
Static Analysis:
Applications and Logics

David Schmidt

Kansas State University

www.cis.ksu.edu/~schmidt

Escuela’03 IV / 1

Outline

1. Applications:

¨ abstract testing and safety checking

¨ program transformation

¨ assertion checking and discovery

2. Logics:

¨ state logics: propositional

¨ trace logics: linear- and branching-time

temporal logics

Escuela’03 IV / 2

Abstract testing and model generation

p0 :
p1 :

p2 :
p3 :

x = x div 2;
}
x = 4 * x;
exit

while isEven(x) {

p2, odd
p3, even

p0, even
p1, even
p0, any

p0, odd
p2, odd
p3, even

.

Each trace tree denotes an abstract “test” that covers a set of
concrete test cases, e.g., γ(even) = {...,−2, 0, 2, ...}.

Forms of abstract testing:
¨ Black box: For each test set, S ⊆ C, we abstractly interpret with
α(S) ∈ A. (Best precision: ensure that S = γ(α(S)).)

¨ White box: for each conditional, Bi, in the program, ensure there
is some ai ∈ A such that γ(ai) = {s | Bi holds for s}

Once we generate an abstract model, we can analyze it further — ask
questions of its paths and nodes — via model checking.

Escuela’03 IV / 3

Low-level safety checking

There are a variety of errors that might be checked on an abstract

model; one example is type casting:

pi : ... ((Rational) x).ratValue()...

Object

Bool

Int

Rational{...ratValue...}

Perhaps a static analysis calculates the abstract store arriving at pi:

¨ pi, 〈...x : Int...〉: no error possible — remove the run-time check

(because Int v Rational, hence γ(Int) ⊆C γ(Rational)).

¨ pi, 〈...x : Object...〉: possible error — retain run-time check

(because Object 6v Rational)

¨ pi, 〈...x : Bool...〉: definite error, because BooluRational=⊥

(assuming γ(⊥)=⊥C).

Escuela’03 IV / 4

The approach to safety checking:

1. Design a Galois connection, C〈α, γ〉A, such that all “checkpoint

conditions,” ci ∈ C, are abstracted exactly by α(ci) (that is,

ci = γ(α(ci)) or equivalently, ci ∈ γ[A]). (Otherwise, we might

have that a ′ vA α(ci) yet γ(a ′) 6⊆C ci.)

2. For each checkpoint, ci at program point pi, for each abstract

value, ai, that arrives at pi, check if ai vA α(ci).

If ai vA α(ci), then no error is possible; if ai 6vA α(ci), then an

error is possible.

When γ(⊥A) = ⊥C, and ⊥C denotes no value/dead-code, then

ai u α(ci) = ⊥A implies γ(ai) ∩ γ(α(ci)) = γ(ai) ∩ ci = ⊥C. Thus, no

c ⊆C γ(ai) satisfies ci — a definite error.

Escuela’03 IV / 5

Two more examples:

Array-bounds and arithmetic over- and under-flow checks

¨ Analysis: interval analysis, where values have form, [i, j], i ≤ j.

¨ Checkpoints: for a[e] — e has value in range, [0, a.length];
for int x = e — e has value in range, [−231 − 1, +231 − 1]

Uninitialized variables, dead-code, and erroneous-state checks

¨ Analysis: constant propagation, where values are {k}, ⊥, or >.

¨ Checkpoints:
uninitialized variables: referenced variables have value 6= ⊥;
dead code: at program point pi, arriving store has value 6= ⊥;
erroneous states: at program point pi : Error, arriving store has
value = ⊥. (Note: This can be combined with a backwards analysis, starting

from each pi : Error with store >, working backwards to see if an initial state is

reached.)

Escuela’03 IV / 6

Program transformation: Constant folding

p1 :
p2 :

p3 :

p0 :

x = x + 1;
}

while (x < y + z) {
x = 1; y = 2;

exit

0 1−1 2

Const
p0

p1 p3

, ,

1,2,
2,2,

p2 1,2,
,2,

,2,

1,2,

,2,

The analysis tells us to replace y at p1 by 2:

x = 1; y = 2; while (x < 2 + z) x = x + 1

Basic principle of program transformation:

If ai ∈ A arrives at point pi : S, where fi : C → C is the concrete

transfer function, and there are some S ′, f ′ such that fi(c) = f ′(c) for

all c vC γ(ai), then S can be replaced by S ′ at pi.

