
State-Transition Machines for Lambda-Calculus Expressions

David A. Schmidt∗ (schmidt@cis.ksu.edu)
Computer Science Department, Aarhus University, Aarhus, Denmark

Abstract. The process of compiler generation from lambda-calculus definitions
is studied. The compiling schemes developed utilize as their object language the
set of state transition machines (STMs): automata-like transition sets using first-
order arguments. An intermediate definition form, the STM-interpreter, is treated
as central to the formulation of STMs. Three compiling schemes are presented:
one derived directly from an STM-interpreter for the lambda-calculus; one formu-
lated from an STM-interpreter variant of Landin’s SECD-machine; and one defined
through meaning-preserving transformations upon a denotational definition of the
lambda-calculus. The results are compared and some tentative conclusions are made
regarding the utility of compiler generation with the STM forms.

1. Introduction

The work in this paper stems from the conjecture that once one has
defined a programming language via formal means and has selected a
target (object) language, then a class of compilers for the language is
implicitly described. The diverse levels of formal definitions and object
languages make it difficult to formalize the actions taken to develop
these compilers. Consequently, we explore compiler development from
formal definitions transformable to a primitive operational form, the
STM-interpreter. An STM-interpreter generates transitions that belong
to an object language of state-transition machines (STMs).

For our studies, the lambda-calculus is used as the source language
interpreted by the STM-interpreter because it is a well-known universal
language. Three compiling schemes are developed: one derived directly
from an STM-interpreter; one formulated from an STM-interpreter
variant of Landin’s SECD-machine; and one defined through meaning-
preserving transformations upon a denotational definition of the lambda-
calculus itself [11]. The different starting points provide insight into the
techniques of compiler generation via the STM format. Finally, conclu-
sions are drawn as to the utility of a compiler-generation methodology
based on use of the STM forms.

∗ Permanent address: Computing and Information Science Department, Kansas
State University, Manhattan, KS 66506 USA

c© 2006 Springer Science+Business Media, Inc. Manufactured in The Netherlands.

paper.tex; 4/09/2006; 18:42; p.1



2

2. STMs and STM-interpreters

The automata-like language of state-transition machines (STMs) is
used as the object language for the compiling schemes. Informally
stated, an STM is a finite-state automaton, where each state pos-
sesses a finite number of first-order (non-functional) arguments. The
actions upon the arguments are limited to a set of “machine primitive”
operations (e.g., addition, concatenation) and are performed when a
transition from one machine state to another occurs. The STM is spec-
ified by a set of transition rules, each rule stating the possible state,
argument pairs reachable from the current control state. The STM
format provides a structure which is low level but not yet tied to any
machine architecture. A transformation analogous to assembly could
be applied to obtain concrete object code.

Definition 1. An STM is a 〈S, E〉 pair, where

− S = {s0, · · · , sm}, a finite set of state names, including the entry
state, s0;

− E = {si, x ⇒ ti}1≤i≤m, a finite set of rewriting rules, where
si ∈ S, x is a variable name, and ti has the form,

1. sj, e, a jump transition, where 1 ≤ j ≤ m and e is a first-order
expression, defined below;

2. e1, e2, a computed state transition, whose next state is com-
puted by evaluating the first-order expression, e1;

3. e → t1 [] t2, a conditional state transition, where e is a boolean-
valued expression which selects from t1 and t2, which them-
selves have the form just stated in Items 1 and 2;

where e is an expression composed of first-order constants (0, 1,
nil, ...), primitive operations defined on first-order values (+, ∗,
〈· · ·〉, ↓ i, ...), state names, and variable x.

Typically, a formal presentation of an STM can be deduced from an
informal one; we use the informal version in most cases. In particular,
when a left-hand-side variable, x, represents a tuple, 〈e1, · · · , en〉, we
use the tupled-pattern form instead of x.

A state configuration is a pair, s, d, where s ∈ S and d is a first-order
value (constant or tuple).

An example of an STM that computes the factorial function (using
pairs and the numerical operations equality, subtraction, and multipli-

paper.tex; 4/09/2006; 18:42; p.2



3

cation) is

S = {s0, s1, s2}

E = {s0, x ⇒ s1, 〈x, 1〉
s1, 〈x, y〉 ⇒ (x = 0) → s2, y [] s1, 〈x − 1, x ∗ y〉 }

An STM-computation history is a sequence of state configurations
generated from an STM and an initial state configuration whose state
name is the entry state. Here is an STM- computation history for the
previous STM and the initial configuration, s0, 2:

s0, 2 ⇒ s1, 〈2, 1〉 ⇒ s1, 〈1, 2〉 ⇒ s1, 〈0, 2〉 ⇒ s2, 2

If a programming language’s semantics is defined by an interpreter,
we say that the interpreter is an STM-interpreter if, for every input
program and its data, the interpreter generates an STM-computation
history.

