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Abstract

We connect the activity of defining an abstract-interpretation-based static analysis with synthesizing its
appropriate programming logic by applying logical relations as demonstrated by Abramsky. We begin with
approximation relations of base type, which relate concrete computational values to their approximations,
and we lift the relations to function space and upper- and lower-powerset. The resulting family’s properties
let us synthesize an appropriate logic for reasoning about the outcome of a static analysis. The relations
need not generate Galois connections, but when they do, we show that the relational notions of soundness
and completeness coincide with the Galois-connection-based notions.
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1 Introduction

Static analysis — the automated extraction of program properties — relies upon

a suitably chosen programming logic for stating and validating the properties. For

example, the static analysis of a nondeterministic state-transition system typically

employs a variant of dynamic [16] or Hennessy-Milner [18] logic to state and validate

properties: for states, c ∈ C:

c |= p is given, for primitive properties, p,

c |= [f ]φ, if for all c′ ∈ f(c), c′ |= φ

c |= 〈f〉φ, if there exists c′ ∈ f(c) such that c′ |= φ

where f : C → P(C) denotes a nondeterministic transition function/action.

From where does this logic arise? We can “deconstruct” the logic to discover its

origin: first we untangle f from the universal/existential properties defined by [·]
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and 〈·〉. Let c ∈ C and S ⊆ C:

S |= ∀φ, if for all c ∈ S, c |= φ

S |= ∃φ, if there exists c ∈ S such that c |= φ

c |= f ;φ, if f(c) |= φ

This exposes the set domains implicit in the original logic. Now, [f ]φ should be

read as an abbreviation of f ;∀φ.

This logic is itself an instance of another logic, where the universal quantifier

quantifies disjunctions; there are conjunctions of existential quantifiers; and both

domain and codomain properties of transfer functions can be described:

S |= ∀(
∨

i<k φi), if for all c ∈ S, there exists j < k such that c |= φj

S |=
∧

i<k(∃φi), if for all i < k, there exists c ∈ S such that c |= φi

c |= f ;φ, if f(c) |= φ

f(c) |= f(φ), if c |= φ

This logic exposes that the set domains are lower- and upper-powerset constructions

and distinguishes between function pre- and post-images. This paper will show that

the last set of judgements are extracted from Plotkin-style logical relations for the

types, PL(τ), PU (τ), and τ1 → τ2 [28]; the relations themselves generate a Cousot-

Cousot-style abstract interpretation [1,7,8]:

(i) We show how to define a static analysis based on abstract interpretation in

terms of an approximation relation on base types, and we show how to lift the

relation to compound types via logical relations, as first proposed by Abramsky

[1].

(ii) We restate the coincidence between Galois-connection-based approximation

and relational approximation regarding best approximation and soundness,

and we extend the coincidence to functional completeness.

(iii) We show that every abstract domain has an internal logic, and we show how

the logical relations generate logical operators within the internal logic.

(iv) When there are logical operators that do not fall within an abstract domain’s

internal logic, we show how to approximate them soundly by means of an

external logic generated with the aid of the logical relations.

(v) We demonstrate how the generated external logic produces the above example

logic.

Aside from its obvious debt to the abstract-interpretation theory of Cousot and

Cousot [7,8,9,11], this paper builds on groundbreaking work by Abramsky [1], who

extracted approximation relations from abstraction maps on base type and gener-

ated maps on higher type via logical relations; by Backhouse and Backhouse [4],

who axiomatized many of Abramsky’s results within relational algebra; and by

Dams [13], who applied abstract interpretation to a rigorous development of safety
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readInt(x)

if x>0 :

x:= pred(x)

x:= succ(x)

writeInt(x)

Q: Is output pos?

A: abstractly interpret

domain Int by

Sign = {neg , zero, pos , any}:

readSign(x)

if isPos(x):

x:= pred♯(x)

x:= succ♯(x)

writeSign(x)

where

succ♯(pos) = pos

succ♯(zero) = pos

succ♯(neg) = any

succ♯(any) = any

and

pred♯(neg) = neg

pred♯(zero) = neg

pred♯(pos) = any

pred♯(any) = any

Calculate the static analysis:

{zero 7→ pos , neg 7→ any , pos 7→ any , any 7→ any}

The Question is decided only for zero — the static analysis is sound but incom-

plete.

Fig. 1. Abstract interpretation: computing on properties

and liveness checking in abstract model checking.

The present paper’s contribution is its use of logical relations to generate a static

analysis — even in the absence of Galois connections — and to synthesize a logic

appropriate for reasoning about the results of the analysis.

2 Static analysis and logical properties

Figure 1 displays a small program and a Question: Upon termination, is the output a

positive integer? Rather than exhaustively test the program to answer the question,

we might employ a static analysis, which in the Figure uses an abstract domain of

sign properties, Sign, as approximate values for computation. When the program’s

transition functions, succ and pred, are abstracted to compute on Sign, we obtain

an abstract interpretation of the program that can be applied to the abstract-test

cases. The results, displayed in the Figure, let us conclude that an input of 0

results in a positive output, but the loss in precision within Sign prevents decisions

for positive, negative, and arbitrary integer inputs. 3

3 Galois connections

Galois connections underlie most static analyses [7,20,26]: For complete lattices,