For constant folding, the transformation criteria are the abstract

integers ...− 1, 0, 1, ... (but not >).

Escuela’03 IV / 7

Program transformation: Code motion

A compiler translates a program into blocks of three-address code:

prod = 0;
i = 1;
do {
 prod = prod + a[i] * b[i];
 i = i + 1;
} while i <= 20

The translation sometimes

generates inefficent code, as

array-indexing expressions are

expanded:

L:

prod = 0
i = 1

t1 = 4 * i
t2 = addr(a) − 4
t3 = t2[t1]
t4 = addr(b) − 4
t5 = t4[t1]
t6 = t3 * t5
prod = prod + t6
i = i + 1
if i <= 20 goto L

Note: This example comes from the Aho and Ullman “green dragon” compiling text.

Escuela’03 IV / 8

A reaching-definitions analysis helps calculate that the statements in

the loop’s body that assign to t2 and t4 are constant — the

assignments can be moved out of the loop:

L:

prod = 0
i = 1

t1 = 4 * i
t2 = addr(a) − 4
t3 = t2[t1]
t4 = addr(b) − 4
t5 = t4[t1]
t6 = t3 * t5
prod = prod + t6
i = i + 1
if i <= 20 goto L

i = 1

L:

t2 = addr(a) − 4
t4 = addr(b) − 4

prod = 0

t1 = 4 * i
t3 = t2[t1]

t5 = t4[t1]
t6 = t3 * t5
prod = prod + t6
i = i + 1
if i <= 20 goto L

Escuela’03 IV / 9

Precondition checking and assertion synthesis

A backwards-necessarily analysis can synthesize precondition

assertions that ensure achievement of a postcondition:

p0: if x=0

p1 : then x = x+1

p2 : else x = x-1

p3 : halt 〈x :↓ notneg〉

neg poszero

all

notpos notneg

none

Signs

f
#−1
6=0

x :↓ notneg

x :↓ notneg

x :↓ >

p3

∩

x :↓ >∩ ↓ notneg =↓ notneg

f
#−1
x+1

Goal:

x :↓ notneg
p2p1

f
#−1
=0

f
#−1
x−1

x :↓ pos

p0

where

f
#
=0

(a) = auzero = α ◦ f=0 ◦ γ

f
#

6=0
(a) = α ◦ f 6=0 ◦ γ, e.g., f#6=0

(notneg) = pos;

f
#

6=0
(zero) = ⊥; f

#

6=0
(>) = >

f
#
+1

(a) = α ◦ f+1 ◦ γ, e.g., f#+1
(notneg) = pos

↓ a = {a ′
∈ A | a ′

v a}

f#−1(S) = {a ∈ A | f#(a) ∈ S}

Escuela’03 IV / 10

The entry condition can be used with a forwards-possibly analysis to
generate postconditions that sharpen the assertions:

〈x : notneg〉 p0: if x=0

p1 : x = x+1

p2 : x = x-1

p3 : halt

neg poszero

all

notpos notneg

none

Signs

p1

p0

p3

p2

x : notneg

f
#

6=0
f
#
=0

x : pos x : notneg

f
#
x−1

x : zero x : pos

f
#
x+1

x : pos t notneg = notneg

where

f
#
=0

(a) = auzero = α ◦ f=0 ◦ γ

f
#

6=0
(a) = α ◦ f 6=0 ◦ γ, e.g., f#6=0

(notneg) = pos;

f
#

6=0
(zero) = ⊥; f

#

6=0
(>) = >

f
#
+1

(a) = α ◦ f+1 ◦ γ, e.g., f#+1
(notneg) = pos

The forwards-backwards analyses can be repeatedly alternated.

Escuela’03 IV / 11

General assertion checking

Checking user-supplied assertions is a form of low-level safety
checking, e.g., we might check pi : assert { x != 0 }

It is crucial that an assertion, φ ∈ C (say, for C = ℘(Store)), be exactly
abstracted: φ ∈ γ[A], that is, γ(α(φ)) = φ.

Example: x != 0, that is,

x ∈ {...− 2,−1, 1, 2, ...}

is not exactly abstracted in Signs: neg poszero

all

notpos notneg

none

Signs

Let φ abbreviate {s : Store | φ holds for s}:

α(x ! = 0) = α(x < 0∨x > 0) = α(x < 0)tα(x > 0) = negtpos = all.