Our objective is to transform STM-interpreters into compilers that
translate source programs into STMs. We will study how this is done
for three different STM-interpreters for the lambda-calculus.

3. The lambda-calculus

Following convention [1], the set of lambda-calculus expressions, Exp,
is the smallest set formed from a set of variables, Var = {x, y, z, · · ·},
and symbols, λ, (, ), such that

(i) a variable, x, is a member of Exp, that is, x ∈ Var ⊆ Exp;

(ii) if x ∈ Var and B ∈ Exp, then (λxB) is a member of Exp, that is,
(λxB) ∈ Abs ⊆ Exp;

(iii) if M,N ∈ Exp, then (M N) is a member of Exp, that is, (M N) ∈
Comb ⊆ Exp.

Abs is the set of abstractions and Comb is the set of combinations. We
abbreviate expressions of the form (λx(B)) to (λxB) and ((M N)P )
to (M N P ). Outermost parentheses will be dropped in most cases.

Using the standard meanings of the terms, free variable, bound vari-
able, and closed term [1], [M/x]B denotes the syntactic substitution of
expression M for all free occurrences of x in B (with the renaming of
bound variables in B to avoid name clashes with free variables in M).
The conversion rules are

α: λxB > λy [y/x]B
β: (λxB)M > [M/x]B

paper.tex; 4/09/2006; 18:42; p.3



4

The α-rule renames bound variables, and the β-rule binds an argument
to an abstraction. The utility of the two rules is augmented by these
contextual rules:

M > M
M > M ′

λxM > λxM ′

M > M ′ N > N ′

M N > M ′N ′

The expression, M >∗ N , denotes the application of zero or more of
the above rules to M to obtain N .

A lambda-expression has normal form if it contains no subexpression
(redex) of the form (λxB)M . An expression has a head redex [2] if it
has the form, (λxB)N1 · · ·Nm, for m ≥ 1. (Note that the term, “head
redex,” is used differently from that in [13].) A notion we find useful is
weak-normal form: a lambda-expression has weak-normal form when it
has no head redex.

For expressions, M and N , the assertion M ≡ N states that M
and N are syntactically identical with the exception of bound-variable
names, that is, a finite number of applications of the α-rule to M yields
N .

The following result is well known:

Theorem 1. [2]: If M >∗ N1, M >∗ N2, and both N1 and N2 have
normal form, then N1 ≡ N2.

The analogue does not hold for weak-normal form. For example,

(λxx) y((λxx)y) >∗ y((λxx)y)

and also

(λxx) y((λxx)y) >∗ yy.

A given expression may reduce to many distinct weak-normal forms.
But if we restrict all uses of the β-rule to head redexes only, the resulting
determinism produces a unique weak-normal form (if one exists).

The expression, M
∗
→ N , denotes zero or more uses of β-reduction

restricted to head redexes. We study
∗
→ because it describes the “se-

quential” evaluation of a lambda-calculus “program” — instructions
are executed from first to last, and procedure bodies are evaluated
only when actual parameters are bound to formal ones.

If a lambda-calculus expression reduces to a ground value (here,

ground values would be some subset of Var), then
∗
→ is exactly leftmost

reduction, and the standardization theorem (that leftmost reduction is
adequate for discovering normal forms) [2] guarantees that computation

using
∗
→ produces the expected result.

paper.tex; 4/09/2006; 18:42; p.4



5

4. A lambda-calculus machine

We now develop an STM-interpreter for the lambda-calculus, based on
the tenets that:

(i) a lambda-calculus expression represents a computation state;

(ii) application of the β-rule causes a state transition.

The interpreter will use as its state names the subexpressions of the
input lambda-calculus expression. (The subexpressions can be repre-
sented by labels, if desired.) The binding of variables in β-reduction will
be accounted for by an environment argument. An operand stack for
handling nested applications is also needed, because we treat a lambda-
calculus expression as a nested application, (M0M1 · · ·Mn), which we
represent as the state configuration,

M0, 〈e0, 〈M1, e1〉 : · · · : 〈Mn, en〉〉

where M0 is the state name, e0 holds the bindings for free variables
in M0, and 〈M1, e1〉 : · · · : 〈Mn, en〉 is the operand stack holding the
representations of M1 · · ·Mn.

For ease of reading, we write the state configuration as the triple,

M0, e0, 〈M1, e1〉 : · · · : 〈Mn, en〉

which uses the following notation: 〈a1, a2, · · · , an〉 denotes an n-tuple,
and 〈a1, a2, · · · , an〉 ↓ i = ai, for all 1 ≤ i ≤ n, denotes the indexing
operations. We simulate stacks with nested pairs: Given value a and
tuple L, let a : L denote the pair, 〈a,L〉; let the empty tuple be 〈 〉; and
abbreviate a1 : · · · : an : 〈 〉 to a1 : · · · : an.