(C,⊆,∪,∩) and (A, ⊑ , ⊔ , ⊓ ), a pair of monotone maps, α : C → A and γ : A → C,

define a Galois connection, written C〈α, γ〉A for short, iff α ◦ γ ⊑A→A idA and

γ◦α ⊒C→C idC . 4 As we will see, Galois-connection structure lets us define precisely

3 If we improve Sign by adding the properties, ≤zero and ≥zero, then the improved definitions of succ♯ and
pred♯ will decide the Question for pos and neg as well.
4 Equivalently stated, the functions α and γ form a Galois connection when, for all c ∈ C and a ∈ A,
c ⊆C γ(a) iff α(c)⊑a. When the lattices are treated as categories and the functions are treated as functors,
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γ

{1,2,3,...}

{2,4,6,8,...}{1,4}

{2}

{...,−2,−1,0,1,2,...}

{...,−3,−2,−1}

{−4,−1}
{−2}

{}

{−4,−1,0}

{0}
pos

zero

none

any

neg

α

P(Int)
Sign

γ : Sign → P(Int)

γ(none) = {}
γ(neg) = {· · · ,−3,−2,−1}
γ(zero) = {0}
γ(pos) = {1, 2, 3, · · ·}
γ(any) = Int

α : P(Int) → Sign

α(S) = ⊓{a | γ(a) ⊆ S}
e.g., α{2, 4, 6, 8, ...} = pos

α{−4,−1, 0} = any

α{0} = zero

α{} = none, etc.

(P(Int),⊆)〈α, γ〉(Sign ,⊑) is a Galois connection: γ interprets the properties in

Sign, and α maps each concrete set to the property that best describes the set.

Fig. 2. Galois connection between P(Int) and Sign

notions of sound, most-precise, and complete approximation of programs and logics.

Figure 2 shows the Galois connection usually associated with the abstraction of

integers by their signs, as used in Figure 1. The Galois connection in the Figure

is a “completion” of the primitive abstraction relation, ρSign ⊆ Int × Sign, which

matches concrete values to their primitive logical properties [24].

Let n > 0 and define ρSign ⊆ Int × Sign as follows:

−n ρSign neg +n ρSign pos

0 ρSign zero m ρSign any , for all m ∈ Int

For example, +3 has property pos , because +3 ρSign pos .

Let A be a complete lattice (required for static analysis [20]) and C be a (partially

ordered) set. For all c, c′ ∈ C, for all a, a′ ∈ A, a binary relation, ρ ⊆ C × A, is

(i) U-closed iff c ρ a and a ⊑ a′ imply c ρ a′

(ii) GLB-closed iff c ρ⊓{a | c ρ a}

(iii) L-closed iff c ρ a and c′ ⊑ c imply c′ ρ a

(iv) LUB-closed iff ⊔{c | c ρ a} ρ a.

U- and L-closure ensure the soundness of approximation relation ρ [9,24], and GLB-

and LUB-closure ensure the existence of most precise abstractions (α) and con-

cretizations (γ), respectively — we have that [1,4,36,38]

U-GLB-L-LUB-closed ρ ⊆ C × A defines the Galois connection,

C〈αρ, γρ〉A, where αρ(c) = ⊓{a | c ρ a} and γρ(a) = ∪{c | c ρ a}.
Further, every Galois connection defines the U-GLB-L-LUB-closed relation,

c ρ a iff c ⊆C γ(a) (iff α(c)⊑ a).

the Galois connection defines an adjunction [1].
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Every static analysis is based on an approximation relation, and most such

relations possess U-GLB-L-LUB-closure (but not all, e.g., [9,23,41]). Relation

ρSign ⊆ Int × Sign above (where Int is discretely ordered) is U-L-GLB-closed but

not LUB-closed. In this case, the Galois connection in Figure 2 can be constructed

by completing Int to P(Int). We do so by “lifting” ρSign to logical relation ρL(Sign),

as explained in the section that follows.

4 Logical relations and Galois connections

Approximation relations on compound types are correctly defined by logical rela-

tions [28]. For base types, b, function types, and lower and upper powerset types,

τ ::= b | τ1 → τ2 | L(τ) | U(τ)

we define these domains:

• Db is given (e.g., Int and Sign)

• Dτ1→τ2 = Dτ1 → Dτ2 , the partially ordered set of monotone functions from Dτ1

to Dτ2 . (Monotonicity suffices for static analysis [7].)

• DL(τ) = PL(Dτ ), a lower powerset of Dτ , which is a collection of downclosed

subsets of D that includes all ↓d for all d ∈ D, partially ordered by ⊆, and closed

under ∩. 5 (This includes P↓(D), the collection of all downclosed subsets of D.)

• DU(τ) = PU (Dτ ), an upper powerset of Dτ , which is a collection of upclosed

subsets of D that includes all ↑d for all d ∈ D, partially ordered by ⊇, and closed

under ∪. (This includes P↑(D), the collection of all upclosed subsets of D.)