To check x!=0 for a, we should check if a v neg or a v pos — not
a v all ! (The underlying issue is γ(neg t pos) 6= γ(neg)∪γ(pos).)
Nonetheless, the Signs domain defines its own ”logic.”

Escuela’03 IV / 12

An abstract domain defines a “logic”

For ℘(D)〈α, γ〉A, each a ∈ A is a “property/predicate,” and
γ(a) ∈ ℘(D) defines those concrete states that make a “true”:

s has a , written s |=A a, iff s ∈ γ(a)

Because γ preserves u, we have that

c |= a u b iff c |= a and c |= b

a ′ v a u b implies for all c ∈ D, if c |= a ′ then c |= a and c |= b

u behaves like conjunction — 〈A,u〉 is a logic.

Example: From 0 |=Sign notneg and 0 |=Sign notpos, we deduce
0 |=Sign notneg u notpos.

When φ1 ∈ γ[A] and φ2 ∈ γ[A], we safety-check whether a ∈ A

satisfies assert{φ1 ∧ φ2} by checking a vA α(φ1) and a vA α(φ2).

Example: We check 〈x : zero〉assert {x ≤ 0∧ x ≥ 0} by checking
zero vSign α(x ≤ 0) = notpos and zero vSign α(x ≥ 0) = notneg.

Escuela’03 IV / 13

Constructing the abstract logic, 〈A,u〉

We can construct the logic, 〈A,u〉, and its Galois connection as a

freely generated complete lattice:

Say the concrete domain is D, and F is a possibly infinite set of

primitive “properties.” Say that we have an entailment relation,

|= ⊆ D× F.

Example: D = Int and F = Sign = {neg, notneg, notpos, pos};

−2 |= notpos, 0 |= notneg, etc.

We generate a Moore family from F by constructing all possible

conjunctions of the properties listed in F:

Define F to be the set of conjunctions of form, ui∈I ai, where I ⊆ Nat

and all ai ∈ F

Example: notpos u notneg ∈ Sign.

Escuela’03 IV / 14

Next, we interpret the conjunctions with the map, γ : F → ℘(D):

γ(ui∈Iai) =
⋂

i∈I δ(ai)

where δ(a) = {c ∈ D | c |= a}

γ(a1 u ... u an) gives all d ∈ D such that “d |= a1 u ... u an”.

Example: γ(notpos u notneg) = {...,−1, 0} ∩ {0, 1, ...} = {0}.

γ[F] is a Moore family, because it is closed under intersections:
⋂

i∈I γ(fi) = γ(ui∈Ifi). There is a Galois connection, ℘(D)〈α, id〉γ[F].

Escuela’03 IV / 15

Since u is associative, commutative, and absorptive, we might try
representing ui∈Iai as {ai}i∈I, e.g., notpos u notneg is represented
as {notpos, notneg}. This means u is just set union.

We have this Galois connection, (℘(D),⊆)〈α, γ〉(℘(F),⊇):

γ(T) =
⋂

a∈T δ(a)

α(S) = {a | S ⊆ δ(a)}

where δ(a) = {c ∈ D | c |= a}

Here, S v T iff T ⊆ S, which is not so interesting.

If the properties, F, are partially ordered and δ : F → ℘(D) is
monotone, then we have this Galois connection:

(℘(D),⊆)〈α, γ〉({↑T | T ⊆ F},⊇),

where ↑T = {a ′ ∈ F | exists a ∈ T, a vF a
′} is the up-closure of set T .

This gives us more interesting “implications,” v, in the abstract
domain.

Escuela’03 IV / 16

Making t into disjunction (1)

The t operation does not behave like “or” for the Const abstract
domain:

0 1−1 2 ...
var holds

var holds

...

Const
multiple values

this value only

(dead code)
var holds no value

For example, we have 1 |= 1, and also 1 |= >. But

>=1 t 2=1 t 2 t 3=2 t 3, etc.

This implies 1 |= 2 t 3. But is it true that 1 |= 2 or 1 |= 3 ? No.

The technical problem is that γ(a t b) 6= γ(a) ∪ γ(b). The problem
should be repaired by inserting a more precise element than > to

denote 2 t 3, etc.