To perform lookup in a stack, m, let m[x] = 〈y1, · · · , yn〉, if 〈x, y1, · · · , yn〉
is the leftmost tuple in m whose first component is x. That is,

(〈x, y1, · · · , yn〉 : L)[x] = 〈y1, · · · , yn〉
(〈z, y1, · · · , yn〉 : L)[x] = L[x], if x 6= z.

Finally, for lambda-calculus expression, M , let L(M) define the set of
subexpressions (or their labels) of M .

We now define the interpreter. Its state is a triple, s, e, c, where

s ∈ L(M), the state name
e ∈ Env = (Var × L(M) × Env)∗, the environment
c ∈ Cont = (L(M) × Env)∗, the operand stack.

The transition function for the STM-interpreter is defined in Figure 1.
Rule (1.1) is a computed state transition, and (1.2) and (1.3) are jump

paper.tex; 4/09/2006; 18:42; p.5



6

x, e, c ⇒ e[x] ↓ 1, e[x] ↓ 2, c if x ∈ Var (1.1)
λxB, e, 〈M, e′〉 : c ⇒ B, 〈x, M, e′〉 : e, c if λxB ∈ Abs (1.2)
M N, e, c ⇒ M, e, 〈N, e〉 : c if M N ∈ Comb (1.3)

Figure 1. STM-interpreter for lambda-calculus

For M = (λy (λy (yy))y)(λxx), let the following numeric labels denote
M ’s subexpressions:

((λy ((λy (y5 y6)4)3y7)2)1 (λxx9)8)0

init(M) = 0, 〈 〉, 〈 〉
⇒ 1, 〈 〉, 〈8, 〈 〉〉
⇒ 2, 〈y, 8, 〈 〉〉, 〈 〉 let e1 = 〈y, 8, 〈 〉〉
⇒ 3, e1, 〈7, e1〉
⇒ 4, 〈y, 7, e1〉 : e1, 〈 〉 let e2 = 〈y, 7, e1〉 : e1

⇒ 5, e2, 〈6, e2〉
⇒ 7, e1, 〈6, e2〉
⇒ 8, 〈 〉, 〈6, e2〉
⇒ 9, 〈x, 6, e2〉, 〈 〉
⇒ 6, e2, 〈 〉
⇒ 7, e2, 〈 〉
⇒ 8, 〈 〉, 〈 〉

Unload(8, 〈 〉, 〈 〉) = Real(8, 〈 〉) = λxx

Figure 2. Interpretation of an expression

transitions. The initial state of the machine is init(M) = M, 〈 〉, 〈 〉.
The machine reaches a final state when none of rules (1.1)-(1.3) ap-
ply. The lambda-calculus expression denoted by a state configuration,
s0, e0, c1 : · · · : cn, is defined by the function, Unload:

Unload(s0, e0, c1 : · · · : cn) = Real(s0, e0)Real(c1) · · ·Real(cn)

where

Real(s, 〈x1, · · ·〉 : · · · : 〈xm, · · ·〉) = [Real(e[xm])/xm]· · · [Real(e[x1])/x1]s

An example of the interpreter’s operation appears in Figure 2.
We find the following notation useful. Given state configurations a

and b, let a ⇒ b denote an application of a transition rule to state
a, yielding b. Similarly, a

m
⇒ b denotes m transitions from a to obtain

b. Let Evalm(M) describe Unload(sm, em, cm), where M, 〈 〉, 〈 〉
m
⇒

sm, em, cm. An execution of M, 〈 〉, 〈 〉 to an Unloaded final state is
denoted by Eval(M).

paper.tex; 4/09/2006; 18:42; p.6



7

Since the interpreter models leftmost β-reduction to weak-normal
form, its operation must be consistent with the rule

βℓ : (λxB)MN1 · · ·Nm >ℓ ([M/x]B)N1 · · ·Nm,m ≥ 0

In the results that follow, M >n
ℓ N denotes n applications of rule βℓ

to M , obtaining N . The consistency of the machine is guaranteed by
the following lemma:

Lemma 1. For all n ≥ 0, if M >n
ℓ N , then there exists m ≥ 0 such

that Evalm(M) = N .

The converse also holds:

Lemma 2. For all m ≥ 0, if Evalm(M) = N , then there exists n ≥ 0
such that M >n

ℓ N .

Together the two lemmas yield the result,

Theorem 2. Eval(M) ≡ N iff M >∗
ℓ N and N is in weak-normal

form.

The proofs of these properties are somewhat long and tedious, and they
will not be presented; they can be found in [9].

In the sections to follow, we refer to the interpreter developed here
as the WNF (weak-normal form)-machine.

5. A compiling scheme

The translation rules specified for the WNF-machine can be used to
produce a syntax-directed translation scheme (SDTS) for the lambda-
calculus. The scheme is defined by an attribute grammar [14], where a
nonterminal symbol,

〈Exp ⇓ label ⇑ code〉

accepts the inherited attribute, label (the next free instruction label
for code generation), and generates the synthesized attribute, code (the
target code, a set of STM-transition rules). The label expression, label ·i,
generates a new label by appending i to label .

