \mathcal{P}(\Sigma) \langle \alpha_{Var}, \gamma_{Var} \rangle \Sigma^{\sharp},
connections:
                                                                                                                                      \mathcal{P}(\Sigma_{\perp})\langle lpha_{\perp}, \gamma_{\perp} 
angle \Sigma^{\sharp}
                                                                         Σ__:
\mathcal{C}^{\sharp}: \mathsf{Command} \to \Sigma^{\sharp} \to \Sigma^{\sharp}
   \mathcal{C}^{\sharp} \llbracket \mathbf{x} = \mathbf{E} \rrbracket \sigma = \mathsf{update}^{\sharp} \llbracket \mathbf{x} \rrbracket \ (\mathcal{E}^{\sharp} \llbracket \mathbf{E} \rrbracket \sigma) \ \sigma
                where update^{\sharp}[x] = \alpha_{\perp} \circ update[x] \circ (\gamma \times \gamma_{Var}),
                  that is, update^{\sharp} v \ell \sigma = \sigma + [v \mapsto \ell]
    \mathcal{C}^{\sharp} \llbracket \mathsf{C}_1 ; \mathsf{C}_2 \rrbracket = \mathcal{C}^{\sharp} \llbracket \mathsf{C}_2 \rrbracket \circ \mathcal{C}^{\sharp} \llbracket \mathsf{C}_1 \rrbracket
   \mathcal{C}^{\sharp}\llbracket 	ext{if } (G_i:C_i)_I 	ext{fi} 
bracket = igsqcup_{i\in I} \mathcal{C}^{\sharp}\llbracket C_i 
bracket \circ \mathcal{G}^{\sharp}\llbracket G_i 
bracket
    \mathcal{C}^{\sharp} while B do C = lfp \lambda f. \mathcal{G}^{\sharp} \neg G \sqcup (f \circ \mathcal{C}^{\sharp} \square G \circ \mathcal{G}^{\sharp}
```

We utilize the appropriate maps from the Galois connections to replace operations f by $f_0^{\sharp} = \alpha \circ f \circ \gamma$.

For the conditional, the guards filter the abstract store, and the results join together

```
Let \sigma_0 = [[x]] \mapsto \bot] \in \Sigma^{\sharp}, that is, x might be any L^{\infty}-value at all:
   C^{\sharp}[if (isNil x: x = cons d0 x), (isNonNil x: x = x) fi]\sigma_{0}
   = (\mathcal{C}^{\sharp} \llbracket \mathbf{x} = \mathbf{cons} \ \mathbf{d0} \ \mathbf{x} \rrbracket \circ \mathcal{G}^{\sharp} \llbracket \mathbf{isNil} \ \mathbf{x} \rrbracket) \sigma_0 \ \sqcup \ (\mathcal{C}^{\sharp} \llbracket \mathbf{x} = \mathbf{x} \rrbracket \circ \mathcal{G}^{\sharp} \llbracket \mathbf{isNonNil} \ \mathbf{x} \rrbracket) \sigma_0
                   \mathcal{G}^{\sharp}\llbracket 	ext{isNil x} 
rbracket)\sigma_0 = (lpha_{\underline{\perp}} \circ \mathcal{G}\llbracket 	ext{isNil x} 
rbracket \circ \gamma_{\mathit{Var}})\sigma_0
Now,
                    = \alpha_{\perp}\{[\llbracket x \rrbracket \mapsto nil], \ \underline{\perp}\} = [\llbracket x \rrbracket \mapsto nil]
                 \mathcal{G}^{\sharp} \llbracket \mathtt{isNonNil} \ x \rrbracket) \sigma_0 = \alpha_{\underline{\bot}} (\{ \llbracket x \rrbracket \mapsto (d,\ell)] \mid \ell \in L^{\infty} \} \cup \{\underline{\bot} \})
and,
                  = \llbracket \mathbf{x} \rrbracket \mapsto (\mathbf{d}, \bot) \rrbracket
So, \mathcal{C}^{\sharp}[x = \cos d0 \ x][[x] \mapsto nil] \sqcup \mathcal{C}^{\sharp}[x = x][[x] \mapsto (d, \perp)]
   = (\operatorname{update}^{\sharp} \llbracket x \rrbracket (\mathcal{E}^{\sharp} \llbracket \operatorname{cons} d0 \ x \rrbracket [\llbracket x \rrbracket \mapsto \operatorname{nil}]) \ [\llbracket x \rrbracket \mapsto \operatorname{nil}]) \ \sqcup \ [\llbracket x \rrbracket \mapsto (d, \bot)]
   = [\llbracket x \rrbracket \mapsto (d0, nil)] \sqcup [\llbracket x \rrbracket \mapsto (d, \bot)] Note that the \sqcup operates in L_{k}^{\top op}.