The family of approximating logical relations is defined as usual, for ρτ ⊆ Cτ ×Aτ :

ρb is given, for base type b (e.g., ρSign ⊆ Int × Sign)

f ρτ1→τ2 f ♯ iff for all c ∈ Cτ1 and a ∈ Aτ1 , c ρτ1 a implies f(c) ρτ2 f ♯(a)

S ρL(τ) T iff for all c ∈ S ∈ CL(τ), there exists a ∈ T ∈ AL(τ) such that c ρτ a

S ρU(τ) T iff for all a ∈ T ∈ AU(τ), there exists c ∈ S ∈ CU(τ) such that c ρτ a

The definitions read as expected, e.g., f ρτ1→τ2 f ♯ asserts that function f is approxi-

mated by function f ♯ because arguments related by an approximation relation map

to answers related by an approximation relation. S ρL(τ) T defines an overapprox-

imation relation: S is overapproximated by T because every element of S has an

approximant in T . Dually, S ρU(τ) T defines an underapproximation relation, be-

cause every element in T is witnessed by a concrete element in S. See Figure 3 for

examples of set approximation, which propose logical readings of the relations on

lower and upper powersets [27,39], reminiscent of the modal language proposed by

Winskel [42], adapted to approximation. The lower-powerset approximation is an

example of Abramsky’s safety adjunction, and the upper-powerset approximation

is an example of his liveness adjunction [1].

5 S ⊆ D is downclosed if S = {d′ ∈ D | ∃d ∈ S, d′ ⊑D d}; for d ∈ D, ↓d = {d′ ∈ D | d′ ⊑D d}; S ⊆ D is
upclosed if S = {d′ ∈ D | ∃d ∈ S, d ⊑D d′}; and ↑d = {d′ ∈ D | d ⊑D d′}.
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Lower-powerset approximation defines universal, disjunctive proper-

ties: e.g., {neg , zero,none} asserts ∀(neg ∨ zero) — all data are nonpositive:

γ

{ S | S Int }

{ S | S nonpositives }

{ S | S negatives }

{ }

{neg,pos,none}

{neg,none} {zero,none} {pos,none}

{none}

{ }

UI

U
I

UI

U
I

(P(Int))P
P (Sign)

U
I

UI {neg,zero,pos,none}

{any,neg,zero,pos,none}

{zero,pos,none}{neg,zero,none}

Upper-powerset approximation defines conjunctive, existential prop-

erties: e.g., {neg , pos , any} asserts ∃neg ∧ ∃pos — there exists a negative and

a positive datum:

{ S | }

{ S | S is nonempty }

}

{ }

}

}{ S |

{ S | S

{ S |

op
Int

γ {pos,any}

{any,neg,zero,pos,none}

{any,neg,zero,pos}

P (Sign)

∋−n   S∃

∋ ∋∃0   S,   −n   S

U
I

∋ ∋∃ ∃ ∋

0   S,   −n   S,   +n    S

UI

UI

UI

UI

UI

P (P(Int)     )
{ }

{any}

{zero,any}

{neg,pos,any} {zero,pos,any}{neg,zero,any}

{neg,any}

Fig. 3. Approximation by powersets

4.1 Closure properties of logical relations

Proposition 4.1 For ρτ ⊆ Cτ × Aτ ,

(i) ρL(τ) and ρU(τ) are L-closed; ρτ ′→τ is L-closed iff ρτ is.

(ii) ρL(τ) and ρU(τ) are U-closed; ρτ ′→τ is U-closed iff ρτ is.

(iii) If ρτ is U-GLB-closed, then so is ρL(τ); ρτ ′→τ is U-GLB-closed iff ρτ is.

(iv) If ρτ is L-LUB-closed, then so is ρU(τ); ρτ ′→τ is L-LUB-closed iff ρτ is.

Missing are assurances of LUB-closure for ρL(τ) and GLB-closure for ρU(τ); these

depend on the specific powersets used. But we do have [36]

• For any lower powerset, PA, of type PL(τ), ρL(τ) ⊆ P↓(Cτ ) × PA is LUB-closed.

• For any upper powerset, PC, of type PU (τ), ρU(τ) ⊆ PC×P↑(Aτ ), is GLB-closed.

Using these results, we can build Galois connections from the logical relations, as

needed. One standard trick is completing a U-GLB-closed relation, like ρSign ⊆
Int × Sign, where Int is discretely ordered, to U-GLB-L-LUB-closed ρL(Sign) ⊆
P(Int) × triv(Sign), where lower powerset triv(Sign) = ({↓a | a ∈ Sign},⊆) is

order-isomorphic to Sign. This produces the Galois connection in Figure 2.
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Functional soundness: f ♯ : A → A is sound for f : C → C iff

α ◦ f ⊑ f ♯ ◦ α iff f ◦ γ ⊑ γ ◦ f ♯

α
f #α ( S )

f(S)S
f

α
a

( a )

f #
f #(a)

f

γγ

γ

α and γ act as semi-homomorphisms.

Example: For succ : P(Int) → P(Int), succ(S) = {n + 1 | n ∈ S}, succ♯ is sound for succ.

γ(forwards)-completeness:

f ◦ γ = γ ◦ f ♯

γ
#

γ ( a )

f #(a)

f

a

γ
f

γ is a homomorphism from A to C:

it preserves f ♯ as f .

α(backwards)-completeness:

α ◦ f = f ♯ ◦ α

α
#α ( S )

f(S)S
f

α
f

α is a homomorphism from C to A: it

preserves f as f ♯.

Examples: For negate : P(Int) → P(Int), negate(S) = {−n | n ∈ S} and negate♯(neg) = pos ,

negate♯(pos) = neg , etc., negate♯ is α- and γ-complete for negate; in contrast, succ♯ is neither α- nor

γ-complete for succ; finally, square♯ is α- but not γ-complete for square(S) = {n2 | n ∈ S}.

