Extracting program logics from abstract interpretations defined by logical relations

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

From where do programming logics originate?

Consider Hennessy-Milner logic:

 $c \models p$ is given, for primitive properties, p,

 $c \models [f]\varphi, \text{ if for all } c' \in f(c), \ c' \models \varphi$

 $c \models \langle f \rangle \varphi, \text{ if there exists } c' \in f(c) \text{ such that } c' \models \varphi$

for $c \in C,$ where $f: C \rightarrow \mathcal{P}(C)$ denotes a nondeterministic transition function/action

Is "domain theory in logical form" [Abramsky02] hiding here?

We can deconstruct the logic to expose the underlying set-domains, for $S \subseteq C$:

 $S \models \forall \phi$, if for all $c \in S$, $c \models \phi$ $S \models \exists \phi$, if there exists $c \in S$ such that $c \models \phi$ $c \models f; \phi$, if $f(c) \models \phi$

(Read [f] ϕ as abbreviating f; $\forall \phi$, and read $\langle f \rangle \phi$ as abbreviating f; $\exists \phi$.)

The latter can be expanded into this logic, exposing lower- and upper-powerset constructions as well as function pre- and post-image:

$$\begin{split} S &\models_{L(\tau)} \forall (\bigvee_{i < k} \varphi_i), \text{ if for all } c \in S, \text{ there exists } j < k \text{ such that } c \models_{\tau} \varphi_j \\ S &\models_{U(\tau)} \bigwedge_{i < k} (\exists \varphi_i), \text{ if for all } i < k, \text{ there exists } c \in S \text{ such that } c \models_{\tau} \varphi_i \\ c &\models_{\tau_1} f; \varphi, \text{ if } f(c) \models_{\tau_2} \varphi, \text{ for } f: C_{\tau_1} \to C_{\tau_2} \\ f(c) &\models_{\tau_2} f(\varphi), \text{ if } c \models \varphi_{\tau_1}, \text{ for } f: C_{\tau_1} \to C_{\tau_2} \end{split}$$

This judgement set is extracted from Plotkin-style *logical* relations for the types, $\mathcal{P}_L(\tau)$, $\mathcal{P}_U(\tau)$, and $\tau_1 \rightarrow \tau_2$ [Plotkin80], which generate a Cousot-Cousot-style abstract interpretation [Abramsky90, CousotCousot77].

Preview of the talk

- We show how to define an abstract interpretation via an approximation relation on base type, lifted to compound types via logical relations, *à la* Abramsky90.
- 2. We show the coincidence between Galois-connectionbased approximation and relational approximation regarding functional soundness and *completeness*.
- 3. We show that every abstract domain has an *internal logic* and show how the logical relations generate logical operators within the internal logic.
- 4. When there are logical operators that do not fall within an abstract domain's internal logic, we show how to underapproximate them soundly by means of an *external logic* generated from the logical relations.

Abstract interpretation: computing on properties

readInt(x)		readSign(x)
if x>0 :		if isPos(x):
<pre>x:= pred(x)</pre>	A: abstractly interpret domain Int by	$x := pred^{\sharp}(x)$
x := succ(x)		$\mathbf{x} := \mathbf{succ}^{\sharp}(\mathbf{x})$
writeInt(x)	$Sign = \{neg, zero, pos, any\}$:	write $Sign(x)$
Q: Is output <i>pos</i> ?		WI LEO LGIL(A)

 $succ^{\sharp}(pos) = pos \qquad pred^{\sharp}(neg) = neg$ $succ^{\sharp}(zero) = pos \qquad pred^{\sharp}(zero) = neg$ where $succ^{\sharp}(neg) = any \quad and \quad pred^{\sharp}(pos) = any$ $succ^{\sharp}(any) = any \qquad pred^{\sharp}(any) = any$

Calculate the static analysis:

{*zero* \mapsto *pos*, *neg* \mapsto *any*, *pos* \mapsto *any*, *any* \mapsto *any*} The Question is decided only for *zero* — the static analysis is *sound* but *incomplete*.