   = [\llbracket x \rrbracket \mapsto (d0 \sqcup d, \perp)]
```

We use C^{\sharp} for abstract testing

Like the previous example, we supply an abstract test input and calculate its output. For denotations of form, $f = lfp \lambda \sigma . F_{f\sigma'}$, we must ensure detectable, finite convergence of tests, $f(\sigma)$.

We use "minimal function graph" semantics [JonesMycroft86]: Starting from $f(\sigma_0)$, we generate the subsequent calls, $f(\sigma_i)$, giving a family of k *first-order* equations,

```
\begin{split} &f\sigma_0 = F_{f\sigma_1} \\ &f\sigma_1 = F_{f\sigma_2} \\ & \cdots \\ &f\sigma_k = F_{f\sigma_j}, \text{ for some } j \leq k \end{split}
```

which we solve iteratively.

If the abstract domain for σ is not finite (e.g., Const), k is forced finite by making the argument sequence, $\sigma_0, \sigma_1, \cdots, \sigma_k$, into a chain so that the domain's *finite-height* ensures a finite equation set. Then, it is common to solve just $f\sigma_k = F_{f\sigma_k}$.

```
Example: For C^{\sharp} [while NonNil x : x = tl x] = f, where
f(\sigma) = \mathcal{G}^{\sharp}[Nil x]\sigma \sqcup f(\mathcal{C}^{\sharp}[x = tl x](\mathcal{G}^{\sharp}[NonNil x]\sigma)),
we calculate an abstract test with \sigma_{d\perp}:
                                                                (Note: in abstract domain L_k^{\top op},
Let \sigma_{d\perp} = [x \mapsto (d, \perp)]
                                                                 \bot \in \mathsf{L}_{\mathsf{k}}^{\top} means "all lists," and \top \in \mathsf{L}_{\mathsf{k}}^{\top}
           \sigma_{\perp} = [x \mapsto \bot]
                                                                 means "no lists.")
\mathcal{C}^{\sharp} [while NonNil x: x = tl x ] \sigma_{d \perp} = f \sigma_{d \perp}, where
             f\sigma_{\mathbf{d}\perp} = \mathcal{G}^{\sharp} [\text{Nil } \mathbf{x}] \sigma_{\mathbf{d}\perp} \sqcup f(\mathcal{C}^{\sharp} [\mathbf{x} = \text{tl } \mathbf{x}] (\mathcal{G}^{\sharp} [\text{NonNil } \mathbf{x}] \sigma_{\mathbf{d}\perp})
                            = [x \mapsto T] \sqcup f(\mathcal{C}^{\sharp}[x = tl \ x] \sigma_{d})
                            = f \sigma_{\perp}
             f\sigma_{\perp} = \mathcal{G}^{\sharp} [Nil \ x] \sigma_{\perp} \sqcup f(\mathcal{C}^{\sharp} [x = tl \ x] (\mathcal{G}^{\sharp} [NonNil \ x] \sigma_{\perp})
                            = [x \mapsto nil] \sqcup f(\mathcal{C}^{\sharp}[x = tl \ x] \sigma_{d})
                            = [x \mapsto nil] \sqcup f\sigma_{\perp}
```

We solve these two first-order equations.

The inductive definition preserves soundness and completeness

For the format, $\mathcal{E}[op(E_i)] = f(\mathcal{E}[E_i])$, we define the abstract semantics inductively as $\mathcal{E}^{\sharp}[op(E_i)] = f_0^{\sharp}(\mathcal{E}^{\sharp}[E_i])$, where $f_0^{\sharp} = \alpha \circ f \circ \gamma$.

It is easy to prove that \mathcal{E}^{\sharp} is sound for \mathcal{E} .

Recall F-completeness: For all E, $\mathcal{E}[E] \circ \gamma = \gamma \circ \mathcal{E}^{\sharp}[E]$ B-completeness: For all E, $\alpha \circ \mathcal{E}[E] = \mathcal{E}^{\sharp}[E] \circ \alpha$

Proposition: If for every equation, $\mathcal{E}[op(E_i)] = f(\mathcal{E}[E_i])$, f_0^{\sharp} is F-(resp. B-) complete for f, then \mathcal{E}^{\sharp} is F- (resp. B-) complete for \mathcal{E} .

