
MFPS 2009

Abstract interpretation from a

denotational-semantics perspective

David A. Schmidt

Computing and Information Sciences Dept.
Kansas State University

Manhattan, KS 66506 USA

Abstract

The basic principles of abstract interpretation are explained in terms of Scott-Strachey-style denotational
semantics: abstract-domain creation is defined as the selection of a finite approximant in the inverse-limit
construction of a Scott-domain. Abstracted computation functions are defined in terms of an embedding-
projection pair extracted from the inverse-limit construction. The key notions of abstract-interpretation
backwards and forwards completeness are explained in terms of topologically closed and continuous maps in a
coarsened version of the Scott-topology. Finally, the inductive-definition format of a language’s denotational
semantics is used as the framework into which the abstracted domain and abstracted computation functions
are inserted, thus defining the language’s abstract interpretation.

Keywords: Abstract interpretation, denotational semantics, Galois connection, Scott-domains,
Scott-topology

1 Introduction

Denotational semantics [19,29,31,32] and abstract interpretation [3,5,6] came to life

about the same time, and their intents were complementary: denotational seman-

tics showed how to define a program’s extensional meaning independently from a

machine, and abstract interpretation showed how to deduce a program’s properties

in advance of running the program on a machine. In a previous MFPS presentation

[4], Patrick Cousot explained how abstract interpretation can derive a program’s

denotational semantics as an abstraction of the program’s trace semantics, thus

explaining denotational semantics from an abstract-interpretation perspective.

In this paper, we take the dual course: We derive a popular form of abstract

interpretation from denotational semantics. Given a language’s denotational se-

mantics, defined upon a domain, D∞, constructed by an inverse-limit construction,

we replace D∞ in the semantics by one of its finite approximants, Dk, k ≥ 0, from

the inverse-limit construction. Elements of Dk are interpreted to denote subsets of

1 Supported by NSF ITR-0326577.
2 Email: schmidt@cis.ksu.edu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:schmidt@cis.ksu.edu

Schmidt

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−3,−2,−1}

{−4,−1}
{−2}

{0}

{...,−2,−1,0,1,2,...}

{}

{−4,−1,0}

pos

zero

none

any

neg

α

P(Int)
Sign

Define Sign = {none ,neg , zero, pos, any} and γ : Sign → P(Int) as
γ(none) = ∅; γ(neg) = {· · · ,−2,−1}; γ(zero) = {0}; γ(pos) = {1, 2, · · ·}; γ(any) = Int

For

succ(i) = i + 1

negate(i) = −i

sq(i) = i ∗ i

define

succ♯(none) = none

succ♯(neg) = any

succ♯(zero) = pos

succ♯(pos) = pos

succ♯(any) = any

negate♯(neg) = pos

negate♯(zero) = zero

negate♯(pos) = neg

negate♯(any) = any

negate♯(none) = none

sq♯(neg) = pos

sq♯(zero) = zero

sq♯(pos) = pos

sq♯(any) = any

sq♯(none) = none

Fig. 1. Abstract domain, Sign, and associated functions

D∞. Functions that compute on D∞ are projected to operate on Dk; this is done

with the aid of the embedding-projection pair between Dk and D∞. Soundness

of this “abstract” denotational semantics is ensured by the embedding-projection

pair. The inductive-definition format of a language’s denotational semantics is used

as the framework into which the abstracted domain and abstracted computation

functions are inserted, thus defining the language’s abstract interpretation.

We judge the quality of the abstract interpretation we have defined in terms of

a coarser variant of Scott-topology, and we characterize the so-called forwards- and

backwards-complete (“homomorphic”) functions of abstract-interpretation theory

[11,10] as the topologically closed and topologically continuous maps on the weak-

ened Scott-topology.

In this fashion, abstract interpretation is derived from denotational semantics.

2 Background: Abstract interpretation

Abstract interpretration is approximation by computation on properties. For

concrete-data domain, Σ, we select a set of property names, A, such that each

a ∈ A names a set γ(a) ⊆ Σ, for γ : A→ P(Σ). γ identifies the family of properties

(data-test sets) modelled by A. Order A s.t. a⊑ a′ iff γ(a) ⊆ γ(a′) — the result

should be a partial ordering.

Figure 1 displays an approximation of the concrete integers, Int , by sign prop-

erties named by complete lattice, Sign.

When γ possesses an adjoint, α : P(Σ) → Sign, then there is a Galois connection

(that is, S ⊆ γ(a) iff α(S)⊑ a, for all S ∈ P(Σ) and a ∈ A). α is the lower adjoint

and γ is the upper adjoint, and we write this as P(Σ)〈α, γ〉Sign. This makes ρ = γ◦α

an upper closure operator — ρ : P(Σ) → P(Σ) is monotone, extensive (S ⊆ ρ(S)),

and idempotent (ρ ◦ ρ = ρ).

ρ[P(Int)] identifies the properties expressible by abstract domain Sign, and ρ

maps a test set to its minimal property, e.g., ρ{1} = {1, 2, · · ·}, ρ{−1, 1} = Int , etc.

2

Schmidt

Q: For this
program,

readInt(x)
x = succ(x)
if x < 0 :

x = negate(x)
else:

x = succ(x)
writeInt(x)

is the output pos?

A: abstractly interpret
input domain Int
by Sign to see:

readSign(x)
x = succ♯(x)
if (filterNeg(x):

x = negate♯(x))
(filterNonNeg(x):
x = succ♯(x)) fi

writeSign(x)

where filterNeg : Sign → Sign and filterNonNeg : Sign → Sign are defined

filterNeg(none) = none

filterNeg(neg) = neg

filterNeg(zero) = none

filterNeg(pos) = none

filterNeg(any) = neg

filterNonNeg(none) = none

filterNonNeg(neg) = none

filterNonNeg(zero) = zero

filterNonNeg(pos) = pos

filterNonNeg(any) = any

For the abstract data-test sets, zero, pos ,neg , we calculate the outcomes; they are

{zero 7→ pos , pos 7→ pos, neg 7→ any}

They validate that all nonnegative inputs yield positive outputs. The failure to validate the result for in-
put neg arises because succ♯(neg) = any and filterNeg(any) = neg (good) but filterNonNeg(any) =
any (bad — we need zero ∨ pos to deduce the needed result), so we cannot predict the success of the
else-arm.

Fig. 2. An abstract interpretation using Sign

f♯ : A → A is sound for f : Σ → Σ iff α ◦ f ⊑ f♯ ◦ α iff f ◦ γ ⊑ γ ◦ f♯

α
#

f # S)α (()α (S)

f(S)S
f

α
f a

(a)

f #
f #(a)

γ (a)()ff

γγ

γ

α and γ act as semi-homomorphisms.

