
State-Transition Machines, Revisited

David A. Schmidt∗ (schmidt@cis.ksu.edu)
Computing and Information Science Department, Kansas State University,

Manhattan, KS 66506 USA

In the autumn of 1978, Neil Jones and Steve Muchnick, working
at the University of Kansas, were studying compiler synthesis from
Scott-Strachey denotational-semantics definitions; I was Neil’s student.

Neil read intently John Reynolds’s 1972 paper, Definitional Inter-

preters for Higher-Order Programming Languages [14], and applied
Reynolds’s continuation-passing and defunctionalization transforma-
tions to lambda-calculus-coded denotational-semantics definitions, us-
ing the transformed definitions as templates for syntax-directed trans-
lation. Neil dubbed the translated source programs, “State-Transition
Machines” (STMs), because an object program was a set of equationally
defined functions that looked like the transition rules of a finite-state
machine.

Our initial efforts were spent on transforming denotational defini-
tions of block-structured, imperative languages into compiling schemes
that generated STMs that looked like ordinary assembly code.

In the summer of 1979, Steve moved to the University of Cali-
fornia, Berkeley, and Neil and I left for the University of Aarhus,
Denmark, where we continued the research project. A summary of the
work was eventually published as the paper, Compiler generation from

denotational semantics [10].
The continuation-passing and defunctionalization transforms were

tedious, and I suggested to Neil that one could do better by writing
a translator from lambda-calculus into STMs and then constructing
a compiler by composing a denotational definition with the lambda-
calculus translator. It was unclear whether this tactic would generate
better target code than that generated by Neil’s smart transformations,
but Neil agreed that it was worth a try.

After several false starts, I formulated a translator from a call-by-
value lambda-calculus to STMs written in a variant of Landin’s SECD-
machine, which later appeared in [16] as the “VEC-machine.” (Neil
preferred a call-by-value lambda-calculus metalanguage.)

At the same time, I was reading Chris Wadsworth’s paper, The rela-

tion between computational and denotational properties for Scott’s mod-

els of the lambda-calculus [18], and I was fascinated by Wadsworth’s use

∗ Supported by NSF ITR-0085949 and ITR-0086154.

c© 2006 Springer Science+Business Media, Inc. Manufactured in The Netherlands.

revisited.tex; 25/09/2006; 12:40; p.1



2

of Böhm trees and head-redex reduction. In particular, Wadsworth’s
characterization of a lambda-expression as a nested application,

(M N0 N1 · · ·Nm), m ≥ 0,

suggested an STM-like machine configuration,

M 〈N0 : N1 : · · · : Nm〉,

where M was the state name, and N0 : N1 : · · · : Nm was an operand
stack. If M was a lambda-abstraction, then head-β-reduction would
produce this state transition,

(λx.B) 〈N0 : N1 : · · · : Nm〉 ⇒ [N0/x]B 〈N1 : · · · : Nm〉

It was easy to see that the substitution of N0 for x in B could be
delayed by means of an environment. All that was missing was a “nor-
malization” rule for M = (M0 M1):

(M0 M1) 〈N0 : · · · : Nm〉 ⇒ M0 〈M1 : N0 : · · · : Nm〉

The result was a scheme that generated STMs, which I called the
“weak-normal-form (WNF) machine.” The WNF-machine was in fact
the Krivine machine for ordinary β-reduction [3, 4, 11]; it is a standard
example of what is now called a push-enter machine [12]

The WNF/Krivine machine looked somewhat like a call-by-name
SECD-machine less its dump, so for comparison I wrote a simple-
minded translation scheme based on the SECD-machine, but the STMs
generated by the two schemes were so different in structure that I could
not draw any conclusions.

Then, I became curious as to what the continuation-passing and
defunctionalization transforms might produce when applied to a de-
notational definition of the “pure,” call-by-name lambda-calculus.1 I
began with Stoy’s denotational semantics of the lambda-calculus from
his text [17], Chapter 8, and I used Reynolds’s continuation-passing
semantics from [13]. Thankful that I needed only to defunctionalize,
I quickly calculated the result and discovered that it was again the
WNF/Krivine machine.

I wrote a summary of my experiments [15], and Neil included it in the
proceedings of a workshop he was organizing [8]. Shortly after, Neil used
the WNF/Krivine machine to generate STMs of lambda-expressions
that he analyzed with iterative data-flow techniques, producing one of
the first closure analyses [9].

