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Outline

1. Review over-approximating relational models of control and data

2. Note that we can validate only universal properties on such

models

3. Extend the models with under-approximating relations so that we

can validate existentials. This gives us a mixed model.

4. Introduce modular validation, with an implicit existential, via

separation logic

5. Note that the above approaches are branching-time, and that

there is an equally interesting linear-time approach to validation
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Models extracted from working
hardware/software are overapproximations

Here is a program, its control-¤ow graph, and its polarity abstract
interpretation:

p0 :

p3 :

p1 :
p2 :

x = 2;

x = x−1;

while x != 0 { 

exit

}

p0

p1

p2p3

p1, even

p2, even

p1, odd

p2, odd

p3, even

p0, ?

The program’s concrete execution trace,

p0, ? → p1, 2 → p2, 2 → p1, 1 → p2, 1 → p1, 0 → p3, 0

is modelled by abstract traces embedded in each of the two models.
The models use smaller state spaces but coarser transition
relations.
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A labelled Kripke transition system abstracts a
process

〈Σ, {τ` ⊆ Σ× Σ | ` ∈ Label}, IΣ : Σ → P(Atom)〉

Σ = {s0, s1, s2}

τα = {(s0, s1), (s0, s2)}

τβ = {(s1, s1), (s1, s2)}

IΣ(s0) = {happy}

IΣ(s1) = {sad}

IΣ(s2) = {happy, sad}

s0

s1

s2

α
βhappy

sad

happy, sad

β

α

There are two transition relations, τα and τβ.
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A Kripke system might be approximated further:
A = {⊥, a0, a12,>}

α{} = ⊥

α{c0} = a0

α{c1} = a12 = α{c2} = α{c1, c2}

αS = >, otherwise

γ(⊥) = {}

γ(a0) = {c0}

γ(a12) = {c1, c2}

γ(>) = {c0, c1, c2}

IA(a) = ∩{IC(c) | c ∈ γ(a)}

α, γ form a Galois connection, induce the simulation relation,

ρ ⊆ Σ×A — c ρ a iff c ∈ γ(a) — and de£ne coarser α and β.

γ( a )

γ( a’ )

cif

and then

c’

τ τ

c0

c1

c2

β
α

β
α

happy

happy,sad

sad

happy,sad

a0 a12

β
α

αβ

happy
sad
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Graph models apply to storage shapes

Σ = {c0, c1, c2}

τhead = {(c0, c0)}

τtail = {(c0, c2),

(c1, c1), (c1, c2)}

IΣ(c0) = {it}

IΣ(c1) = {}

IΣ(c2) = {x, y}

.

c0 c1

c2

tail
head

y

it

tail

tail

x

Rather than states, the nodes now represent cells.
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A linear list can be abstracted to its “shape graph”:

tail tail
c1

tail
c2c0 c3

tailtail
a0 a13

The noncircular list is modelled by a more compact representation

that distinguishes only between the head and non-head nodes.

A data base can be abstracted by forgetting a dimension:

surname name eye color

Ricardo Ricky brown

Ricardo Lucy blue

Mertz Fred green

surname eye color

Ricardo brown t blue

Mertz green

The abstraction produces a smaller element set with loss of precision.
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Speci£cations/invariants are
underapproximations of correct behaviours

An acceptable database must associate a unique eye color to
each person:

∀p : Person, ∃!c : Color, c ∈ p.eyeColor

An acceptable list must be noncircular:

∀n ≥ 0, (∀i ∈ 0..n− 1, ai+1 = ai.tail) ∧ (∀i, j ∈ 0..n, i 6= j ⇒ ai 6= aj)

An acceptable program execution must terminate:

p0 |=∀ F(at p3)

Alas, none of these properties can be proved for the

overapproximating models we just saw!
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Overapproximating models add extra transitions that generate

nonexecuted paths. These paths reduce the properties we can prove

on the overapproximating model (that also hold true for the concrete

structure being modelled).

Concrete trace:

stop

true

true

false

while ...

while ...

while ...

Overapproximation:

while ...

stop

true false

On the overapproximation,

we cannot prove

∀ paths,

termination occurs

although it holds for the

concrete semantics,

and we cannot safely

prove

∃ path that is in£nite

because it does not hold for

the concrete semantics
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So, what can we verify?

Given the α, γ machinery, we can soundly validate universal
properties of nodes, a, in overapproximating models, M:

φ ::= p | φ∧ φ | φ∨ φ | ∀R.φ | µZ.φ | νZ.φ | Z

(Note: This is a fragment of description logic.)