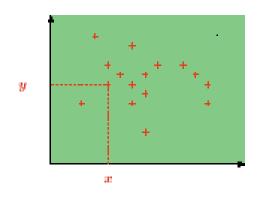
This result is preserved when lfp and gfp are used.

When there is not completeness, the inductive definition of \mathcal{E}^{\sharp} is sound but may be weaker than the strongest abstract interpretation: $\mathcal{E}^{\sharp} \llbracket E \rrbracket \supseteq \alpha \circ \mathcal{E} \llbracket E \rrbracket \circ \gamma$.

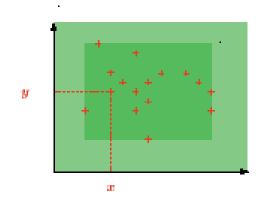
A store domain, $Var \to \Sigma$, can be abstracted pointwise by $Var \to A$ or relationally by $\mathcal{P}(A^n)$

SignO: $[x \mapsto \ge 0][y \mapsto \ge 0]$

Interval: $[x \mapsto [3, 27]][[y \mapsto [4, 32]]$



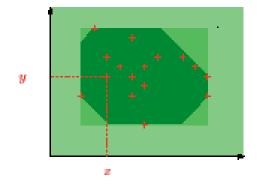
$$\left\{\begin{array}{c} x \geq 0 \\ y \geq 0 \end{array}\right.$$



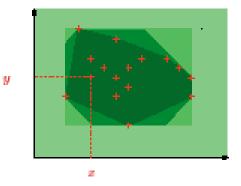
$$\begin{cases} x \in [3, 27] \\ y \in [4, 32] \end{cases}$$

Octagon: $\bigwedge_i (\pm x_i \pm y_i \le c_i)$

Polyhedra: $\bigwedge_{i}((\sum_{j} a_{ij} \cdot x_{ij}) \leq b_{i})$



$$\begin{cases} 3 \le x \le 27 \\ x + y \le 88 \\ 4 \le y \le 32 \\ x - y \le 61 \end{cases}$$



$$\begin{cases} 7x + 31y \le 325\\ 21x + 7y \ge 0 \end{cases}$$

diagrams from *Abstract Interpretation: Achievements and Perspectives* by Patrick Cousot, Proc. SSGRR 2000.

Some modellings of a relational store value from the octagon abstract domain:

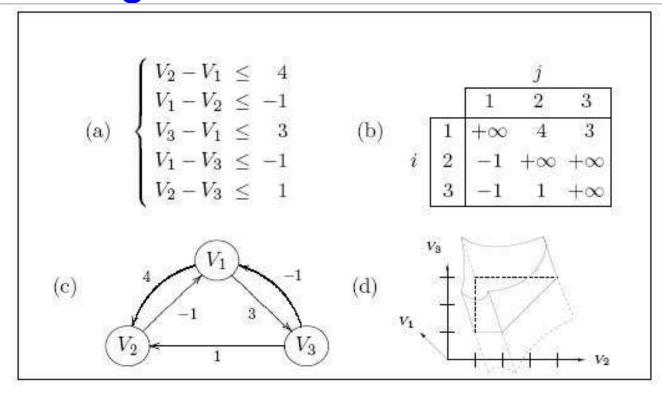


Figure 2. A potential constraint conjunction (a), its corresponding DBM m (b), potential graph $G(\mathbf{m})$ (c), and potential set concretization $\gamma^{Pot}(\mathbf{m})$ (d).

diagram from *The octagon abstract domain*, by Antoine Miné, *J. Symbolic and Higher-Order Computation* 2006

Octogan and polyhedral values can *perhaps* be explained in terms of Abramsky-Jensen "abstract interpretation in logical form."

Predicate abstraction uses an ad-hoc relational domain, based on predicates in the program

Example: prove that $z \ge x \land z \ge y$ at p_3 :

```
p_0: if x < y
p_1: then z = y
p_2: else z = x
p_3: exit
p_0, \langle ?, ?, ? \rangle
p_1, \langle t, ?, ? \rangle
p_2, \langle f, ?, ? \rangle
p_3, \langle t, t, t \rangle
```

The store is abstracted to a relational domain that denotes the values of these predicates, taken from the source program,

$$\phi_1 = x < y$$
 $\phi_2 = z \ge x$ $\phi_2 = z \ge y$

The predicates are evaluated at the program's points as one of $\{t, f, ?\}$. (Read ? as $t \lor f$.)