Escuela’03 IV / 17

Making t into disjunction (2)

Given ℘(D)〈α, γ〉A, we have that t behaves like disjunction when

γ(a tA b) = γ(a) ∪ γ(b)

That is, tA must be forwards complete for ∪. We then have

¨ c |= a t b iff c |= a or c |= b

¨ a ′ v a t b implies for all c ∈ D, if c |= a ′ then c |= a or c |= b.

and 〈A,u,t〉 is a logic.

When there are a, b ∈ A such that γ(a tA b) 6= γ(a) ∪ γ(b), we insert
a new element, a ′, such that a ′ = a t b and γ(a tA b) = γ(a) ∪ γ(b).

Example: The completed Signs domain:

It is precise enough to check the asser-

tion, x!=0, that is, x<0 or x>0 neg poszero

all

none

notzero notnegnotpos

Escuela’03 IV / 18

Making t into disjunction (3): Disjunctive completion

Given abstract domain, (A,vA), we can construct its disjunctive

completion as
℘↓(A) = ({↓S | S ⊆ A},⊆)

where ↓S = {a ∈ A | exists a ′ ∈ S, a vA a
′}. That is, ↓S is the down

closure of S.

Intuition: ↓ {a} ∈ ℘↓(A) represents a ∈ A. A “non-singleton” set,

↓ {a0, ..., ai, ...}, represents the join of elements {a0, ..., ai, ...} ⊆ A.

Given the Galois connection, ℘(D)〈α, γ〉A, we can construct the

Galois connection on ℘L(A) as ℘(D)〈α↓, γ↓〉℘↓(A):

γ↓(T) =
⋃

a∈T γ(a)

α↓(S) =
⋂
{T ∈ ℘L(A) | S ⊆ γ↓(T)}

and we can prove easily that this Galois connection makes t℘↓(A) = ∪

(in ℘↓(A)) forwards complete for ∪ (in ℘(D)).

Escuela’03 IV / 19

Constructing an abstract logic, 〈A,u,t〉

For concrete domain D, a finite set of “facts,” F, and an entailment

relation, |= ⊆ D× F, let F be the set of finite disjunctive normal form

(DNF) phrases built from F:

(a11 u a12 u ...a1n) t (a21 u a22 u ...a2n) t · · · t (am1 u am2 u ...amn)

for all aij ∈ F and m,n ≥ 0.

Define this map:

γ(a) = {c ∈ D | c |= a}

γ(a t b) = γ(a) ∪ γ(b)

γ(a u b) = γ(a) ∩ γ(b)

This is of course the distributive complete lattice that is freely

generated from generator set, D.

Escuela’03 IV / 20

1. γ[F] is closed under unions: γ(f1) ∪ γ(f2) = γ(f1 t f2), and f1 t f2
is in DNF.

2. As F is finite, γ[F] is a Moore family: γ(f1)∩ γ(f2) = γ(f1 u f2), and
since f u (g t h) ≡γ (f u g) t (f u h), there is a DNF formula that
is γ-equivalent to f1 u f2.

The logic for the Galois connection ℘(D)〈α, id〉γ(F) is 〈F,u,t〉.

Example: Generating the Sign logic, 〈Sign,u,t〉:

From Sign = {neg, zero, pos} and |= ⊆ Int× Sign, we obtain

Sign = Sign/γ =

neg zero pos

neg t zero neg t pos zero t pos

neg u zero u pos

(u()) ≡ neg t zero t pos

Escuela’03 IV / 21

Domains might employ a negation operation

{ s | ϕs true } { s | ϕs false } ϕ

State

{ }

...

...
ϕ

P(State) γ
Properties

= true

= false

Each element, a has a unique complement element, ¬a, such that
a t ¬a = > and a u ¬a = ⊥.

When the domain is a distributive lattice, we have a boolean algebra,
where these laws hold: ¬(a t b) = ¬a u ¬b and ¬(a u b) = ¬a t ¬b.

If ℘(D) and A are boolean algebras, and γ preserves negation, that
is, γ(¬a) = ∼ γ(a), then γ also preserves t.

This makes (A,¬,t,u) a classical propositional logic.

Escuela’03 IV / 22

Predicate abstraction, revisited

Recall that we proved z ≥ x∧ z ≥ y at p3:

p1 :
p0 :

p2 :
p3 :

if x < y
then z = y;
else z = x;

exit

p1, 〈t, ?, ?〉

p3, 〈t, t, t〉

p0, 〈?, ?, ?〉

p2, 〈f, ?, ?〉

p3, 〈f, t, t〉

We chose three predicates, and com-

puted their values at the program’s points.