When a |= φ, then for all c ∈ γ(a), we have c |= φ.

a |= φ iff p ∈ IΣ(a)

a |= φ1 ∧ φ2 iff a |= φ1 and a |= φ2

a |= ∀R.φ iff for all a ′ ∈ a.R], a ′ |= φ (where R] is sound w.r.t. α, γ)

a |= µZ.φ iff there exists i ≥ 0 such that a |= φi, where





φ0 = false

φi+1 = [φi/Z]φ

a |= νZ.φ iff for all i ≥ 0, a |= φi, where





φ0 = true

φi+1 = [φi/Z]φ

Note: The de£nitions of µ and ν assume that M is £nite.
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a |= φ1 ∧ φ2 iff a |= φ1 and a |= φ2

a |= ∀R.φ iff for all a ′ ∈ a.R], a ′ |= φ (where R] is sound w.r.t. α, γ)

a |= µZ.φ iff there exists i ≥ 0 such that a |= φi, where





φ0 = false

φi+1 = [φi/Z]φ

a |= νZ.φ iff for all i ≥ 0, a |= φi, where





φ0 = true

φi+1 = [φi/Z]φ

tail tail
c1

tail
c2

OK OK OK OK, End
c0 c3 a0 a3

tail
a12

tail

tail

OK OK OK, End

Let tail ⊆ Node×Node be the transition relation.

We can safely prove:

a0 |= νZ.isOK∧ ∀tail.Z : all nodes reached from a0 (and so, c0) are OK

a3 |= µZ.atEnd∨ ∀tail.Z : all paths from a3 (and so, c3) terminate

We cannot prove: a0 |= µZ.atEnd∨ ∀tail.Z (but it holds for c0)

We cannot safely prove:

a12 |= νZ.∃next.Z : there is a cycle (because this fails for c1 and c2)
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Why does this matter?

Program and data-structure models are almost always

overapproximations. The speci£cations/invariants that we wish to

validate often require a richer logic than the one just presented.

Can we do better?

1. Make the overapproximating model more detailed by adding

underapproximating relations, dual to the ones we have. We

check both universal and existential properties on the mixed

model, and there are some specialization tricks (generalized

model checking, “focus” operations, etc.) to improve precision.

2. Retain just the overapproximating model but add some key

operators on relations that enrich the language of properties we

might prove. This is a basis of separation logic.
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1. Mixed models

An overapproximating model uses “maybe” relations, R]:
(a, b) ∈ R], that is, R

a b

means “a may be related to b” in a concretization of this model.
(Precisely, (u, v) ∈ R and u ∈ γ(a) imply (a, b) ∈ R] and v ∈ γ(b).) When
(a, b) 6∈ R], it signi£es that no concretization of the model relates a
concretization of a to b.

a |= ∀R.φ iff for all b ∈ a.R], b |= φ

The dual is a “must” relation: (a, b) ∈ R[:

R
a b

means “a must be related to b” in every concretization of this model.
(Precisely, (a, b) ∈ R[ and u ∈ γ(a) imply (u, v) ∈ R and v ∈ γ(b).)

a |= ∃R.φ iff there exists b ∈ a.R[, b |= φ
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What does a “maybe” transition denote?

what may possibly execute:

if b

...

elsethen

b !b

s1 s2

if b

...

elsethen

b

s1

what may possibly be pointed:

a |= ∀R.φ iff for all a ′ ∈ a.R], a ′ |= φ
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What does a “must” transition denote?

what must necessarily execute:

if b

...

elsethen

b

s1

if b

...

elsethen

b !b

s1 s2

what must necessarily be linked:

a |= ∃R.φ iff there exists a ′ ∈ a.R[, a ′ |= φ
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We can validate a full description logic on a MTS

We validate universals on the overapproximated relations and
existentials on the underapproximated ones. And we can validate
negations via refutations on the dual approximation.

Example: c0

c1

c2

α
β

α
β abstracts to a12a0

α β

α

a0 |=under ∃α.∀β.¬at zero

iff a12 |=over ∀β.¬at zero

iff a12 |=over ¬at zero

iff a12 6|=under at zero

iff true

This is fun, but extracting mixed models is hard work! (The reason is

that state-abstraction is almost always overapproximating, making it dif£cult

to extract underapproximating relations.)
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Modular validation

Given a model, 〈Σ, {τ`}`∈L〉, and a ∈ Σ, a judgement a |= φ is checked

with respect to the entire model, that is,

a, 〈Σ, {τ`}`∈L〉 |= φ

Is there a more “modular” variant of property checking, where a
subset of the model is used to validate φ?