Forwards completeness [10]: f ◦ γ = γ ◦ f♯

γ
#

γ (a)

f #(a)

γ (a)()f
f

a

γ
f

γ is a homomorphism from A to P(Σ) — it
preserves f♯ as f .

Backwards completeness [6,11]: α ◦ f = f♯ ◦ α

α
#α (S) f # S)α (()

f(S)S
f

α
f

α is a homomorphism from P(Σ) to A — it pre-
serves f as f♯.

Fig. 3. Sound and complete forms of abstract functions

Note that ρ[P(Int)] is closed under intersection (conjunction).

From here on, we work with Galois connections of form, (P(Σ),⊆)〈α, γ〉(A, ⊑),

so that ρ = γ ◦ α maps sets to sets, and we assume that α is onto.

Computation functions, f : Σ → Σ, are soundly approximated by f ♯ : A → A

iff α(f [S])⊑ f ♯(α(S)), for all S ∈ P(Σ) (equivalently, iff f [γ(a)] ⊆ γ(f ♯(a)), for all

a ∈ A), where we define f [S] = {f(s) | s ∈ S}, as usual. Figure 2 applies the

functions from Figure 1 to interpret a program that computes upon Int so that it

soundly computes upon Sign, which represents the data-test sets of interest.

Recall that ρ[P(Σ)] = γ[A] identifies the properties expressed by A. When

α is onto, we can treat f ♯ : A → A as f ♯ : ρ[P(Σ)] → ρ[P(Σ)], for example,

succ♯{0} = {1, 2, · · ·}.

Proposition 2.1 For all φ ∈ ρ[P(Σ)], f ♯ : ρ[P(Σ)] → ρ[P(Σ)] is sound for f :

Σ → Σ iff f(φ) ⊆ f ♯(φ).

3

Schmidt

There is also the dual notion, underapproximating soundness, where f(φ) ⊇

f ♯(φ); this is best developed with an interior map, ι : P(Σ) → P(Σ). We leave this

for later in the paper.

The most precise (strongest) f ♯ for function f is defined f
♯
0 = α ◦ f ◦ γ. It is

strongest in the sense that f ♯
0 ⊑ f ♯ for all f ♯ that are sound for f .

We can define f ♯
0 : ρ[P(Σ)] → ρ[P(Σ)] in terms of ρ = γ ◦ α as f ♯

0 = ρ ◦ f . For

example, for the Sign domain and its closure map, ρ, succ♯0{0} = {1, 2, · · ·} and

succ
♯
0{· · · ,−2,−1} = {· · · ,−2,−1, 0, 1, 2, · · ·}.

Proposition 2.2 (strongest postcondition for f): For all φ,ψ ∈ ρ[P(Σ)], if

f(φ) ⊆ ψ, then f
♯
0(φ) ⊆ ψ.

When f is approximated exactly by f ♯ such that f ◦ γ = γ ◦ f ♯, we say f is

forwards complete [10]. When f is approximated exactly such that α ◦ f = f ♯ ◦ α,

we say f is backwards complete [11,27]. See Figure 3. In Figure 1, sq is backwards

but not forwards complete; negate is both backwards and forwards complete, and

succ is neither.

Define f ♯
0 = ρ ◦ f : ρ[P(Σ)] → ρ[P(Σ)] as before.

Proposition 2.3 [10] The following are equivalent:

• f
♯
0 is forwards complete for f

• for all φ ∈ ρ[P(Σ)], f(φ) ∈ ρ[P(Σ)]

• f ◦ ρ = ρ ◦ f ◦ ρ

Proposition 2.4 [6,11] The following are equivalent:

• f
♯
0 is backwards complete for f

• for all S1, S2 ∈ P(Σ), ρ(S1) = ρ(S2) implies ρ(f [S1]) = ρ(f [S2])

• ρ ◦ f = ρ ◦ f ◦ ρ.

An abstract function, f ♯, that is forwards or backwards complete for f is also

strongest for f , so it is unclear at this point exactly what is gained from these

notions. We will resolve this question later in the paper.

3 Background: Denotational semantics

One might explain denotational semantics as the interpretation of a program’s

phrases as values from Scott-domains. We treat a Scott-domain as “an SFP ob-

ject,” that is, as the inverse limit of a sequence of finite-cardinality bcpos, re-

lated by embedding-projection pairs [14,25]. Figure 4 presents the Scott-domain

of partial, total, finite, and infinite lists corresponding to the domain equation,

L = ({nil}+ (D×L))⊥. 3 For each i ≥ 0, the corresponding embedding-projection

pair defines a Galois connection, Li〈γi, αi〉Li+1, as does Li〈γi,∞, α∞,i〉L
∞. (Here,

the γ maps are lower adjoints.)

Figure 5 shows a denotational semantics for a while-language based on L∞.

A store is a mapping from a set of variables, V ar, to values in L∞. Absence

3 As usual, + represents disjoint union, × is product, and ⊥ is lifting.

4

Schmidt

L∞ ≈ ({nil} + (D × L∞)⊥, where D is some fixed Scott-domain

. . .d, ⊥nil
⊥

α0

0γ

1α

1γ

d,d, ⊥d,nil

d, ⊥nil
⊥ d, ⊥nil

⊥

d i ⊥i−1d nil

d,nil d,d, ⊥
d,d,nil

iα

iγ

d, ⊥nil
⊥

d i ⊥i−1d nil

d

d,nil d,d, ⊥
d,d,nil

L

L0 L1 L2
Li

2α

2γ
⊥ . . .

For L0 = {⊥}, Li+1 = ({nil} + (D × Li)⊥,
the embedding, projection pairs, Li〈γi, αi〉Li+1, are defined

γ0(⊥) = ⊥

α0(ℓ) = ⊥

γi+1 = F (γi)

(that is, γi+1(ℓ) = ℓ)

αi+1 = F (αi)

where

F (f)(⊥) = ⊥

F (f)(nil) = nil

F (f)(d, ℓ) = (d, f(ℓ))

For i < j, define
γi,j = γj−1 ◦ · · · ◦ γi+1 ◦ γi

αj,i = αi ◦ · · · ◦ αj−2 ◦ αj−1

The elements of L∞ are tuples, 〈ℓi〉i≥0, such that each ℓi ∈ Li and ℓi = αi(ℓi+1) for all i ≥ 0.