Fig. 4. Functional soundness and completeness expressed as semi- and full homomphisms

5 Functional soundness and completeness

Figure 1 showed that the concrete state-transition functions, succ : Int → Int and

pred : Int → Int , must be abstracted to succ♯ : Sign → Sign and pred♯ : Sign →
Sign to conduct a static analysis.

A function, f : Cτ → Cτ , is soundly abstracted by f ♯ : Aτ → Aτ , if f ρτ→τ f ♯.

This relational definition coincides with the classical definition of functional sound-

ness from abstract interpretation [1,8,15]: If f ρτ→τ f ♯ is U-GLB-L-LUB-closed,

then the following are equivalent:

• f ρτ→τ f ♯

• αρτ ◦ f ⊑Cτ→Aτ f ♯ ◦ αρτ

• f ◦ γρτ ⊑Aτ→Cτ γρτ ◦ f ♯

αρτ and γρτ are semi-homomorphisms with respect to f and f ♯; see Figure 4.

Given Galois connection, Cτ 〈αρτ , γρτ 〉Aτ , the most precise, sound abstraction

of f : Cτ → Cτ with respect to the Galois connection is f
♯
best = αρτ ◦ f ◦ γρτ =

⊓{f ♯ | f ρτ→τ f ♯} [8]. As indicated by the last equality and Proposition 4.1, if

ρτ lacks U-GLB-closure, then there is no Galois connection and no most-precise

abstraction.

Exact preservation of f ’s mappings within A by f ♯ yields functional complete-

ness; it is characterized in two independent ways:

(i) When α acts as a homomorphism from f to f ♯, then f ♯ is α(backwards)-
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complete for f [8,15].

(ii) When γ acts as a homomorphism from f ♯ to f , then f ♯ is γ(forwards)-complete

for f [14].

See Figure 4. If some f ♯ is (α- or γ-) complete for f , then so is f
♯
best [15]. The

consequences of completeness are developed in the next section.

There is one important example of soundness: For a nondeterministic state

transition system, (Σ, R ⊆ Σ × Σ), we characterize transition relation R as fR :

Σ → P(Σ). Say there is an approximation relation, ρState ⊆ Σ×A, and an abstract

transition system, (A, R♯ ⊆ A × A), as used in “abstract model checking” [5,13].

Using the standard definition of simulation [18]: R♯ ρState-simulates R iff for all

c, c′ ∈ Σ, a ∈ A,

c ρState a and cR c′ imply there exists a′ ∈ A such that aR♯ a′ and c′ ρState a′,

we have that, if fR : Σ → P(Σ) and fR♯ : A → PA are monotone, where PA is a

lower powerset, then R♯ ρState-simulates R iff fR ρState→L(State) fR♯ .

A dual simulation, where R♭ ρ−1
State-simulates R, is characterized with upper

powersets as fR ρState→U(State) fR♭ (cf. “liveness analysis” [1,13]).

6 Program logic

Given an abstraction, ρ ⊆ C × A, that generates a static analysis (e.g., Figures 1

and 2), we require an assertion language to define the properties that the static

analysis must check and validate for program correctness or code improvement.

The simplest assertion language is merely the elements of A itself (e.g., Sign, as

used in Figure 1), and its “logical semantics” is [[a]]ρ = {c | c ρ a}, for each a ∈ A.

One immediate benefit is that every f ♯ : A → A that is sound for f : C → C is

also a sound postcondition transformer for f with respect to the assertion language,

A: for all a ∈ A and c ∈ C:

c ∈ [[a]]ρ implies f(c) ∈ [[f ♯(a)]]ρ

Indeed, f
♯
best is the strongest postcondition transformer for f in A.

A typical static analysis uses such A and f ♯ to compute postconditions for an

abstracted program. At the program’s exit (or at a key internal program point),

there is some assertion to check. Say the assertion is stated as aout ∈ A. Using

cin ρ ain, the static analysis computes f ♯(ain) and checks whether f ♯(ain)⊑aout holds

true. If yes, then f(cin) ∈ [[aout]]ρ holds by U-closure. This is how data-flow analysis,

type checking, and program validation are usually implemented.

The previous technique is sound but “incomplete” (cf. Figure 1). We would

prefer a decision procedure: Say that ρ ⊆ C × A is U-GLB-closed and define αρ :

C → A as αρ(c) = ⊓{a | c ρ a}, that is, αρ maps c to its best approximant. We say

that f ♯ ρ-decides f if, for all c ∈ C, a ∈ A,

f ♯(αρ(c))⊑ a iff f(c) ∈ [[a]]ρ

This means all f ’s A-logical properties can be decided by f ♯ within A. When ρ

defines a Galois connection, decidability coincides with αρ-functional completeness:
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Proposition 6.1 For U-GLB-L-LUB-closed ρ, f ♯ ρ-decides f iff f ♯ is αρ-complete

for f .

This is why α-completeness is important in practice.

6.1 Internal logic

Assertion language A possesses an internal logic in the sense that there exist logical

connectives that are expressed as functions on A. Here is an important example.

