
Exam for WSSA’03 Course on Static Analysis

David A. Schmidt

Computing and Information Sciences Department

Kansas State University

Manhattan, KS 66506 USA.

Answer 3 of the following 4 questions.

Note: In the questions that follow, I reference slides from the lectures, where I

use numberings from the PS-files posted on my web page. Those numbers might

not match exactly the ones in your notes, so please consult my web site if you

are uncertain of a reference.

Question 1. Introduction to abstraction and static analysis

From Lecture 1, Slide 17 (“A Starting Point: Trace-Based Operational Seman-
tics”) shows the trace-based operational semantics for a while-loop program.

Here is a syntax for the language in which the program was written:

P : ProgramPoint

C : Command

E : Expression

F : BasicExpression

x : Variable

N : Numeral

C ::= P: x := E | P: while E do C | C1 ; C2

E ::= F1 + F2 | F1 < F2

F ::= N | x

N ::= 0 | 1 | 2 | ...

P ::= p0 | p1 | p2 | ...

x ::= a | b | c | ...

Write an algorithm that translates a program written in the above language into
a set of state transition rules that compute the program’s “concrete” execution
semantics on integers.

Next, write an algorithm that translates a program written in the above lan-
guage into a set of state transition rules that compute the program’s abstract
semantics on the abstract data values, {even, odd}. (See Slide 18: “We can ab-
stractly interpret, say, for polarity”).

Finally, write a proof that, for every program, the translated rules that com-
pute the abstract values, {even, odd}, of variables are sound with respect to the
rules that compute the concrete semantics. (Hint: Read Slides 20 and 21: “The
underlying abstract intepretation semantics.”)

Question 2. Foundations of Abstract Interpretation

From Lecture 2, read Slides 14 and 15, “Closed binary relations.” Use the defi-
nition of γ on Slide 14 to prove the Proposition stated on Slide 15.

Question 3. Mechanics of Static Analysis

Slide 16 of Lecture 3 defines forwards-necessarily reaching definitions analysis.
Rewrite the definitions of inReach(pi) and f

#
i on that slide so that the

analysis compute forwards-possibly reaching definitions analysis.
Use your definition to rewrite the abstract transfer functions for the program

on Slide 9 and recompute the flow-analysis table for the program, which should
look similar to the one on Slide 11.

Question 4. Static Analysis: Applications and Logics

In Lecture 4, Slide 17 (“Constructing an abstract logic”) shows how to generate
a distributive complete lattice. Prove Items 1 and 2 on Slide 18.

Next, prove that the distributive lattice generated from {neg, zero, pos},
where

n |= neg for all n < 0
n |= pos for all n > 0
0 |= zero

quotiented by the induced function, γ (that is, A ≡γ B iff γ(A) = γ(B)), is
exactly the Signs lattice, displayed at the bottom of Slide 18.