For all i ≥ 0, Li〈γi,∞, α∞,i〉L
∞ are defined

γi,∞(ℓ) = 〈αi−1,0(ℓ), αi−1,1(ℓ), · · · , αi(ℓ), ℓ, γi(ℓ), γi,i+2(ℓ), γi,i+3(ℓ) · · ·〉

α∞,i〈ℓ0, ℓ1, · · · , ℓi, · · ·〉 = ℓi

Finally, L∞〈γ∞, α∞〉({nil} + (D × L∞))⊥ forms an order-isomorphism, where

γ∞ = ⊔i≥0 F (γi,∞) ◦ α∞,i+1

α∞ = ⊔i≥0 γi+1,∞ ◦ F (α∞,i)

Fig. 4. Inverse limit of L = ({nil} + (D × L))⊥

d ∈ Data(atomic data) x ∈ Var(variable names) G ∈ Guard(boolean expressions)

E ∈ Expression ::= x | tl E | cons d E

C ∈ Command ::= x = E | C1; C2 | if (Gi : Ci)i∈I fi | while G do C

Domain of stores: σ ∈ Σ = Var → L∞

G : Guard → Σ → Σ⊥

G[[G]]σ = σ when G holds true in σ; G[[G]]σ = ⊥ otherwise

E : Expression → Σ → L∞

E[[x]]σ = lookup [[x]] σ where lookup v σ = σ(v)

E[[tl E]]σ = tail (E[[E]]σ) where tail(v) = cases γ∞(v) of

8

>

<

>

:

⊥ : α∞(⊥)

nil : α∞(⊥)

(d, ℓ) : ℓ

E[[cons d E]]σ = cons d (E[[E]]σ) where cons d ℓ = α∞(d, ℓ)

C : Command → Σ → Σ⊥

C[[x = E]]σ = update [[x]] (E[[E]]σ) σ where update v ℓ σ = σ + [v 7→ ℓ]

C[[C1; C2]] = C[[C2]] ◦ C[[C1]] Note : ◦ forces strictness: g ◦ f(σ) = ⊥ when f(σ) = ⊥

C[[if (Gi : Ci)i∈I fi]] =
F

i∈I C[[Ci]] ◦ G[[Gi]]

C[[while G do C]] = lfp λf. (G[[¬G]]) ⊔ (f ◦ C[[C]] ◦ G[[G]])

Fig. 5. Denotational semantics for while-language based on L∞

of store is denoted by ⊥. The language uses a guarded-if construction, where a

guard, Gj , filters the input store to its guarded command, Cj , and the results of all

Gj : Cj pairs are joined. When the guards of an if-command are mutually exclusive,

the semantics is the usual one. We use this formulation to ease the transition

into abstract interpretation, which treats analysis of software much like analysis of

5

Schmidt

⊥

⊥nil
⊥

k−1d nil d k⊥

d,nil d,d, ⊥
d,d,nil α k

k,γ

d, ⊥nil
⊥

i−1d nil

d

d i ⊥

d,nil d,d, ⊥
d,d,nil

Pα

Pγ

Lk

⊥

d{ }

L| l: }{(d,d,l)

L{(d,l) | l: }

L

{ }

{nil}

{(d,nil)}

UI

. . .

LP() op
L

⊥

⊥

d,

Define L⊤
k 〈γ, α〉P(L∞)op as

γ = γP ◦ γk.∞

α = α∞,k ◦ αP

, where
γP (ℓ) = ↑ℓ = {m ∈ L∞ | ℓ ⊑ m}

αP (S) = ⊓S

We can rotate the above diagram and define the Galois connection, P(L∞)〈α, γ〉L⊤
k

op

Fig. 6. Collecting domain (data-test sets), P(L∞)op, for L∞ and associated Galois connections

hardware circuits (cf. Figure 2).

The while-command is a tail-recursive guarded-if, such that while B do C has a

denotation equal to if (¬B : skip), (B : C; (while B do C)) fi.

Here is an example: let σ0 = [[[x]] 7→ nil]. Then,

C[[if (isNil x : x = cons d0 x) (isNonNil x : x = x) fi]]σ0

= (C[[x = cons d0 x]] ◦ G[[isNil x]])σ0 ⊔ (C[[x = x]] ◦ G[[isNonNil x]])σ0

= C[[x = cons d0 x]]σ0 ⊔ C[[x = x]]⊥

= (update [[x]] (E [[cons d0 x]]σ0) σ0) ⊔ ⊥ = [[[x]] 7→ (d0, nil)]

The example shows how G[[isNil x]] passes σ0 forwards because the guard holds

true for the store, whereas G[[isNonNil x]] passes ⊥.

4 Collecting domains

Reconsidering the Lk domains in Figure 4, we note that an element like (d,⊥) de-

notes a list that has d as its head element and an unknown tail, that is, (d,⊥)

approximates the set, {(d, ℓ) | ℓ ∈ L∞} ⊆ L∞. In this sense, each Lk is an approx-

imation domain, like the ones used for abstract interpretation (cf. Sign in Figure

1).

We can formalize this intuition. The collecting domain, P(L∞), defines all data-

test sets that might be used with a program written in the language defined in Figure

5. If we “crown” L∞ with a ⊤ element, we have a Galois connection between the

collecting domain and complete lattice, L∞⊤; see Figure 6. Element ⊤ ∈ L∞⊤

denotes contradictory (literally, no) information content and maps to the empty

data set in P(L∞)op. In contrast, ⊥ ∈ L∞⊤ denotes all possible test data. One

might also restrict the collecting domain to be just the totally defined lists or just

the finite, total lists.

The Figure shows how the Galois connection composes with an embedding-

projection pair, L⊤
k 〈γk,∞, α∞,k〉L

∞⊤, where Lk is also crowned. The Galois con-

6

Schmidt

nection that results, L⊤
k 〈γ, α〉P(L∞)op, is significant: If we “rotate” it, we have a

Galois connection suitable for abstract interpretation,

P(L∞)〈α, γ〉L⊤
k

op
:

L

{ }

UI

LP()
γ

α

⊥d,
⊥d,d,

k−1d nil d k⊥

nil
⊥

d,nil

d,d,nil

⊥

Lk

⊥

op

In this way, we have extracted a useful, crucial abstract interpretation from the

Scott-domain’s inverse-limit construction.

An element, (dn,⊥) ∈ L⊤
k

op
, represents those lists having at least n-many ele-

ments, for 0 ≤ n ≤ k, and (dn, nil) represents a list that has exactly n elements. As

noted, ⊥ ∈ L⊤
k

op
stands for all lists; ⊤ ∈ L⊤

k

op
for none. We can repeat the style of

abstract testing in Figure 2 for a program that computes on lists by using elements

of L⊤
k

op
as inputs. The next section develops this idea.

Other abstract domains can be synthesized by means of inverse limits and col-

lecting domains. The Sign domain in Figure 1 is derived from these Scott-domain

definitions:

N = {1}⊥ ⊕N where ⊕ denotes disjoint sum with merged ⊥s

S = (N + {0} +N)⊥

S denotes the integers partitioned into the negatives, zero, and the positives. The

approximating domain, S1 = (N0 + {0} + N0)⊥, where N0 = {⊥}, defines Sign =

S⊤
1

op
in Figure 1. The Galois connection in Figure 1 goes between the collecting

domain of sets of total values of S∞ and Sign. We can define better-precision signs-

analyses by using domains Sk, k > 1, which would distinguish individual integers,

e.g, S⊤
2

op
= {⊤,neg ,−1, zero, 1, pos ,⊥}.