That is, we want to divide the model into disjoint “regions,” hi, so that

we can use this reasoning principle:

h1 |= φ1 h2 |= φ2 h1#h2
h1 ◦ h2 |= φ1 ∗ φ2

where h1#h2 asserts that h1 and h2 are disjoint regions. φ1 ∗ φ2
expresses an assertion whose conjuncts hold true for disjoint regions

— no aliasing/sharing of region domains allowed!

This is the motivation for separation logic.
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The standard application is to storage heaps, e.g.,

h = 〈Cell, {head, tail}〉. (Say that domain(h) = Cell.)

c0 c1

c2

.

tail
head tail

tail

We say that 〈Cell1, {head1, tail1}〉#〈Cell2, {head2, tail2}〉 iff Cell1 ∩ Cell2 = {}.

The composition of two regions is

〈Cell1, {head1, tail1}〉 ◦ 〈Cell2, {head2, tail2}〉 =

〈Cell1 ∪ Cell2, {head1 ∪ head2, tail1 ∪ tail2}〉

For example, the above model can be divided as follows:

〈{c0}, {{(c0, c0)}, {(c0, c2)}}〉#〈{c1, c2}, {{}, {(c1, c2), (c2, c2)}}〉

The technique can also be used to organize a set of parallel processes.
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2. Separation logic (O’Hearn, Pym, Yang)

Additives (the usual classical logic): Let h ∈ Heap:

h |= true always

h |= p∧ p ′ iff h |= p and h |= p ′

h |= ∃x.px iff exists v ∈ Σ s.t. h |= pv

h |= E1 = E2 iff [[E1]] = [[E2]]

Multiplicatives (based on a commutative partial monoid, (Heap, ◦, ε)):

h |= emp iff h = ε

h |= p ∗ p ′ iff there exist h0, h1 such that h0#h1,

h = h0 ◦ h1, h0 |= p, and h1 |= p ′

h |= p−∗p ′ iff for all h ′, if h ′#h and h ′ |= p,

then h ◦ h ′ |= p ′

h |= R(E1, E2) ... application dependent ...
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Separation logic proves correctness properties

Because we can assert disjointness, we can write an assertion that
de£nes a (tail-)noncircular list:

nc(`) ifflfp (` = null) ∨ (∃c. tl(`, c) ∗ nc(c))

where h |= tl(a, b) iff domain(h) = {a} and (a, b) ∈ tail ∈ h.

The star (∗) ensures that all cells in the list’s tail are disjoint from the
list’s head, addressed by `. We might prove that a copy function
constructs a noncircular list:

copy(Cell x ) {

nc(x)

y := (if x = null

then x

else new Cell(x.hd, copy(x.tl)));

nc(y)

return y; }
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The Reynolds-O’Hearn “small” axioms

E
.
= E ′ abbreviates E = E ′ ∧ emp (where emp is the “empty” heap).

E1 7→ E2, E3 abbreviates hd(E1, E2) ∧ tl(E1, E3).

Assume that x, a, b, and c are variables and that x 6∈ {a, b, c}

The small axioms for command forms are

{x
.
= a} x :=E {x

.
= E[a/x]}

{E 7→ a, b} E.tl :=E ′ {E 7→ a, E ′)}

{x
.
= a} x := new C(E1, E2) {x 7→ E1[a/x], E2[a/x]}

{x = a∧ E 7→ b, c} x :=E.tl {x = c∧ E[a/x] 7→ b, c}

A Hoare triple, {φ}C{ψ}, de£nes a relation over commands, but it also

de£nes “command-transfer functions” that might be used by a

data-¤ow algorithm (e.g., Whaley-Rinard’s analysis, to come).
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Structural rules for inference

The small axioms gain utility when used with these structural rules; let
modified(S) be those variables that are targets of assignments in S.

Consequence :
p ⊃ p ′ {p ′}S{q ′} q ′ ⊃ q

{p}S{q}

Subst :
{p}S{q}

({p}S{q})[E1/x1, · · ·Ek/xk]
where {x1, · · · , xk} ⊇ free(p,S , q),

and xi ∈ modified(S) implies Ei is a var, Ei 6∈ free(Ej), j 6= i

Frame :
{p}S{p ′}

{p ∗ q}S{p ′ ∗ q}
where modified(S) ∩ free(q) = {}

The Subst rule motivates the usual rule for procedure invocation (as
substitution of actuals for formals).