The Galois connection underlying the analysis

 $(\mathcal{P}(Int), \subseteq) \langle \alpha, \gamma \rangle (Sign, \sqsubseteq)$ is a *Galois connection*: γ interprets the properties in *Sign*, and α maps each concrete set to the property that best describes the set [CousotCousot77].

The Galois connection is a "completion" of an abstraction relation

For all n > 0, define $\rho_{Sign} \subseteq Int \times Sign$ as

 $\begin{array}{ll} -n \ \rho_{Sign} \ neg & +n \ \rho_{Sign} \ pos \\ 0 \ \rho_{Sign} \ zero & m \ \rho_{Sign} \ any, \ \text{for all} \ m \in Int \end{array}$

Example: +3 has property *pos*, because +3 ρ_{Sign} *pos*.

Intuition: for all $a \in Sign$, $\gamma(a) = \{i \in Int \mid i \rho_{Sign} a\}$.

 $\rho \subseteq C \times A$ generates a Galois connection between C and A iff ρ possesses U-GLB-L-LUB-closure [Shmuely74,Schmidt04].

A Galois connection defines an internal logic that one uses to compute a static analysis

For $(PC, \subseteq) \langle \alpha, \gamma \rangle (A, \sqsubseteq)$, for all $S \in PC$, and $\alpha \in A$, define

 $S \models a \text{ iff } S \subseteq \gamma(a) \text{ (iff } \alpha(S) \sqsubseteq a \text{) (iff } S \overline{\rho} a \text{)}$

Example: For Sign, $\{2, 5\} \models pos$. The G.C. defines this *internal logic*:

 $\varphi ::= \mathbf{a} | \phi_1 \Box \phi_2$

because γ preserves \sqcap as \cap (that is, $\gamma(a_1 \sqcap a_2) = \gamma(a_1) \cap \gamma(a_2)$):

 $S \models a_1 \sqcap a_2$ iff $S \models a_1$ and $S \models a_2$.

Example: In Sign, $\{2, 5\} \models pos \sqcap any$.

More importantly, for all $a \in A$, $a \sqsubseteq \phi$ implies $\gamma(a) \models \phi$. Static analysis crucially depends on this (cf. the earlier example).

But Sign's logic excludes disjunction, e.g., $\{0\} \models any = neg \sqcup pos$, yet $\{0\} \not\models neg$ and $\{0\} \not\models pos - \gamma$ does not preserve \sqcup as $\cup !$

Abstract transformers compute on properties

For $f : PC \to PC$, $f^{\sharp} : A \to A$ is *sound* iff

 α and γ act as *semi-homomorphisms*; f[#] is a *postcondition transformer*.

Example: For succ : $\mathcal{P}(Int) \to \mathcal{P}(Int)$, succ $\{0\} = \{1\}$, succ $^{\ddagger}(zero) = pos$. This is how a static analysis computes.

Properties: $f(S) \models f^{\sharp}(\alpha(S))$ and $f(\gamma(\alpha)) \models f^{\sharp}(\alpha)$.

For example, $\{0\} \models zero$ and $succ\{0\} \models succ^{\sharp}(zero) = pos$.

 $f_{best}^{\sharp} = \alpha \circ f \circ \gamma$ is the best — strongest postcondition — transformer in A's internal logic.

(Functional) completeness: from semi-homomorphism to homomorphism

For $f : PC \rightarrow PC$, $f^{\sharp} : A \rightarrow A$:

Forwards(γ)-completeness

[GiacobazziQuintarelli01]:

 γ is a homomorphism from A to PC — it preserves f^{\sharp} as f.

Theorem: $S \models f^{\sharp}(a)$ iff $S \subseteq f(\gamma(a))$.