At all occurrences of p_3 in the abstract trace, $\phi_2 \wedge \phi_3$ holds.

When a goal is undecided, domain refinement becomes necessary

Prove $\phi_0 \equiv \mathbf{x} \geq \mathbf{y}$ at p_4 :

```
\begin{array}{c} p_0: \text{ if } !(\mathbf{x} >= \mathbf{y}) \\ p_1: \text{ then } \{ \mathbf{i} = \mathbf{x}; \\ p_2: \mathbf{x} = \mathbf{y}; \\ p_3: \mathbf{y} = \mathbf{i}; \\ p_4: \} \end{array}
\begin{array}{c} p_0, \langle ! \rangle \\ p_1, \langle f \rangle \\ p_2, \langle f \rangle \\ p_3, \langle t \rangle \\ p_4, \langle ? \rangle \end{array}
```

To decide the goal, we refine the ad-hoc domain:

 $wp(y = i, x \ge y) = (x \ge i) \equiv \phi_1$. We add ϕ_1 and try again:

But incremental predicate refinement cannot synthesize many interesting loop invariants. For this example:

```
p<sub>0</sub>: i = n; x = 0;
p<sub>1</sub>: while i != 0 {
    p<sub>2</sub>: x = x + 1; i = i - 1;
    }
p<sub>3</sub>: goal: x = n
```

The initial predicate set, $P_0 \equiv \{i = 0, x = n\}$, does not validate the loop body.

The first refinement suggests we add $P_1 \equiv \{i = 1, x = n - 1\}$ to the program state, but this fails to validate a loop that iterates more than once.

Refinement stage j adds predicates $P_j \equiv \{i = j, x = n - j\}$; the refinement process continues forever!

The loop invariant is x = n - i :-)

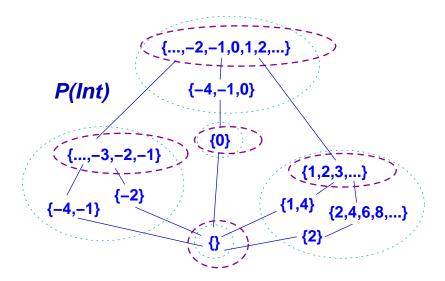
Explaining abstract-interpretation completeness with (a bit of) Scott topology

Open sets are computable properties [Smyth]

For an algebra cpo, D, its Scott-basic-open sets are $\uparrow e$, for each finite element, $e \in D$. Read $d \in \uparrow e$ as "d has property $\uparrow e$."

But abstract interretation is *finite computation on properties*; for an abstract domain, like Sign, $\gamma[Sign]$ (or, $\rho[\mathcal{P}(Sign)]$) identifies the computable properties.

Alas, $\rho[\mathcal{P}(Sign)]$ is closed under intersections (not necessarily unions). Also, there exist abstract domains A that possess *only* a γ but no α (and no ρ) [Cousot²92].



Let's weaken some definitions

For abstract domain A and $\gamma: A \to \mathcal{P}(\Sigma)$, define Σ 's *property family* as $\mathcal{F}_{\Sigma} = \gamma[A]$.

For each $U \in \mathcal{F}_{\Sigma}$, its complement is $\sim U = \Sigma - U$; for \mathcal{F}_{Σ} , its complement family, $\sim \mathcal{F}_{\Sigma}$, is $\{\sim U \mid U \in \mathcal{F}_{\Sigma}\}$.

 \mathcal{F}_{Σ} is an *open family* if it is closed under unions, and it is a *closed family* if it is closed under intersections. If \mathcal{F}_{Σ} is an open family, then its complement is a closed family (and vice versa).

When γ is the upper adjoint of a Galois connection, then \mathcal{F}_{Σ} is a closed family.

Intuition: closed families are used for overapproximating, postcondition abstract interpretations; open families are used for underapproximating, precondition abstract interpretations.

Property preservation

For $f: \Sigma \to \Sigma$, define $f: \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ as $f[S] = \{f(s) \mid s \in S\}$, and define $f^{-1}: \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ as $f^{-1}(T) = \{s \in \Sigma \mid f(s) \in T\}$, as usual.