The compiling scheme is defined in Figure 3. The SDTS generates an
expression’s code by unioning the code for the subexpressions with the
code corresponding to the expression itself. Unique labels are generated
for subexpressions. Finally, the state name, e[x] ↓ 1, denotes a run-time
computed state name, as allowed by Definition 1.

paper.tex; 4/09/2006; 18:42; p.7



8

〈Exp ⇓ label ⇑ code〉 ::= x
where code = {label , e, c ⇒ e[x] ↓ 1, e[x] ↓ 2, c}

〈Exp ⇓ label ⇑ code ∪ code0〉 ::= λx〈Exp ⇓ label · 0 ⇑ code0〉
where code = {label , e, 〈a, e′〉 : c ⇒ label · 0, 〈x, a, e′〉 : e, c}

〈Exp ⇓ label ⇑ code ∪ code0 ∪ code1〉
::= 〈Exp ⇓ label · 0 ⇑ code0〉〈Exp ⇓ label · 1 ⇑ code1〉

where code = {label , e, c ⇒ label · 0, e, 〈label · 1, e〉 : c}

Figure 3. Compiling scheme for lambda-calculus

0, e, c ⇒ 1, e, 〈8, e〉 : c
1, e, 〈a, e′〉 : c ⇒ 2, 〈y, a, e′〉 : e, c
2, e, c ⇒ 3, e, 〈7, e〉 : c
3, e, 〈a, e′〉 : c ⇒ 4, 〈y, a, e′〉 : e, c
4, e, c ⇒ 5, e, 〈6, e〉 : c
5, e, c ⇒ e[y] ↓ 1, e[y] ↓ 2, c
6, e, c ⇒ e[y] ↓ 1, e[y] ↓ 2, c
7, e, c ⇒ e[y] ↓ 1, e[y] ↓ 2, c
8, e, 〈a, e′〉 : c ⇒ 9, 〈x, a, e′〉 : e, c
9, e, c ⇒ e[x] ↓ 1, e[x] ↓ 2, c

Note: rather than generate binary-numbered labels, we reuse the
label numbers from Figure 2.

Figure 4. Compiled lambda-expression

The compilation of the expression in Figure 2 is shown in Figure 4.
The execution of the transition set is exactly that of Figure 2. We give
the name, Next , to the anonymous function that controls the traversal
of the STM. For an expression, M , Next receives the initial configura-
tion, m0, 〈 〉, 〈 〉, and the STM generated from M by the SDTS with
initial label, m0 — call this SDTS (M,m0):

Theorem 3. Eval(M) ≡ Next((m0, 〈 〉, 〈 〉),SDTS (M,m0)).

The STM is sufficiently low level for easy translation to object
code, and the structure of the transition rules encourages substantial
optimization upon the STM before its execution. This optimization
may take the form of traversal of run-time invariant transitions (mixed
computation [3]) or replacement of complex argument structures by
simpler descriptions.

paper.tex; 4/09/2006; 18:42; p.8



9

cℓ : S, E, 〈 〉, 〈S′, E′, C ′,D′〉 ⇒ cℓ : S′, E′, C ′, D′ (5.1)
S, E, x : C, D ⇒ E[x] : S, E, C, D

if x ∈ Var (5.2)
S, E, a : C, D ⇒ 〈a,E〉 : S, E, C, D

if a ∈ Const (5.3)
S, E, (λxB) : C, D ⇒ 〈(λxB), E〉 : S, E, C, D

if λxB ∈ Abs (5.4)
〈(λxB), E′〉 : cℓ : S, E, apply : C, D

⇒ 〈〉, 〈x, cℓ〉 : E′, B, 〈S,E,C,D〉 (5.5)
S, E, (M N) : C, D ⇒ S, E, N :M :apply :C, D

if M N ∈Comb (5.6)

Figure 5. SECD machine

6. The SECD-machine

The archetypical lambda-calculus machine is Landin’s SECD machine
[5]. We present a brief explanation of its operation and constrast it
with the WNF-machine. The definition is derived from one presented
by Plotkin [6].

First, we retain Exp = Var ∪ Abs ∪ Comb, and designate a set
Const ⊆ Var of constant values. We next define the sets of environ-
ments and closures as

EN = (Var × CL)∗

CL = Exp × EN

The state of the SECD machine is a four-tuple, S, E, C, D, where

S ∈ CL∗, a stack of closures
E ∈ EN, the current active environment
C ∈ (Exp ∪ {apply})∗, the control string
D ∈ (S × E × C × D)∗, the stack of activation records (dump)

The transition function, ⇒, takes states to states and is given in Fig-
ure 5. The start state for a closed lambda-calculus expression, M , is
(〈 〉, 〈 〉, M, 〈 〉), and a final state has the form, (cℓ, 〈 〉, 〈 〉, 〈 〉), where
cℓ ∈ CL. A function analogous to Unload can be defined to extract the
expression denoted by a final state.