That is, f^{\sharp} is a logical operator in A's internal logic (like \sqcap is).

Backwards(*α***)-completeness**

[Cousots79,GiacobazziJACM00]:

 α is a homomorphism from PC to A — it preserves f as f^{\$\$\$#\$}.

Theorem: $f^{\sharp}(\alpha(S)) \sqsubseteq a$ iff $f(S) \models a$.

That is, we can *decide* properties of f in A.

Often, one wants more than the internal logic

 $\mathcal{L} \ni \varphi ::= a | \phi_1 \land \phi_2 | \phi_1 \lor \phi_2 | [f] \varphi, \text{ where } a \in A$ The interpretation, $\llbracket \cdot \rrbracket : \mathcal{L} \to \mathcal{P}(C)$, is defined as

$$\begin{split} \llbracket a \rrbracket = \gamma(a) & \llbracket [f] \varphi \rrbracket = \widetilde{pre}_{f} \llbracket \varphi \rrbracket \\ \llbracket \varphi_{1} \land \varphi_{2} \rrbracket = \llbracket \varphi_{1} \rrbracket \cap \llbracket \varphi_{2} \rrbracket & \text{where } \widetilde{pre}_{f}(S) = \{c \in C \mid f(c) \subseteq S\}, \\ \llbracket \varphi_{1} \lor \varphi_{2} \rrbracket = \llbracket \varphi_{1} \rrbracket \cup \llbracket \varphi_{2} \rrbracket & \text{and } f : C \to \mathcal{P}(C) \text{ is a state-transition} \\ & \text{function} \end{split}$$

Define $S \models \phi$ iff $S \subseteq \llbracket \phi \rrbracket$. (In the *internal logic*, $S \models a$ iff $S \subseteq \gamma(a)$.)

 $\phi_1 \lor \phi_2$ and $[f] \phi$ might not fall in A's internal logic. (E.g., for Sign, there is no $\cup : Sign \times Sign \to Sign$ such that $\gamma(neg \cup pos) = \llbracket \phi_1 \lor \phi_2 \rrbracket$. And, most f_{best}^{\sharp} are not γ -complete for f.)

What justifies these extra operators? Can we employ them within a sound static analysis?

Help comes from the logical relations for the types, $\tau ::= b | \tau_1 \rightarrow \tau_2 | L(\tau) | U(\tau)$

For $\rho_{\tau} \subseteq C_{\tau} \times A_{\tau}$:

$$\begin{split} \rho_b \text{ is given, for base type } b \text{ (e.g., } \rho_{\textit{Sign}} \subseteq \textit{Int} \times \textit{Sign}) \\ f \rho_{\tau_1 \to \tau_2} f^{\sharp} \text{ iff for all } c \in C_{\tau_1} \text{ and } a \in A_{\tau_1}, c \rho_{\tau_1} a \text{ implies } f(c) \rho_{\tau_2} f^{\sharp}(a) \\ S \rho_{L(\tau)} T \text{ iff for all } c \in S \in C_{L(\tau)}, \text{ exists } a \in T \in A_{L(\tau)} \text{ s.t. } c \rho_{\tau} a \\ S \rho_{U(\tau)} T \text{ iff for all } a \in T \in A_{U(\tau)}, \text{ exists } c \in S \in C_{U(\tau)} \text{ s.t. } c \rho_{\tau} a \\ \end{split}$$

- D_b is given (e.g., *Int* and *Sign*)
- $\blacklozenge \ D_{\tau_1 \to \tau_2} = D_{\tau_1} \to D_{\tau_2}, \ \text{the poset of monotone functions from } D_{\tau_1} \ \text{to } D_{\tau_2}.$
- D_{L(τ)} = P_L(D_τ), a *lower powerset* of D_τ, a collection of downclosed subsets of D that includes all ↓d for all d ∈ D, partially ordered by ⊆, and closed under ∩.
- D_{u(τ)} = P_u(D_τ), an *upper powerset* of D_τ, a collection of upclosed subsets of D that includes all ↑d for all d ∈ D, partially ordered by ⊇, and closed under ∪.