f is \mathcal{F}_{Σ} -preserving iff for all $U \in \mathcal{F}_{\Sigma}$, $f[U] \in \mathcal{F}_{\Sigma}$. In such a case, $f : \mathcal{F}_{\Sigma} \to \mathcal{F}_{\Sigma}$ is well defined.

This generalizes the notions of topologically open and closed maps.

Let \mathcal{F}_{Σ} be a closed family, and let $\rho : \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ be the associated closure operator.

For $f: \Sigma \to \Sigma$, define $f_0^{\sharp}: \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ as $f_0^{\sharp} = \rho \circ f$, as usual.

Fact: f_0^{\sharp} is forwards complete for f iff f is \mathcal{F}_{Σ} preserving, that is, iff f is a topologically closed map.

Property reflection (continuity)

Let U_c (respectively, U_s) denote a member of \mathcal{F}_{Σ} such that $c \in U_c$ (respectively, $S \subseteq U_s$):

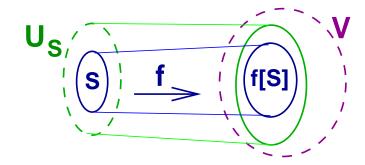
- For $c \in \Sigma$, $f : \Sigma \to \Sigma$ is *continuous at* c iff for all $V_{f(c)} \in \mathcal{F}_{\Sigma}$, there exists some $U_c \in \mathcal{F}_{\Sigma}$ such that $f[U_c] \subseteq V_{f(c)}$.
- ♦ For $S \subseteq \Sigma$, f is *continuous at* S iff for all $V_{f[S]} \in \mathcal{F}_{\Sigma}$, there exists some $U_S \in \mathcal{F}_{\Sigma}$ such that $f[U_S] \subseteq V_{f[S]}$.
- f is \mathcal{F}_{Σ} -reflecting iff for all $V \in \mathcal{F}_{\Sigma}$, $f^{-1}(V) \in \mathcal{F}_{\Sigma}$, that is, f^{-1} is \mathcal{F}_{Σ} -preserving.

The second item is needed because \mathcal{F}_{Σ} might not be an open family.

If \mathcal{F}_{Σ} is a topology, then all three notions are equivalent.

reflection, cont.

f is continuous at $S \subseteq \Sigma$:



If $f[S] \subseteq V \in \mathcal{F}_{\Sigma}$, then there exists $U_S \in \mathcal{F}_{\Sigma}$ such that $f[U_S] \subseteq V$.

Proposition:

- 1. f is \mathcal{F}_{Σ} -reflecting iff f is continuous at S, for all $S \subseteq \Sigma$.
- 2. If \mathcal{F}_{Σ} is an open family, then f is \mathcal{F}_{Σ} -reflecting iff f is continuous at c, for all $c \in \Sigma$.
- 3. $f: \Sigma \to \Sigma$ is $\sim \mathcal{F}_{\Sigma}$ -reflecting iff f is \mathcal{F}_{Σ} -reflecting.

reflection, concl.

For $S, S' \subseteq \Sigma$, write $S \leq_{\mathcal{F}_{\Sigma}} S'$ iff for all $K \in \mathcal{F}_{\Sigma}, S \subseteq K$ implies $S' \subseteq K$. Write $S \equiv_{\mathcal{F}_{\Sigma}} S'$ iff $S \leq_{\mathcal{F}_{\Sigma}} S'$ and $S' \leq_{\mathcal{F}_{\Sigma}} S$. That is, S and S' share the same properties.

Definition: $f: \Sigma \to \Sigma$ is *backwards-* \mathcal{F}_{Σ} *-complete* iff for all $S, S' \subseteq \Sigma$, $S \equiv_{\mathcal{F}_{\Sigma}} S'$ implies $f[S] \equiv_{\mathcal{F}_{C}} f[S']$ cf. Slide 12.

Proposition: If f is \mathcal{F}_{Σ} -reflecting, then it is backwards- \mathcal{F}_{Σ} -complete.

Lemma: If \mathcal{F}_{Σ} is a closed family, then TFAE:

(i) f is backwards- \mathcal{F}_{Σ} -complete;

(ii) for all $S \subseteq \Sigma$, $f[S] \equiv_{\mathcal{F}_{\Sigma}} f[\rho(S)]$;

(iii) $\rho \circ f = \rho \circ f \circ \rho$

Theorem: For closed family, \mathcal{F}_{Σ} , f is backwards- \mathcal{F}_{Σ} -complete iff it is \mathcal{F}_{Σ} -reflecting.