Many abstract domains are defined this way — they are “partitions” of data-

test sets, “crowned” by a ⊤, characterized by a finite domain from an inverse-limit

sequence. But here are two that are not:

any

none

0 1 2−1−2.

. . .

−[,0] +[1,]

− +[,]

...
...

...
...

[1]

[]

[0][−1] [2]

[−1,0] [1,2] [2,3][−2,−1]

[−2,0] [1,3]

[−i,0] [1,i]

. . .

.

. . .

The Const domain, shown on the left, is used for constant-propagation analysis: a

program’s variables are analyzed to see if they are uninitialized (⊥), are assigned a

single, constant value (n ∈ Int), or are assigned multiple values (⊤) [24]. Rather

than an approximating domain, Const is N∞⊤op, where N∞ is the inverse limit of

N = ({0} +N)⊥.

On the right is the Interval domain, which is employed when an analysis must

7

Schmidt

Let D be a Scott-domain, A its approximant, and P(D)〈α, γ〉A the collecting Galois connection.

Set-indexed product: I → D, for set I: P(I → D)〈αI , γI〉I → A

where
γI(ai)i∈I = {(di)i∈I | di ∈ γ(ai)}

αI(S) = (α{ti | t ∈ S})i∈I

Compressed lift: D⊥: P(D ∪ {⊥})〈α⊥, γ⊥〉A (that is, ⊥ in A is aliased to the existing ⊥ ∈ A)

where
γ⊥(a) = γ(a) ∪ {⊥}

α⊥(S) = α(S − {⊥})

Fig. 7. Compound Galois connections for collecting domains

determine the range of values that a variable is assigned [6]. This domain is not

finite and its opposite domain cannot be constructed as an SFP object. Further,

the map, γ : Interval → P(Int), is not defined as γ([a, b]) =↑[a, b] but as γ([a, b]) =

{n ∈ Int | a ≤ n ≤ b}. Because of its infinite height, this domain must be handled

specially when used in an abstract interpretation; we discuss this later.

Domains like Sign, Const, and Interval are used to represent values from Σ;

a relational domain is a nonfunctional domain that represents values from domain

Var → Σ. The standard example of a relational domain is the polyhedral domain

[8], whose values describe linear relationships between variables’ values in the store.

For example, this set of inequalities between variables, x, y, and z, is an abstract

value in the polyhedral domain that abstracts Var → Σ:

2x + 1y ≤ 100

4x + 1y + −3z ≤ 0

−1z ≤ 2

Such an abstract value is a conjunctive proposition of form,
∧

i((
∑

j(aij · xij) ≤ bi),

and can be implemented as a set of tuples, a matrix, or a graph. It represents all

stores whose variables satisfy the conjunctive proposition.

Similar to the polyhedral domain is the octagon domain [20] and the predicate-

abstraction domains [13,2]. None of these readily fit the format of a finite domain,

L⊤
k

op
, in an inverse-limit sequence (but see the remark at the end of Section 6.)

There are also the usual constructions for collecting domains for products, sums,

and liftings. Figure 7 shows two such constructions, indexed product and lifting.

Both constructions are common to abstract interpretation. The indexed product

generates an independent attribute analysis [17], where a set of indexed tuples is

abstracted to a single tuple that covers the set. The lifting construction compresses

the ⊥ element with the existing ⊥ in A and is used when an abstract interpretation

ignores nontermination (which is almost always the case).

5 Some topology

The intuition that an element from an abstract domain models a set of concrete

data-test elements, suggests a topological connection. Indeed, for an approximating

domain, Lk, each γ(ℓ), ℓ ∈ Lk, is a Scott-basic open set [12,26] — a “computable

property” [30]. As before, we define the closure operator, ρ = γ ◦ α : P(L∞) →

8

Schmidt

P(L∞), and we have that the family of sets, ρ[P(L∞)], are all Scott-basic opens

and the family is closed under intersection.

It is natural to close ρ[P(L∞)] under unions to generate a topology on L∞, one

that is coarser than the Scott topology — it defines the “topology of the abstract

interpretation.”

This construction does indeed exist in abstract-interpretation methodology —

it is called the disjunctive completion [7] of the abstract domain, and it is used to

add additional elements to an abstract domain when more precision is needed for

an analysis. For example, the Sign domain in Figure 1 can be completed into this

domain:

SignO = {none, neg , ≤0, zero,

6=0, ≥0, pos , any}
:

{0}

{ }

{...,−1,0,1,...}

{...,−2,−1}

{...,−2,−1,1,2,...}

{...,−2,−1,0} {0,1,2,3,...}

{1,2,3,...}

SignO

When the domain, SignO, used to analyze the program in Figure 2, the analysis

can validate, for the test-data sets named by neg , zero, and pos , that the program’s

output must be positive (pos).

6 Some logic

There is another reason why the disjunctive completion is useful. It reminds us that

every abstract domain, L⊤
k

op
, defines a “logic,” where Lk’s ⊤ denotes False, Lk’s

⊥ denotes True, and L⊤
k

op
’s ⊑ denotes entailment. This particular logic possesses

conjunction, and the disjunctive completion adds disjunction, making the domain

a frame [16].

In general, for abstract domain A, its logic is the language of assertions that can

be validated using an abstract intepretation based upon A. For example, one can

use abstract domain Sign to validate that a program’s output satisfies assertion, pos ,

or assertion, any ⊓ pos , but the domain cannot be used to validate isEvenValued or

zero ⊔ pos (but this last assertion can be validated in Sign’s disjunctive completion,

SignO).

To start, A’s logic includes the primitive assertions, a, for every a ∈ A.

Next, define A’s ρ = γ ◦ α. Function f : Σ → Σ is a logical operator in A’s

logic iff for all S ∈ ρ[P(Σ)], f [S] ∈ ρ[P(Σ)], that is, iff f ◦ ρ = ρ ◦ f ◦ ρ, that is, iff

f
♯
0 = ρ ◦ f is forwards complete for f . The intuition is that f maps property sets

to property sets “on the nose” and for this reason, one can use its f ♯
0 to compute

exactly on the assertions in the logic. The concept of logical operator generalizes

to n-ary f as well.

For example, Sign’s logic includes

φ ::= a | φ1 ⊓φ2 | negate
♯
0 φ, where a ∈ Sign

The logic contains primitive assertions like neg , zero, etc., as well as conjunctions.

Since conjunctions compute on the nose, we have that meets in Sign compute to

intersections in P(Int):

9

Schmidt

a⊑φ1 ⊓φ2 iff γ(a) ⊆ γ(φ1) ∩ γ(φ2)

Since negate maps properties on the nose, we have that

a⊑negate
♯
0φ iff γ(a) ⊆ negate[γ(φ)]

and so on.