At p3, φ2 ∧ φ3 holds.

φ1 = x < y

φ2 = z ≥ x

φ2 = z ≥ y

The analysis used a logic, 〈F̃,u〉, where F̃ is the set of conjunctions
generated from F = {x < y, z ≥ x, z ≥ y,¬x < y,¬z ≥ x,¬z ≥ y}.

E.g., 〈f, ?, ?〉 at p2 is ¬φ1, and 〈f, t, t〉 at p3 (right) is ¬φ1 u φ2 u φ3.

Depending on the underlying “logic” and static analysis, there
are many forms of “predicate abstraction” and “refinement.”

Escuela’03 IV / 23

Properties of execution traces: Linear Time Logic

We now move from describing
properties of states to describing
entire execution traces:
p0 :

p2 :

p1 :
while x > 0 {

sleep forever

}

use resource

x = x + 1;

0 :q

q1 :
x = 0;

use
resource
forever

π =

p0, q0, 1
p1, q0, 1
p0, q0, 2
p1, q0, 2

p1, q1, 0

p0, q1, 1
p1, q1, 1
p0, q1, 2

.

.

.

p0, q1, k

.

.

.

Will π enter p1 in its Future? π |= F at p1 — Yes

Is it Generally true that p1 is reached in the Future ? π |= GF at p1

— Yes

Will π Generally avoid resource misuse? π |= G ¬(at p1 u at q1) —
No

Escuela’03 IV / 24

An LTL property, φ, describes a pattern of states in a trace:
Let Σ be the concrete states, assume ℘(Σ)〈α, γ〉A, and let a ∈ A:

MiniLTL: φ ::= a | Gφ | Fφ Semantics: [[φ]] ⊆ ℘(Trace(Σ))

[[a]] = {π | π0 ∈ γ(a)} (initial state, π0, has state-property a)

[[Gφ]] = {π | ∀i ≥ 0, π ↓ i ∈ [[φ]]} (all subtraces of π have φ)

[[Fφ]] = {π | ∃i ≥ 0, π ↓ i ∈ [[φ]]} (exists a subtrace of π with φ)

where, for π = s0 → s1 → · · ·, let π0=s0 and π ↓ i=si → si+1 → · · ·.

For π ∈ Trace(Σ), we write π |= φ to assert that π ∈ [[φ]].

MiniLTL abstracts trace sets: Using u-completion, we build the

Galois connection, (P(Trace(Σ)),⊆)〈α, γ〉(P(MiniLTL),⊇), where

u = ∪ in P(MiniLTL):

γ(P) =
⋂
{[[φ]] | φ ∈ P} (the traces that have all the properties in P)

α(S) = {φ | S ⊆ [[φ]]} (properties held by all traces in S)

Escuela’03 IV / 25

What we have just accomplished:

¨ We defined an entailment relation, π |= φ (asserts that π ∈ [[φ]])

¨ We constructed a Moore family by closing the entailment relation
under conjunction, where {a0, a1, ..., an} denotes a1 ua2 u ...uan.

¨ The Galois connection, (P(Trace),⊆)〈α, γ〉(P(MiniLTL),⊇), uses
the logic,

〈℘(MiniLTL),u〉, where u is set union.

For example, Fa u Fb is {Fa} ∪ {Fb} = {Fa, Fb}.

The MiniLTL logic is a linear-time logic because it expresses
properties of “linear” traces.

MiniLTL is a weak logic — it cannot express disjunction (e.g.,
Fa t Fb = {Fa} ∩ {Fb} = {} = >), nor can it express “until” properties.
Nonetheless, we develop it further to learn some standard
abstractions on temporal logics.

Escuela’03 IV / 26

Abstracting traces

Let Σ be the set of concrete states; the set of concrete traces

(sequences of states) is Trace(Σ) = Πi≥0Σ.

Say that Σ is abstracted to abstract states: ℘(Σ)〈α, γ〉A. Then, the set

of abstract traces is Trace(A) = Πi≥0A. Let κ ∈ Trace(A).

We can define δTrace : Trace(A) → ℘(Trace(Σ)) as

δTrace(κ) = {〈si〉i≥0 | si ∈ γ(κi)}

That is, δTrace(κ) concretizes abstract trace κ to all traces, π, such

that πi ∈ γ(κi), for all i ≥ 0.