If ρ ⊆ C ×A is U-GLB closed, then ⊓ : A×A → A is logical conjunction in A:

for all c ∈ C, a0, a1 ∈ A:

c ∈ [[a0 ⊓ a1]]ρ iff c ∈ [[a0]]ρ and c ∈ [[a1]]ρ

This expands the assertion language based on A to

φ ::= a | φ⊓φ, for all a ∈ A,

and we can employ the usual inference rules for conjunction. For example, in Figure

2, ⊓ is conjunction, and we can assert, say, 2 ∈ [[any ⊓ pos ]]ρSign
. Most important,

when a logical connective exists in A’s internal logic, we can soundly check it within

A: For conjunction, if a static analysis verifies that aout ⊑φ1 ⊓φ2, then we safely

conclude, for all c ρ aout, that c ∈ [[φ1]]ρ and c ∈ [[φ2]]ρ.

Not all propositional connectives exist: For Figure 2, disjunction fails, because

0 ∈ [[any ]]ρSign
= [[neg ⊔ pos ]]ρSign

, yet 0 6∈ [[neg ]]ρSign
and 0 6∈ [[pos ]]ρSign

. 6 Thus,

zero ⊑neg ⊔ pos does not imply 0 ∈ [[neg ]]ρSign
or 0 ∈ [[pos ]]ρSign

.

The previous definition of conjunction is somewhat informal; a more precise

statement reads

[[⊓ (a0, a1)]]ρ = and([[a0]]ρ, [[a1]]ρ)

where and : P(C ) × P(C ) → P(C ) is ∩. This makes clearer that the connective,

and , is expressed in A by ⊓ .

For k-ary logical connective, f : P(C)k → P(C), and k-ary function f ♯ : Ak →
A, we say that f ♯ ρ-expresses f if

[[f ♯(ai)i<k ]]ρ = f([[ai]]ρ)i<k

(See the conjunction example, where f = and and f ♯ = ⊓ .)

We connect this notion to functional completeness: For ρ ⊆ C × A, define ρ ⊆
P(C)×A as S ρ a iff for all c ∈ S, c ρ a. 7 ρ is L-LUB-closed, hence γρ : A → P(C)

is γρ(a) = ∪{S | S ρ a} = {c | c ρ a} = [[a]]ρ.

Proposition 6.2 When ρ ⊆ C × A is U-GLB-closed, f ♯ : A → A ρ-expresses

f : P(C) → P(C) iff f ♯ is γρ-complete for f .

This is why γ-completeness is important in practice.

6 If disjunction would exist in Sign, it must equal ⊔ .
7 This is the trick described at the end of Section 4 for “lifting” a relation to make it L-LUB-closed.
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7 Logical relations generate logical connectives

Starting from base type, τ , and approximation relation, ρτ ⊆ Cτ × Aτ , we use

the logical relations on compound types to generate logical operators in assertion

language Aτ .

Please review the definition of lower powerset from the start of Section 4; recall,

for a concrete lower powerset PL(Cτ ) and an abstract lower powerset PL(Aτ ), for

downclosed sets S ∈ PL(Cτ ) and T ∈ PL(Aτ ), that

S ρL(τ) T iff for all c ∈ S, there exists a ∈ T such that c ρτ a

Downclosed sets in PL(Aτ ) might be written as expressions, ↓{ai}i<k. We treat ↓
as if it were a k-ary logical connective for the ais: ↓{·} : Aτ

k → PL(Aτ ), defining its

semantics from the logical relation:

[[↓{ai}i<k ]]ρL(τ)
= {S′ ∈ PL(Cτ ) | for all c ∈ S′, there exists j < k such that c ∈ [[aj ]]ρτ

}

= fL{[[ai]]ρτ
}i<k,

where fL : P(Cτ )k → P(PL(Cτ )) is defined

fL{Si}i<k = {S′ ∈ PL(Cτ ) | for all c ∈ S′, there exists j < k such that c ∈ Sj}

By definition, ↓ ρL(τ)-expresses fL. What’s more, we can use ↓ to ρτ -express

disjunction: Define

c ∈ [[
∨

i<k{ai}]]ρτ
iff ↓c ∈ [[↓{ai}i<k ]]ρL(τ)

iff there exists some j < k such that c ∈ [[aj ]]ρτ

This requires that ρτ be U-L-closed. The use of a lower powerset to express dis-

junction is known as the disjunctive completion of ρτ , where PL(A) = P↓(A) [15].

We can soundly check disjunction in Aτ : we check that ↓ a⊑↓{ai}i<k, that

is, we check whether there exists some j < k such that a⊑ aj; this implies c ∈
[[
∨

i<k{ai}]]ρτ
, for all c ρτ a. This is hardly a surprise, but it shows that one must

steer to lower-powerset constructions to express disjunction in a static analysis.

Dually, we use the logical relation on upper powersets to express conjunction

(when ρτ is not already U-GLB-closed):

[[↑{ai}i<k ]]ρU(τ)
= fU{[[ai]]ρτ

}i<k, where fU : P(Cτ )k → P(PU (Cτ )) is defined

fU{Si}i<k = {S′ ∈ PU (Cτ ) | for all i < k, there exists c ∈ S′ such that c ∈ Si}

By definition, ↑ ρU(τ)-expresses fU , and we define conjunction in Aτ as

c ∈ [[
∧

i<k{ai}]]ρτ
iff ↑c ∈ [[↑{ai}i<k ]]ρU(τ)

iff for all i < k, c ∈ [[ai]]ρτ

The logical relation for τ1 → τ2 does not readily surrender a logical connective.