In constrast, union (∪) is not a logical operator for Sign (although it is for

Sign0).

The logic of the approximating domain is critical to an abstract interpretation,

which must compute sound logical properties of a program in terms of the elements

and operations in the abstract domain. Only properties that belong to the abstract

domain’s logic may be soundly verified by the abstract interpretation. This makes

notions like Galois connection, disjunctive completion, and forwards completeness

critical to the design of a useful abstract interpretation.

Of course, the above development can be read as “domain logic” as presented

by Abramsky [1], where a domain like L∞ is generated from a set of atomic (finite)

elements, which are the primitive propositions in the logic, closed under frame-like

axioms. And Jensen observed that one can use a finite subset of the atomic elements

to define an abstract domain that approximates L∞, much in the style that we used

Lk. Jensen’s methodology is called abstract interpretation in logical form [15].

It appears possible to use Jensen’s framework to describe the relational domains

outlined in Section 4, but we do not try to do so here.

7 Sound and complete abstract semantics

Recall from Section 2 that a Galois connection of form, P(C)〈α, γ〉A, defines the

modelling of test-data sets from C as elements of A. Computation on a ∈ A by

f : C → C is modelled by a f ♯ : A → A such that f(γ(a)) ⊆ γ(f ♯(a)). The most

precise such f ♯ is α ◦ f ◦ γ (where, for S ⊆ C, f [S] = {f(c) | c ∈ S}).

The Galois connection induces an abstract interpretation of a language’s deno-

tational semantics: replace domain C by A and replace functions, f : C → C by

f ♯ : A→ A. An induction proof shows that the resulting valuation, C♯[[C]], is sound

for C[[C]], for all phrases, C, in the language. Figure 8 shows the abstract denota-

tional semantics that results from the Galois connection, P(L∞)〈α, γ〉L⊤
k

op
, and the

two constructions from Figure 7.

The Figure shows that an abstract interpretation is itself just a denotational

semantics, where functions, f , are replaced by their sound approximations, f ♯ =

α◦f ◦γ. This style of abstract interpretation was first proposed by Donzeau-Gouge

[9] and Neilson [21,22,23].

Here is an example abstract denotation: Let σ0 = [[[x]] 7→ ⊥] ∈ Σ♯, that is, x

might be any L∞-value at all (because γ(⊥) = L∞):

C♯[[if (isNil x : x = cons d0 x), (isNonNil x : x = x) fi]]σ0

= (C♯[[x = cons d0 x]] ◦ G♯[[isNil x]])σ0 ⊔ (C♯[[x = x]] ◦ G♯[[isNonNil x]])σ0

Now,

10

Schmidt

Abstract store domain: σ ∈ Σ♯ = Var → L⊤
k

op

Collecting Galois
connections for
Scott-domains,

L∞: P(L∞)〈α, γ〉L⊤
k

op

Σ = Var → L∞: P(Σ)〈αVar , γVar 〉Σ
♯

Σ⊥: P(Σ⊥)〈α⊥, γ⊥〉Σ♯

, as defined from Figures 5, 6, and 7.

G♯ : Guard → Σ♯ → Σ♯

G♯[[G]] = α⊥ ◦ G[[G]] ◦ γVar

E♯ : Expression → Σ♯ → L⊤
k

op

E♯[[x]]σ = lookup♯ [[x]] σ

where lookup♯ v = α ◦ lookup v ◦ γVar , that is, lookup♯ v σ = σ(v)

E♯[[tl E]]σ = tail♯(E♯[[E]]σ)

where tail♯ = α ◦ tail ◦ γ, that is, tail♯(a, ℓ) = ℓ; tail♯(nil) = ⊥ = tail♯(⊥)

E♯[[cons a E]]σ = cons♯ a (E♯[[E]]σ)

where cons♯(a, v) = α ◦ cons a ◦ γ, that is, cons♯ a ℓ = (a, ℓ)

C♯ : Command → Σ♯ → Σ♯

C♯[[x = E]]σ = update♯ [[x]] (E♯[[E]]σ) σ

where update♯[[x]] = α⊥ ◦ update[[x]] ◦ (γ × γVar), that is, update♯ v ℓ σ = σ + [v 7→ ℓ]

C♯[[C1; C2]] = C♯[[C2]] ◦ C♯[[C1]]

C♯[[if (Gi : Ci)Ifi]] =
F

i∈I C♯[[Ci]] ◦ G♯[[Gi]]

C♯[[while B do C]] = lfp λf. G♯[[¬G]] ⊔ (f ◦ C♯[[C]] ◦ G♯[[G]])

Fig. 8. Abstract interpretation derived from P(L∞)〈α, γ〉L⊤
k

op

G♯[[isNil x]])σ0 = (α⊥ ◦ G[[isNil x]] ◦ γVar)σ0

= (α⊥ ◦ G[[isNil x]]){[[[x]] 7→ ℓ] | ℓ ∈ L∞}

= α⊥{[[[x]] 7→ nil], ⊥} = [[[x]] 7→ nil]

The abstracted guard calculates the abstract store that covers all stores that

satisfy isNil x. A similar calculation demonstrates that G♯[[isNonNil x]])σ0 =

α⊥({[[[x]] 7→ (d, ℓ)] | ℓ ∈ L∞} ∪ {⊥}) = [[[x]] 7→ (d,⊥)]. We complete the derivation:

C♯[[x = cons d0 x]][[[x]] 7→ nil] ⊔ C♯[[x = x]][[[x]] 7→ (d,⊥)]

= (update♯ [[x]] (E♯[[cons d0 x]][[[x]] 7→ nil]) [[[x]] 7→ nil]) ⊔ [[[x]] 7→ (d,⊥)]

= [[[x]] 7→ (d0, nil)] ⊔ [[[x]] 7→ (d,⊥)]

= [[[x]] 7→ (d0 ⊔ d, nil ⊔L⊤
k

op ⊥)] = [[[x]] 7→ (d0 ⊔ d, ⊥)]

The outcomes are joined, precision is lost, and the result is an abstract store that

maps x to a non-nil list whose head is d0⊔ d and whose tail is unknown (i.e., might

be any L∞-value at all).

The previous derivation demonstrates how an abstract intepretation is used in

practice: a family of tests, covering the data sets of interest, are supplied to a pro-

gram, and the outputs are calculated by derivation. Using this approach, one nat-

urally wishes to unfold a higher-order abstract denotation of form, f = lfp λσ.Ffσ′ .

But we must ensure finite and detectable termination of the unfolding and calcula-

tion.