1 To this point, we had worked with an applied lambda-calculus meta-language,
essentially the one in Reynolds’s paper [14].

revisited.tex; 25/09/2006; 12:40; p.2



3

In retrospect, it is fair to say that Neil had the main insights and
that I derived the WNF/Krivine machine as an isolated exercise. For
example, I never considered applying systematically the continuation-
conversion and defunctionalization transforms to the family of lambda-
calculi variations; Ager et al. [1] have since done so and derived not only
the Krivine machine but Felleisen et al.’s CEK machine [6], Hannan
and Miller’s CLS machine [7], and the Categorical Abstract Machine
[2]. And Danvy showed how to travel in the reverse direction, mapping
the SECD machine to its corresponding evaluation function [5].

Years later, I was happy to see the WNF machine popularized as the
Krivine machine [3, 4, 11] — I was always impressed that the suppos-
edly difficult-to-implement, leftmost-outermost, call-by-name reduction
strategy had such a simple interpretive formulation.

I would like to thank Mads Sig Ager and Olivier Danvy for rereading
my paper from 1979, and I would like to thank Olivier in particular for
proposing that I revise it for this special issue of HOSC. I have corrected
some small errors, cleaned the narrative, and deleted a well-intended
but misleading section on a call-by-value, WNF-machine variant.

Acknowledgements

Olivier Danvy’s comments on a draft of this note are most appreciated.

References

1. Ager, M., D. Biernacki, O. Danvy, and J. Midtgaard‘: 2003, ‘A functional
correspondence between evaluators and abstract machines’. In: Proc. 5th ACM-

SIGPLAN Int. Conf. Principles and Practice of Declarative Programming. pp.
8–19.

2. Cousineau, G. and P.-L. Curien: 1987, ‘The categorical abstract machine’.
Science of Computer Programming 8, 173–202.

3. Crégut, P.: 1990, ‘An abstract machine for lambda-terms normalization’. In:
Proc. ACM Symp. Lisp and Functional Programming. pp. 333–340.

4. Curien, P.-L.: 1991, ‘An abstract framework for environment machines’.
Theoretical Computer Science 82, 389–402.

5. Danvy, O.: 2004, ‘A Rational Deconstruction of Landin’s SECD Machine’. In:
16th Int. Workshop, Implementation and Application of Functional Languages.
pp. 52–71. Extended version available as the technical report BRICS RS-03-33.

6. Felleisen, M. and D. Friedman: 1986, ‘Control operators, the SECD-machine,
and the λ-calculus’. In: M. Wirsing (ed.): Formal Description of Programming

Concepts III. North-Holland, Amsterdam, pp. 193–217.
7. Hannan, J. and D. Miller: 1992, ‘From operational semantics to abstract

machines’. Math. Structures in Computer Science 2, 415–459.

revisited.tex; 25/09/2006; 12:40; p.3



4

8. Jones, N. (ed.): 1980, Semantics-Directed Compiler Generation. Lecture Notes
in Computer Science 94, Springer-Verlag.

9. Jones, N.: 1981, ‘Flow analysis of lambda expressions’. In: Int. Conf. on

Automata, Languages, and Programming. Lecture Notes in Computer Science
115, Springer-Verlag, pp. 114–128.

10. Jones, N. and D. Schmidt: 1980, ‘Compiler generation from denotational se-
mantics’. In: N. Jones (ed.): Semantics-Directed Compiler Generation. Lecture
Notes in Computer Science 94, Springer-Verlag, pp. 70–93.

11. Krivine, J.-L.: 1985, ‘Un interprète du λ-calcul’. Brouillon. Available online at
http://www.pps.jussieu.fr/∼krivine/.

12. Peyton Jones, S.: 1992, ‘Implementing lazy functional languages on stock
hardware: the spineless, tagless G-machine’. J. Functional Programming 2,
127–202.

13. Reynolds, J.: 1974, ‘On the relation between direct and continuation semantics’.
In: Proc. 2d Colloquium on Automata, Languages, and Programming. Lecture
Notes in Computer Science, Springer-Verlag, pp. 141–156.

14. Reynolds, J. C.: 1998, ‘Definitional Interpreters for Higher-Order Program-
ming Languages’. Higher-Order and Symbolic Computation 11(4), 363–397.
Reprinted from the proceedings of the 25th ACM National Conference (1972),
with a foreword.

15. Schmidt, D.: 1980, ‘State transition machines for lambda-calculus expressions’.
In: N. Jones (ed.): Semantics-Directed Compiler Generation. Lecture Notes in
Computer Science 94, Springer-Verlag, pp. 415–440.

16. Schmidt, D.: 1986, Denotational Semantics. Allyn and Bacon, Boston.
17. Stoy, J.: 1977, Denotational Semantics. MIT Press, Cambridge, MA.
18. Wadsworth, C.: 1976, ‘The relation between computational and denotational

properties for Scott’s models of the lambda-calculus’. SIAM J. of Computing

5, 488–521.

revisited.tex; 25/09/2006; 12:40; p.4


