
Extracting program logics
from abstract interpretations
defined by logical relations

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

(-: / 1

From where do programming logics originate?

Consider Hennessy-Milner logic:

c |= p is given, for primitive properties, p,

c |= [f]φ, if for all c ′ ∈ f(c), c ′ |= φ

c |= 〈f〉φ, if there exists c ′ ∈ f(c) such that c ′ |= φ

for c ∈ C, where f : C → P(C) denotes a nondeterministic transition function/action

Is ”domain theory in logical form” [Abramsky02] hiding here?

We can deconstruct the logic to expose the underlying
set-domains, for S ⊆ C:

S |= ∀φ, if for all c ∈ S, c |= φ

S |= ∃φ, if there exists c ∈ S such that c |= φ

c |= f;φ, if f(c) |= φ

(Read [f]φ as abbreviating f; ∀φ, and read 〈f〉φ as abbreviating f; ∃φ.)

(-: / 2

The latter can be expanded into this logic, exposing lower- and
upper-powerset constructions as well as function pre- and
post-image:

S |=L(τ) ∀(
∨

i<kφi), if for all c ∈ S, there exists j < k such that c |=τ φj

S |=U(τ)

∧
i<k(∃φi), if for all i < k, there exists c ∈ S such that c |=τ φi

c |=τ1
f;φ, if f(c) |=τ2

φ, for f : Cτ1
→ Cτ2

f(c) |=τ2
f(φ), if c |= φτ1

, for f : Cτ1
→ Cτ2

This judgement set is extracted from Plotkin-style logical
relations for the types, PL(τ), PU(τ), and τ1 → τ2 [Plotkin80] ,
which generate a Cousot-Cousot-style abstract interpretation
[Abramsky90, CousotCousot77] .

(-: / 3

Preview of the talk

1. We show how to define an abstract interpretation via an
approximation relation on base type, lifted to compound
types via logical relations, à la Abramsky90.

2. We show the coincidence between Galois-connection-
based approximation and relational approximation regarding
functional soundness and completeness.

3. We show that every abstract domain has an internal logic
and show how the logical relations generate logical
operators within the internal logic.

4. When there are logical operators that do not fall within an
abstract domain’s internal logic, we show how to
underapproximate them soundly by means of an external
logic generated from the logical relations.

(-: / 4

Abstract interpretation: computing on properties

readInt(x)

if x>0 :

x:= pred(x)

x:= succ(x)

writeInt(x)

Q: Is output pos?

A: abstractly interpret
domain Int by
Sign = {neg , zero, pos , any }:

readSign(x)

if isPos(x):

x:= pred♯(x)

x:= succ♯(x)

writeSign(x)

where

succ♯(pos) = pos

succ♯(zero) = pos

succ♯(neg) = any

succ♯(any) = any

and

pred♯(neg) = neg

pred♯(zero) = neg

pred♯(pos) = any

pred♯(any) = any

Calculate the static analysis :
{zero 7→ pos , neg 7→ any , pos 7→ any , any 7→ any}

The Question is decided only for zero — the static analysis is sound
but incomplete.

(-: / 5

The Galois connection underlying the analysis

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}
pos

zero

none

any

neg

α

P(Int)
Sign

γ : Sign → P(Int)

γ(none) = {}, γ(any) = Int

γ(neg) = {· · · ,−3,−2,−1}

γ(zero) = {0}

γ(pos) = {1, 2, 3, · · ·}

α : P(Int) → Sign

α(S) = ⊓{a | γ(a) ⊆ S}

e.g., α{2, 4, 6, 8, ...} = pos

α{−4,−1, 0} = any

α{0} = zero

(P(Int),⊆)〈α, γ〉(Sign,⊑) is a Galois connection: γ interprets the
properties in Sign, and α maps each concrete set to the property that
best describes the set [CousotCousot77] .

(-: / 6

The Galois connection is a “completion”
of an abstraction relation

γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}
pos

zero

none

any

neg

α

P(Int)
Sign

For all n > 0, define ρSign ⊆ Int × Sign as

−nρSign neg +nρSign pos

0 ρSign zero mρSign any , for all m ∈ Int

Example: +3 has property pos , because +3 ρSign pos .

Intuition: for all a ∈ Sign, γ(a) = {i ∈ Int | i ρSign a}.

ρ ⊆ C × A generates a Galois connection between C and A iff ρ

possesses U-GLB-L-LUB-closure [Shmuely74,Schmidt04] .

(-: / 7

A Galois connection defines an internal logic
that one uses to compute a static analysis

For (PC,⊆)〈α, γ〉(A,⊑), for all S ∈ PC, and a ∈ A, define

S |= a iff S ⊆ γ(a) (iff α(S) ⊑ a) (iff S ρ̄ a)

Example: For Sign, {2, 5} |= pos . The G.C. defines this internal logic :

φ ::= a | φ1⊓φ2

because γ preserves ⊓ as ∩ (that is, γ(a1⊓a2) = γ(a1) ∩ γ(a2)):

S |= a1⊓a2 iff S |= a1 and S |= a2.

Example: In Sign, {2, 5} |= pos ⊓ any .