The Frame rule embeds a result proved of a heap “region” into a
larger heap, justifying modular reasoning by reasoning on disjoint
heap regions.
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Application of separation logic to Whaley-Rinard
analysis

Consider this Whaley-Rinard shape analysis of m(C x){...}:

function m(C x)  {
C y := new C(this,x);
this.fst := y; }

fst
fst

snd

y

this x
class C {

C fst; C snd;

}

The shape analysis is neatly summarized as this Hoare triple:

m(C x){ {this 7→ a, b}

C y := new C(this, x); this.fst := y;

{∃y. (this 7→ y, b) ∗ (y 7→ this, x)}

}

(-: / 23



Say there is an invocation, g.m(h):

snd

fst
sndfst

hgCaller context: Result
of binding:

snd

fst

g h

The corresponding step in separation logic is

{g 7→ h, h} g.m(h) {∃y.(g 7→ y, h) ∗ (y 7→ g, h)}

because [this/g, h/x] substitutes into the previous triple for m(C x):

{this 7→ a, b}

C y := new C(this, x); this.fst := y;

{∃y. (this 7→ y, b) ∗ (y 7→ this, x)}
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tail tail
c1

tail
c2c0 this

tailtail
a0

There are many ad-hoc conventions for asserting noncircularity in
shape graphs; separation logic gives us the convention for free.
Consider

x := this;

while (...) {

x:= new C(..., x); // \alpha names the summary object

}

The loop’s approximate invariant, mechanically computed, reads

(x = α) ∧ (α 7→ ..., (α∗ ∨ this))

The expression abbreviates a sequence of distinct objects:

∃i ≥ 0. (x = αi) ∧ ((αi 7→ ..., αi−1) ∗ (αi−1 7→ ..., αi−2) ∗ · · · ∗ (α0 7→ ..., this))

The Sagiv-Reps-Wilhelm TVLA shape-analysis system uses exactly this

interpretation of its summary nodes.
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The existential nature of ∗

Recall that ∃-properties cannot be validated on overapproximating

models. Nonetheless, separation logic’s ∗ embeds a useful existential

property into its assertions:

Read h |= φ1 ∗φ2 as there exists h1, h2 such that h1#h2, h = h1 ◦ h2,

h1 |= φ1, and h2 |= φ2.

The motivating example is

isAliased(c) iff tl(α, c) ∗ tl(β, c)

where α and β are placeholders (Prolog-like logical variables) that

must denote distinct cells.

# can be checked on abstract values: {a}#{a ′} iff a u a ′ 6= ⊥,

assuming γ is strict. (Or, we can assume, as is done in TVLA, that

a 6= a ′ implies γ(a) ∪ γ(a ′) = {}.)
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“Store-less” models: Path sets

Jonkers and Deutsch proposed “storeless” (heap-less) models:

.

k3

k2k1

fst snd
fst

x

y

it

fst snd

snd

The heap shape is modelled by right-regular equivalence sets of
paths from the “entry point,” it:

{fsti | i ≥ 0} {fsti.snd | i ≥ 0}

{fsti.snd.fst | i ≥ 0} {fsti.snd2 | i ≥ 0}

Deutsch developed clever fsa over-approximations of the equivalence
classes.
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Blanchet’s path models

Many questions regarding escapes, leaks, and aliases are answered
by the paths from one object of interest to another, e.g., from a global
variable to the heap’s entry point:

k1 k2

k3

.

snd
fst snd

fst

x

y

it

fst snd

{y.snd−1.fsti.(fst−1)j | i, j ≥ 0}

∪ {x.fst.snd−1.fsti.(fst−1)j | i, j ≥ 0}

The paths have been normalized by the cancellation law,

fst−1.fst ≡ ε

The cancellation law gives the paths a pleasant, regular format.
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The paths are traces through the heap, and questions about the

traces can be asked in the language of linear temporal logic. Let π be

a trace from variable x to it, the result/heap-entry.

We can ask standard questions:

¨ Is part of x embedded in the result? π |= at x∧ F(des−1)

¨ Does x’s cell itself escape in the result? π |= at x∧G(des−1)

¨ Is part of x aliased to y? π |= F(at y)

¨ Is x a cyclic structure? π |= GF(at x)

This approach has been extended by Bazga, Iosif, and Lakhnech.
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My recent work

¨ Formalizing transition relations as functions of form, A → P(A),

where P is a lower- or upper-powerdomain, and characterizing

simulations on such relations in terms of Galois connections on

the powerdomains

¨ Applying the above to understand the logics that can be validated

and refuted on over- and under-approximating models of relations

¨ Attempting to integrate separation logic’s ∗ operator into modular

abstract interpretations of overapproximating models, by studying

Blanchet’s modular escape analysis for ML.

¨ Also, Élodie Sims, a PhD student joint between Kansas and

École Polytechnique, has formalized and proved correct an alias

(“partitioning”) analysis based on separation logic.
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