From

f ρτ1→τ2 f ♯ iff for all c ∈ Cτ1 , a ∈ Aτ1 , c ρτ1 a implies f(c) ρτ2 f ♯(a)

we define merely a higher-order constant,

10
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[[f ♯]]ρτ1→τ2
= {f ∈ Cτ1 → Cτ2 | for all c ∈ Cτ1 , a ∈ Aτ1 ,

c ∈ [[a]]ρτ1
implies f(c) ∈ [[f ♯(a)]]ρτ2

}

We must work to extract a logical connective for ρτ1 and one for ρτ2 . For the latter,

we propose the postimage function, postf : P(Cτ1) → P(Cτ2), which we hope to

express by some f ♯:

[[f ♯(a)]]ρτ2
= post f [[a]]ρτ1

,where postf (S) = {f(c) ∈ Cτ2 | c ∈ S}

By Proposition 6.2, we know that an f ♯ : A → A ρ-expresses postf iff f ♯ is γρ-

complete for post f .

A logical connective that defines function preimage is defined as

[[f ♯
pre; a]]ρτ1

= p̃ref [[a]]ρτ2
,where p̃ref (S) = {c ∈ Cτ1 | f(c) ∈ S}

Say we have some f ♯ : A → A such that f ρτ1→τ2 f ♯. To express p̃ref : P(C) →

P(C), we want some f
♯
pre : A → PL(Aτ ), and the obvious candidate is

f
♯
pre(a) = {a′ | f ♯(a′)⊑ a}

If ρτ2 is U-closed, then we have soundness: 8 p̃ref ρτ1→L(τ2) f
♯
pre.

Proposition 7.1 For f : Cτ → Cτ and f ♯ : Aτ → Aτ if ρτ is U-GLB-closed and

f ♯ is αρτ -complete for f , then f
♯
pre ρL(τ)-expresses p̃ref .

When f
♯
pre ρL(τ)-expresses fpre, we check a′ ∈ f

♯
pre(a), that is, f ♯(a′)⊑ a, to validate

that c′ ∈ p̃ref [[a]]ρτ
, for all c′ ρτ a′.

8 External logics

Returning to the example in Figures 1 and 2, we see that neither succ♯ and pred♯ are

α- or γ-complete for their respective concrete functions. So, we cannot express the

post f and p̃ref connectives, for f ∈ {succ, pred}, and soundly check them within

Sign.

This situation is the rule, rather than the exception — it is almost impossible to

define an abstract domain that admits completeness for all the transition functions

embedded in a program. For this reason, we must study how to define a less precise,

“external” logic for A that admits sound checking of logical operators that might

not be expressible in A’s internal logic.

Figure 5 displays the logic we have in mind, which consists of the operators

extracted from the logical relations.

Program properties are defined by the judgements, e.g., 2 |=Sign pos , succ(2) =

3 |=Sign succ(pos), {0, 3} |=L(Sign) succ(pos) ∨ zero, 0 |=Sign succ; pos , and so on.

To check |=τ via an abstract interpretation, we must

• supply an abstract domain, Aτ , for each concrete domain, Cτ

• supply f ♯ : Aτ1 → Aτ2 for each concrete transition function, f : Cτ1 → Cτ2 , such

that f ρτ1→τ2 f ♯.

8 In Abramsky’s terminology [1], f
♯
pre defines a safety relation.
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Types: τ ::= b | L(τ) | U(τ) | τ1 → τ2

Typed function symbols: f : τ1 → τ2

Assertions: φ ::= a |
∨

i<k φi |
∧

i<k φi | f(φ) | f ;φ

Judgement typing:

a : b
φi : τ, for all i < k∨

i<k

φi : L(τ)

φi : τ, for all i < k∧

i<k

φi : U(τ)

f : τ1 → τ2 φ : τ1
f(φ) : τ2

f : τ1 → τ2 φ : τ2
f ;φ : τ1

Concrete judgements: have form, c |=τ φ, where c ∈ Cτ and φ : τ

c |=b a is given by ρb ⊆ Cb × Ab, e.g., n |=Sign a if n ρSign a

S |=L(τ)

∨
i<k φi, if for all c ∈ S, there exists j < k such that c |=τ φj

S |=U(τ)

∧
i<k φi, if for all i < k, there exists c ∈ S such that c |=τ φi

c |=τ2 f(φ), if there exists c′ ∈ Cτ1 such that c′ |=τ1 φ and f(c′) = c,

for f ∈ Cτ1 → Cτ2

c |=τ1 f ;φ, if f(c) |=τ2 φ, for f ∈ Cτ1 → Cτ2

Fig. 5. Concrete external logic based on logical relations

Abstract judgements: have form, a |=A
τ φ, where a ∈ Aτ and φ : τ

a |=A
b a′, if a⊑ b a′, for a, a′ ∈ Ab (e.g., pos ⊑ Signany)

T |=A
L(τ)

∨
i<k φi, if for all a ∈ T , there exists j < k such that a |=A

τ φj

T |=A
U(τ)

∧
i<k φi, if for all i < k, there exists a ∈ T such that a |=A

τ φi

a |=A
τ2 f(φ), if ... to come ...