More importantly, for all a ∈ A, a⊑φ implies γ(a) |= φ.
Static analysis crucially depends on this (cf. the earlier example).

But Sign ’s logic excludes disjunction, e.g., {0} |= any = neg ⊔ pos , yet
{0} 6|= neg and {0} 6|= pos — γ does not preserve ⊔ as ∪ !

(-: / 8

Abstract transformers compute on properties

For f : PC → PC, f♯ : A → A is sound iff

α ◦ f ⊑ f♯ ◦ α iff f ◦ γ ⊑ γ ◦ f♯

α
f #α (S)

f(S)S
f

α
a

(a)

f #
f #(a)

f

γγ

γ

α and γ act as semi-homomorphisms; f♯ is a postcondition
transformer:

Example: For succ : P(Int) → P(Int), succ{0} = {1},
succ♯(zero) = pos . This is how a static analysis computes.

Properties: f(S) |= f♯(α(S)) and f(γ(a)) |= f♯(a).

For example, {0} |= zero and succ{0} |= succ♯(zero) = pos .

f
♯
best = α ◦ f ◦ γ is the best — strongest postcondition — transformer

in A’s internal logic.

(-: / 9

(Functional) completeness:
from semi-homomorphism to homomorphism
For f : PC → PC, f♯ : A → A:
Forwards(γ)-completeness
[GiacobazziQuintarelli01] :

f ◦ γ = γ ◦ f♯

γ
#

γ (a)

f #(a)

f

a

γ
f

γ is a homomorphism from A to

PC — it preserves f♯ as f.

Theorem: S |= f♯(a) iff S ⊆

f(γ(a)).

That is, f♯ is a logical operator
in A’s internal logic (like ⊓ is).

Backwards(α)-completeness
[Cousots79,GiacobazziJACM00] :

α ◦ f = f♯ ◦ α

α
#α (S)

f(S)S
f

α
f

α is a homomorphism from PC to

A — it preserves f as f♯.

Theorem: f♯(α(S)) ⊑ a iff

f(S) |= a.

That is, we can decide proper -
ties of f in A.

(-: / 10

Often, one wants more than the internal logic

L ∋ φ ::= a | φ1 ∧ φ2 | φ1 ∨ φ2 | [f]φ, where a ∈ A

The interpretation, [[·]] : L → P(C), is defined as

[[a]] = γ(a)

[[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]

[[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]

[[[f]φ]] = p̃ref[[φ]]

where p̃ref(S) = {c ∈ C | f(c) ⊆ S},

and f : C → P(C) is a state-transition

function

Define S |= φ iff S ⊆ [[φ]]. (In the internal logic, S |= a iff S ⊆ γ(a).)

φ1 ∨ φ2 and [f]φ might not fall in A’s internal logic. (E.g., for Sign,

there is no ∪ : Sign × Sign → Sign such that γ(neg∪pos) = [[φ1 ∨ φ2]].

And, most f
♯
best are not γ-complete for f.)

What justifies these extra operators? Can we employ them
within a sound static analysis?

(-: / 11

Help comes from the logical relations for the
types, τ ::= b | τ1 → τ2 | L(τ) | U(τ)

For ρτ ⊆ Cτ × Aτ:

ρb is given, for base type b (e.g., ρSign ⊆ Int × Sign)

f ρτ1→τ2
f♯ iff for all c ∈ Cτ1

and a ∈ Aτ1
, c ρτ1

a implies f(c)ρτ2
f♯(a)

SρL(τ) T iff for all c ∈ S ∈ CL(τ), exists a ∈ T ∈ AL(τ) s.t. c ρτ a

SρU(τ) T iff for all a ∈ T ∈ AU(τ), exists c ∈ S ∈ CU(τ) s.t. c ρτ a

where

� Db is given (e.g., Int and Sign)

� Dτ1→τ2
= Dτ1

→ Dτ2
, the poset of monotone functions from Dτ1

to Dτ2
.

� DL(τ) = PL(Dτ), a lower powerset of Dτ , a collection of downclosed subsets of
D that includes all ↓d for all d ∈ D, partially ordered by ⊆, and closed under ∩.

� DU(τ) = PU(Dτ), an upper powerset of Dτ , a collection of upclosed subsets of
D that includes all ↑d for all d ∈ D, partially ordered by ⊇, and closed under ∪.

(-: / 12

Lower-powerset approximation defines universal, disjunct ive
properties: e.g., {neg , zero,none} asserts ∀(neg ∨ zero) — all data are
nonpositive:

{ S | S negatives }

Int }

{ S | S

{ }

{ S | S

nonpositives }
γ

{neg,none} {zero,none} {pos,none}

{none}

{ }

(P(Int))P

U
I

U
I

UI

UI

UI

U
I

P (Sign)

{neg,zero,pos,none}

{any,neg,zero,pos,none}

{zero,pos,none}{neg,pos,none}{neg,zero,none}

Upper-powerset approximation defines conjunctive, existe ntial
properties: e.g., {neg , pos , any } asserts ∃neg ∧ ∃pos — there exists a
negative and a positive datum:

{ S | S

{ S | }

{ }

Int

}{ S |

}

{ S | }

{ S | S is nonempty

op

}

γ {pos,any}

{any,neg,zero,pos,none}

{any,neg,zero,pos}

P (Sign)

U
I

∋−n S∃

∋ ∋∃0 S, −n S

∋ ∋∃ ∃ ∋

0 S, −n S, +n S

UI

UI

UI

UI

UI

P (P(Int)) { }

{any}

{zero,any}

{neg,pos,any} {zero,pos,any}{neg,zero,any}

{neg,any}

(-: / 13

Consequences of the “powerset lift”

� When φi are found in A’s internal logic, then ∀(
∨

i φi) is found in

P↓(A)’s internal logic.