So, abstract-interpretation backwards completeness is topological continuity.

What about open families?

Let \mathcal{F}_{Σ} be open (closed under unions) and $\iota:\mathcal{P}(\Sigma)\to\mathcal{F}_{\Sigma}$ be its interior map.

We use an open family to perform an underapproximating *precondition analysis*: for $f: \Sigma \to \Sigma$, define $f^{-1}: \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ as $f^{-1}(S) = \{s \in \Sigma \mid f(s) \in S\}$, as usual.

The strongest (*weakest precondition*) abstract function for f^{-1} is $\iota \circ f^{-1} : \mathcal{F}_{\Sigma} \to \mathcal{F}_{\Sigma}$.

F-
$$\mathcal{F}_{\Sigma}$$
-completeness: f⁻¹ \circ ι = ι \circ f⁻¹ \circ ι

Define *B-* \mathcal{F}_{Σ} *-completeness:* $\iota \circ f^{-1} = \iota \circ f^{-1} \circ \iota$

Fact: f^{-1} is \mathcal{F}_{Σ} -preserving iff f^{-1} is F- \mathcal{F}_{Σ} -complete iff f is $\sim \mathcal{F}_{\Sigma}$ -reflecting iff f is \mathcal{F}_{Σ} -reflecting.

This is the classic pre-post-condition duality of predicate transformers.

Backwards completeness for an open family and f⁻¹ is a "dual continuity" property

Definition: $f^{-1}: \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ is *dual continuous* at $S \subseteq \Sigma$ iff for all $U \in \mathcal{F}_{\Sigma}$, if $f^{-1}[S] \supseteq U$ then there exists $V \in \mathcal{F}_{\Sigma}$, $V \subseteq S$, such that $f^{-1}[V] \supseteq U$.

 f^{-1} is dual continuous at $S \subseteq \Sigma$:

Theorem: f^{-1} is dual continuous for all $S \subseteq \Sigma$ iff f^{-1} is B- \mathcal{F}_{Σ} -complete, that is, $\iota \circ f^{-1} = \iota \circ f^{-1} \circ \iota$.

But I don't know for what this might be useful! (-:

The "topology" induced from an abstract interpretation is coarser than the Scott topology

Reconsider L^{∞} and its approximant, L_k , which denotes a closed family.

- ♦ There is a Scott-continuous function, $f: L^{\infty} \to L^{\infty}$, that is not L_k -backwards complete for all k > 0. Define f as $f(d^k, nil) = nil$, for all $k \geq 0$, and $f(\ell) = \bot$, otherwise; this is Scott-continuous. Consider $f^{-1}\{nil\}$; it is all total, finite lists in L^{∞} , and for no finite $e \in L^{\infty}$ does this set equal $\uparrow e$. (Nor does the union of the upclosed sets of finite elements in any L_k equal $f^{-1}(nil)$ the union of the basic opens of *all* finite lists in L^{∞} are required.)
- ♦ For each k>0, there is a monotone, L_k -backwards complete function that is not Scott-continuous. For k, define $f_k:L^\infty\to L^\infty$ as follows: $f(\bot)=\bot$; for j< k, $f_k(d^j,nil)=(d^j,nil)$ and $f_k(d^j,\bot)=(d^j,\bot)$. For $j\geq k$, $f_k(d^j,nil)=(d^k,\bot)$; $f_k(d^j,\bot)=(d^k,\bot)$. Finally, define $f_k(d^\infty)=d^\infty$. This makes f_k monotone and backwards complete but Scott-discontinuous. The result does not change when the sets defined by L_k are closed under union.

Concluding remarks

There is a lot of classical denotational semantics employed in abstract-interpretation theory and practice....

References This talk: www.cis.ksu.edu/~schmidt/papers

- 1. S. Abramsky. Domain theory in logical form. *Ann.Pure Appl.Logic* (51) 1991.
- 2. P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. *TCS* (277) 2002.
- 3. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs. Proc. 4th. ACM Prin. Prog. Lang. 1977.
- 4. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and refinements in abstract model checking. SAS'01, LNCS 2126.
- 5. T. Jensen. Abstract Interpretation in Logical Form. PhD Thesis, Imperial College, 1992.
- 6. D.A. Schmidt. Abstract interpretation from a topological perspective. Submitted for publication, 2009.
- 7. R.D. Tennent. The denotational semantics of programming languages. *Comm. ACM* (19) 1976.