There is also this Galois connection between sets of concrete traces

and individual abstract traces:

(℘(Trace(Σ)),⊆)〈αTrace, δTrace〉(Trace(A),vω)

αTrace(S) = 〈α{πi | π ∈ S}〉i≥0

Escuela’03 IV / 27

Example: Given the Parity abstraction (even, odd, none, any), and

a program with program points p0, p1, etc. we might have this abstract

trace:

κ0 = p0, even → p1, even → p2, odd → ...

Then, δTrace(κ0) ⊆ Trace(Σ) is a set that includes concrete traces like

p0, 0 → p1, 2 → p2, 1 → ... and p0, 6 → p1, 6 → p2, 3 → ... and infinitely

many others.

Escuela’03 IV / 28

Under-approximation and assertion checking

Over-approximation calculates a superset of the concrete answers:

a
U

γo a

U

P(C),

γo

A

S

A form of under-approximation calculates a subset of the answers:

T
γu T

UP(C),

U γu

P(A)

S

We over-approximate the answer set, S ⊆ C, by some a ∈ A, so that

S ⊆ γo(a), and we under-approximate an assertion, [[φ]]C ⊆ C, by

some set, [[φ]]A ⊆ A, so that γu[[φ]]A ⊆ [[φ]]C. This gives us

a ∈ [[φ]]A implies c ∈ [[φ]]C, for all c ∈ γ(a)

Escuela’03 IV / 29

We define [[φ]]A as this under-approximation:

U

[[.]]C

A

γ

α

A

U

P(A)P(C)

ϕ

That is,

[[·]]A = α∀ ◦ [[·]]C

so that, for all φ:

[[φ]]C ⊇ γ∀[[φ]]A

Given δ : A → ℘(C), define (℘(C),⊇)〈α∀
δ, γ

∀
δ〉(℘(A),⊇) as

γ∀δ(T) =
⋃

a∈T δ(a)

α∀
δ(S) = {a | δ(a) ⊆ S}

This is called the universal abstraction. δ is usually the upper adjoint,
γ, of the Galois connection, ℘(C)〈α, γ〉A, but it is not required.

This construction generalizes the earlier slide on “General Assertion
Checking” — now, we need not require that [[φ]]C is a fixed point —
γ(α[[φ]]C) = [[φ]]C — to check that a vA α[[φ]]C. Instead, we check
that a ∈ [[φ]]A, which is always sound.

Escuela’03 IV / 30

Deriving MiniLTL for abstract traces

Here again is the concrete MiniLTL semantics, [[φ]]Σ ⊆ Trace(Σ),
better structured:

[[a]]Σ = {π ∈ Trace(Σ) | π0 ∈ γ(a)}

[[Gφ]]Σ = genΣ[[φ]]Σ

genΣ(M) = {π ∈ Trace(Σ) | ∀i ≥ 0, π ↓ i ∈M}

[[Fφ]]Σ = futΣ[[φ]]Σ

futΣ(M) = {π ∈ Trace(Σ) | ∃i ≥ 0, π ↓ i ∈M}

Here is the expected MiniLTL semantics for checking properties of
abstract traces: [[φ]]A ⊆ Trace(A)

[[φ]]A = α∀[[φ]]Σ

But we prefer to define [[φ]]A without explicit reference to [[φ]]Σ, and a
proof by induction on the structure of φ shows that α∀[[φ]]Σ equals the
following:

Escuela’03 IV / 31

[[a]]A = α∀{π ∈ Trace(Σ) | π0 ∈ γ(a)}

[[Gφ]]A = α∀ ◦ genΣ ◦ γ∀([[φ]]A)

[[Fφ]]A = α∀ ◦ futΣ ◦ γ∀([[φ]]A)

(When using the inductive format, we always have α∀[[φ]]Σ v [[φ]]A. When all

[[φ]]Σ = γ∀(α∀[[φ]]Σ) — fixed points! — we have equality, as is the case here.)

Further analysis of the embedded functions gives us

[[a]]A = {κ ∈ Trace(A) | κ0 v a}

[[Gφ]]A = genA[[φ]]A

genA(M) = {κ ∈ Trace(A) | ∀i ≥ 0, κ ↓ i ∈M}

[[Fφ]]A = futA[[φ]]A

futA(M) = {κ ∈ Trace(A) | ∃i ≥ 0, κ ↓ i ∈M}

Because [[φ]]Σ ⊇ γ∀(α∀[[φ]]Σ) = γ∀[[φ]]A, for all φ, we have soundness
of trace checking:

Escuela’03 IV / 32

Theorem: For κ ∈ Trace(A), κ ∈ [[φ]]A implies π ∈ [[φ]]Σ, for all

π ∈ γ∀{κ} = δ(κ).