a |=A
τ1 f ;φ, if f ♯(a) |=A

τ2 φ, for f ♯ ∈ Aτ1 → Aτ2

Fig. 6. Abstract external logic

Given the output, aout ∈ Aτ , of a program’s static analysis, we attempt to validate

judgements of form, aout |=
A
τ φ, where abstract judgements based on |=A

τ are defined

in Figure 6. We require that |=A
τ is sound for |=τ : for all φ and a ∈ Aτ ,

a |=A
τ φ implies c |=τ φ, for all c ρτ a

When the above implication is strengthened to an equivalence, we have a form of

logical completeness known as best preservation [11,34]: for all a ∈ Aτ ,

a |=A
τ φ iff c |=τ φ, for all c ρτ a

Another form of completeness is stated in terms of concrete values and is known as

12
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strong preservation [29]: for all c ∈ Cτ ,

c |=τ φ iff there exists a ∈ Aτ such that a |=A
τ φ and c ρτ a

The two completeness forms are independent [14]. Returning to Figures 5 and 6,

we have this result:

Theorem 8.1 For all τ , |=A
τ in Figure 6 is sound for |=τ in Figure 5.

Missing from Figure 6 is a judgement form for f(φ), the postimage judgement.

The reason is that the naive formulation, namely, f ♯(a) |=A
τ2 f(φ), if a |=A

τ1 φ, for

f ρτ1→τ2 f ♯, is unsound. For example, any = pred♯(pos) |=A
Sign pred(pos). Since

−2 ρSign any , the abstract judgement appears to imply that −2 |=Sign pred(pos),

which fails. The problem is that pred♯ overestimates the postimage defined by

post pred, whereas the judgement, f ♯(pos) |=A
Sign pred(pos) requires an f ♯ that un-

derestimates it.

There is a repair, but it is not trivial [35]: First, treat a concrete transition

function, f , to have arity, f : C1 → P(C2).
9 Then, define f−1 : C2 → P(C1) as

f−1(c) = {d ∈ C1 | c ∈ f(d)}. This means (f−1)−1 = f , and more importantly,

that postf = pref−1 [22]. The preimage function, preg : P(C1) → P(C2), for

g : C2 → P(C1), is defined

preg(S) = {c | g(c) ∩ S 6= ∅}

Recall from Figure 3 that the upper-powerset construction defines an ab-

stract domain of sets that witness concrete values. For S ρU(τ) T , the

set, T = {a0, a1, · · · , ai, · · ·} ∈ PU (A), asserts existence of concrete values,

{c0, c1, · · · , ci, · · ·} ⊆ S ∈ P(C), such that ci ρ ai, for i ≥ 0. An upper powerset

is the appropriate abstract domain for underapproximating a concrete function’s

image: For f : Cτ1 → P(Cτ2) and f ♭ : Aτ1 → PU (Aτ2) such that f ρτ1→U(τ2) f ♭, we

know that f(c) ρU(τ2) f ♭(a), for c ρτ1 a, meaning that every a ∈ f ♭(a) has a witness

c ∈ f(c).

We have this soundness result for approximating function preimages: 10

Lemma 8.2 Assume there exist two sets, Tφ ⊆ Aτ2 and Sφ ⊆ Cτ2 , such that for

all a ∈ Aτ , c ∈ Cτ , if a ∈ Tφ and c ρτ2 a, then c ∈ Sφ.

Then, for f : Cτ1 → PU (Cτ2) and f ♭ : Aτ1 → PU (Aτ2) such that f ρτ1→U(τ2) f ♭,

for all a ∈ Aτ1 , c ∈ Cτ1 ,

c ρτ1 a and a ∈ pref♭(T ) imply c ∈ pref (S).

Using the relationship, post f = pref−1 , we apply Lemma 8.2 to fill the gap in Figure

6: Recall from Figure 5 that

c |=τ2 f(φ), if there exists c′ ∈ Cτ1 such that c ∈ f(c′) and c′ |=τ1 φ

iff c ∈ postf{c
′ | c′ |=τ1 φ}

iff c ∈ pref−1{c′ | c′ |=τ1 φ}

9 Indeed, this representation is the usual one for nondeterministic state-transition relations.
10 In Abramsky’s terminology [1], pref♭ defines a liveness relation.
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Now, add this abstract judgement to Figure 6 (assuming f−1 ρτ2→U(τ1) f ♭):

a |=A
τ2 f(φ), if a ∈ pref♭{a′ | a′ |=A

τ1 φ}

iff there exists a′ ∈ Aτ1 such that a′ ∈ f ♭(a) and a′ |=A
τ1 φ

By Lemma 8.2, Theorem 8.1 is preserved. 11

We finish with some known results regarding expressibility and completeness for

external logics. First, we write [[φ]]τ to denote {c | c |=τ φ} (similarly for [[φ]]Aτ ). We

can relate the sets, [[φ]]τ and [[φ]]Aτ , by means of the Galois connection, (P(Cτ ),⊇
)〈αu, γ〉(P↓(Aτ ),⊇) [34], where γ(T ) = ∪a∈T γ(a) and αu(S) = {a | γ(a) ⊆ S},
where γ(a) = {c | c ρτ a}. We have that

• |=A
τ is best-preserving for |=τ iff αu[[φ]]τ = [[φ]]Aτ [34]

• |=A
τ is strongly-preserving for |=τ iff [[φ]]τ = γ[[φ]]Aτ [30]

The abstract external logic, |=A
τ , achieves completeness for |=τ when each of its

logical operators possess completeness: First, rewrite each concrete judgement form

in the format,

c |=τ opf (φi)i<k, if c ∈ f([[φi]]τi
)i<k,

for k-ary logical operator, f : P(Cτi)
k → P(Cτ ) (similarly for |=A

τ ). When the

logical relations, ρτ , define Galois connections, we have these results:

• The abstract judgement set, |=A
τ , that proves the most sound properties for con-

crete judgement set, |=τ , is the one that approximates each concrete logical op-

erator, f : P(Cτi)
k → P(Cτ ), by f

♯
best : P↓(Aτi)

k → P↓(Aτ ) [6,13,36]

• |=A
τ is best-preserving for |=τ if each abstract logical operator, f ♯, is αρτ -complete

for each concrete logical operator, f [11].