We note three major differences between the WNF-machine and the
SECD-machine:

1. the SECD-machine processes expressions in a rightmost innermost,
call-by-value style, whereas the WNF-machine processes in a left-
most outermost, call-by-name fashion;

paper.tex; 4/09/2006; 18:42; p.9



10

2. the control in the SECD-machine is embodied in the stack argu-
ment, C, whereas the WNF-machine is driven by automata-state
names;

3. the SECD-machine uses a dump, D, to maintain scopes of enclos-
ing expressions and their environments, whereas the WNF-machine
has no enclosing expressions to maintain and keeps environments
locally with the expressions that use them.

7. Constructing an SDTS from SECD

We use our earlier experiences to transform the SECD-machine into
an STM-interpreter from which we extract an SDTS. Our idea is to
encode as the state names all sequences of control-strings, C, that may
arise during an input expression M ’s evaluation. This idea is feasible
because the size of the control string, C, is bounded, depending only
on the structure of M .

The derivation of the STM-SECD-interpreter based on this idea is
left as an exercise, and we move directly to the compiling scheme. The
scheme’s attribute grammar uses nonterminals of the form,

〈Exp ⇓ control ⇓ label ⇑ code〉

where control is an inherited attribute that holds the current contents
of the control string, and label and code are as before.

The SDTS is given in Figure 6. Note that an application token, ap,
is specialized to its point of creation, s, giving aps, and an abstraction
generates a popb token, which recovers values from the dump after the
processing of abstraction body, b. The SDTS generates a pop0 transition
to obtain the final value. Constants, a, are compiled to environment-free
“closures,” 〈val , a〉.

The initial configuration is 0·pop0, 〈〉, 〈〉, 〈〉. An example of compiled
code and its evaluation are seen in Figure 7.

8. Compilation from denotational definitions

We next develop a compiling scheme by applying meaning-preserving
transformations to a Scott-Strachey denotational semantics definition
of the lambda calculus [11]. Production of a compiling scheme from a
denotational definition presents difficulties not encountered with the
low-level machines we have dealt with so far. In particular, arguments

paper.tex; 4/09/2006; 18:42; p.10



11

〈M ⇑ code ∪ code0〉 ::= 〈Exp ⇓ pop0 ⇓ 0 ⇑ code0〉
where code = {pop0, cℓ : S, E, D ⇒ Unload(cℓ)}

〈Exp ⇓ control ⇓ label ⇑ code〉 ::= x
where code = {label · control , S, E, D

⇒ control , E[x] : S, E, D}

〈Exp ⇓ control ⇓ label ⇑ code〉 ::= a
where code = {label · control , S, E, D

⇒ control , 〈val , a〉 : S, E, D}

〈Exp ⇓ control ⇓ label ⇑ code ∪ code0〉
::= λx〈Exp ⇓ pop label ⇓ label · 0 ⇑ code0〉
where code =
{ label · control , S, E, D

⇒ control , 〈label · 0 · pop label , x,E〉 : S, E, D }
∪{ pop label , cℓ : S, E, 〈t, S′, E′,D′〉 ⇒ t, cℓ : S′, E′, D′ }

〈Exp ⇓ control ⇓ label ⇑ code ∪ code0 ∪ code1〉
::= 〈Exp ⇓ ap label · control ⇓ label · 0 ⇑ code0〉

〈Exp ⇓ label · 0 · ap label · control ⇓ label · 1 ⇑ code1〉
where code =
{label · control , S, E, D

⇒ label · 1 · label · 0 · ap label · control , S, E, D}
∪{ap label · control , cℓ1 : cℓ2 : S, E, D

⇒ cℓ1 ↓ 1, 〈 〉, 〈cℓ1 ↓ 2, cℓ2〉 : cl1 ↓ 3, 〈control , S,E,D〉}

Figure 6. SDTS corresponding to the SECD machine

to the semantic definitions may be functions, and no order of evaluation
is indicated.

Figure 8 shows the standard semantics of the lambda-calculus as
given in Stoy [11]; the reader is advised to refer there for notational
conventions. The semantic definition uses an evaluation function, E ,
analogous to Eval, and an environment argument, e, which is a func-
tion. Unlike the machines examined earlier, the definition maps the
input lambda-expression into a mathematical value, a denotation. The
domain of denotations is named D; this domain is realizable in Scott’s
models of denotational semantics [10]. In the definitions, we use the
syntactic domain, Exp = Var ∪ Abs ∪ Comb.