Lower-powerset approximation defines universal, disjunctive properties: e.g., $\{neg, zero, none\}$ asserts $\forall (neg \lor zero)$ — all data are nonpositive:

Upper-powerset approximation defines conjunctive, existential properties: e.g., $\{neg, pos, any\}$ asserts $\exists neg \land \exists pos$ — there exists a negative and a positive datum:

Consequences of the "powerset lift"

- When ϕ_i are found in A's internal logic, then $\forall (\bigvee_i \phi_i)$ is found in $\mathcal{P}_{\downarrow}(A)$'s internal logic.
- When ϕ_i are found in A's internal logic, then $\bigwedge_i (\exists \phi_i)$ is found in $\mathcal{P}_{\uparrow}(A)$'s internal logic.

More importantly, we use down-closed and up-closed subsets of A to define an *external logic* where judgements take form,

 $a \in \llbracket \phi \rrbracket^A \subseteq A$, rather than $a \sqsubseteq \phi \in A$.

The sets let us define sound *underapproximation*, where $a \in \llbracket \varphi \rrbracket^A$ implies $\gamma(a) \subseteq \llbracket \varphi \rrbracket$.

The external logic falls even further outside of A's internal logic because of problems with $f^{\sharp} : A_1 \to A_2$, which we "split" into pre- and post-image, which are rarely γ -complete....

A programming logic based on logical relations

Types: $\tau ::= b | L(\tau) | U(\tau) | \tau_1 \rightarrow \tau_2$

Assertions: $\phi ::= a | \bigvee_{i < k} \phi_i | \bigwedge_{i < k} \phi_i | f(\phi) | f; \phi$

$$\begin{array}{ll} \textbf{Judgement typing:} & \mathfrak{a}: \mathfrak{b} & \frac{\varphi_{\mathfrak{i}}: \tau, \text{ for all } \mathfrak{i} < k}{\bigvee \varphi_{\mathfrak{i}}: L(\tau)} & \frac{\varphi_{\mathfrak{i}}: \tau, \text{ for all } \mathfrak{i} < k}{\bigwedge \varphi_{\mathfrak{i}}: \mathfrak{U}(\tau)} \\ & \underset{\substack{\mathfrak{i} < k \\ f: \tau_1 \to \tau_2 \quad \varphi: \tau_1 \\ f(\varphi): \tau_2}}{\underbrace{f: \tau_1 \to \tau_2 \quad \varphi: \tau_1}_{f; \varphi: \tau_1}} & \underbrace{f: \tau_1 \to \tau_2 \quad \varphi: \tau_2}_{f; \varphi: \tau_1} \end{array}$$

Concrete judgements: have form, $c \models_{\tau} \phi$, where $c \in C_{\tau}$ and $\phi : \tau$ $c \models_{b} a$ is given by $\rho_{b} \subseteq C_{b} \times A_{b}$, e.g., $n \models_{Sign} a$ if $n \rho_{Sign} a$ $S \models_{L(\tau)} \bigvee_{i < k} \phi_{i}$, if for all $c \in S$, there exists j < k such that $c \models_{\tau} \phi_{j}$ $S \models_{U(\tau)} \bigwedge_{i < k} \phi_{i}$, if for all i < k, there exists $c \in S$ such that $c \models_{\tau} \phi_{i}$ $c \models_{\tau_{1}} f; \phi$, if $f(c) \models_{\tau_{2}} \phi$, for $f \in C_{\tau_{1}} \to C_{\tau_{2}}$ (this defines $c \in \widetilde{pre}_{f}(\phi)$) $c \models_{\tau_{2}} f(\phi)$, if there exists $c' \in C_{\tau_{1}}$ such that $c' \models_{\tau_{1}} \phi$ and f(c') = c, for $f \in C_{\tau_{1}} \to C_{\tau_{2}}$ (this defines $c \in post_{f}(\phi)$)

The corresponding external logic for abstract domains

Abstract judgements have form, $a \models_{\tau}^{\mathcal{A}} \phi$,

where $a \in A_{\tau}$ and $\phi : \tau$. (Read $a \models_{\tau}^{\mathcal{A}} \phi$ as $a \in \llbracket \phi \rrbracket_{\tau}^{\mathcal{A}}$.)