• |=A
τ is strongly-preserving for |=τ if each f ♯ is γρτ -complete for f [29].

9 Conclusion

This paper showed how to extract an appropriate programming logic from a logical-

relation family that also defines a static analysis. Figure 6 displays the logic that

results from a classical family of logical relations. As noted in the Introduction, a

variety of logics stem from the setup in Figure 6: First, it is common to limit the

set-conjunction and set-disjunction connectives to one argument each, giving this

logic:

a |=A
b a′, if a⊑ b a′

T |=A
L(τ) ∀φ, if for all a ∈ T , a |=A

τ φ

T |=A
U(τ) ∃φ, if there exists a ∈ T such that a |=A

τ φ

a |=A
τ1 f ;φ, if f ♯(a) |=A

τ2 φ, for f ♯ ∈ Aτ1 → Aτ2

11 Here is an obvious question: Why not approximate f : Cτ1
→ P(Cτ2

) by some f♭ : Aτ1
→ PU (Aτ2

) and
approximate postf by postf♭? As shown in [35], postf♭ is antimonotone and unsound for underapproximing

function postimage.
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If we hide the typings attached to the judgements, which is usually done, then we

restrict the logic to judgements on base type — we do so by applying the operator

for function preimage to the ones for disjunction and conjunction:

a |=A f ;∀φ, if for all a′ ∈ f ♯(a), a′ |=A φ, for f ♯ ∈ Aτ → PL(Aτ )

a |=A f ;∃φ, if there exists a′ ∈ f ♭(a) such that a′ |=A φ, for f ♭ ∈ Aτ → PU (Aτ )

We can abbreviate d |=τ f ;∀φ by d |=τ ∀f.φ (as in description logic [3]), or by

[f ]φ (Hennessy-Milner logic [18]), or by 2φ when the system studied has only one

transition function (CTL [5]). Similarly, d |=τ f ;∃φ is abbreviated by d |=τ ∃f.φ,

or by 〈f〉φ, or merely by 3φ.

10 History and related work

Galois connections were first proposed by Patrick and Radhia Cousot as a formal-

ization of program data-flow and static analysis [7]; the Cousots also defined the

notion of best approximation of a transfer function [8]. The notion of a functionally

complete approximate transfer function was proposed by Giacobazzi, et al. [14,15].

The lifting of Galois connections from base type to higher types was studied by

Nielson [25] and the Cousots [10]. The characterization of a Galois connection by

an approximation relation came from Shmuely [38] and Hartmanis and Stearns [17].

Mycroft and Jones connected the approximation relation to the soundness of static

analysis [24], and the idea was formalized by Schmidt [32,33].

Abramsky formalized the connection between approximation relations and log-

ical relations within category theory, and his paper [1] provided a categorical for-

mulation where Kan extensions are used to characterize the notion of best approx-

imating transition function. Backhouse and Backhouse adapted Abramsky’s ideas

to relational algebra [4].

Abramsky also defined Scott-domain theory in “logical form” [2], where domains

are generated from a set of primitive propositions such that each domain element is

a collection (conjunction) of the propositions that hold true for it. Jensen adapted

this formulation to define “abstract interpretation in logical form” [19], where an

abstract interpretation is defined as collecting some fixed subset of the primitive

propositions used to generate the concrete-domain elements. This provides a simple

characterization of completeness as the collection of all the propositions contained

in a concrete-element’s denotation.

Abramsky’s and Jensen’s efforts are the first towards extracting program log-

ics from semantic domains, but in general, the connection between abstract-

interpretation domains and logics for program validation is ill-developed (hence,

this paper). The traditional logic used with an abstract-interpretation domain is a

conjunction of primitive propositions (Jensen’s “conjunctive logic” [19]), called in

this paper the domain’s internal logic.

Steffen was the first to observe a connection between branching-time temporal

logic and the format of standard data-flow analysis problems [40] — a connection

used by Schmidt in his slogan: “data-flow analysis is model checking of abstract

interpretations” [31,37]. Lacey, et al. built on this idea to define both the static

15



Schmidt

analysis and the program transformation triggered by its results in terms of a tem-

poral logic enriched by Prolog-style logical variables [21], reinforcing the intuition

that there exists a fundamental connection between temporal logic and abstract-

interpretation domains.

One of the most striking pieces of evidence for this connection was produced

by Dams, who showed how software “abstract model checking” could be formalized

by means of sound abstract interpretations using domains of overapproximating

(“may”) and underapproximating (“must”) denotations [12,13]. Schmidt formalized

Dams’s constructions within a theory of Galois connections generated from logical-

relation-based, lower- and upper-powerset abstract domains [33,35,36].

The present paper combines these threads of work.
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