The right-hand sides of (8.1)-(8.3) are expressions in Scott’s LAMBDA
meta-language [10]. Thus, λ and e[a/x] in (8.2) are not syntactic lambda-

paper.tex; 4/09/2006; 18:42; p.11



12

Use the following numeric labels for M ’s subexpressions:

((λzz2)1k3)0

Compilation:

pop0, cℓ : S, E, D ⇒ Unload(cℓ)
0 · pop0, S, E, D ⇒ 3 · 1 · ap0 · pop0, S, E, D
ap0 · pop0, cℓ1 : cℓ2 : S, E, D

⇒ cℓ1 ↓ 1, 〈 〉, 〈cℓ1 ↓ 2, cℓ2〉 : cℓ1 ↓ 3, 〈pop0, S,E,D〉
1 · ap0 · pop0, S, E, D ⇒ ap0 · pop0, 〈2 : pop1, z, E〉 : S, E, D
2 · pop1, S, E, D ⇒ pop1, E[z] : S, E, D
pop1, cℓ : S, E, 〈t, S′, E′,D′〉 ⇒ t, cℓ : S′, E′, D′

3 · 1 · ap0 · pop0, S, E, D ⇒ 1 · ap0 · pop0, 〈val , k〉 : S, E, D

Evaluation:

0·pop0, 〈 〉, 〈 〉, 〈 〉 ⇒ 3 · 1 · ap0 · pop0, 〈 〉, 〈 〉, 〈 〉
⇒ 1 · ap0 · pop0, 〈val , k〉, 〈 〉, 〈 〉
⇒ ap0 · pop0, 〈2 · pop1, z, 〈 〉〉 : 〈val , k〉, 〈 〉, 〈 〉
⇒ 2 · pop1, 〈 〉, 〈z, 〈val , k〉〉, 〈pop0, 〈 〉, 〈 〉, 〈 〉〉
⇒ pop1, 〈val , k〉, 〈z, 〈val , k〉〉, 〈pop0, 〈 〉, 〈 〉, 〈 〉〉
⇒ pop0, 〈val , k〉, 〈 〉, 〈 〉
⇒ Unload(〈val , k〉) ⇒ k

Figure 7. A compiled expression and its evaluation

calculus expressions, but LAMBDA notation that define denotations.
Whatever STM-interpreter and compiling scheme we develop from Fig-
ure 8 will compile to object code that computes LAMBDA representa-
tions of denotations (and not syntactic lambda-calculus terms).

To convert the above definition to an STM-interpreter, we might use
E [[x]], E [[λxB]], and E [[M N ]] to generate the state names. Unfortunately,
the right-hand-side definitions do not conform to the STM format:
(8.3) contains two state names, so the next state is uncertain, and
all three equations use an environment that is a function. To handle
the first problem, we reorganize the sequencing in (8.3) by converting
the definition to a continuation-passing format [12]. The equivalent
(congruent [8]) definition of Figure 8 is given in Figure 9. It is taken
from Reynolds [8]. An extra argument, c ∈ C, a continuation, is added.
The continuation acts as a sequencing device in that the right-hand-side
of each equation has but one function with all its arguments available
— this function will serve as the state name in an STM state config-
uration. (In (9.3), it is N [[M ]]). The introduction of continuations has

paper.tex; 4/09/2006; 18:42; p.12



13

Domains:

E ∈ Exp → E → D the evaluation function
e ∈ E = Var → D environments
a ∈ D = D → D denotations: every denotation is a function

Evaluation function:

E [[x]]e = e[[x]] if x ∈ Var (8.1)
E [[λxB]]e = λa. E [[B]] e[a/x] if λxB ∈ Abs (8.2)
E [[M N ]]e = E [[M ]]e (E [[N ]]e) if M N ∈ Comb (8.3)

Figure 8. Denotational semantics of the lambda-calculus

Domains:
N ∈ Exp → E → C → D′

e ∈ E = Var → D′

c ∈ C = D′′ → D′

f ∈ D′′ = D′ → D′

a ∈ D′ = C → D′

Evaluation function:

N [[x]]e c = e[[x]]c (9.1)
N [[λxB]]e c = c(λa.N [[B]] e[a/x]) (9.2)
N [[M N ]]e c = N [[M ]]e (λf. f(N [[N ]]e) c) (9.3)

Figure 9. Continuation-passing semantics

increased the complexity of the semantic domains: the D domain has
been fractured into two forms: D′′, representing elements of D treated
as functions, and D′, representing elements of D treated as arguments.
Further explanation is found in [8].

Now, each equation has the desired STM-state-argument format,
but the environment and continuation arguments are higher order and
still not acceptable. A well-known technique for converting functions
to first-order structures is the introduction of closures [5]. A closure
names a function. Once all the function’s arguments are supplied, the
name-plus-arguments form is converted to the function-plus-arguments
form.

Figure 10 shows the defunctionalization of the environment and con-
tinuation arguments via closures; it is based upon the construction in
[7].