 $a \models_{b}^{\mathcal{A}} a'$, if $a \sqsubseteq_{b} a'$, for $a, a' \in A_{b}$ (e.g., $pos \sqsubseteq_{Sign} any$)

 $T \models_{L(\tau)}^{\mathcal{A}} \bigvee_{i < k} \phi_i$, if for all $a \in T$, there exists j < k such that $a \models_{\tau}^{\mathcal{A}} \phi_j$

 $T \models_{U(\tau)}^{\mathcal{A}} \bigwedge_{i < k} \phi_i$, if for all i < k, there exists $a \in T$ such that $a \models_{\tau}^{\mathcal{A}} \phi_i$

$$\mathfrak{a} \models_{\tau_1}^{\mathcal{A}} \mathfrak{f}; \phi, \text{ if } \mathfrak{f}^{\sharp}(\mathfrak{a}) \models_{\tau_2}^{\mathcal{A}} \phi, \text{ where } \mathfrak{f} \rho_{\tau_1 \to L(\tau_2)} \mathfrak{f}^{\sharp}$$

(this underapproximates $\widetilde{pre}_{f}(\phi)$)

$$\begin{split} a \models_{\tau_2}^{\mathcal{A}} f(\varphi), \text{ if there exists } a' \in A_{\tau_1} \text{ such that } a' \models_{\tau_1}^{\mathcal{A}} \varphi \\ \text{ and } a' \in f^{\flat}(a), \text{ where } f^{-1} \rho_{\tau_1 \to U(\tau_2)} f^{\flat} \end{split}$$

(this underapproximates $pre_{f^{-1}}(\phi) = post_{f}(\phi)$)

Consequences

- **1.** Soundness: $S \rho_{\tau} a$ and $a \models_{\tau}^{\mathcal{A}} \phi$ imply $S \models_{\tau} \phi$.
- 2. Completeness I: When a logical operator, f^{\sharp} , is γ -complete for f, then the judgement form, $\cdot \models_{\tau}^{\mathcal{A}} f^{\sharp}(\phi)$, is complete (falls in the internal logic) for $\cdot \models_{\tau} f(\phi)$.
- 3. Completeness II: When f^{\sharp} is α -complete for f, then $\cdot \models_{\tau}^{\mathcal{A}} f^{\sharp}; \phi$ is complete for $\cdot \models_{\tau} f; \phi$
- We can formally justify branching-time logics (e.g., Hennessy-Milner logic) as sound, best approximating, and complete for static analysis (*abstract model checking* [Dams97]).

References This talk: www.cis.ksu.edu/~schmidt/papers

- 1. S. Abramsky. Abstract interpretation, logical relations, and Kan extensions. *J. Logic and Comp.* (1)1990.
- 2. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. ACM POPL 1979.
- 3. D. Dams, et al. Abstract interpretation of reactive systems. *ACM TOPLAS* (19)1997.
- 4. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and refinements in abstract model checking. SAS'01, LNCS 2126.
- 5. G. Plotkin. *Domains.* Course lecture notes, Pisa/Edinburgh, 1984.
- 6. G. Plotkin. Lambda-definability in the full type hierarchy. In *To H.B. Curry*, Academic Press, 1980.
- 7. D.A. Schmidt. A calculus of logical relations for over- and underapproximating static analyses. *Sci. Comp. Prog.* (64)2007.