That is, if an abstract trace, κ, has φ, then so do all the concrete

traces it models. (The theorem also holds for a set, T of traces such

that T ⊆ [[φ]]A.)

For state s ∈ Σ, we write

s|=Σ∀φ to assert {π ∈ Trace(Σ) | π0 = s} ⊆ [[φ]]Σ

(similarly for a ∈ A and a |=A ∀φ). That is, all traces starting with s

have property φ.

By the above theorem, we have this result, which justifies linear-time

model checking on programs and their start states:

Corollary: a |=A ∀φ implies s |=Σ ∀φ, for all s ∈ γ(a).

Escuela’03 IV / 33

Generating traces from small-step semantics

A trace is generated from a program, P. Say that τΣ is the small-step

semantics that generates traces for P, and say that Trace(τΣ) is the

set of all possible traces generated from τΣ using all states in Σ as

starting states.

Let Trace(τΣ) ⇓ s denote the subset of Trace(τΣ) holding exactly all

traces starting with s.

In general, for a set T ⊆ Trace(τΣ), defineT ⇓ s = {π ∈ T | π0 = s}

We can use a state to abstract a set of traces — we use s ∈ Σ to

abstract the set, Trace(τΣ) ⇓ s. This simple idea lies at the heart of

branching-time model checking.

Note: Of course, this idea also works for abstracting a set of abstract traces

by a set of abstract states.

Escuela’03 IV / 34

Abstracting a set of traces to a set of states

Define δΣ : Σ → Trace(τΣ) as δΣ(s) = Trace(τΣ) ⇓ s.

Given state set, Σ, semantics τΣ, and traces Trace(τΣ), we apply the
universal-abstraction construction and generate the Galois
connection,

(℘(Trace(τΣ)),⊇)〈α∀, γ∀〉(℘(Σ),⊇)

We have this concretization map, γ∀ : ℘(Σ) → ℘(Trace(τΣ)):

γ∀(S) =
⋃

c∈S Trace(τ
A) ⇓ c

That is, γ∀(S) builds all traces starting from states in S.

The abstraction map, α∀ : ℘(Trace(τΣ)) → ℘(Σ):

α∀(T) = {c ∈ Σ | Trace(τΣ) ⇓ c ⊆ T }

includes state c ∈ Σ iff all possible traces starting from c are included
in T — T “knows all about” c.

Escuela’03 IV / 35

Example:
τ A

a0 a1
=

A = { a0, a1 }

Trace(τA) = A0 ∪A1, where
A0 = a0A1

A1 = aω1 ∪ a+
1A0

(Use the greatest-fixed point solution forA0 and A1.)

All the traces are infinite, and every trace has a suffix consisting of
alternations of a1 and a0 or an infinite sequence of a1s:

A0 = {a0a1a1a0..., a0a1a0a1a0, ...a0a1a1a1..., · · ·}

A1 = {a1a1a0a1..., a1a0a1a0a1...., a1a1a1..., · · ·}

Some examples:

γ∀(a0) = A0

α∀(A0 ∪ {aω1 }) = {a0}

α∀(γ∀(a0)) = a0

γ∀α∀(A0 ∪ {aω1 }) = A0

Escuela’03 IV / 36

Deriving a logic for traces abstracted to states

This abstraction of MiniLTL checks trace properties on the states that
abstract the traces: for state set, A, [[φ]]∀ ⊆ A is defined as
[[φ]]∀ = α∀[[φ]]A, where [[φ]]A ⊆ Trace(τA).