A semantically sound technique for bounding the unfolding is explained in terms

of “minimal function graph” semantics [18]: Starting from term, f(σ0), we generate

the subsequent calls (unfoldings), f(σi), in the process constructing a family of k

11

Schmidt

first-order equations,

fσ0 = Ffσ1

fσ1 = Ffσ2

· · ·

fσk = Ffσj
, for some j ≤ k

which we can solve iteratively and can detect convergence. The equation set is

guaranteed to be finite if the abstract domain from which σ is taken is finite (e.g.,

Sign, or L⊤
k

op
).

If the abstract domain is not finite (e.g., Const), k can be forced to be finite

by making the argument sequence, σ0, σ1, · · · , σk, into a chain so that the domain’s

finite-height ensures a finite equation set. This is done by unfolding call f(σi) until

a call, f(σi
′), is uncovered. This generates a new first-order equation for f(σi+1),

where σi+1 = σi ⊔σi
′. Since f(σi

′)⊑ f(σi+1), the solution to the former can be

safely used in place of the latter. The abstract domain’s finite height bounds the

quantity of the generated equation set.

The use of σi+1 = σi ⊔σi
′ does not suffice for an abstract domain like Interval,

which possesses infinitely ascending chains. In this situation, ⊔ is replaced by a

monotonic, extensive widening function that is guaranteed to generate chains of

finite height only [5]. For the Interval domain, its widening function is defined

widen(σi, σ
′), where σi is the ith element in the chain under construction, and σ′

is newly appearing in a call, f(σ′):

widen([], [c, d]) = [c, d]

widen([a, b], [c, d]) = [a, b], if a ≤ c and d ≤ b

widen([a, b], [c, d]) = [−∞, b], if c < a and d ≤ b

widen([a, b], [c, d]) = [a,+∞], if a ≤ c and b < d

widen([a, b], [c, d]) = [−∞,+∞], if c < a and b < d

Widening operations are also required when working with polyhedral domains.

When a chain of arguments is built during the process of generating the set of

first-order equations it is common to solve just this one equation,

fσk = Ffσk

where σk is the last element in the generated chain.

Here is an example, for domain Sign and the semantics in Figure 8: For

C♯[[while NonNil x : x = tl x]] = f , where

f(σ) = G♯[[Nil x]]σ ⊔ f(C♯[[x = tl x]](G♯[[NonNil x]]σ)),

we calculate an abstract test with σdb: Let σdb = [x 7→ (d,⊥)] and σb = [x 7→ ⊥].

(Please recall, in abstract domain L⊤
k

op
, that ⊥ ∈ L⊤

k means “all lists,” and ⊤ ∈ L⊤
k

means ”no lists.”) C♯[[while NonNil x : x = tl x]]σdb = fσdb, where

12

Schmidt

fσdb = G♯[[Nil x]]σdb ⊔ f(C♯[[x = tl x]](G♯[[NonNil x]]σdb)

= [x 7→ ⊤] ⊔ f(C♯[[x = tl x]]σdb)

= fσb

fσb = G♯[[Nil x]]σb ⊔ f(C♯[[x = tl x]](G♯[[NonNil x]]σb)

= [x 7→ nil] ⊔ f(C♯[[x = tl x]]σdb)

= [x 7→ nil] ⊔ fσb

We solve these two first-order equations.

As noted earlier, the inductive definition format ensures soundness. This is

because, for all phrase forms, E, we use the format, E [[op(Ei)]] = f(E [[Ei]]) to define

E’s semantics, and we define the abstract semantics inductively as E♯[[op(Ei)]] =

f
♯
0(E

♯[[Ei]]), where f ♯
0 = α ◦ f ◦ γ.

Soundness is stated as E [[E]] ◦ γ = γ ◦ E♯[[E]] (equivalently stated as α ◦ E [[E]] =

E♯[[E]] ◦ α). It is easy to prove that E♯ is sound for E .

Recall the two notions of completeness:

forwards completeness: For all E, E [[E]] ◦ γ = γ ◦ E♯[[E]]

backwards completeness: For all E, α ◦ E [[E]] = E♯[[E]] ◦ α

As proved by Cousot and Cousot [6], both forms of completeness are preserved by

least- and greatest-fixed-point constructions, as well as by function composition and

by inductive definition on syntax: If for every equation, E [[op(Ei)]] = f(E [[Ei]]), f
♯
0 is

forwards (resp. backwards) complete for f , then E♯ is forwards (resp. backwards)

complete for E .

When there is not completeness, the inductive definition of E♯ is sound but may

be weaker than the strongest abstract interpretation: E♯[[E]] ⊒ α ◦ E [[E]] ◦ γ.

It is puzzling that there are two forms of completeness. Both imply strongest

postcondition properties, but the two notions are inequivalent [10]. What are they

exactly? We learn the answer by considering the topology induced from the Galois

connection: a forwards-complete function is is a topologically closed map and a

backwards-complete function is a topologically continuous map.

8 Topological characterization of completeness

Topology plays a key role in denotational semantics. To solve the domain equation,

D = D → D, Scott needed to limit the cardinality of functions on D. Topological

continuity was the appropriate criterion: For complete lattice L, Scott defined L’s

open sets to be those subsets of L that are (i) upwards closed and (ii) closed under

tails of chains. 4 The functions that are topologically continuous for the Scott-

topology of L are exactly the chain-continuous functions on L. Continuity limited

the cardinality of D → D so that the recursive domain equation had a solution.

Consider the Scott-topology on an algebraic bcpo: D is algebraic if there is a

4 That is, for every chain, C = {c0, c1, · · · ci, · · ·} ⊆ L, when ⊔C ∈ U , for open set U ⊆ L, then there exists
some ck ∈ C such that ck ∈ U also. This means C’s tail, from ck onwards, is in U .

13

Schmidt

subset, FD ⊆ D, of finite elements 5 such that for every d ∈ D, d = ⊔{e ∈ FD | e ⊑

d} Each e ∈ FD defines the property of “having e-information level,” and the basic

open sets for D’s Scott-topology are {↑e | e ∈ FD}. 6

How does this relate to abstract interpretation? For abstract domain, L⊤
k

op
, its

elements name properties that are used in an abstract interpretation: Each ℓ ∈ L⊤
k

names the set, ↑ℓ ⊆ L∞, a Scott-basic open set in L∞. Indeed, the collection, γ[L⊤
k],

is a family that is closed under intersection but not necessarily under union. If we

close under union, we have a topology on L∞, coarser than the Scott-topology.

One defines a topology so to ask, “what are the continuous functions?” In the

case of the family, γ[L⊤
k

op
], we ask “what are the open/closed functions?” and

“what are the continuous functions?”. Even when γ[L⊤
k

op
] is not a topology, we will

see that those functions that preserve members of γ[L⊤
k

op
] are exactly the forwards-

complete functions of abstract-interpretation theory, and those functions that reflect

members of γ[L⊤
k

op
] are exactly the backwards-complete functions. We now develop

these intuitions.