All the domains have become nonfunctional — all explicitly con-
structed E, C, D′, and D′′ denotations are represented as closures of the
form, mkV 〈a1, · · · am〉, and each domain requires an auxiliary function,

paper.tex; 4/09/2006; 18:42; p.13



14

Domains:
N ∈ Exp × E × C → D′

e ∈ E = {mkE1
} × Var × D′ × E

c ∈ C = {mkC1
} × Exp × E × C

f ∈ D′′ = {mkV1
} × Var × Exp × E

a ∈ D′ = {mkV2
} × Exp × E

Evaluation function:

N [[x]](e, c) = apE(e, [[x]], c) (10.1)
N [[λxB]](e, c) = apC(c,mkV1

〈[[x]], [[B]], e〉) (10.2)
N [[M N ]](e, c) = N [[M ]](e,mkC1

〈[[N ]], e, c〉) (10.3)

Auxiliary functions:

apC ∈ C × D′′ → D′

apD′′ ∈ D′′ × D′ → D′

apE ∈ E × Var × C → D′

apD′ ∈ D′ × C → D′

apC(mkC1〈[[N ]], e, c〉, f) = apD′′(f,mkV2
〈[[N ]], e〉, c) (10.4)

apD′′(mkV 1〈[[x]], [[B]], e〉, a, c) = N [[B]](mkE1
〈[[x]], a, e〉, c) (10.5)

apE(mkE1〈[[x]], a, e〉, [[y]], c) =
([[x]] = [[y]]) → apD′(a, c)

[] apE(e, [[y]], c)
(10.6)

apD′(mkV 2〈[[N ]], e〉, c) = N [[N ]](e, c) (10.7)

Figure 10. Defunctionalized semantics

which converts the closure-plus-arguments form to the original function
applied to the arguments.

The new equations are (10.4)-(10.7). The simple structure of Figure
9 has produced only one new closure constructor per defunctionalized
domain, letting us state the auxiliary functions in four equations, one
per closure constructor. See [7] for further explanation.

The equations of Figure 10 are in STM-form and use state names
from the set, {N [[M ]] |M ∈ Exp} ∪ {apC, apE, apD′, apD′′}. All argu-
ments are nonfunctional.

The seven equations contain much redundancy — for example, the
closures’ names are unnecessary because each domain has but one clo-
sure. We eliminate the names. Also, since its c argument must have the
form, 〈[[N ]], e′, c〉, the right-hand side of (10.2) can be stated as N [[λxB]]
(e, 〈[[N ]], e′, c〉), which allows the reduction of the sequence, (10.2) ⇒
(10.4) ⇒ (10.5), to one equation. This gives us

paper.tex; 4/09/2006; 18:42; p.14



15

N [[x]](e, c) = apE(e, [[x]], c) (11.1)
N [[λxB]](e, 〈[[N ]], e′〉 : c) = N [[B]](〈[[x]], [[N ]], e′〉 : e, c) (11.2)
N [[M N ]](e, c) = N [[M ]](e, 〈[[N ]], e〉 : c) (11.3)

apE(〈[[x]], [[N ]], e′〉 : e, [[y]], c) =
([[x]] = [[y]]) → N [[N ]](e′, c)

[] apE(e, [[y]], c)
(11.4)

Figure 11. STM-interpreter derived from denotational-semantics definition

N [[x]](e, c) = apE(e, [[x]], c) (10.1′)
N [[λxB]](e, 〈[[N ]], e′, c〉) = N [[B]](〈[[x]], 〈[[N ]], e′〉, e〉, c) (10.2′)
N [[M N ]](e, c) = N [[M ]](e, 〈[[N ]], e, c〉) (10.3′)

apE(〈[[x]], a, e〉, [[y]], c) =
([[x]] = [[y]]) → apD′(a, c)

[] apE(e, [[y]], c)
(10.6′)

apD′(〈[[N ]], e〉, c) = N [[N ]](e, c) (10.7′)

Since (10.6’) ⇒ (10.7’), we can collapse the two into one equation.
Converting the nested tuples into stacks produces Figure 11. The re-
sults look like Figure 1, but here the environment lookup function is
explicitly provided. It is easy to extract an SDTS from the Figure.

Some explanation is required as to what the equations in Figure
11 truly denote. Figure 1 interprets lambda expressions by leftmost
reduction, this activity made clear by the Unload function. In contrast,
Figure 11 interprets lambda expressions into LAMBDA denotations.
In the conversion to defunctionalized form, however, the LAMBDA
denotations in domains D′ and D′′ are not obtained unless all argu-
ments to the semantic functions are present. But since the results are
themselves functions, the LAMBDA-coded denotations never appear!
The disadvantage of requiring first-order arguments to STMs is that
no higher-order value can be computed as a result. Another side effect
of the conversion is that the definition becomes non-compositional.
(The meaning of an expression is no longer completely determined
by the meanings of its subexpressions; see (11.1) ⇒ (11.4).) Such a
consequence is inevitable when converting to STM-format.