A proof by induction shows that the above definition equals

[[a]]∀ = α∀{κ ∈ Trace(A) | κ0 v a}

[[Gφ]]∀ = α∀ ◦ genA ◦ γ∀([[φ]]∀)

[[Fφ]]∀ = α∀ ◦ futA ◦ γ∀([[φ]]∀)

Analysis of the embedded operations shows that

[[a]]∀ = {a ′ ∈ A | a ′ v a}

[[Gφ]]∀ = gen∀[[φ]]∀

gen∀(M) = {a ∈ A | ∀κ ∈ Trace(τA) ⇓ a, ∀i ≥ 0, κi ∈M}

[[Fφ]]∀ = fut∀[[φ]]∀

fut∀(M) = {a ∈ A | ∀κ ∈ Trace(τA) ⇓ a, ∃i ≥ 0, κi ∈M}

Escuela’03 IV / 37

We have:

[[a]]∀ = {a ′ ∈ A | a ′ v a}

[[Gφ]]∀ = gen∀[[φ]]∀

gen∀(M) = {a ∈ A | ∀κ ∈ Trace(τA) ⇓ a, ∀i ≥ 0, κi ∈M}

[[Fφ]]∀ = fut∀[[φ]]∀

fut∀(M) = {a ∈ A | ∀κ ∈ Trace(τA) ⇓ a, ∃i ≥ 0, κi ∈M}

We have just derived a fragment of the branching-time logic CTL,
where F is CTL’s AF and G is AG.

Example:
τ A

a0 a1
=

A = { a0, a1 }

a0 |=
∀ F(at a1) – every trace from a0 reaches a1

a0 |=
∀ GF(at a1) – at every state reached by every trace from a0, a1

will be reached

a1 6|=
∀ F(at a0) – not all traces from a1 reach a0

Escuela’03 IV / 38

We have:
[[Gφ]]∀ = gen∀[[φ]]∀

[[Fφ]]∀ = fut∀[[φ]]∀

Unfortunately, the definitions of gen∀ and fut∀ are defined on entire
traces and not states! It would be more satisfying to have definitions
stated in terms of states only.

When the state set, A, is finite, we can prove that the following
definitions are equivalent to the ones seen earlier:

gen∀(M) =
⋂

i≥0 gi,
g0 = A

gi+1 = {a ∈ A | a ∈M and ∀(a → a ′), a ′ ∈ gi}

fut∀(M) =
⋃

i≥0 fi,
f0 = {}

fi+1 = {a ∈ A | a ∈M or ∃(a → a ′), a ′ ∈ gi}

These definitions calculate the states that can be reached by the
transitions (“branches”), a → a ′, in τA. The definitions specify a
model checker for branching-time logic.

Escuela’03 IV / 39

The existential abstraction

The dual to the universal abstraction goes like this: We start with the
same concretization map: γ∃ : ℘(A) → ℘(Trace(τA)):

γ∃(S) =
⋃

a∈S Trace(τ
A) ⇓ a

But we use this abstraction map: α∃ : ℘(Trace(τA)) → ℘(A):

α∃(T) = {κ0 ∈ A | κ ∈ T }

This Galois connection defines an existential abstraction:

(℘(Trace(τA)),⊆)〈α∃, γ∃〉(℘(A),⊆)

(Note the usual set inclusion for both powersets.)

We can use the existential abstraction to define a fragment of ECTL,
[[φ]]∃, that possesses the EF and EG modalities. But the logic
overestimates the traces that have property φ — it is a
possibly-analysis rather than a necessarily analysis (like [[φ]]∀).

Escuela’03 IV / 40

A dual Galois connection, based on a dual safety property, is needed

to define a necessarily analysis that includes EF and EG. This is a

topic that requires detailed development!

(See Dennis Dams’s PhD thesis, Technical University Eindhoven,

1996.)

Escuela’03 IV / 41

References

¨ A. Aho and J. Ullman. Principles of Compiler Design. Addison Wesley, 1977.

¨ B. Blanchet, et al. Design and implementation of a special purpose static
analyzer for safety critical real-time embedded software. In The Essence of
Computation, Springer LNCS 2566, 2002.

¨ P. Cousot and R. Cousot. Temporal Abstract Interpretation. POPL 1997.

¨ P. Cousot and R. Cousot. On abstraction in software verification. Proc. CAV’02.
Springer LNCS 2404, 2002.

¨ S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. Proc.
CAV’97, Springer LNCS 1254, 1997.

¨ M. Müller Olm, et al. Model checking: a tutorial introduction. In Proc. 6th SAS,
Springer LNCS 1694, 1999.

¨ H.R. Nielson, F. Nielson, and C. Hankin. Principles of Program Analysis,
Springer, 1999.

¨ D. Schmidt. From trace sets to modal-transition systems by stepwise abstract
interpretation. Workshop on structure-preserving relations, 2001. Available at
www.cis.ksu.edu/~schmidt/papers

Escuela’03 IV / 42