Let P(Σ)〈α, γ〉A be a Galois connection for Scott-domain Σ. Let FΣ = γ[A] =

(γ ◦ α)[Σ] ⊆ P(Σ) define the properties of interest within Σ. For each U ∈ FΣ, its

complement is ∼U = Σ−U ; for FΣ, its complement family, ∼FΣ, is {∼U | U ∈ FΣ}.

FΣ is an open family if it is closed under unions, and it is a closed family if it

is closed under intersections. Every open family has an interior operation, ι, which

computes the largest property contained within a set: ι : P(Σ) → FΣ is defined

ι(S) = ∪{U ∈ FΣ | U ⊆ S}. Dually, every closed family has a closure operation,

ρ, which computes the smallest property covering a set: ρ : Σ → FΣ is defined

ρ(S) = ∩{K ∈ FΣ | S ⊆ K}. If FΣ is an open family, then its complement is

a closed family (and vice versa). When we define FΣ = γ[A] and γ is the upper

adjoint of a Galois connection, then FΣ is a closed family.

For f : Σ → Σ, define f : P(Σ) → P(Σ) as f [S] = {f(s) | s ∈ S}, and define

f−1 : P(Σ) → P(Σ) as f−1(T) = {s ∈ Σ | f(s) ∈ T}, as usual.

f is FΣ-preserving iff for all U ∈ FΣ, f [U] ∈ FΣ. In such a case, f : FΣ → FΣ

is well defined. This generalizes the notions of open and closed mappings on a

topology. Since FΣ = γ[A] is a closed family, we have immediately that f : Σ → Σ

is forwards complete iff it is FΣ preserving, that is, iff it is a topologically closed

map.

We can characterize backwards completeness similarly. But first, we must gen-

eralize the definition of continuity so that it applies to property families that might

not be topologies.

Let Us (respectively, US) denote a member of FΣ such that s ∈ Us (resp.,

S ⊆ US):

• For c ∈ Σ, f : Σ → Σ is continuous at c iff for all Vf(c) ∈ FΣ, there exists some

Uc ∈ FΣ such that f [Uc] ⊆ Vf(c).

• For S ⊆ Σ, f is continuous at S iff for all Vf [S] ∈ FΣ, there exists some US ∈ FΣ

such that f [US] ⊆ Vf [S].

5 e ∈ D is finite iff for all chains C ⊆ D, e ⊑ ⊔C implies e ⊑ c for some c ∈ C.
6 where ↑e = {d ∈ D | e ⊑ d} and ↑S = ∪{↑e | e ∈ S}

14

Schmidt

V

f[S]S

US
f

(i) For S ⊆ Σ, f is continuous at

S iff whenever f [S] ⊆ V ∈ FΣ, there

exists some U ∈ FΣ such that S ⊆ U

and f [U] ⊆ V.

S
U

−1f [V]

f [S]−1

−1f
V

(ii) For S ⊆ Σ, f−1 : P(Σ) → P(Σ)

is dual continuous at S iff whenever

f−1[S] ⊇ U ∈ FΣ, then there exists

V ∈ FΣ, V ⊆ S, such that f−1[V] ⊇

U.

Fig. 9. Continuity and dual continuity at a set

• f is FΣ-reflecting iff for all V ∈ FΣ, f−1(V) ∈ FΣ, that is, f−1 is FΣ-preserving.

The second definition is needed because FΣ might not be an open family. Figure

9, part (i), diagrams the notion of continuity at a set. If FΣ is a topology, then all

three notions are equivalent.

We retain these fundamental results:

Proposition 8.1 [28]

(i) f is FΣ-reflecting iff f is continuous at S, for all S ⊆ Σ.

(ii) If FΣ is an open family, then f is FΣ-reflecting iff f is continuous at s, for all

s ∈ Σ.

(iii) f : Σ → Σ is ∼FΣ-reflecting iff f is FΣ-reflecting.

For S, S′ ⊆ Σ, write S ≤FΣ
S′ iff for all K ∈ FΣ, S ⊆ K implies S′ ⊆ K.

This is the specialization ordering from topology. Write S ≡FΣ
S′ iff S ≤FΣ

S′ and

S′ ≤FΣ
S.

The following definition is the usual one for abstract-interpretation backwards

completeness: f : Σ → Σ is backwards-FΣ-complete iff for all S, S′ ⊆ Σ, S ≡FΣ
S′

implies f [S] ≡FΣ
f [S′].

Lemma 8.2 [28] Let ρ be the closure operator for closed family, FΣ. The following

are equivalent:

(i) f is backwards-FΣ-complete;

(ii) for all S ⊆ Σ, f [S] ≡FΣ
f [ρ(S)];

(iii) ρ ◦ f = ρ ◦ f ◦ ρ.

Item (iii) lets us conclude:

Theorem 8.3 For closed family, FΣ, f : Σ → Σ is backwards-FΣ-complete iff f is

FΣ-reflecting, that is, iff it is topologically continuous.

For domain L∞ and its finite approximants, Lk, let’s consider the relationship

between the Scott-continuous functions, f : L∞ → L∞, and the backwards-complete

functions for each P(L∞)〈αk, γk〉L⊤
k

op
, k ≥ 0. First, all functions f are trivially L0-

backwards complete (that is, backwards complete for P(L∞)〈α0, γ0〉L⊤
0

op
). Since

15

Schmidt

the collection of property sets defined by γk[Lk] is a subset of those for γk+1[Lk+1],

any Lk-backwards complete f is Lj-backwards complete for j < k.

Consider the domain defined in Figure 6:

• There is a Scott-continuous function, f : L∞ → L∞, that is not Lk-backwards

complete for all k > 0. Define f as follows: f(dk, nil) = nil, for all k ≥ 0, and

f(ℓ) = ⊥, otherwise. This function is Scott-continuous. Consider f−1{nil}; it

is exactly all the total, finite lists in L∞, and for no finite element e ∈ L∞ does

this set equal ↑e. (Nor does the union of the upclosed sets of finite elements in

any Lk equal f−1(nil) — the union of the basic opens of all finite lists in L∞ are

required.)

• For each k > 0, there is a monotone, Lk-backwards complete function that is not

Scott-continuous. For k, define fk : L∞ → L∞ as follows: f(⊥) = ⊥; for j < k,

fk(d
j , nil) = (dj , nil) and fk(d

j ,⊥) = (dj ,⊥). For j ≥ k, fk(d
j , nil) = (dk,⊥);

fk(d
j ,⊥) = (dk,⊥). Finally, define fk(d

∞) = d∞. This makes fk monotone and

backwards complete but Scott-discontinuous. The result does not change when

the sets defined by Lk are closed under union.

These results are not surprising, because the property family for each Lk-domain is

coarser than the Scott topology for the corresponding domain. They are frustrating,

however, because they show how difficult it is to establish a homomorphism property

from a concrete to an abstract denotational semantics.