9. Conclusion

We have constructed compiling schemes from STM-interpreters for
three semantic definitions: an explicitly contrived interpreter; an ex-
isting machine whose control structure was altered; and a higher-order
definition upon which two significant transformations were performed.
Our intention was to utilize the STM-interpreter format to expose the
structure of each definition and to promote an easy conversion to an
SDTS.

paper.tex; 4/09/2006; 18:42; p.15



16

We saw that the arguments of the STM-interpreter display the
data organization of the original definitions. This was most obvious
in the SECD-machine — its rigid operational structure was preserved
in STM form. In contrast, the WNF-machine contained a simple struc-
ture explicitly oriented toward β-reduction. The format produced by
the essentially “structureless” denotational definition could have been
overtly reorganized into many different argument structures.

Of equal interest are the transformations applied to the definitions
to obtain the STM-interpreter format, for they elicit the complemen-
tary information as to which features of the definition are counter-
productive to easy compilation for primitive sequential machines —
conversion of the control of the SECD-machine comes immediately to
mind. The imposition of operational constraints on the denotational-
semantics definition suggests that great latitude is available to its im-
plementors for both optimization and error.

It is not surprising that operational-semantics definitions lead to
compiling schemes, but the STM-interpreter format defines a class of
definitions that are especially useful. We might ask whether the STM
restriction is too strong — in particular, can the requirement of finite-
state control be replaced by a weaker notion? On the other hand, the
STM format is itself quite general; a straightforward implementation of
the examples in this paper would use heap-storage management, and
some of the “primitive” operations may require many lines of assembly
code to perform.

We make a final remark in regard to developing an automated
compiling methodology. We might use the lambda-calculus as a uni-
versal meta-language for programming-language semantics. Then, we
can compose a programming language’s semantics definition with an
SDTS for the lambda-calculus, thus producing an SDTS from the pro-
gramming language to object code. An application of this technique
is presented in [4].

Acknowledgements

Neil Jones contributed substantially by his critical reading of an earlier
draft of this paper. Thanks also go to Karen Møller for her assistance
in organizing the material.

paper.tex; 4/09/2006; 18:42; p.16



17

References

1. Church, A.: 1951, The Calculi of Lambda-Conversion. Annals of Mathematical
Studies 6. Princeton Univ. Press, Princeton, NJ.

2. Curry, H. and R. Feys: 1958, Combinatory Logic, Vol. 1. North-Holland,
Amsterdam.

3. Ershov, A.: 1978, ‘On the essence of compilation’. In: E. Neuhold (ed.): Formal
Description of Programming Concepts. North-Holland, Amsterdam, pp. 391–
420.

4. Jones, N. and D. Schmidt: 1980, ‘Compiler Generation from denotational se-
mantics’. In: N. Jones (ed.): Semantics-Directed Compiler Generation. Lecture
Notes in Computer Science 94, Springer-Verlag, pp. 70–93.

5. Landin, P.: 1964, ‘The mechanical evaluation of expressions’. Computer Journal
6(4), 308–320.

6. Plotkin, G.: 1975, ‘Call-by-name, Call-by-value and the λ-calculus’. Theoretical
Comp. Sci. 1, 125–159.

7. Reynolds, J.: 1972, ‘Definitional interpreters for higher-order programming
languages’. In: Proc. 25th ACM National Conference, Boston. pp. 717–740.

8. Reynolds, J.: 1974, ‘On the relation between direct and continuation semantics’.
In: Proc. 2d Colloquium on Automata, Languages, and Programming. Lecture
Notes in Computer Science, Springer-Verlag, pp. 141–156.

9. Schmidt, D.: 1981, ‘Compiler generation from lambda-calculus definitions of
programming languages’. Ph.D. thesis, Kansas State University, Manhattan,
KS.

10. Scott, D.: 1976, ‘Data types as lattices’. SIAM J. of Computing 5, 522–587.
11. Stoy, J.: 1977, Denotational Semantics. MIT Press, Cambridge, MA.
12. Strachey, C. and C. Wadsworth: 1974, ‘Continuations — a mathematical se-

mantics for handling full jumps’. Technical Report PRG-11, Programming
Research Group, Oxford University.

13. Wadsworth, C.: 1976, ‘The relation between computational and denotational
properties for Scott’s models of the lambda-calculus’. SIAM J. of Computing
5, 488–521.

14. Watt, D. and O. Madsen: 1977, ‘Extended attribute grammars’. Technical
Report 10, University of Glasgow. Revised version: On defining semantics by
means of extended attribute grammars. In N.D. Jones, ed., Semantics-Directed
Compiler Generation, Lecture Notes in Computer Science 94, Springer-Verlag,
1980.

paper.tex; 4/09/2006; 18:42; p.17



paper.tex; 4/09/2006; 18:42; p.18