� When φi are found in A’s internal logic, then
∧

i(∃φi) is found in

P↑(A)’s internal logic.

More importantly, we use down-closed and up-closed subsets of A

to define an external logic where judgements take form,

a ∈ [[φ]]
A ⊆ A, rather than a⊑φ ∈ A.

The sets let us define sound underapproximation, where a ∈ [[φ]]A

implies γ(a) ⊆ [[φ]].

The external logic falls even further outside of A’s internal logic

because of problems with f♯ : A1 → A2, which we “split” into pre- and

post-image, which are rarely γ-complete....

(-: / 14

A programming logic based on logical relations
Types: τ ::= b | L(τ) | U(τ) | τ1 → τ2

Assertions: φ ::= a |
∨

i<kφi |
∧

i<kφi | f(φ) | f;φ

Judgement typing:

a : b
φi : τ, for all i < k∨

i<k

φi : L(τ)

φi : τ, for all i < k∧

i<k

φi : U(τ)

f : τ1 → τ2 φ : τ1

f(φ) : τ2

f : τ1 → τ2 φ : τ2

f;φ : τ1

Concrete judgements: have form, c |=τ φ, where c ∈ Cτ and φ : τ

c |=b a is given by ρb ⊆ Cb × Ab, e.g., n |=Sign a if nρSign a

S |=L(τ)

∨
i<kφi, if for all c ∈ S, there exists j < k such that c |=τ φj

S |=U(τ)

∧
i<kφi, if for all i < k, there exists c ∈ S such that c |=τ φi

c |=τ1
f;φ, if f(c) |=τ2

φ, for f ∈ Cτ1
→ Cτ2

(this defines c ∈ fpref(φ))

c |=τ2
f(φ), if there exists c ′ ∈ Cτ1

such that c ′ |=τ1
φ and f(c ′) = c,

for f ∈ Cτ1
→ Cτ2

(this defines c ∈ postf(φ))

(-: / 15

The corresponding external logic for abstract
domains

Abstract judgements have form, a |=A
τ φ,

where a ∈ Aτ and φ : τ. (Read a |=A
τ φ as a ∈ [[φ]]Aτ .)

a |=A
b a ′, if a⊑ b a ′, for a, a ′ ∈ Ab (e.g., pos ⊑ Signany)

T |=A

L(τ)

∨
i<kφi, if for all a ∈ T, there exists j < k such that a |=A

τ φj

T |=A

U(τ)

∧
i<kφi, if for all i < k, there exists a ∈ T such that a |=A

τ φi

a |=A
τ1

f;φ, if f♯(a) |=A
τ2

φ, where f ρτ1→L(τ2) f♯

(this underapproximates fpref(φ))

a |=A
τ2

f(φ), if there exists a ′ ∈ Aτ1
such that a ′ |=A

τ1
φ

and a ′ ∈ f♭(a), where f−1 ρτ1→U(τ2) f♭

(this underapproximates pref−1(φ) = postf(φ))

(-: / 16

Consequences

1. Soundness : Sρτ a and a |=A
τ φ imply S |=τ φ.

2. Completeness I : When a logical operator, f♯, is γ-complete
for f, then the judgement form, · |=A

τ f♯(φ), is complete (falls
in the internal logic) for · |=τ f(φ).

3. Completeness II : When f♯ is α-complete for f, then
· |=A

τ f♯;φ is complete for · |=τ f;φ

4. We can formally justify branching-time logics (e.g.,
Hennessy-Milner logic) as sound, best approximating, and
complete for static analysis (abstract model checking
[Dams97]).

(-: / 17

References This talk: www.cis.ksu.edu/∼schmidt/papers

1. S. Abramsky. Abstract interpretation, logical relations, and Kan
extensions. J. Logic and Comp. (1)1990.

2. P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. ACM POPL 1979.

3. D. Dams, et al. Abstract interpretation of reactive systems. ACM
TOPLAS (19)1997.

4. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples,
and refinements in abstract model checking. SAS’01, LNCS 2126.

5. G. Plotkin. Domains. Course lecture notes, Pisa/Edinburgh, 1984.

6. G. Plotkin. Lambda-definability in the full type hierarchy. In To H.B.
Curry, Academic Press, 1980.

7. D.A. Schmidt. A calculus of logical relations for over- and
underapproximating static analyses. Sci. Comp. Prog. (64)2007.

(-: / 18

