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In the autumn of 1978, Neil Jones and Steve Muchnick, working
at the University of Kansas, were studying compiler synthesis from
Scott-Strachey denotational-semantics definitions; I was Neil’s student.

Neil read intently John Reynolds’s 1972 paper, Definitional Inter-

preters for Higher-Order Programming Languages [14], and applied
Reynolds’s continuation-passing and defunctionalization transforma-
tions to lambda-calculus-coded denotational-semantics definitions, us-
ing the transformed definitions as templates for syntax-directed trans-
lation. Neil dubbed the translated source programs, “State-Transition
Machines” (STMs), because an object program was a set of equationally
defined functions that looked like the transition rules of a finite-state
machine.

Our initial efforts were spent on transforming denotational defini-
tions of block-structured, imperative languages into compiling schemes
that generated STMs that looked like ordinary assembly code.

In the summer of 1979, Steve moved to the University of Cali-
fornia, Berkeley, and Neil and I left for the University of Aarhus,
Denmark, where we continued the research project. A summary of the
work was eventually published as the paper, Compiler generation from

denotational semantics [10].
The continuation-passing and defunctionalization transforms were

tedious, and I suggested to Neil that one could do better by writing
a translator from lambda-calculus into STMs and then constructing
a compiler by composing a denotational definition with the lambda-
calculus translator. It was unclear whether this tactic would generate
better target code than that generated by Neil’s smart transformations,
but Neil agreed that it was worth a try.

After several false starts, I formulated a translator from a call-by-
value lambda-calculus to STMs written in a variant of Landin’s SECD-
machine, which later appeared in [16] as the “VEC-machine.” (Neil
preferred a call-by-value lambda-calculus metalanguage.)

At the same time, I was reading Chris Wadsworth’s paper, The rela-

tion between computational and denotational properties for Scott’s mod-

els of the lambda-calculus [18], and I was fascinated by Wadsworth’s use
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of Böhm trees and head-redex reduction. In particular, Wadsworth’s
characterization of a lambda-expression as a nested application,

(M N0 N1 · · ·Nm), m ≥ 0,

suggested an STM-like machine configuration,

M 〈N0 : N1 : · · · : Nm〉,

where M was the state name, and N0 : N1 : · · · : Nm was an operand
stack. If M was a lambda-abstraction, then head-β-reduction would
produce this state transition,

(λx.B) 〈N0 : N1 : · · · : Nm〉 ⇒ [N0/x]B 〈N1 : · · · : Nm〉

It was easy to see that the substitution of N0 for x in B could be
delayed by means of an environment. All that was missing was a “nor-
malization” rule for M = (M0 M1):

(M0 M1) 〈N0 : · · · : Nm〉 ⇒ M0 〈M1 : N0 : · · · : Nm〉

The result was a scheme that generated STMs, which I called the
“weak-normal-form (WNF) machine.” The WNF-machine was in fact
the Krivine machine for ordinary β-reduction [3, 4, 11]; it is a standard
example of what is now called a push-enter machine [12]

The WNF/Krivine machine looked somewhat like a call-by-name
SECD-machine less its dump, so for comparison I wrote a simple-
minded translation scheme based on the SECD-machine, but the STMs
generated by the two schemes were so different in structure that I could
not draw any conclusions.

Then, I became curious as to what the continuation-passing and
defunctionalization transforms might produce when applied to a de-
notational definition of the “pure,” call-by-name lambda-calculus.1 I
began with Stoy’s denotational semantics of the lambda-calculus from
his text [17], Chapter 8, and I used Reynolds’s continuation-passing
semantics from [13]. Thankful that I needed only to defunctionalize,
I quickly calculated the result and discovered that it was again the
WNF/Krivine machine.

I wrote a summary of my experiments [15], and Neil included it in the
proceedings of a workshop he was organizing [8]. Shortly after, Neil used
the WNF/Krivine machine to generate STMs of lambda-expressions
that he analyzed with iterative data-flow techniques, producing one of
the first closure analyses [9].

1 To this point, we had worked with an applied lambda-calculus meta-language,
essentially the one in Reynolds’s paper [14].
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In retrospect, it is fair to say that Neil had the main insights and
that I derived the WNF/Krivine machine as an isolated exercise. For
example, I never considered applying systematically the continuation-
conversion and defunctionalization transforms to the family of lambda-
calculi variations; Ager et al. [1] have since done so and derived not only
the Krivine machine but Felleisen et al.’s CEK machine [6], Hannan
and Miller’s CLS machine [7], and the Categorical Abstract Machine
[2]. And Danvy showed how to travel in the reverse direction, mapping
the SECD machine to its corresponding evaluation function [5].

Years later, I was happy to see the WNF machine popularized as the
Krivine machine [3, 4, 11] — I was always impressed that the suppos-
edly difficult-to-implement, leftmost-outermost, call-by-name reduction
strategy had such a simple interpretive formulation.

I would like to thank Mads Sig Ager and Olivier Danvy for rereading
my paper from 1979, and I would like to thank Olivier in particular for
proposing that I revise it for this special issue of HOSC. I have corrected
some small errors, cleaned the narrative, and deleted a well-intended
but misleading section on a call-by-value, WNF-machine variant.
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