Now, what about open families? Let FΣ be open (closed under unions) and ι :

P(Σ) → FΣ be its interior map.

In abstract interpretation, one uses an open family to perform an underap-

proximating precondition analysis: for f : Σ → Σ, define f−1 : P(Σ) → P(Σ) as

f−1(S) = {s ∈ Σ | f(s) ∈ S}, as usual.

The strongest (weakest precondition) abstract function for f−1 is ι ◦ f−1 : FΣ →

FΣ.

This makes forwards-FΣ-completeness defined as f−1 ◦ ι = ι ◦ f−1 ◦ ι and

backwards-FΣ-completeness defined as ι ◦ f−1 = ι ◦ f−1 ◦ ι.

It is easy to understand forwards completeness: f−1 is FΣ-preserving iff f−1

is forwards-FΣ-complete iff f is ∼FΣ-reflecting iff f is FΣ-reflecting. This is the

classic pre- post-condition duality of predicate transformers.

Backwards completeness for an open family and f−1 is a “dual continuity” prop-

erty. Say that f−1 : P(Σ) → P(Σ) is dual continuous at S ⊆ Σ iff for all U ∈ FΣ, if

f−1[S] ⊇ U then there exists V ∈ FΣ, V ⊆ S, such that f−1[V] ⊇ U. Figure 9, part

(ii), depicts dual continuity at a set.

Theorem 8.4 f−1 is dual continuous for all S ⊆ Σ iff f−1 is backwards-FΣ-

complete, that is, ι ◦ f−1 = ι ◦ f−1 ◦ ι.

9 Conclusion

Abstract interpretation and denotational semantics share foundations and appli-

cations, and the interaction between the two areas is intricate. The inverse-limit

16

Schmidt

construction and its associated Scott-topology show how to derive abstract domains

as structural approximations of inverse-limit-defined Scott-domains. The inductive

format of denotational semantics definitions ensures the soundness of the resulting

abstract interpretation, where abstract domain replaces Scott-domain. In this man-

ner, abstract interpretation can be explained from the perspective of denotational

semantics.

Acknowledgement: Robert Tennent’s depth of insight and clarity of presentation

have been a continuing source of inspiration, and this paper is dedicated to him on

the occasion of his 65th birthday.

The referees are thanked for their helpful comments.

References

[1] S. Abramsky. Domain theory in logical form. Ann.Pure Appl.Logic, 51:1–77, 1991.

[2] T. Ball, A. Podeksi, and S. Rajamani. Boolean and cartesian abstraction for model checking C
programs. J. Software Tools for Technology Transfer, 5:49–58, 2003.

[3] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. PhD thesis, University of Grenoble,
1978.

[4] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation. Theoretical Computer Science, 277:47–103, 2002.

[5] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs.
In Proc. 4th ACM Symp. on Principles of Programming Languages, pages 238–252. ACM Press, 1977.

[6] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc. 6th ACM Symp.
on Principles of Programming Languages, pages 269–282. ACM Press, 1979.

[7] P. Cousot and R. Cousot. Higher-order abstract interpretation. In Proceedings IEEE Int. Conf.
Computer Lang., 1994.

[8] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program.
In Proc. 5th ACM Symp. on Principles of Programming Languages, pages 84–96. ACM Press, 1978.

[9] V. Donzeau-Gouge. Denotational definition of properties of program’s computations. In S. Muchnick
and N.D. Jones, editors, Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.

[10] R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and refinements in abstract model
checking. In Static Analysis Symposium, LNCS 2126, pages 356–373. Springer Verlag, 2001.

[11] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. J. ACM,
47:361–416, 2000.

[12] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, and D.S. Scott. Continuous Lattices
and Domains. Cambridge Univ. Press, 2003.

[13] S. Graf and H. Saidi. Construction of abstract state graphs with pvs. In Proc. Conf. Computer Aided
Verification, pages 72–83. Springer LNCS 1254, 1997.

[14] C. Gunter. Semantics of Programming Languages. MIT Press, Cambridge, MA, 1992.

[15] T. Jensen. Abstract Interpretation in Logical Form. PhD thesis, Imperial College, London, 1992.

[16] P. Johnstone. Stone Spaces. Cambridge University Press, 1986.

[17] N.D. Jones and S. Muchnick. Flow analysis and optimization of LISP-like structures. In Proc. 6th.
ACM Symp. Principles of Programming Languages, pages 244–256, 1979.

[18] N.D. Jones and A. Mycroft. Data flow analysis of applicative programs using minimal function graphs.
In Proc. 13th ACM Symp. on Principles of Prog. Languages, pages 296–306, 1986.

[19] R. Milne and C. Strachey. A Theory of Programming Language Semantics. Chapman and Hall, 1976.

[20] A. Miné. The octagon abstract domain. J. Higher-Order and Symbolic Computation, 19:31–100, 2006.

17

Schmidt

[21] F. Nielson. A denotational framework for data flow analysis. Acta Informatica, 18:265–287, 1982.

[22] F. Nielson. Program transformations in a denotational setting. ACM Trans. Prog. Languages and
Systems, 7:359–379, 1985.

[23] F. Nielson and H. R. Nielson. Two-Level Functional Languages. Cambridge University Press, 1992.

[24] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer Verlag, 1999.

[25] G. Plotkin. Domains. Lecture notes, Univ. Pisa/Edinburgh, 1983.

[26] J.C. Reynolds. Notes on a lattice-theoretic approach to the theory of computation. Technical report,
Computer Science, Syracuse University, 1972.

[27] D.A. Schmidt. Comparing completeness properties of static analyses and their logics. In Asian Symp.
Prog. Lang. Systems (APLAS’06), LNCS 4279, pages 183–199. Springer Verlag, 2006.

[28] D.A. Schmidt. Abstract interpretation from a topological perspective. Technical report 2009-1,
Computing and Information Science, Kansas State University, 2009.

[29] D.S. Scott and C. Strachey. Toward a mathematical semantics for computer languages. In J. Fox,
editor, Proceedings of Symposium on Computers and Automata, pages 19–46. Microwave Research
Institute Symposia Series: Volume 21, Polytechnic Institute of Brooklyn, 1971.

[30] M.B. Smyth. Powerdomains and predicate transformers: a topological view. In Proc. ICALP’83, LNCS
154, pages 662–675. Springer, 1983.

[31] R.D. Tennent. The denotational semantics of programming languages. Comm. ACM, 19:437–453, 1976.

[32] R.D. Tennent. Language design methods based on semantic principles. Acta Informatica, 8:97–112,
1977.

18

	Introduction
	Background: Abstract interpretation
	Background: Denotational semantics
	Collecting domains
	Some topology
	Some logic
	Sound and complete abstract semantics
	Topological characterization of completeness
	Conclusion
	References

